Login | Contact | Help |
 
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of idUSCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsFunding agenciesThis CommunityBy Issue DateAuthorsTitlesSubjectsFunding agencies

Services

My AccountLoginRegisterDeposit your workApplication to deposit in idUSRequest the deposit to the LibraryMore info

Discover

Author
Li, Daniel (13)
Queffélec, Hervé (13)
Rodríguez Piazza, Luis (13)
Lefèvre, Pascal (8)Subject
Composition operator (13)
Approximation numbers (6)Carleson measure (6)Hardy space (6)Carleson function (4)Dirichlet space (4)Hardy-Orlicz space (4)Schatten classes (4)Bergman space (3)Bergman-Orlicz space (3)... View MoreDate Issued2015 (3)2011 (2)2012 (2)2013 (2)2008 (1)2010 (1)2014 (1)2017 (1)Funding agencyMinisterio de Economía y Competitividad (MINECO). España (5)Ministerio de Ciencia e Innovación (MICIN). España (3)Ministerio de Educación y Ciencia (MEC). España (2)European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER) (1)Has file(s)Yes (13)

Policies

Institutional statementBerlin DeclarationidUS Policies

Gatherers

Recolecta
HispanaEuropeana
BaseGoogle Académico
OAIsterOpenAIRE

Links of interest

Sherpa/Romeo
DulcineaOpenDOAR
Creative Commons
Search 
  •   idUS
  • Investigación
  • Ciencias
  • Análisis Matemático
  • Search
  •   idUS
  • Investigación
  • Ciencias
  • Análisis Matemático
  • Search

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

Now showing items 1-10 of 13

  • Sort Options:
  • Relevance
  • Title Asc
  • Title Desc
  • Issue Date Asc
  • Issue Date Desc
  • Results Per Page:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Icon

On approximation numbers of composition operators [Article]

Li, Daniel; Queffélec, Hervé; Rodríguez Piazza, Luis (Elsevier, 2012-04)
We show that the approximation numbers of a compact composition operator on the weighted Bergman spaces Bα of the unit disk can tend to 0 arbitrarily slowly, but that they never tend quickly to 0: they grow at ...
Icon

Approximation numbers of composition operators on Hp [Article]

Li, Daniel; Queffélec, Hervé; Rodríguez Piazza, Luis (De Gruyter Open, 2015-01)
We give estimates for the approximation numbers of composition operators on the Hp spaces, 1 ≤ p < ∞.
Icon

Compact composition operators on the Dirichlet space and capacity of sets of contact points [Article]

Lefèvre, Pascal; Li, Daniel; Queffélec, Hervé; Rodríguez Piazza, Luis (Elsevier, 2013-02-15)
We prove several results about composition operators on the Dirichlet space D⁎. For every compact set K⊆∂D of logarithmic capacity , there exists a Schur function φ both in the disk algebra A(D) and in D⁎ such that the ...
Icon

A spectral radius type formula for approximation numbers of composition operators [Article]

Li, Daniel; Queffélec, Hervé; Rodríguez Piazza, Luis (Elsevier, 2014-12-15)
For approximation numbers an(Cφ) of composition operators Cφ on weighted analytic Hilbert spaces, including the Hardy, Bergman and Dirichlet cases, with symbol φ of uniform norm <1, we prove that limn→∞⁡[an(Cφ)]1/n=e−1 ...
Icon

Some revisited results about composition operators on Hardy spaces [Article]

Lefèvre, Pascal; Li, Daniel; Queffélec, Hervé; Rodríguez Piazza, Luis (European Mathematical Society, 2012)
We generalize, on one hand, some results known for composition operators on Hardy spaces to the case of Hardy-Orlicz spaces HΨ: construction of a “slow” Blaschke product giving a non-compact composition operator on ...
Icon

Some examples of compact composition operators on H2 [Article]

Lefèvre, Pascal; Li, Daniel; Queffélec, Hervé; Rodríguez Piazza, Luis (Elsevier, 2008-12-01)
We construct, in an essentially explicit way, various composition operators on H2 and study their compactness or their membership in the Schatten classes. We construct: non-compact composition operators on H2 whose symbols ...
Icon

Some new properties of composition operators associated with lens maps [Article]

Lefèvre, Pascal; Li, Daniel; Queffélec, Hervé; Rodríguez Piazza, Luis (Springer, 2013-05)
We give examples of results on composition operators connected with lens maps. The first two concern the approximation numbers of those operators acting on the usual Hardy space H2. The last ones are connected with ...
Icon

Nevanlinna counting function and Carleson function of analytic maps [Article]

Lefèvre, Pascal; Li, Daniel; Queffélec, Hervé; Rodríguez Piazza, Luis (Springer, 2011-10)
We show that the maximal Nevanlinna counting function and the Carleson function of analytic self-maps of the unit disk are equivalent, up to constants.
Icon

Compact composition operators on Hardy-Orlicz and Bergman-Orlicz spaces [Article]

Lefèvre, Pascal; Li, Daniel; Queffélec, Hervé; Rodríguez Piazza, Luis (Springer, 2011-09)
We construct an analytic self-map ϕ of the unit disk and an Orlicz function Ψ for which the composition operator of symbol ϕ is compact on the Hardy-Orlicz space HΨ, but not on the Bergman-Orlicz space BΨ. For that, we first ...
Icon

Two results on composition operators on the Dirichlet space [Article]

Li, Daniel; Queffélec, Hervé; Rodríguez Piazza, Luis (Elsevier, 2015-06-15)
We show that the decay of approximation numbers of compact composition operators on the Dirichlet space D can be as slow as we wish. We also prove the optimality of a result of O. El-Fallah, K. Kellay, M. Shabankhah ...
  • 1
  • 2
  • About idUS
  • Deposit your work
  • Services
  • Distribution License
  • FAQS
  • idUS in figures

  • idUS is a DSpace version 6.2 implementation and is managed by Biblioteca de la Universidad de Sevilla
  • Last update: 20 November 2019
Contact  |  Help

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional License.

Logo CrueCreative Commons LicenseIcono de conformidad con el Nivel Doble-A, de las Directrices de Accesibilidad para el Contenido Web 1.0 del W3C-WAI
Copyright © 2014. idUS. Depósito de Investigación de la Universidad de Sevilla.
     

     

    This website uses cookies to improve your user experience. If you continue browsing, we understand that you accept our terms of use.  More information.

    OK