
Software process modeling languages: A systematic literature review

L. García-Borgoñón a,b, M.A. Barcelona a,b, J.A. García-García b, M. Alba b, M.J. Escalona b

a Aragón Institute of Technology, Zaragoza, Spain

b IWT2 Research Group, University of Seville, Seville, Spain
a b s t r a c t
Keywords:
Software process modeling
Software process language
Systematic literature review
Context: Organizations working in software development are aware that processes are very important
assets as well as they are very conscious of the need to deploy well-defined processes with the goal of
improving software product development and, particularly, quality. Software process modeling lan-
guages are an important support for describing and managing software processes in software-intensive
organizations.
Objective: This paper seeks to identify what software process modeling languages have been defined in
last decade, the relationships and dependencies among them and, starting from the current state, to
define directions for future research.
Method: A systematic literature review was developed. 1929 papers were retrieved by a manual search in
9 databases and 46 primary studies were finally included.
Results: Since 2000 more than 40 languages have been first reported, each of which with a concrete pur-
pose. We show that different base technologies have been used to define software process modeling lan-
guages. We provide a scheme where each language is registered together with the year it was created, the
base technology used to define it and whether it is considered a starting point for later languages. This
scheme is used to illustrate the trend in software process modeling languages. Finally, we present direc-
tions for future research.
Conclusion: This review presents the different software process modeling languages that have been
developed in the last ten years, showing the relevant fact that model-based SPMLs (Software Process
Modeling Languages) are being considered as a current trend. Each one of these languages has been
designed with a particular motivation, to solve problems which had been detected. However, there are
still several problems to face, which have become evident in this review. This let us provide researchers
with some guidelines for future research on this topic.
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
2. Related work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.1. Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.2. Search strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.3. Study selection and the inclusion and exclusion criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.4. Quality assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.5. Data collection and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4. Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.1. Search results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.2. Quality evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5. Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1. RQ1. What software process modeling languages have been defined? Why?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2013.10.001&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2013.10.001
mailto:laurag@ita.es
mailto:mabarcelona@ita.es
mailto:julian.garcia@iwt2.org
mailto:manuel.alba@iwt2.org
mailto:mjescalona@us.es
http://dx.doi.org/10.1016/j.infsof.2013.10.001
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


5.2. RQ2. What is the current trend when selecting base technology to define a SPML? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3. RQ3. What are the limitations of current research? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4. Limitations of our study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4.1. Search strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4.2. Study selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.3. Quality assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.4. Data extraction and author bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6. Directions for future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7. Conclusions and future work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
1. Introduction

Today, software applications are used extensively to support
day to day business activities in every kind of company. Organiza-
tions working in software development are aware that software
processes are very important assets as well as they are very con-
scious of the need to deploy well-defined processes with the goal
of improving the software products development and, of course,
quality [3]. Due to their importance, a challenging goal for software
development organizations is to find the best way of describing
and managing software processes.

A software process may be defined as the set of partially
ordered steps, with subsets of related artifacts, human and com-
puterized resources, and organizational structures and constraints
intended to produce and maintain the requested software delivera-
bles [7]. This definition shows the large amount of factors that may
influence software development processes. Software processes are
more complex and unpredictable than typical production pro-
cesses [2] as they depend on people and circumstances.

After Osterweils’ statement: ‘‘Software processes are software
too’’ [8], many process languages and models have emerged.
Since the late 1980s, the software community has shown a
growing interest in finding the best way to describe software
processes to be understood and institutionalized within
organizations, becoming an important research topic in Software
Engineering. It achieved such a relevance that sometimes people
talked about several generations of software process modeling
languages [13].

Software process languages have been created from different
sources, such as programming-based languages, Petri net-based
languages or rule-based languages. There was no clear trend to se-
lect one as a foundation. The most recent literature offers some
possibilities, such as UML, as a basis to cope with this possible de
facto standardization. Therefore, as software-intensive organiza-
tions (defined as private or public organizations extensively using
or developing software [4]) have not yet adopted any of these pro-
posals in a practical sense, it may not be determined which tech-
nology should work as basis or standard.

Despite the status of the topic, the state-of-the art is not yet
very clear, and the different approaches are widely spread in the
literature. Previous reviews and surveys [11] [12] have been found,
although they are not very recent, as well as comparisons among
some specific work [2] [5]. Nevertheless, a complete view of the
last years is not available. Consequently, the general aim of this
systematic review is to capture the current state-of-the art in soft-
ware modeling languages and identify needs and opportunities for
future research work.

This systematic literature review contributes to ongoing re-
search in the field of software process modeling in four ways: (1)
by reviewing and showing all software process modeling
languages that have been created since 2000, as well as their
description and motivation, (2) by summarizing what problems
have been addressed in Software Process Engineering through soft-
ware process modeling languages, (3) by creating a new taxonomy
for software process modeling languages in order to classify them
by their base technology, and (4) by offering directions for future
research.

This paper is structured as follows. Section 2 summarizes re-
lated work. In Section 3, the method used for the systematic review
is introduced. Section 4 shows the results of the review, and then,
Section 5 offers discussions on these results. In Section 6, directions
for future research are pointed out and finally, Section 7 states con-
clusions and future work based on the findings obtained.
2. Related work

Although this topic has been discussed and studied for many
years, we have found too few literature reviews and surveys in this
area. We have also sought some comparison between several lan-
guages as a starting point for our review. The next paragraphs sum-
marize the most relevant work we have found in our searches.

Zamli [11] conducted a survey about the state-of-the art of the
second generation PMLs (Process Modeling Languages). Sutton and
Osterweil [9] stated that a PML belongs to the second generation, if
published after 1996. This work proposes a simple classification
based on process enactment support. They classified a PML as
non-enactable, simulated or enactable. Non-enactable PMLs only
support process modeling, but not process enactment. Simulated
PMLs enable a high-level simulation, but do not provide fine-
grained control of the software process. Finally, enactable PMLs
permit the process model to be enacted to control a software pro-
cess. Besides this classification, they introduced five areas that a
PML must support: modeling support, enactment support, evalua-
tion support and human dimension support, and they tabulated
support areas in accordance with the aforementioned classification
in three groups.

Some years later Zamli et al. [12] studied in depth the classifi-
cation of the PMLs by using the taxonomy and support areas de-
scribed in their previous work, and listed features covered by
each PML in a specific support area.

A comparison of six UML-based languages for software process
modeling was presented in [2]. The authors selected the most pre-
dominant and common ones from the many requirements identi-
fied in the literature related to process modeling languages.
Then, they evaluated those six languages against requirements
and compared them.

Henderson-Sellers et al. [5] examined critically four metamod-
els that have been constructed to underpin and formalize method-
ologies. Based on this analysis, the authors proposed a new
metamodel that supported both the software development and
capability assessment, which was used in ISO 24744 standard.



Fig. 1. Activities in the systematic review.
In summary, too few studies have conducted a systematic re-
view of SPMLs, and those existing are neither very recent and have
limited coverage. Therefore, we consider our work to be an impor-
tant starting point to find which SPMLs have been proposed.
3. Method

Systematic literature review has been the method chosen to
achieve the goal described in Section 1. It allows identifying, eval-
uating and interpreting all available research data relevant to a
particular research question in a specific investigation area. The
guidelines proposed by Kitchenham [6], which are among the most
widely accepted in software engineering, have been followed to
carry out this work.

These guidelines establish that a review should comprise three
phases: planning, conducting and reporting. The planning activity
deals with developing the review protocol as well as deciding
how the researchers should work and interact to conduct the re-
view. This protocol prescribes a controlled procedure for executing
the review and includes research questions, search and evaluation
strategies, inclusion/exclusion criteria, quality assessment, data
collection form and methods of analysis. The second phase focuses
on executing the protocol as it has been defined. Finally, the last
phase describes how the final report has been elaborated.

Fig. 1 outlines all the activities included in each phase. They will
be described in detail in the following sub-sections.
3.1. Research questions

Defining and describing the software process is not a new prob-
lem. Over the years, different approaches, languages and meta-
models have been proposed to describe processes with a unique
goal: to find the best way of representing the software process to
obtain a successful application in industry. Due to this goal con-
cerning understanding the existing research proposals within soft-
ware process modeling, a general research question (RQ) was
defined: ‘‘What is the state-of-the art in software process modeling
languages?’’.

As this question was too general, it was reformulated into these
three more specific questions, which guided this research work:
Table 1
Search expressions.

A. Software process B1. Description C1. Metamodel
B2. Definition C2. Language
B3. Modeling
� RQ1. What software process modeling languages have been
defined? Why?

� RQ2. What is the current trend when selecting a base tech-
nology to define an SPML?

� RQ3. What are the limitations of the current research?

3.2. Search strategy

An exhaustive search for papers was carried out to answer these
research questions. It was mainly focused on major digital libraries
since journal articles, workshop and conference papers were the
objective to be covered.

First of all, the keywords for the search were selected. As this
selection was known to be relevant for the quality of results, gen-
eral terms were used with the aim of confirming that most of the
research papers were included in the study.

After some pilot testing, the final search strings consisted of the
following Boolean expression ‘‘A AND (B1 OR B2 OR B3) AND (C1
OR C2)’’ where search expressions are represented in Table 1 as
follows:

The search was carried out through the following consulted dat-
abases: ACM Digital Library, Ei Compendex, IEEE Xplore, ISI Web of
Knowledge, Science Direct, SCOPUS and Wiley InterScience Journal
Finder. Both, an excel file to store the completed searches and Jab-
ref [1], a reference manager tool which helped us to manage the
references and perform the systematic search, were used to man-
age results.

3.3. Study selection and the inclusion and exclusion criteria

The study selection process was performed in 6 phases as out-
lined in Table 2. The goal of such a selection process was to identify
the relevant articles that may match the objectives of the system-
atic literature review. The search strings were too general and it
was expected that not all studies found would be chosen for the
final phase in the selection process. JabRef [1] supported the study
selection, which allowed the team to manage more efficiently the
duplicate references among databases and generate an integrated
file with the first version of results.

In this process, there were two consensus meetings where all
researchers jointly decided whether the studies were considered
relevant for the work. The first one focused on the abstracts, key-
words and titles, whereas the second was based on the full text.
The guidelines of a systematic review strongly recommend the
participation of several researchers in the process, and this was
evidenced by less subjective decisions and the fact that researchers
jointly made decisions according to the agreed criteria. The sys-
tematic review protocol selected explicitly defines inclusion and
exclusion criteria, as it is shown in Table 3.



Table 2
Inclusion phases.

Phase Relevance analysis phase description Involvement

P1 Search-based studies selection Leading researcher
P2 Screening: exclusion based on date Leading researcher
P3 Screening: exclusion based on titles, abstracts

and keywords
Two researchers

P4 Consensus meeting All researchers
P5 Relevance analysis: exclusion based on full text All researchers
P6 Consensus meeting All researchers

Table 3
Inclusion and exclusion criteria per phase.

Phase Inclusion/exclusion criteria

P1 Not duplicated
Only published work
Contains the search strings

P2 Date of publication after 2000
P3 Not editorials, prefaces, discussions
P4 Not summaries of tutorials, workshops or panels
P5 Only English

Full text obtained
P6 New language or a language modification proposed

Neither surveys nor reviews
3.4. Quality assessment

A questionnaire, which had to be filled in for each included pa-
per, was elaborated with the purpose of assessing the quality of the
obtained studies. Three possible answers could be chosen for each
question, yes, no or partially.

Table 4 shows both the quality assessment questions and the
criteria described to evaluate them.
3.5. Data collection and analysis

A data collection form was defined to extract the most relevant
information from the selected studies and facilitate the process of
analyzing the compiled data. From now on, this form will be
Table 4
Quality assessment questionnaire.

Quality question – score

QA1: Did the study make a review of previous research for the topic?
� Yes: it either extensively compared previous research with a contextual situation
� Partially: it only mentioned a few previous researchers and did not establish a cl
� No: it did not mention any previous research

QA2: Did the study mention a base technology for its proposal?
� Yes: it explained which was the starting point and why
� Partially: it commented on the support base, but did not explain why
� No: it started from scratch without any justification

QA3: Did the study show the further continuous research?
� Yes: it showed future research in the field of the software process modeling lang
� Partially: it showed only future work on its proposal
� No: no future research work was shown

Table 5
Data schema.

Basic info It means title and author
Publication info It refers to book, journal, conference or technical paper where th
Year It makes reference to the year when the study was published
Language defined It deals with the name of the language defined in the study, the
Based-on It refers to the technology or reference language on which this ne
Related work It lists the name of studies cited and whether the study has a sta
Cited by It identifies the study and whether it is referenced explicitly in o
Future work It proposes future work and challenges shown in the study relate
referred as schema, as it is shown in Table 5. In a further review,
all researches evaluated the selected studies and completed the
schema. After that, all participants discussed and agreed on all
issues in the final data collection.
4. Results

This section presents the results of the systematic literature re-
view. On the one hand, the search results are analyzed and on the
other hand, quality evaluation results are shown.
4.1. Search results

Once the protocol was defined, it was executed. First of all, the
selection process was performed with the aim of identifying the
relevant papers for the systematic review. As mentioned above,
the search strings were so general that they influenced the search
results.

As there is no standard way of conducting searches for all
search engines, we executed a set of manual queries and integrated
the results in each search engine. Fig. 2 represents firstly, the pa-
pers that were retrieved from each search engine after all queries
were executed and secondly, the number of different studies that
were collected from each search engine after removing duplicated
entries for the same search engine. Finally, we show the number of
papers that were included in this work following the inclusion cri-
teria defined.

Fig. 3 shows the number of studies finally included in our anal-
ysis and retrieved from the search engine divided by the number of
studies selected from all search engines. It can be observed that Ei
Compendex and SCOPUS provided us with more than 60% of the
studies. The second value represents the studies finally included
in our analysis and retrieved from the search engine divided by
all different studies retrieved from the same search engine. It
shows that most of them include 10% of the results approximately.

Those studies that were included and found in various search
engines have been also included in Figs. 2 and 3,, to avoid penaliz-
ing any search engine. Fig. 4 shows the number of search engines
or mentioned different generations in software process languages
ear background for the topic

uage

e study was published

problem addressed, its description and motivation
w language is based and the advantages and disadvantages of other alternatives
te-of-the art section
ther selected studies
d to the research questions



Fig. 2. Studies retrieved through search engines.

Fig. 3. Analysis of retrieved results from search engines regarding the total studies included.
that found studies included in our analysis. It can be observed that
56% of the studies were found in one or two search engines, and
the remaining 44% has been obtained from three or more of them.
None were found in more than 5 search engines.

The process was carried out according to the six phases previ-
ously presented, whereby the number of selected papers de-
creased. Fig. 5 and Table 6 show the number of included and
excluded studies per phase. All included references are listed in
the References section. Excluded studies are not mentioned due
to space restrictions.
4.2. Quality evaluation

The included studies underwent a quality evaluation by means
of the questionnaire presented in Table 4, with the aim of measur-
ing their degree of representativeness that may enable obtaining
relevant conclusions. The three quality questions were rated for
each included study in accordance with the criteria established
in the quality questionnaire. After that, responses to the quality
questions were discussed in order to find their degree of coverage.
Fig. 6 shows the coverage of every QA in the studies included. It
shows that QA1 and QA2 were covered in a rate higher than 80% by
Yes or Partially answers. In contrast, QA3 has less coverage. All of
them were covered at least at 70% by Yes or Partially answers.

5. Discussion

This section will discuss one by one the answers to the three re-
search questions defined as the target to fulfill this systematic lit-
erature review. Then, the weaknesses of this study will be pointed
out.

5.1. RQ1. What software process modeling languages have been
defined? Why?

Fig. 7 is a summary of the SPMLs defined since 2000. Thus, every
year, it includes the languages that have been reported.

After this first snapshot, in which all relevant SPMLs have been
identified, the following Tables 7–10 offer a short description of
each SPML and the motivation for which it was created.



Fig. 4. How many search engines found the studies included in our analysis?

Fig. 5. Studies removed in the revision phase.

Table 6
Included and excluded studies per phase.

Phase Included Removed

Found 1929 752
P1 1177 534
P2 643 230
P3 413 233
P4 180 48
P5 132 82
P6 50 4
Included 46 0
Table 11 summarizes the main problems faced to answer the
first research question. As this table shows, problems appointed
in these papers can be grouped in four major topics: support
for static process documentation, support for analysis and
management of processes before their enactment, dynamic process
support (automation and flexibility) and support tools and envi-
ronments for software processes.
5.2. RQ2. What is the current trend when selecting base technology to
define a SPML?

We aim to find how SPMLs have been classified in the literature
to answer this question. Historically, some SPML generations have
been considered as a way to classify them [2]. The first generation
relates to those software process modeling languages which are
Petri nets-based, rule-based or programming language-based.
These focus on process execution and formality, which make them
become complex, inflexible and difficult to understand. The second
generation coincides with the moment when UML became mature
as a standard language in the software industry. The idea is to



Fig. 6. Quality assessment results per question and type of assessment response.

Fig. 7. Summary of software process modeling languages.
explore the possibility of using it as a process modeling language.
Some UML-based languages or approaches have appeared, mainly
characterized by expressiveness and lack of formality, which have
influenced the possibility of running (enacting) the process models.

However, by checking the results on Tables 7–9, we conclude
that to talk about generations of languages is not particularly
appropriate, since although more second-generation proposals
have been launched from some years ago up to date, there are
recent proposals which can be classified as first-generation
languages.

Thus, a new taxonomy for SPMLs has been established. For this,
we have considered the base technology used in the SPML develop-
ment. We have structured SPMLs in three groups according to the
results of the review, as can be seen in Fig. 8. The first group of
grammar-based languages includes all studies that focus on formal
languages, mathematical and programming, by means of rules
or restrictions. A second group contains several versions of
UML-based SPMLs, and finally, the last group includes metamod-
el-based SPMLs or DSLs.

Fig. 9 outlines the correspondence among each SPML obtained
in RQ1 and the aforementioned groups. Following the proposed
taxonomy defined in Fig. 8, grammar-based SPMLs are shown with
no background color or frame, UML-based SPMLs are shown with
background color and model-based SPMLs are shown with a frame.

A relevant issue for us was to identify why a base technology
was chosen in each SPML. Thus, Tables 12 and 13 summarize the
main advantages and disadvantages the authors highlighted
regarding the base technologies.

In light of this, it can be concluded that UML has been consid-
ered a suitable base technology, since it constitutes a standard in
Software Engineering. However, its weakness is the lack of capabil-
ity to execute processes, although some UML diagrams can be exe-
cuted (simulated) if an execution semantics are assigned to them.
Considering this fact and the temporal view of SPMLs, the trend



Table 7
Description of existing software process modeling languages.

Year SPML [Ref.] Based on Description Motivation

2000 APER-2 [25] PML It is a developer-centered (people-centered) language to
facilitate the calculation of the workload and model
multiple concurrent activities

There were only product-centered and activity-centered
languages

2000 SoftPM [49] Petri-Nets The paper proposes a PSEE (process-centered software
engineering environment) based on a high-level Petri net
formalism for process modeling and exploits a multi-level
modeling mechanism for software processes
representation

There was no PSEE that has different ways to represent
processes (easy to do and not ambiguous) and in addition
to preserving formality

2000 Noock [50] UML The language proposed in the paper is a UML-centered
approach to manage knowledge in a large software
development organization

There was a gap regarding modeling a process that
integrates engineering and management practices, in order
to get manageable tasks, exchangeable components and
comparable projects

2000 Podnar et al. [52] PML The paper proposes a specification and description
language-based approach (a formal object-oriented
language for communicating systems) for software process
modeling

Software processes had similar characteristics to real-time
systems (since a timely response to external stimuli is
required), so that an ITU-T standard was used

2002 FLEX [24] PML It is an object-oriented, rule and constraint-based language
that supports semantic richness, simplicity of use,
flexibility, scalability, re-usefulness and distribution. It is
also analyzable, executable and evolutionary

Existing process models were too fine-grained, so their
understandability and reuse were difficult

2002 Di Nitto et al. [29] UML The papers proposes a language that offers the possibility
of applying a subset of UML as an executable PML by
transforming UML models to enactable workflow models

UML was conceived as non-executable, semi-formal
language, but it was very popular, so the authors tried to
achieve process enactment through UML

2002 APSEE [43] [53] Graph PML It is a graph grammar-based PML that provides support for
dynamic changes (flexibility) in enacting processes

Existing PSEE did not offer flexibility for process enactment
and integrated support for tools and services to automate
process analysis and improvement (i.e. simulation and
reuse facilities)

2003 PROMENADE [33] UML The language proposed in the paper covers process reuse
(the ability to construct new processes by assembling
those which have been already built) and process
harvesting (the ability to build generic processes that may
be further reused from existing ones)

Existing SPMLs had some limitations: expressiveness,
standardization, modularity and flexibility and the authors
tried to improve them

2003 Ruiz et al. [54] UML It proposes a language for using MOF and XMI to represent
software processes

There was no concrete technological proposal applied to
SPML

2003 VRPML [59] Graph PML It is a control-flow PML based on graph theory focused on
visual modeling

Existing SPMLs lacked dynamic creation and assignment of
tasks and resources, support for awareness and
visualization issues (to have enactable PMLs)

Table 8
Description of existing software process modeling languages (cont).

Year SPML [Ref.] Based on Description Motivation

2004 Atkinson
et al. [15] [16]

PML It is a control-based PML that tries to cover simplicity, flexibility,
expressiveness and enactability

The authors tried to support evolutionary model
development and verification

2004 DPEL [26] PML The paper proposes a decentralized process enactment model to
build a distributed PSEE

Existing PSEEs were centralized, so that they presented a
single point of failure and a bottleneck related to process
enactment

2004 PROPEL [37]
[19]

UML The paper proposes a language for providing concepts attending to
a semiformal description and relation among process patterns

The authors tried to support flexible processes through
process patterns

2005 UML4SPM
[18] [19] [22]
[20] [21]

UML The language proposed in the paper is a MOF-compliant metamodel
that has four objectives: expressiveness, understandability,
precision and executability

The authors tried to cover the limitations of OMG SPEM 1.1
which had not yet reached the required level for the
specification of executable models

2005 PBOOL+ [55] Graph
PML

It is a graph PML focused on reusing software processes through
process components and process patterns

The authors studied the problem of characterizing reusable
process components

2006 Lee et al. [42] UML The language proposed in the paper is a UML-based metamodel
approach for task assignment policy in software process

There was no proposal regarding task assignment policy in
software process

2006 i⁄ PML [23] The paper proposes a language for using both an agent-oriented
language to model processes and a goal-driven procedure to design
them

There was no proposal regarding agent-oriented
technologies applied in software process modeling

2006 Combemale
et al. [27]

SPEM 1.1 The language proposed in the paper is a SPEM 1.1 extension
specialized on semantics

The authors tried to cover the limitations of OMG SPEM 1.1
which only partly formalized the semantics and did not help
building a process model

2006 UML-EWM
[28]

UML The paper proposes a language to cover workflows processes
modeling

There was no proposal that established a mapping between
a development methodology and a workflow process

2006 MOPN-SP-net
[34] [35]

Petri-
Nets

The language proposed in the paper is a multi-view software
process model-based on multi-object Petri nets

The authors argued that both Petri-nets and the multiple
views of a software process seemed to be similar

2007 Tran et at [56] UML The language proposed in the paper allows an explicit
representation of process patterns in process models

The authors tried to cover building and also improving
process models

2007 Washizaki
[57]

SPEM 1.1 The paper proposes a language that deals with stating clearly the
commonality and variability in process workflows when they are
modeled as UML activity diagrams

Existing proposals were not always oriented toward overall
optimization and did not lead to generally applicable
process model structures



Table 9
Description of existing software process modeling languages (cont).

Year SPML
[Ref.]

Based on Description Motivation

2007 UPME
[58]

UML The language proposed in the paper allows modeling software
processes in three steps: metamodel, model instantiation, and
model compilation in order to translate them into object-
oriented code skeleton (s) for process enactment

The authors tried to cover complexity reduction through process
reuse by using metamodeling

2007 xSPEM
[17]

SPEM 2.0 The language proposed in the paper tries to extend SPEM2.0 to
allow process models to be checked through a mapping with
Petri nets and monitored through a transformation into BPEL

The authors provided a definition of an Executable SPEM 2.0

2008 Hsueh et
at [38]

UML The paper proposes a language to define, verify, and validate an
organization’s process

The authors proposed an approach to validate processes in a
simulation environment

2008 PMMM
[39]

Powertypes The paper proposes a language for Domain-Specific Process
Management

The authors tried to separate general process modeling
principles from domain specific languages

2008 Kang et at
[40]

XML It is an evolutionary process component description language There was no systematic method for describing a software
evolution process component

2008 FlexUML
[47]

UML The language proposes a two-step approach to model controlled
flexibility in software processes

There was a need of process participants being able to express
and control the amount of flexibility allowed in those processes

2009 Maciel et
at [44]

SPEM 2.0 The paper proposes an integrated approach for MDA process
modeling and enactment based on some SPEM 2.0 concepts
specialization

There was a lack of standard terminology and notation
addressing design aspects of a MDA process because tools were
only focused on defining and executing model transformations

2009 FlexSPMF
[48]

SPEM 2.0 The paper proposes a framework for modeling and learning
flexibility in software processes

The authors tried to improve process flexibility when dynamic
activities that had to evolve to cope with changes occur

2010 MODAL
[41,51]

SPEM 2.0 The language proposed in the paper is a SPEM extension to
improve co-design process models

There was a lack in current PML to achieve integration of MBE
(Model Based Engineering) into system and software process
models

2010 eSPEM
[31]

SPEM 2.0 The language proposed in the paper is a SPEM Extension for
Enactable Behavior Modeling

There was a lack in SPEM because it covered a rather coarse
description of processes behavior. Support for a more fine-
grained behavior model and life-cycle modeling was missing

Table 10
Description of existing software process modeling languages (cont).

Year SPML [Ref.] Based on Description Motivation

2011 Aoussat [14] SPEM 2.0 The paper proposes a SPEM extension that defines explicit
software process connectors that facilitate, adapt and
control software process interactions

The authors tried to cover the limitations of OMG SPEM 1.1
regarding architectural concepts for software process
modeling based on software architectures

2011 Ellner et al. [30] OMG’s FUML The paper proposes a FUML-based distributed execution
machine for enacting software process models

FUML was insufficient to execute software process models
to drive realistic projects with large and geographically
spread teams

2011 Ferreira [32] UML The paper is a modeling approach for software process
design and implementation dealing with increasing the
size and complexity of large process systems

There was no proposal regarding the incremental size and
complexity of processes

2011 vSPEM [45] [46] SPEM 2.0 The paper proposes a language that models variability in
software processes

There was no variant-rich SPML so that a process can be
customizable to specific project goals and environments

2011 CoMProM [36] UML The paper proposes a component-based language to
automate the software development processes allowing
the flexibility to take processes as components

There were many current approaches offering processes as
components but they failed to provide the execution
semantics for these process components
deals with using metamodels as base technology when generating
new SPMLs.
5.3. RQ3. What are the limitations of current research?

The aim of this question is to reflect on the state of the current
research in software process modeling language area, and this is
going to be revised from two points of view. We are going to con-
sider data collected from ‘‘Future work and Conclusions’’ sections
appearing in papers included in this study. Table 14 summarizes
them, grouping those that are common to several papers. Table 15
shows the open issues to be addressed in the future. We have
decided to group them into related subjects, as issues to take into
account when considering new proposals: to integrate software
process models with decision support tools, to improve process
evolution, to verify usefulness in practice, to reach consensus on
what topics should be covered in software process modeling and
how technologies could be integrated into software process
modeling.
A proposal that may allow establishing both, a modeling and
execution environment, maintaining suitable levels of understand-
ability, would result in an important alternative in this area, also
entailing the possibility of being applied in software-intensive
organizations.

5.4. Limitations of our study

The systematic literature review guidelines proposed by Kitch-
enham [6] have been followed in order to carry out this work
which has been supported by a pre-defined study protocol and
continuous interaction among authors. Nevertheless, it has some
limitations.

5.4.1. Search strategy
The first important activity to undertake this work was to define

the search strategy, that is, where we must look for and what key-
words must be used. Clearly, the set of search engines used deter-
mined the overall number of studies on which then we applied the



Table 11
Description of problems dealt with existing SPMLs.

Problem description Refs.

To document processes in order to improve communication among people in real situations [49]
To manage knowledge in a large software development organization [50]
To provide a high-level representation to non-experts, so that it can be easy to use [24]
To provide an adequate process representation that is vital for software organizations: understandable for people and formalized to avoid ambiguity [49]
To define, verify and validate an organization’s process [38]
To create a formalism to represent and exchange software processes [21]
To extend the abstraction level to improve model understandability and reduce model maintenance effort [38]

To allow software process analysis and simulation [52]
To control the human participation in software development activities [43,53]
To support a more fine-grained behavior model and life cycle modeling [31]
To model a process that integrates engineering and management practices [50]
To exchange and subcontract results and components [50,52]
To reuse software processes [24,37,55,56,58]
To validate a process before enactment [15,16]

To facilitate software process management automation [43,53]
To apply the idea of software product lines to software processes [57]
To include architectural concepts in software process modeling [14]
To model controlled flexibility in software process [47]
To deal with the increasing size and complexity of large systems of processes [32]
To support software process tailoring to meet the specific goals and characteristics demanded by organizations and projects [45,46]

Existing MDA tools are focused on code generation but other activities in a software process are usually not considered [44]
To achieve integration of MBE into system and software process models [41]
To support enactment by exploiting the full potential of MDE through the use of models [51,36]
To create a de facto standard to model and enact software process [59]
To define a standard terminology and notation addressing design aspects of an MDA-based process [44]

Fig. 8. Classification of formalisms for SPML.
inclusion and exclusion criteria. For this reason, although we have
included seven search engines (ACM Digital Library, Ei Compendex,
IEEE Xplore, ISI Web of Knowledge, Science Direct, SCOPUS and
Wiley InterScience Journal Finder) that we considered relevant to
this topic, they are not exhaustive and therefore, they limit the
work performed. In this sense, although increasing the number of
search engines does not imply an improvement on the basis of
publications retrieved, the more search engines we selected, the
bigger the number of initial papers we identified. A further
improvement would be to conduct an analysis to determine which
search engines best fit the field of software process modeling
languages.

In addition, once a search engine has been selected, the results
were determined by the combination of keywords and fields which
can be used in the search. In this sense we have tried to maximize
the search by not discarding any relevant publication at an early
stage.
A special way to expand the search process would be to go from
the included studies either backwards using the reference lists of
these publications or forward by looking at citations of these pub-
lications, following a snowballing approach proposed in [10].
5.4.2. Study selection
Another activity that may limit the results is related to the pro-

cess defined to choose which items were relevant to our study.
First, we decided that only work published in English would be in-
cluded. Consequently, other publications (such as any technical re-
port, editorial preface, discussion, summary, tutorial or panel),
studied out of the scientific scope or published in languages other
than English, were excluded from this study. Expanding the search
towards general search engines could give us more publications.
Nevertheless, we concluded that due to the number of retrieved
studies and attending to the goals of this work, they should have
no effect on the results.

Furthermore, we established post-2000 as inclusion criterion.
We knew that Zamli [10] [11] had already conducted a survey
about the state-of-the art of PMLs in 2001, that is the reason
why we considered that all SPMLs that were created before 2000
were included in this work. If this criterion would have been ex-
panded, more languages could have been included. In our opinion,
older publications are not so relevant for answering the research
questions, specially ‘‘Which is the current trend when selecting a
base techonology to define a SPML?’’, because some paradigms
did not exist before 2000.
5.4.3. Quality assessment
We defined a Quality Assessment Question for each research

question with the aim of assessing whether the papers included
give us enough information to draw conclusions regarding the de-
fined research questions. For each question, we evaluated a Yes,
Partially or No answer and we have concluded that at least 70%
of the QAs were covered by Yes or Partially values. This is a subjec-
tive method of evaluation, as it depends on each evaluator, there-
fore consensual decisions were reached on values. For this reason,



Fig. 9. Relations and base technology of existing software process modeling languages.

Table 12
Advantages and disadvantages of base technologies to create SPMLs.

Paradigm Advantages Disadvantages

Grammar
PML

� Precise syntax and semantics [52] � Difficult to use for modeling a software process [49]
� Executable semantics missing [24]
� No global functional and behavioral view of process

model [24]
� Difficult to use by humans [29]
� No support for distributed processes [29]

Petri Net � Graphical representation [49] [52]
� Powerful means of representing the static structure and the dynamic properties of

software process [49]

� Only understandable for simple processes [49,52]
� Inadequate for describing model entities [52]
� Difficult for people to use it [29]
� No support for distributed processes [29]
� Too complex for a general process enactment role of a

software development unit [38]

Rules � Precise syntax [52] � Difficult to use for people [29]
� No support for distributed processes [29]
� Order of tasks in the process cannot be controlled [15]
a Partially score may occasionally represent a form of consensus
involving different points of view.

Defining a larger number of Quality Assessment Questions asso-
ciated with each research question would provide a more realistic
background on the quality of the selected papers in relation to
those questions. We realized that it limited the scope of the work,
but without altering the results or conclusions of the study.

5.4.4. Data extraction and author bias
Finally we noticed that in our review process we aimed to have

a larger number of primary studies in a first phase, not to rule out
any study that might be relevant. We gathered more than 1000
studies to be reviewed, then, to be able to approach this task, the
first criterion of exclusion (P3) was based on titles, abstracts and
keywords. In this sense, if an initially retrieved study was unre-
lated to the Software Process Modeling Language topic in its title,
abstract or keywords, it would be left out. A way of improving this
procedure would consist of analyzing all retrieved articles based on
their full text. It is also important to note that papers were evalu-
ated by people who, based on their knowledge, rated each of them
with the defined schema. Although we arranged peer reviews and
consensus meetings, author bias is certainly an associated risk that



Table 13
Advantages and disadvantages of base technologies to create SPMLs (cont).

Paradigm Advantages Disadvantages

UML � Popularity and attractiveness for software engineers (not another formalism to be
learned) [29] [33] [58]
� The most widely used modeling language [18] as a standard [29]
� Graphical representation [29]
� Extensibility [29] [38]
� Supported by tools [29] [18]
� Easy to comprehend [29] [58]
� Supports model-based approaches [58]
� Different views to present a process [38]
� OCL supports model verification [38]

� Non-executability [29] [21]
� Lack of formal semantics [29]
� Not interpreted by machines (neither sufficiently

precise nor detailed) [29]

Metamodel-
based

� Separation between general process modeling principles and domain specific lan-
guages [39]
� Modeling patterns implementable (powertypes and type/usage concept) [39]

Table 14
Future work in studies.

SPM future work Study future work Refs.

To get executable UML models To use the approach to model other processes such as RUP [29]
To verify the usefulness of a model To develop a scheduling engine [42]
To reuse a software process To use on heterogeneous enactment and modeling systems [53]
To develop a standard SPML UML4SPM model execution, ATL or QVT-based model transformations [18,19,22,17]
To enact a process model described in SPEM To describe operational semantics for metamodels [27]
To build process models by reusing process patterns To implement the proposed metamodel as a UML profile [56]
To create process modeling applications in a distributed

environment
To develop CMMI-related rules to verify an organization’s processes [38]

To provide round-trip process flexibility evolution To integrate FlexEPFC to Jazz process engine [47]
To allow a process definition to be modified at runtime To keep on using Kermeta and aspect-oriented modeling techniques [20,21]
To integrate with an approach for model-driven testing To develop new case studies to perform further evaluations involving quantitative

assessment
[44]

To implement process components effectively To allow customization of existing process components [41]
To evaluate empirically computer-aided process enactment

impact on real development projects
To fully implement eSPEM’s concrete syntax and additional tooling [31]

To support process evolution Develop the operational semantics in the FUML extension [30]
To achieve process institutionalization (tailoring a process before

representation)
To verify process usability and applicability to real processes [45]

To handle the verification of process intention achievement To develop a method to capture and manage snapshots of process instances to
enable analysis and possibly process mining

[51]

Table 15
Description of open issues for future research.

Problem description Refs.

SPM as a decision support tool (SPM and simulation technologies integration) [52]
To integrate SPModels with support tools [31]
To improve traceability support for artifacts [31]
To improve process flexilibity through process patterns support [37]
To improve process evolution [31]
To provide round-trip process flexibility evolution [47]
To improve process flexilibity through reflection support in SPMLs [18]
To verify usefulness by measuring software development quality and productivity in practice [57]
To develop quantitative studies and analysis in the area of SPM [52]
To verify usefulness by measuring variability mechanisms and understandability in practice [45,46]
The effect of using the formalism was not empirically evaluated [52]
To develop empirical validation with industrial usage [23]
To verify usefulness by measuring process diagram understandability in practice [45,46]
To evaluate empirically the impact of computer-aided process enactment on real development projects [31]
To achieve process institutionalization (tailoring a process before representation) [45,46]
To get a deeper understanding of the process variability requirements in organizations and their fulfillment by process variability mechanisms [45,46]
To develop PSEE for MDA software processes [44]
There is no overall consensus on what topics should be covered in SPM [50]
There is no overall consensus on how to describe and integrate technologies into a SPModel [50]
There is no concrete approach for a semantically rich PML [51,36]



can be avoided when assessing the contributions of each article.
Involving a larger number of researchers in the review of each
study could improve this work.
6. Directions for future research

There are several opportunities for further work. We suggest
some lines to keep on working on this issue, according to the liter-
ature review and the answers to RQs, specially if we take into ac-
count that some problems are still unsolved.

Firstly, a topic that can be identified in almost all reviewed pa-
pers is the need for a larger number of empirical studies. In such
studies, it would be necessary to put into practice the proposals
in software-intensive organizations. This way, we would be able
to know the results of usage and the main barriers as well as obtain
an important feedback about these organizations’ needs. This kind
of work is called a longitudinal in-depth study.

Secondly, it would be very interesting to address transversal
studies, by exploring the relationship among SPMLs with the rest
of the fields in the Software Process Engineering area like software
process improvement, simulation and orchestration.

Finally, but very closely connected to the previous issue, it
would be useful to create an integrated environment where lan-
guages and tools were incorporated, so that software-intensive
organizations would have the capacity for developing and execut-
ing software processes.
7. Conclusions and future work

Software process modeling is a well-known topic in the Soft-
ware Engineering research that has been studied during the last
twenty years. Researchers in this area have addressed the problem
of describing and using it, focusing on the idea that a software pro-
cess is a specific kind of software.

Different work proposals on this purpose, based on different
technologies, have appeared along the years. Petri nets, rules, pro-
gramming languages, graph theory, and more recently UML, have
been used as support to define software process modeling lan-
guages. In this review we presented software process modeling
languages that were recently developed, in order to know what
the state-of-the art is, the motivation for developing these lan-
guages and the problems they address. We also aimed at learning
whether there was a particular trend to create new languages in
the last ten years. Now, after analyzing them, we can conclude that
those model-based languages have been considered as the path to
follow.

Despite several problems being tackled, some others still need
to be addressed, such as integrating software process models with
decision support tools, improving process evolution, verifying use-
fulness in practice, reaching consensus on what topics should be
covered in software process modeling and deciding how to inte-
grate the use of software tools into software process modeling.

Some directions for future research are offered as guidelines in
order to cope with these problems: increasing the number of
empirical studies in software-intensive organizations, studying it
transversally against other software process engineering topics
and, finally, developing environments where a SPML and support
tools are integrated in order to be defined, modeled, orchestrated
and executed.

Due to the large number of potential SPML users, such as soft-
ware process engineers, project managers, software engineers, sys-
tem engineers and customer manager, it is difficult to establish the
best language to be used. Their individual information needs and
expertise make widely diverging demands on a process modeling
language. Thus, as future work, we are currently working on a
practical case in which a SPEM 2.0 subset is applied in a software
organization. We aim to search the SPML requirements to be prac-
tically applied in software-intensive organizations. With this
knowledge, together with those requirements that have been de-
scribed by some authors in their research proposals, we will devel-
op a framework that would allow someone to evaluate a SPML
against some requirements and characteristics and know which
SPML best fits with an organization’s particular needs.

To conclude, it must be pointed out that we are also working on
a process environment definition, where a software process lan-
guage will be included to allow tools orchestration to be easily ap-
plied in software-intensive organizations.

Acknowledgements

This research has been supported by the Tempros project
(TIN2010-20057-C03-02) and Red CaSA (TIN 2010-12312-E) of
the Ministerio de Economía y Competitividad, Spain and the
NDTQ-Framework project of the Junta de Andalucía, Spain (TIC-
5789).

References

[1] M.O. Alver, JabRef reference Manager, <http://jabref.sourceforge.net/, 2012>
(accessed 08.07.2013).

[2] R. Bendraou, J.M. Jézéquel, M.P. Gervais, X. Blanc, A comparison of six UML-
based languages for software process modeling, IEEE Transactions on Software
Engineering 36 (2010) 662–675.

[3] A. Fuggetta, Software process: a roadmap, in: Proceedings of the Conference on
The Future of Software Engineering 97, 2000, pp. 25–34.

[4] Y. Hauge, C. Ayala, R. Conradi, Adoption of open source software in software-
intensive organizations: a systematic literature review, Information and
Software Technology 52 (2010) 1133–1154.

[5] B. Henderson-Sellers, C. Gonzalez-Perez, A comparison of four process
metamodels and the creation of a new generic standard, Information and
Software Technology 47 (2005) 49–65.

[6] B. Kitchenham, S. Charters, Guidelines for performing Systematic Literature
Reviews in Software Engineering, Technical Report EBSE 2007-001, Keele
University and Durham University Joint Report, 2007.

[7] J. Lonchamp, A structured conceptual and terminological framework for
software process engineering, in: Proceedings of the 2nd International
Conference on the Continuous Software Process Improvement, IEEE Comput.
Soc. Press, 1993, pp. 41–53.

[8] L. Osterweil, Software processes are software too, in: Proceedings of the 9th
International Conference on Software Engineering, ICSE ’87, vol. 3, IEEE
Computer Society Press, 1987, pp. 2–13.

[9] S.M.J. Sutton, L.J. Osterweil, The design of a next-generation process language,
in: Software Engineering – ESEC/FSE’97, Lecture Notes in Computer Science,
1301, Springer, Berlin Heidelberg, 1997, pp. 142–158.

[10] C. Wohlin, R. Prikladniki, Systematic literature reviews in software
engineering, Information and Software Technology (2013).

[11] K.Z. Zamli, Process modeling languages: a literature review, Malaysian Journal
of Computer Science 14 (2001) 26–37.

[12] K.Z. Zamli, N.M. Isa, A survey and analysis of process modeling languages,
Malaysian Journal of Computer Science 17 (2004) 68–89.

[13] K.Z. Zamli, P.A. Lee, Taxonomy of process modeling languages, in: ACS/IEEE
International Conference on Computer Systems and Applications, IEEE, 2001,
pp. 435–437.

[14] F. Aoussat, M. Oussalah, M.A. Nacer, SPEM extension with software process
architectural concepts, in: Proceedings of the International Computer Software
and Applications Conference, Munich, Germany, 2011, pp. 215–223.

[15] D. Atkinson, D. Weeks, J. Noll, The design of evolutionary process modeling
languages, in: Proceedings of the 11th Asia-Pacific Software Engineering
Conference, 2004, pp. 73–82.

[16] N. Atkinson, Weeks, tool support for iterative software process modeling,
Information and Software Technology 49 (2007) 493–514.

[17] R. Bendraou, B. Combemale, X. Crégut, M. Gervais, Definition of an Executable
SPEM 2.0, in: Proceedings of the 14th Asia-Pacific Software Engineering
Conference, 2007 (APSEC 2007), IEEE, 2007, pp. 390–397.

[18] R. Bendraou, M.P. Gervais, X. Blanc, UML4SPM: A UML2.0-based metamodel
for software process modelling, in: Model Driven Engineering Languages and
Systems, Springer, 2005, pp. 17–38.

[19] R. Bendraou, M.P. Gervais, X. Blanc, Uml4spm: an executable software process
modeling language providing high-level abstractions, in: Proceedings of the
10th IEEE International Enterprise Distributed Object Computing Conference,
2006 (EDOC’06), IEEE, 2006, pp. 297–306.

[20] R. Bendraou, J.M. Jezequel, F. Fleurey, Combining aspect and model-driven
engineering approaches for software process modeling and execution, in:
Trustworthy Software Development Processes, Springer, 2009, pp. 148–160.

http://refhub.elsevier.com/S0950-5849(13)00189-4/h0005
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0005
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0005
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0010
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0010
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0010
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0015
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0015
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0015
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0020
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0020
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0020
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0020
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0020
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0025
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0025
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0025
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0025
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0030
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0030
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0030
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0030
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0035
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0035
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0040
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0040
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0045
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0045
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0050
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0050
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0050
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0050
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0055
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0055
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0060
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0060
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0060
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0060
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0065
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0065
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0065
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0065


[21] R. Bendraou, J.M. Jezequel, F. Fleurey, Achieving process modeling and
execution through the combination of aspect and model-driven engineering
approaches, Journal of Software Maintenance and Evolution: Research and
Practice (2010).

[22] R. Bendraou, A. Sadovykh, M.P. Gervais, X. Blanc, Software process modeling
and execution: the UML4SPM to WS-BPEL approach, in: Proceedings of the
33rd EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA 2007), Lubeck, Germany, 2007, pp. 314–321.

[23] C. Cares, E. Mayol, X. Franch, E. Alvarez, Goal-driven agent-oriented software
processes, in: Proceedings of the 32nd Euromicro Conference on Software
Engineering and Advanced Applications, SEAA, Cavtat/Dubrovnik, Croatia,
2006, pp. 336–343.

[24] C. Chen, B.J. Shen, Y.Q. Gu, Flexible and formalized process modeling language,
Journal of Software 13 (2002) 1374–1381.

[25] J. Chen, S. Chou, W. Liu, APER-2: a developer-centered, object-oriented process
language, in: Proceedings of the International Symposium on Multimedia
Software Engineering, IEEE Comp Soc; Tamkang Univ; Taiwan Minist Educ;
Taiwan Natl Sci Council, 2000, pp. 297–303.

[26] S.C. Chou, DPEM: a decentralized software process enactment model,
Information and Software Technology 46 (2004) 383–395.

[27] B. Combemale, X. Cregut, A. Caplain, B. Coulette, Towards a rigorous process
modeling with SPEM, in: Proceedings of the 8th International Conference on
Enterprise Information Systems (ICEIS 2006), vol. ISAS, Paphos, Cyprus, 2006,
pp. 530–533.

[28] N. Debnath, D. Riesco, G. Montejano, M.P. Cota, J. Baltasar Garcia, Perez-
Schofield, D. Romero, M. Uva, Supporting the SPEM with a UML extended
workflow metamodel, in: IEEE International Conference on Computer Systems
and Applications, vol. 2006, 2006, pp. 1151–1154.

[29] E. Di Nitto, L. Lavazza, M. Schiavoni, E. Tracanella, M. Trombetta, Deriving
executable process descriptions from UML, in: Proceedings of the 24rd
International Conference on Software Engineering (ICSE2002), Orlando, FL,
United States, 2002, pp. 155–165.

[30] R. Ellner, S. Al-Hilank, J. Drexler, M. Jung, D. Kips, Philippsen, A FUML-based
distributed execution machine for enacting software process models, in:
Modelling Foundations and Applications, Springer, 2011, pp. 19–34.

[31] R. Ellner, S. Al-Hilank, J. Drexler, M. Jung, D. Kips, M. Philippsen, eSPEM – a
SPEM extension for enactable behavior modeling, in: Modelling Foundations
and Applications, Springer, 2010, pp. 116–131.

[32] A.L. Ferreira, R.J. Machado, M.C. Paulk, An approach to software process design
and implementation using transition rules, in: Proceedings of the 37th
EUROMICRO Conference on Software Engineering and Advanced Applications
(SEAA), 2011, pp. 330–333.

[33] X. Franch, J.M. Ribó, A UML-based approach to enhance reuse within process
technology, in: Software Process Technology, Springer, 2003, pp. 74–93.

[34] J. Ge, H. Hu, Q. Gu, J. Lu, Modeling multi-view software process with object
Petri nets, in: Proceedings of the International Conference on Software
Engineering Advances (ICSEA’06), IEEE, 2006, pp. 41–41.

[35] J. Ge, H. Hu, J. Lu, Order constraints for multi-view software process model, in:
Proceedings of the International Conference on Computer Science and
Software Engineering, vol. 2, 2008, pp. 639–642.

[36] F. Golra, F. Dagnat, Component-oriented multi-metamodel process modeling
framework (CoMProM), in: First Workshop on Process-based approaches for
Model-Driven Engineering (PMDE 2011), 2011, p. 44.

[37] G.V. Hagen, M., Towards flexible software processes by using process patterns,
in: Proceedings of the 8th IASTED International Conference on Software
Engineering and Applications, 2004, pp. 436–441.

[38] N.L. Hsueh, W.H. Shen, Z.W. Yang, D.L. Yang, Applying UML and software
simulation for process definition, verification, and validation, Information and
Software Technology 50 (2008) 897–911.

[39] S. Jablonski, B. Volz, S. Dornstauder, A meta modeling framework for domain
specific process management, in: Proceedings of the 32nd Annual IEEE
International Computer Software and Applications (COMPSAC ’08), 2008, pp.
1011–1016.

[40] H. Kang, F. Dai, B. Huang, Evolution process component description language,
in: Proceedings of the International Conference on MultiMedia and
Information Technology (MMIT 2008), Three Gorges, China, 2008, pp. 306–
309.

[41] A. Koudri, J. Champeau, MODAL: a SPEM extension to improve co-design
process models, in: New Modeling Concepts for Today’s Software Processes,
Springer, 2010, pp. 248–259.

[42] S. Lee, J. Shim, C. Wu, A meta model approach using UML for task assignment
policy in software process, in: Proceedings of the 9th Asia-Pacific Software
Engineering Conference, 2002, pp. 376–382.

[43] C. Lima Reis, R. Quites Reis, M. Abreu, H. Schlebbe, D. Nunes, Flexible software
process enactment support in the APSEE model, in: Proceedings of the IEEE
Symposia on Human Centric Computing Languages and Environments, 2002,
pp. 112–121.

[44] R. Maciel, B. da Silva, P. Magalhaes, N. Rosa, An integrated approach for model
driven process modeling and enactment, in: Proceedings of the 23rd Brazilian
Symposium on Software Engineering (SBES ’09), 2009, pp. 104–114.

[45] T. Martinez-Ruiz, F. Garcia, M. Piattini, J. Munch, Applying AOSE concepts to
model crosscutting variability in variant-rich processes, in: Proceedings of the
37th EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA), 2011, pp. 334–338.

[46] T. Martinez-Ruiz, F. Garcia, M. Piattini, J. Munch, Modelling software process
variability: an empirical study, Software, IET, vol. 5, IET, 2011, pp. 172–187.

[47] R. Martinho, J. Varajao, D. Domingos, A two-step approach for modelling
flexibility in software processes, in: Proceedings of the 23rd IEEE/ACM
International Conference on Automated Software Engineering (ASE 2008),
L’Aquila, Italy, pp. 427–430.

[48] R. Martinho, J. Varajao, D. Domingos, FlexSPMF: a framework for modelling
and learning flexibility in software processes, in: Visioning and Engineering
the Knowledge Society, A Web Science Perspective, Springer, 2009, pp. 78–87.

[49] S.Y. Min, H.D. Lee, D.H. Bae, SoftPM: a software process management system
reconciling formalism with easiness, Information and Software Technology 42
(2000) 1–16.

[50] J. Noack, Extending the software development process with a toolkit of UML-
centered techniques, in: Proceedings of the International Conference on
Software Methods and Tools, 2000, pp. 87–96.

[51] P.Y. Pillain, J. Champeau, H.N. Tran, Towards an enactment mechanism for
MODAL process models, in: Proceedings of the 1st Workshop on Process-based
approaches for Model-Driven Engineering (PMDE-2011), 2011, p. 33.

[52] I. Podnar, B. Mikac, A. Caric, SDL based approach to software process modeling,
in: R. Conradi (Ed.), Software Process Technology, Lecture Notes in Computer
Science, vol. 1780, 2000, pp. 190–202.

[53] R.Q. Reis, C.A. Reis, H. Schlebbe, D.J. Nunes, Early experiences on promoting
explicit separation of details to improve software processes reusability, in:
Proceedings of the IEEE International Computer Software and Applications
Conference, Oxford, United kingdom, 2002, pp. 373–378.

[54] F. Ruiz, A. Vizcaino, F. Garcia, M. Piattini, Using XMI and MOF for
representation and interchange of software processes, in: Proceedings of the
14th International Workshop on Database and Expert Systems Applications,
2003, pp. 739–744.

[55] T.D. Thu, T.H. Nhi, D.T.B. Thuy, B. Coulette, X. Cregut, Topological properties for
characterizing well-formedness of process components, Software Process
Improvement and Practice, vol. 10, 2005, pp. 217–247.

[56] H.N. Tran, B. Coulette, B.T. Dong, Modeling process patterns and their
application, in: Proceedings of the 2nd International Conference on Software
Engineering Advances – ICSEA 2007, Cap Esterel, France, 2007.

[57] H. Washizaki, Deriving project-specific processes from process line
architecture with commonality and variability, in: Proceedings of the IEEE
International Conference on Industrial Informatics (INDIN’06), Singapore,
2007, pp. 1301–1306.

[58] M. Wu, G. Li, J. Ying, H. Yan, A metamodel approach to software process
modeling based on UML extension, in: Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, vol. 6, Taipei, Taiwan, 2007, pp.
4508–4512.

[59] K. Zamli, P. Lee, Modeling and enacting software processes using VRPML, in:
Proceedings of the 10th Asia-Pacific Software Engineering Conference, 2003,
pp. 243–252.

http://refhub.elsevier.com/S0950-5849(13)00189-4/h0070
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0070
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0070
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0070
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0075
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0075
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0080
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0080
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0085
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0085
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0085
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0085
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0090
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0090
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0090
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0090
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0095
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0095
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0095
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0100
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0100
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0100
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0105
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0105
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0105
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0105
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0110
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0110
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0110
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0110
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0115
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0115
http://refhub.elsevier.com/S0950-5849(13)00189-4/h0115

	Software process modeling languages: A systematic literature review
	1 Introduction
	2 Related work
	3 Method
	3.1 Research questions
	3.2 Search strategy
	3.3 Study selection and the inclusion and exclusion criteria
	3.4 Quality assessment
	3.5 Data collection and analysis

	4 Results
	4.1 Search results
	4.2 Quality evaluation

	5 Discussion
	5.1 RQ1. What software process modeling languages have been defined? Why?
	5.2 RQ2. What is the current trend when selecting base technology to define a SPML?
	5.3 RQ3. What are the limitations of current research?
	5.4 Limitations of our study
	5.4.1 Search strategy
	5.4.2 Study selection
	5.4.3 Quality assessment
	5.4.4 Data extraction and author bias


	6 Directions for future research
	7 Conclusions and future work
	Acknowledgements
	References


