Login | Contact | Help |
 
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of idUSCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsFunding agenciesThis CommunityBy Issue DateAuthorsTitlesSubjectsFunding agencies

Services

My AccountLoginRegisterDeposit your workApplication to deposit in idUSRequest the deposit to the LibraryMore info

Discover

Author
Domínguez Benavides, Tomás (6)
Khamsi, Mohamed Amine (2)Samadi, Sedki (2)Lorenzo Ramírez, Josefa (1)López Acedo, Genaro (1)Xu, Hong-Kun (1)SubjectFixed point (2)Modular functions (2)Asymptotically nonexpansive mapping (1)Asymptotically nonexpansive mappings (1)Common fixed points (1)Convergence of iterates (1)fixed point (1)Geometrical coefficients (1)Modulus of convexity (1)near uniform smoothness (1)... View MoreDate Issued1996 (3)2001 (2)2002 (1)Funding agency
Dirección General de Investigación Científica y Técnica (DGICYT). España (6)
Junta de Andalucía (6)
Has file(s)
Yes (6)

Policies

Institutional statementBerlin DeclarationidUS Policies

Gatherers

Recolecta
HispanaEuropeana
BaseGoogle Académico
OAIsterOpenAIRE

Links of interest

Sherpa/Romeo
DulcineaOpenDOAR
Creative Commons
Search 
  •   idUS
  • Investigación
  • Ciencias
  • Análisis Matemático
  • Search
  •   idUS
  • Investigación
  • Ciencias
  • Análisis Matemático
  • Search

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

Now showing items 1-6 of 6

  • Sort Options:
  • Relevance
  • Title Asc
  • Title Desc
  • Issue Date Asc
  • Issue Date Desc
  • Results Per Page:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Icon

A geometrical coefficient implying the fixed point property and stability results [Article]

Domínguez Benavides, Tomás (University of Houston, 1996)
In this paper we define a new geometric constant M(X) in Banach spaces such that X has the fixed point property for nonexpansive mappings if M(X) > 1. We prove that M(X) •_ WCS(X), the inequality being strict in many ...
Icon

Uniformly Lipschitzian mappings in modular function spaces [Article]

Domínguez Benavides, Tomás; Khamsi, Mohamed Amine; Samadi, Sedki (Elsevier, 2001-10)
Let ρ be a convex modular function satisfying a ∆2-type condition and Lρ the corresponding modular space. Assume that C is a ρ-bounded and ρ-a.e compact subset of Lρ and T : C → C is a k-uniformly Lipschitzian mapping. ...
Icon

Structure of the fixed point set and common fixed points of asymptotically nonexpansive mappings [Article]

Domínguez Benavides, Tomás; Lorenzo Ramírez, Josefa (American Mathematical Society, 2001)
Let X be a Banach space, C a weakly compact convex subset of X and T : C → C an asymptotically nonexpansive mapping. Under the usual assumptions on X which assure the existence of fixed point for T, we prove that the set ...
Icon

Some geometric properties concerning fixed point theory [Article]

Domínguez Benavides, Tomás (Universidad Complutense de Madrid, 1996)
The Fixed Point Theory for nonexpansive mappings is strongly based upon the geometry of the ambient Banach space. In section 1 we state the role which is played by the multidimensional convexity and smoothness in this ...
Icon

Qualitative and quantitative properties for the space ℓp,q [Article]

Domínguez Benavides, Tomás; López Acedo, Genaro; Xu, Hong-Kun (University of Houston, 1996)
The space lp,q is simply the space lp but renormed by 1 Ixlp,q =(11x+llg + IIx-IIg);, ß E where II'[Ip is the usual lp norm and x + and x- are the positive and negative. parts of x, respectively. Bynum used lp,1 and Smith ...
Icon

Asymptotically nonexpansive mappings in modular function spaces [Article]

Domínguez Benavides, Tomás; Khamsi, Mohamed Amine; Samadi, Sedki (Elsevier, 2002-01-15)
In this paper, we prove that if ρ is a convex, σ-finite modular function satisfying a ∆2-type condition, C a convex, ρ-bounded, ρ-a.e. compact subset of Lρ and T : C → C a ρ-asymptotically nonexpansive mapping, then T has ...
  • About idUS
  • Deposit your work
  • Services
  • Distribution License
  • FAQS
  • idUS in figures

  • idUS is a DSpace version 6.2 implementation and is managed by Biblioteca de la Universidad de Sevilla
  • Last update: 20 November 2019
Contact  |  Help

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional License.

Logo CrueCreative Commons LicenseIcono de conformidad con el Nivel Doble-A, de las Directrices de Accesibilidad para el Contenido Web 1.0 del W3C-WAI
Copyright © 2014. idUS. Depósito de Investigación de la Universidad de Sevilla.
     

     

    This website uses cookies to improve your user experience. If you continue browsing, we understand that you accept our terms of use.  More information.

    OK