Soliton ratchet induced by random transitions among symmetric sine-Gordon potentials

Jesús Casado-Pascual, Bernardo Sánchez-Rey, and Niurka R. Quintero

AFFILIATIONS
1 Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, 41080 Sevilla, Spain
2 Departamento de Física Aplicada I, E.P.S., Universidad de Sevilla, Virgen de África 7, 41011 Sevilla, Spain

Electronic mail: jcasado@us.es
Electronic mail: bernardo@us.es
Electronic mail: niurka@us.es

ABSTRACT
The generation of net soliton motion induced by random transitions among N symmetric phase-shifted sine-Gordon potentials is investigated, in the absence of any external force and without any thermal noise. The phase shifts of the potentials and the damping coefficients depend on a stationary Markov process. Necessary conditions for the existence of transport are obtained by an exhaustive study of the symmetries of the stochastic system and of the soliton velocity. It is shown that transport is generated by unequal transfer rates among the phase-shifted potentials or by unequal friction coefficients or by a properly devised combination of potentials (N > 2). Net motion and inversions of the currents, predicted by the symmetry analysis, are observed in simulations as well as in the solutions of a collective coordinate theory. A model with high efficient soliton motion is designed by using multistate phase-shifted potentials and by breaking the symmetries with unequal transfer rates.

I. INTRODUCTION
Ratchet phenomenon of particles appears in nonequilibrium systems when the relevant symmetries are broken. While spatial inversion symmetries are broken by means of asymmetric potentials, the noise sources jointly with external forces guarantee the nonequilibrium. Soliton ratchet, the natural extension of this phenomenon to complex nonlinear objects, such as fluxons and chains of colloidal particles, has attracted a lot of attention in recent years due to its potential practical applications. The ratchet effect of particles and solitons is governed by the symmetries of the systems. In the experimental realizations, even if the physical models are unknown, there are measurements which depend only on the symmetry properties of the magnitudes and devices. The presence of certain symmetries leads us to predict the specific conditions for the absence of net motion and its inversion upon the variation of system parameters. Moreover, when harmonic forces or potentials are used to induce the effect, symmetry considerations alone predict the current dependence on the
phases and amplitudes of all harmonics, regardless of the system under consideration.3,14 Symmetries predict the existence of soliton ratchets in deterministic models, where the time and space average of all external forces is zero. The mechanism leading to a net soliton motion is the desymmetrization of the basins of attraction that correspond to solitons moving in opposite directions. This is basically achieved through different combinations of asymmetric field potentials and/or asymmetric external ac forces (see Refs. 19–22 as well as the review article23). Curiously, from the analysis of symmetries, it turns out that the asymmetries of the potential and of the time-dependent external forces are not essential.24,25 Indeed, in Ref. 25, a biased drift of soliton was achieved, in the absence of any external force, by a simple combination of two symmetric potentials with a relative phase-shift and deterministic transitions between them at fixed times.

Originally, the ratchet phenomenon was proposed as the possibility of rectifying thermal fluctuations of particles.26,27 The findings of these studies motivated the examination of solitons in noisy environments.28,29 Under the influence of white noise, the robustness of the soliton transport was numerically established30,31 and the study of the whole phase-space of the system was enhanced.32 It is worth mentioning that the sole action of the time-correlated noise sources was unable to induce any net motion of solitons,33 although the inclusion of noise effectively added a unidirectional motion in a parameter range where zero-averaged velocity was observed for deterministic cases.34,35,36 In spite of all these studies, the rigorous analysis of the symmetries in the context of stochastic soliton ratchets remains unaddressed.

Therefore, the main purpose of the current research is to explore in depth the symmetries of stochastic soliton ratchets. As a paradigmatic model, we focus on the damped sine-Gordon (sG) equation, in which random transitions occur among phase-shifted symmetric potentials, each of them having its own dissipation. Symmetries dictate that in a single symmetric potential, it would be impossible to obtain a directed soliton motion. It is only the random transitions among these potentials that are rectified, giving rise to a net current. Remarkably, a detailed study of the symmetries of the system reveals that there are several ways to reach net movement. Perhaps the most evident is by using unequal transfer rates. But other possibilities, such as unequal frictions and proper combinations of phase shifts, are also investigated. This stochastic route to soliton ratchet has already been studied for Brownian particles,37,38 where the interpotential transfers coexist with the thermal noise, thereby adding an extra source of randomness to the dynamics. However, in our study, neither thermal noise nor external forces are present. The rectification mechanism emerges through the coupling between the transfer rates and the internal structure of the soliton. This is clarified using a collective coordinate (CC) theory that provides a better understanding of the simulation results and complements the symmetry analysis. All this investigation leads us to address a second goal: the design of an efficient soliton ratchet, that is, a directed soliton motion with high average velocity. This is achieved by tuning the random fluctuations among N symmetric sG potentials so that the resulting phase shift always increases.

The outline of the paper is as follows. In Sec. II, a damped sG system with random transitions among a set of phase-shifted symmetric potentials is introduced, and a thorough analysis of the symmetries present is provided. Numerical simulations that verify the existence of the soliton ratchet phenomenon are presented in Sec. III. Different ways of breaking the symmetry and comparison with the CC approximation are explored. In Sec. IV, a multistate case is proposed that is properly designed in order to attain a very efficient rectification mechanism. Finally, our main results are summarized in the conclusions.

II. MODEL AND SYMMETRY CONSIDERATIONS

In the present study, we consider a sine-Gordon equation of the form

\[\partial_t \Phi(x, t) - \partial_x \Phi(x, t) = -\beta_{\theta_0} \partial_x \Phi(x, t) - \sin \left(\Phi(x, t) + \theta_{\theta_0} \right), \]

where both the damping coefficient \(\beta_{\theta_0} \) and the phase-shift \(\theta_{\theta_0} \) depend on a stationary Markovian stochastic process \(J(t) \), which takes values in a set of \(N \) possible states \(\{1, \ldots, N\} \). Thus, Eq. (1) represents a sG system in which random transitions occur among phase-shifted symmetric potentials, \(U_{\theta_0} \equiv 1 - \cos(\Phi(x, t) + \theta_{\theta_0}) \), each of which has its own dissipation. This type of equation has been used to model the dynamics of the phase difference \(\Phi \) of Josephson junctions with tunable phase shifts \(\theta_{\theta_0} \).39–41

A more general situation in which the fluctuations of \(\theta \) and \(\beta \) are governed by different stochastic processes \(H(t) \) and \(K(t) \), respectively, could also have been considered. However, it can be shown that this case can alternatively be described using only a single stochastic process, with a number of states equal to the product of the number of states of \(H(t) \) and \(K(t) \), and whose statistical properties are determined from those of \(H(t) \) and \(K(t) \).

The Markovian process \(J(t) \) is fully determined by the probability \(p_j \) for \(J(t) \) to take the value \(j \) at any time instant, and by the conditional probability \(p(j, t|k, 0) \) for \(J(t) \) to take the value \(j \) at \(t \), given that its value at \(0 \) is \(k \). Both \(p_j \) and \(p(j, t|k, 0) \) satisfy a master equation of the form

\[\dot{p}_j(t) = \sum_{f=1}^{N} W_{j|f} p_f(t), \]

with \(W_{j|f} = w_{j|f} - \delta_{j|f} \sum_{k=1}^{N} w_{j|k} \), where \(W_{j|f} \) is the transition probability per unit time from state \(f \) to state \(j \). Specifically, \(p_j \) is a normalized time-independent solution of Eq. (2) and \(p(j, t|k, 0) \) is the solution of Eq. (2) corresponding to the initial condition \(p_f(0) = \delta_{j|f} \). For simplicity, it will henceforth be assumed that there exists only one normalized time-independent solution of Eq. (2), so that \(J(t) \) is uniquely determined by the transition matrix \(W \) with entries \(W_{j|f} \).

Since our focus is on solutions of Eq. (1) with only one kinklike structure present, boundary conditions of the forms

\[\lim_{x \to -\infty} \Phi(x, t) = \lim_{x \to +\infty} \Phi(x, t) + 2\pi \]

and

\[\lim_{x \to -\infty} \partial_x \Phi(x, t) = \lim_{x \to +\infty} \partial_x \Phi(x, t) \]

are considered. In addition, kinklike functions of the forms

\[\Phi(x, 0) = 4 \arctan(e^x) - \tilde{\theta} \]

are included.
and

\[\delta_0 \Phi(x, 0) = 0 \]

(6)

are used as initial conditions, where \(\tilde{\delta} = \sum_{j=1}^{N} \theta_j/N \) is the arithmetic average of the phase shifts.

Let \(\Phi \{ x, t; \theta, \beta, j(\cdot) \} \) denote the solution of Eq. (1) corresponding to a particular realization \(j(\cdot) \) of the aforementioned stochastic process. In order to determine the symmetry properties, the dependence on the parameters appearing in Eq. (1) has been explicitly indicated by introducing the column vectors \(\Theta = (\theta_1, \ldots, \theta_N)^T \) and \(\beta = (\beta_1, \ldots, \beta_N)^T \). The velocity of the kink and the average kink velocity can be, respectively, calculated from the expressions

\[V \{ t; \theta, \beta, j(\cdot) \} = \frac{1}{2\pi} \int_{-\infty}^{\infty} dx \Phi \{ x, t; \theta, \beta, j(\cdot) \} \]

(7)

and

\[\nabla \{ t; \theta, \beta, W \} = \langle V \{ t; \theta, \beta, j(\cdot) \} \rangle_W. \]

(8)

where \(\langle \cdot \rangle_W \) denotes the average over the realizations of the process \(j(t) \) corresponding to a given transition matrix \(W \). Finally, the long-time average velocity is given by the limit

\[\nabla_\infty \{ t; \theta, \beta, W \} = \lim_{t \to \infty} \nabla \{ t; \theta, \beta, W \}. \]

(9)

For an arbitrary value \(\Delta \theta \), let us consider the vector \(\Delta \theta = (\Delta \theta_1, \ldots, \Delta \theta_N)^T \). Then, it is easy to verify that the function \(\Phi \{ x, t; \theta + \Delta \theta, \beta, j(\cdot) \} + \Delta \theta \) satisfies the problem given by Eqs. (1) and (3)-(6). Therefore, from the uniqueness of the solution of this problem, it follows that \(\Phi \{ x, t; \theta, \beta, j(\cdot) \} = \Phi \{ x, t; \theta + \Delta \theta, \beta, j(\cdot) \} + \Delta \theta \). By using Eqs. (7), (8), and (9), one then obtains that

\[V \{ t; \theta, \beta, j(\cdot) \} = V \{ t; \theta + \Delta \theta, \beta, j(\cdot) \}, \]

(10)

\[\nabla \{ t; \theta, \beta, W \} = \nabla \{ t; \theta + \Delta \theta, \beta, W \}, \]

(11)

and

\[\nabla_\infty \{ \theta, \beta, W \} = \nabla_\infty \{ \theta + \Delta \theta, \beta, W \}. \]

(12)

Analogously, it can be verified that the function \(\Phi \{ x, t; \beta - \theta, \beta, j(\cdot) \} \) with \(\bar{\beta} = (\beta_1, \ldots, \beta_N)^T \), also satisfies the problem given by Eqs. (1) and (3)-(6). Therefore, from the uniqueness of the solution of this problem, it follows that \(\Phi \{ x, t; \beta, \beta, j(\cdot) \} = 2\pi - 2\bar{\beta} - \Phi \{ x, t; -\bar{\beta} + \beta, \beta, j(\cdot) \} \). Thus, using Eqs. (7), (8), and (9), it is straightforward to see that

\[V \{ t; \theta, \beta, j(\cdot) \} = -V \{ t; \bar{\beta} - \theta, \beta, j(\cdot) \}, \]

(13)

\[\nabla \{ t; \theta, \beta, W \} = -\nabla \{ t; \bar{\beta} - \theta, \beta, W \}, \]

(14)

and

\[\nabla_\infty \{ \theta, \beta, W \} = -\nabla_\infty \{ \bar{\beta} - \theta, \beta, W \}. \]

(15)

A direct consequence of the three equations above, together with Eqs. (10), (11), and (12) for \(\Delta \theta = -2\bar{\theta} \), is that

\[V \{ t; \theta, \beta, j(\cdot) \} = -V \{ t; \theta - \beta, j(\cdot) \}, \]

(16)

\[\nabla \{ t; \theta, \beta, W \} = -\nabla \{ t; \theta - \beta, W \}, \]

(17)

and

\[\nabla_\infty \{ \theta, \beta, W \} = -\nabla_\infty \{ \theta - \beta, W \}. \]

(18)

At this point, it is worth mentioning that the ordering that we have chosen for labeling the states of the stochastic process \(J(t) \) is completely arbitrary and, therefore, modification of such ordering does not alter the physical results. This implies that \(\nabla \{ t; \theta, \beta, W \} \) and \(\nabla_\infty \{ \theta, \beta, W \} \) must be invariant under permutations of the labels assigned to the states of \(J(t) \). In order to formally illustrate this invariance, let us consider a permutation \(\sigma \) of the \(N \) states and define the \(N \times N \) matrix \(T_{\sigma} \) with components \((T_{\sigma})_{ij} = \delta_{\sigma j} \), where \(\sigma j \) is the result of applying the permutation \(\sigma \) to the state \(j \). Then, the parameters \(\{ \theta, \beta, W \} \) and \(\{ T_{\sigma} \theta, T_{\sigma} \beta, T_{\sigma} W_{\sigma} \} \) represent essentially the same system and, consequently,

\[\nabla \{ t; \theta, \beta, W \} = \nabla \{ t; T_{\sigma} \theta, T_{\sigma} \beta, T_{\sigma} W_{\sigma} \}. \]

(19)

and

\[\nabla_\infty \{ \theta, \beta, W \} = \nabla_\infty \{ T_{\sigma} \theta, T_{\sigma} \beta, T_{\sigma} W_{\sigma} \}. \]

(20)

Let us assume now that there exists a permutation \(\tilde{\sigma} \) such that \(T_{\tilde{\sigma}} \theta = 2\tilde{\beta} - \theta \). According to Eqs. (14) and (15), it is, therefore, clear that

\[\nabla \{ t; \theta, \beta, W \} = -\nabla \{ t; T_{\tilde{\sigma}} \theta, \beta, W \}. \]

(21)

and

\[\nabla_\infty \{ \theta, \beta, W \} = -\nabla_\infty \{ T_{\tilde{\sigma}} \theta, \beta, W \}. \]

(22)

Taking into account that \(T_{\tilde{\sigma}} T_{\tilde{\sigma}} \theta = \theta \) and Eqs. (19), (20), (21), and (22), one then obtains that

\[\nabla \{ t; \theta, \beta, W \} = -\nabla \{ t; T_{\tilde{\sigma}} \theta, T_{\tilde{\sigma}} \beta, T_{\tilde{\sigma}} W_{\tilde{\sigma}} \}. \]

(23)

and

\[\nabla_\infty \{ \theta, \beta, W \} = -\nabla_\infty \{ T_{\tilde{\sigma}} \theta, T_{\tilde{\sigma}} \beta, T_{\tilde{\sigma}} W_{\tilde{\sigma}} \}. \]

(24)

From the above two equations, it is clear that if \(T_{\tilde{\sigma}} \beta = \beta \) and \(T_{\tilde{\sigma}} W_{\tilde{\sigma}} = W \), then \(\nabla \{ t; \theta, \beta, W \} = \nabla_\infty \{ \theta, \beta, W \} = 0 \). Consequently, a necessary condition for the existence of directed motion is that there exists no permutation \(\tilde{\sigma} \) which simultaneously verifies

(i) \(T_{\tilde{\sigma}} \theta = 2\tilde{\beta} - \theta \),

(ii) \(T_{\tilde{\sigma}} \beta = \beta \), and

(iii) \(T_{\tilde{\sigma}} W_{\tilde{\sigma}} = W \).

A direct consequence of this result is that, as is to be expected, it is impossible to induce directed motion by only fluctuating the damping coefficients while keeping a fixed potential. Indeed, in this case, the identity permutation would satisfy the aforementioned conditions leading to the absence of average motion.

III. NUMERICAL STUDY OF THE SYMMETRIES

We have performed numerical simulations of the damped SG equation (1), with the boundary conditions (3) and (4) and initial conditions (5) and (6), in order to check the existence of net kink motion due to stochastic transitions among symmetric SG potentials. A Runge–Kutta algorithm with space step \(\Delta x = 0.02 \) and time step \(\Delta t = 0.02 \) has been used. A total number of 2500 points have been considered such that the length of the system is \(L = 50 \).
We have verified numerically that, for this system, averaging over realizations provides the same results as performing a time-average over a sufficiently long single trajectory. The latter procedure has been used in the numerical calculations owing to its better computational efficiency. In order to prevent spurious effects due to the finite size of the system, we have divided the kink trajectory into \(M = 100 \) time intervals of duration \(T = 5000 \) units of time, after which the whole system is shifted so that the kink center of mass is reset to zero. For each interval, the time-average velocity is computed as

\[
V_i = \frac{1}{T} \int_{t_i}^{t_i+T} dt \partial_t X(t) = \frac{X(t_i + T) - X(t_i)}{T} \quad (i = 1, 2, \ldots, M),
\]

where \(t_i = (i - 1)T \) and

\[
X(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} dx \partial_x \Phi(x, t)
\]

is the center of mass of the kink, in accordance with expression (7). Note that, as a consequence of the shift of the center of mass described above, \(X(t_i) = 0 \) for \(i = 1, \ldots, M \) in Eq. (25). The long-time average velocity is then obtained as

\[
\bar{V}_\infty = \frac{1}{M} \sum_{i=1}^{M} V_i.
\]

As an example, let us first consider the simplest case of a two-state \(\sigma \bar{G} \) system. This means that \(\Gamma(t) \) will only take two possible values 1 and 2 and, consequently, the set of symmetric potentials is reduced to two elements,

\[
U_1(\Phi) = 1 - \cos(\Phi + \theta_1),
U_2(\Phi) = 1 - \cos(\Phi - \theta_2).
\]

In this case, regardless of the values of \(\theta_1 \) and \(\theta_2 \), condition (i) of Sec. II always holds for the transposition \(\sigma 1 = 2 \) and \(\sigma 2 = 1 \), which corresponds to the matrix

\[
\mathbf{T}_\sigma = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.
\]

Therefore, directed motion can be generated on the condition that \(\beta_1 \neq \beta_2 \) and/or \(W_{1,2} \neq W_{2,1} \). In addition, according to Eq. (24), it is clear that

\[
\bar{V}_\infty (\theta_1, \theta_2, \beta_1, \beta_2, W_{1,2}, W_{2,1}) = - \bar{V}_\infty (\theta_1, \theta_2, \beta_2, \beta_1, W_{2,1}, W_{1,2}).
\]

For this dichotomous Markov process, the equilibrium population of the state \(j \) is

\[
\rho_j = \frac{W_{j,f}}{W_{j,f} + W_{f,j}} \quad (j \neq f),
\]

and the residence time, \(\tau_j \), in the state \(j \) has a probability density

\[
g(\tau_j) = W_{j,f} \exp(-W_{j,f} \tau_j) \quad (j \neq f).
\]

Consequently, a realization of the process \(\Gamma(t) \) can be performed assigning to each state \(j \) residence time values

\[
\tau_j = -\ln(z)/W_{j,f} \quad (j \neq f),
\]

where \(z \) is a random number between 0 and 1.

Let us initially take \(\theta_1 = -\theta_2 = 0.5 \) and \(\beta_1 = \beta_2 = 0.8 \). Directed motion is possible only if \(W_{1,2} \neq W_{2,1} \). For \(W_{1,2} = 0.4 \) and \(W_{2,1} = 0.1 \), one realization of the time evolution of the kink center can be observed in Fig. 1. The dashed straight line is the linear regression line that fits the data. Its slope provides a guide so that the net movement of the kink to the right can be appreciated. The remaining parameter values are \(\beta_1 = 0.8 \) and \(\theta_1 = \theta_2 = 0.5 \).

![Fig. 1. Time evolution of the kink center for a dichotomous Markov process \(\Gamma(t) \) with transition rates \(W_{1,2} = 0.4 \) and \(W_{2,1} = 0.1 \). The dashed straight line is the linear regression line that fits the data. Its slope provides a guide so that the net movement of the kink to the right can be appreciated. The remaining parameter values are \(\beta_1 = 0.8 \) and \(\theta_1 = \theta_2 = 0.5 \).](image-url)
as a function of $\Delta \beta / \bar{\beta}$, where $\Delta \beta = \beta_3 - \beta_1$ and $\bar{\beta} = \beta_1 + \beta_2$, for a fixed value of $\beta = 2$ (circles). The CC theory (solid line) provides only a qualitative description of the simulation results. Both CC theory and simulation show clearly two consequences of the symmetry (30) for equal transfer rates $W_{1,2} = W_{2,1}$: zero averaged kink velocity for $\Delta \beta = 0 (\beta_1 = \beta_2)$ and the fact that \bar{V}_∞ is an odd function of $\Delta \beta$. Moreover, current reversals are observed. This is a counter-intuitive effect, namely, that by varying the damping the direction of the current can be reversed. The subsequent fast increase (decrease) of the kink velocity corresponds to the limit $\Delta \beta / \bar{\beta} \to +1(-1)$ in which the friction of one of the two states tends toward zero. In this limit, the kink becomes unstable and is eventually destroyed by the transitions. For this reason, we have restricted the simulations to the interval $-0.9 ≤ \Delta \beta / \bar{\beta} ≤ 0.9$.

Let us consider finally a third case in which symmetry conditions (ii) and (iii) of Sec. II are fulfilled but condition (i) is broken. In order to break (i), at least three states are necessary. Therefore, to the states specified in (28), let us add a third state

$$U_j(\Phi) = 1 - \cos(\Phi + \theta_j)$$

and keep $\theta_1 = -\theta_2 = 0.5$. Even if equal frictions for the three states and equal transfer rates between them are chosen, directed motion may in principle be generated except for $\theta_1 = 0$ and $\theta_2 = \pm 3/2$, since for any permutation $\sigma, \theta_{2,3} = 2 \theta - \theta_3 = -\theta_3/3$.

The resulting kink velocities as functions of θ_j are shown in Fig. 4. We have restricted θ_j to the range $-0.5 ≤ \theta_j ≤ 0.5$ in order to avoid transitions between states with phase differences larger than 1, which generate strong deformations in the kink structure. The CC theory (solid line) reasonably approximates the simulation results (circles). Notice that \bar{V}_∞ is an odd function of θ_j. This property can be easily understood by taking into account Eq. (18) together with Eq. (20) for the permutation $\sigma 1 = 2, \sigma 2 = 1$ and $\sigma 3 = 3$, which corresponds to the matrix

$$T_\sigma = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

(35)

IV. HIGH EFFICIENT RATCHET

In Sec. III, the net motion is achieved in successive stages, where the kink advances and backs up asymmetrically as shown in Fig. 1. For this reason, similarly to other soliton ratchets, the averaged kink velocities obtained are rather low. In this respect, the improvement of the efficiency of the ratchet phenomenon has attracted the attention of experimentalists and theoreticians in the context of Josephson junctions. Here, in order to enhance the efficiency of the ratchet effect, a new case in which $J(t)$ is now a Poisson process is considered. This process takes values j in a set $\{1, \ldots, N\}$, and the corresponding phase shifts are $\theta_j = -2\pi j/N$. Initially, $J(t) = 1$ and its value increases in time with steps of one unit that occur at random moments with a rate $W_{j+1} = \gamma$. The label j is periodic because after the value N, it then again takes the value 1. In other words, $W_{j'} = \gamma \delta_{j,j+1}$ for $j' \in \{1, \ldots, N - 1\}$ and $W_{jN} = \gamma \delta_{j,1}$. Moreover, we will take equal frictions $\beta_j = 0.8$, for $j = 1, \ldots, N$. Therefore, a realization of this process is a sequence of random jumps from the potential

$$U_j(\Phi) = 1 - \cos \left(\Phi - \frac{2\pi j}{N} \right)$$

(36)
to the potential \(U_{j+1}(\Phi) \), which can be easily simulated by generating a set of random numbers \(z_j \) between 0 and 1, and assigning a residence time \(\tau_j = -\ln(z_j) / \gamma \) to each potential state.

In this case, the symmetry condition (i) of Sec. II holds. If the permutation \(\sigma_j = N + 1 - j \) is applied, it clearly follows that

\[
\theta_j = \frac{2\pi (j - N - 1)}{N} = -\frac{2\pi (N + 1)}{N} + \frac{2\pi j}{N} = 2\theta - \theta_j. \tag{37}
\]

Additionally, condition (ii) is evidently fulfilled because all the frictions are equal. However, condition (iii) is broken since

\[
W_{\theta_j\theta_j} = W_{N+1-j,N+1-j} = \gamma \delta_{1-j}; \delta_{j-1} = \gamma \delta_{j-1} \neq \gamma \delta_{j-1}. \tag{38}
\]

In Fig. 5, the averaged kink velocity is plotted vs the parameter \(N \), for \(\gamma = 0.5 \) and \(\gamma = 0.2 \) (upper and lower curves, respectively). The most interesting feature of this figure is the high efficiency of the ratchet mechanism reflected in the large values of the resulting velocities. The excellent agreement between the CC theory (solid and dashed lines) and the simulations (circles and triangles) is also remarkable, especially for large values of \(N \), that is, when transitions between potential states are sufficiently smooth. Note that even for those large values of \(N \), the efficiency of the ratchet mechanism remains very high and the kink velocities are three orders of magnitudes over those obtained in Sec. III.

In order to better understand how this high efficiency is obtained, let us compare the two-state sG system considered at the beginning of Sec. III with the \(N \)-state sG system considered here. In the first case, the phase difference between two consecutive states of the process \(\theta_{i+1} \) alternates takes the values \(\theta_1 - \theta_i \) and \(\theta_i - \theta_1 \). Depending on whether this phase difference is positive or negative, the kink center moves backward or forward, respectively.

The result is, therefore, a sequence of forward and backward displacements, as can be seen in Fig. 1. When \(W_{1,2} \neq W_{2,1} \), these forward and backward displacements do not cancel each other, resulting in a nonzero net displacement of the kink but with a low average velocity. By contrast, in the \(N \)-state system, the phase difference between two consecutive states of \(\theta_{i+1} \) is always \(-2\pi / N \) [note that a phase difference of \(2\pi (N - 1) / N \) is equivalent to a phase difference of \(-2\pi / N \)]. As a consequence, the kink center always moves forward, thus significantly improving the efficiency of the ratchet mechanism.

V. CONCLUSIONS

In this paper, a study of a type of stochastic soliton ratchet has been addressed. The generation of directed soliton motion is induced by random transitions among a set of symmetric sG potentials. These potentials are identical except for the presence of state-dependent phase shifts. In addition, each potential state has its own dissipation coefficient. Remarkably, in our study, neither thermal noise nor external forces are present.

A rigorous analysis of the symmetries of the stochastic system has been provided since, as is well known, the emergence of net motion is mainly determined by the breakdown of such symmetries. This analysis leads us to predict the necessary conditions for the existence of transport and for the appearance of current reversals upon the variation of the system parameters. By means of numerical simulations, various different ways of reaching net motion have been explored. The case of unequal transfer rates among the potential states has first been considered, but other possibilities, such as unequal frictions and suitable combinations of three (or more) symmetric sG states, have also been investigated.
As a consequence of this investigation, a very efficient soliton ratchet has been designed by means of properly tuning the random fluctuations among N symmetric g potentials. It is to be expected that the high average velocities observed with this rectification mechanism will raise interest in the exploration of possible experimental research in this area. Moreover, although our study is restricted to g-like equations, the results obtained can be extended to other models with topological soliton solutions.

ACKNOWLEDGMENTS

We acknowledge financial support from the Junta de Andalucía and from the Ministerio de Economía y Competitividad of Spain through Nos. FIS2017-86478-P (J.C.-P.) and FIS2017-89349-P (N.R.Q.). N.R.Q. also acknowledges financial support from the Alexander von Humboldt Foundation and the hospitality of the Physikalisches Institut at the University of Bayreuth (Germany) during the completion of this study. This work has been partially financed by the Consejería de Conocimiento, Investigación y Universidades, Junta de Andalucía, and European Regional Development Fund (ERDF), Ref. No. SOMM17/6105/UGR.

APPENDIX: COLLECTIVE COORDINATE THEORY

Here, the same approach is used as that developed in Sec. III of Ref. 25 in order to obtain the equations of motion for the collective coordinates. To this end, let us propose a solution of Eqs. (1), (3), and (6) of the form $\Phi(x,t) = \Psi(x,t) + \phi(t)$, where $\Psi(x,t)$ is the “naked” kink field, for which $\lim_{x\to\pm\infty} \Psi(x,t) = 0$. The background field is represented by $\phi(t)$ and satisfies the differential equation

$$\ddot{\phi}(t) = -\beta_{\phi}\dot{\phi}(t) - \sin\left[\phi(t) + \theta_{\phi}\right],$$

(A1)

with the initial conditions $\phi(0) = -\hat{\phi}$ and $\dot{\phi}(0) = 0$. Here, the dots denote the derivative with respect to time. For the function $\Phi(x,t)$, we use the same ansatz proposed in Ref. 25 with two collective coordinates, $X(t)$ and $L(t)$, which are, respectively, the center of mass and the width of the kinklike structure. Straightforward calculations of the time variation of the energy and the momentum of the kink (for details, see Ref. 25), yield the kink velocity

$$\dot{X}(t) = \frac{\pi L(t) \dot{\phi}(t)}{4},$$

(A2)

and

$$\dot{L}(t) = \frac{[L(t)]^2}{2L(t)} - \frac{3L(t) [\dot{\phi}(t)]^2}{8} - \beta_{\phi}\dot{L}(t) + \frac{6}{\pi^2 L(t)} \left[1 - [L(t)]^2 \cos \left[\phi(t) + \theta_{\phi}\right]\right],$$

(A3)

which has to be solved with the initial conditions $L(0) = 1$ and $L(0) = 0$.

Finally, the average kink velocity can be calculated from Eqs. (8) and (A2) after numerically solving the differential equations (A1) and (A3).

REFERENCES

12. E. Goldobin, D. Koelle, and R. Kleiner, “Tunable $\pm \varphi_1$ and $\varphi_1 \pm \delta \varphi$ Josephson junction,” Phys. Rev. I 91, 214511 (2015).

