
One and Two Polarizations, Membrane Creation
and Objects Complexity in P Systems

Artiom Alhazov1,2, Rudolf Freund3 and Agustı́n Riscos-Núñez4

1 Research Group on Mathematical Linguistics, Rovira i Virgili University
Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

E-mail: artiome.alhazov@estudiants.urv.es
2 Institute of Mathematics and Computer Science, Academy of Sciences of Moldova

Str. Academiei 5, Chişinău, MD 2028, Moldova
E-mail: artiom@math.md

3 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, A–1040 Vienna, Austria

E-mail: rudi@emcc.at
4 Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence, University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

E-mail: ariscosn@us.es

Abstract

We improve, by using register machines, some existing
universality results for specific models of P systems. P sys-
tems with membrane creation are known to generate all re-
cursively enumerable sets of vectors of non-negative inte-
gers, even when no region (except the environment) con-
tains more than one object of the same kind. We here show
that they generate all recursively enumerable languages,
and two membrane labels are sufficient (the same result
holds for accepting all recursively enumerable vectors of
non-negative integers). Moreover, at most two objects are
present inside the system at any time in the generative case.
Then we prove that 10 + m symbols are enough to generate
any recursively enumerable language over m symbols.

P systems with active membranes without polarizations
are known to generate all recursively enumerable sets of
vectors of non-negative integers. We show that they gen-
erate all recursively enumerable languages; four starting
membranes with three labels or seven starting membranes
with two labels are sufficient. P systems with active mem-
branes and two polarizations are known to generate/accept
all recursively enumerable sets of vectors of non-negative
integers, only using rules of rewriting and sending objects
out. We show that accepting can be done by deterministic
systems. Finally, remarks and open questions are presented.

1. Introduction

P systems with symbol objects are a theoretical frame-
work of distributed parallel multiset processing, launched
by Gh. Păun in 1998 ([6]). A systematic field survey can be
found in [7]; [9] contains a comprehensive bibliography.

The aim of this article is to improve descriptive com-
plexity parameters or properties of a few universality re-
sults. More precisely, we shall speak about object complex-
ity (bounds in the starting configuration, in any configura-
tion, in the alphabet) and also about membrane complexity.

Let us denote the set of all recursively enumerable sets of
(k-dimensional) vectors of non-negative integers by PsRE
(PsRE (k) , respectively), while the set of all recursively
enumerable languages (over a k-letter alphabet) is denoted
by RE (RE (k) , respectively).

It was shown in [1] that P systems with membrane cre-
ation generate PsRE, even when every region (except the
environment) contains at most one object of every kind, but
using an unbounded number of membrane labels. We will
show that RE is generated using only two membrane labels
and at most two objects present inside the system through-
out any computation. The accepting case is considered,
too, and again two membrane labels are enough. On the

other hand, using an unbounded membrane alphabet we can
bound the symbol alphabet by 10 + m objects, where m is
the size of the output alphabet.

We also know from [1] that P systems with active mem-
branes without polarization generate PsRE, again working
with an unbounded number of membranes. We will show
that RE is generated by P systems with four membranes
and three labels or seven membranes with two labels in the
initial configuration.

As shown in [2, 3], P systems with two polarizations and
rules of types (a) – rewriting – and (c) – sending an ob-
ject out – generate PsRE using two membranes or accept
PsRE using one membrane. In this article we will show
that deterministic systems of this kind with one membrane
accept PsRE.

2. Definitions

After some preliminary definitions, we recall basic facts
of register machines and matrix grammars (without appear-
ance checking) and give the necessary definitions for the
specific models of P systems considered in this paper.

2.1. Preliminaries

The set of non-negative integers is denoted by N. An
alphabet V is a finite non-empty set of abstract symbols.
Given V , the free monoid generated by V under the opera-
tion of concatenation is denoted by V ∗; the empty string is
denoted by λ, and V ∗ − {λ} is denoted by V +. By |x| we
denote the length of the string x over V.

For more notions as well as basic results from the theory
of formal languages, the reader is referred to [4] and [8].

2.2. Register machines

A register machine is a construct M = (m,P, l0, lh) ,
where m is the number of registers, P is a finite set of in-
structions injectively labelled with elements from a given
set lab (M), l0 is the initial/start label, lh is the final label.

The instructions are of the following forms:

– l : (A (r) , l′, l′′)
Add 1 to the contents of register r and proceed to the
instruction (labelled with) l′ or l′′ (ADD instruction).
For deterministic machines, we require l′ = l′′.

– l : (S (r) , l′, l′′)
If register r is not empty, then subtract 1 from its con-
tents and go to instruction l′, otherwise proceed to in-
struction l′′ (conditional SUB instruction).

– lh : halt
Stop the machine.

When considering the generation of languages, we use
the model of a register machine with output tape, which
also uses a tape operation:

– l : (write (a) , l′′)
Write symbol a on the output tape and go to l′′.

We then also specify the output alphabet T in the de-
scription of the register machine with output tape, i.e., we
write M = (m,T, P, l0, lh).

The following results are folklore (e.g., see [5]):

Proposition 1 Let L ⊆ Nm be a recursively enumerable
set of (vectors of) non-negative integers. Then L can be gen-
erated/accepted by a register machine/deterministic register
machine with at most m + 2 registers; moreover, at the be-
ginning/at the end of a computation, all registers are empty;
the result/the input of a computation appears in the first m
registers.

Let L ⊆ V ∗ be a recursively enumerable language. Then
L can be generated by a register machine with output tape
with 2 registers.

2.3. Matrix grammars

A context-free matrix grammar (without appearance
checking) is a construct G = (N,T, S,M) where N and T
are sets of non-terminal and terminal symbols, respectively,
with N ∩ T = ∅, S ∈ N is the start symbol, M is a finite
set of matrices, M = {mi | 1 ≤ i ≤ n}, where the matri-
ces mi are sequences of the form mi = (mi,1, · · · ,mi,ni

),
ni ≥ 1, 1 ≤ i ≤ n, and the mi,j , 1 ≤ j ≤ ni, 1 ≤ i ≤ n,
are context-free productions over (N,T).

For mi = (mi,1, · · · ,mi,ni
) and v, w ∈ (N ∪ T)∗ we

define v =⇒mi
w if and only if there are w0, w1, · · · , wni

∈
(N ∪ T)∗ such that w0 = v, wni

= w, and for each j,
1 ≤ j ≤ ni, wj is the result of the application of mi,j to
wj−1. The language generated by G is

L (G) = {w ∈ T ∗ | S =⇒mi1
w1 · · · =⇒mik

wk = w,

wj ∈ (N ∪ T)∗ , mij
∈ M for 1 ≤ j ≤ k, k ≥ 1}.

The family of languages generated by matrix grammars
without appearance checking is denoted by MATλ. It is
known that for the family of Parikh sets of languages gener-
ated by matrix grammars PsMATλ we have PsMATλ ⊂
PsRE. Further details about matrix grammars can be
found in [4] and in [8]. We only mention that the power
of matrix grammars is not decreased if we only work with
matrix grammars in the f-binary normal form where N is
the disjoint union of N1, N2, and {S, f}, and M contains
rules of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2;

2. (X → Y,A → x), with X ∈ N1, Y ∈ N1 ∪ {f} ,

A ∈ N2, and x ∈ (N2 ∪ T)∗, |x| ≤ 2;

3. (f → λ).

Moreover, there is only one matrix of type 1 and only
one matrix of type 3, which is only used in the last step of a
derivation yielding a terminal result.

2.4. P Systems

The first model of P systems we consider is that of P sys-
tems with non-cooperative multiset-rewriting rules (ncoo)
with specifying targets (tar), also using membrane creation
(mcre) and membrane dissolution (δ) possibilities. Such a
system (of initial degree m ≥ 1) is of the form

Π = (O,H, μ,w1, · · · , wm, R1, · · · , Rn)

where O is the alphabet of objects, H is the set of labels
for membranes (we assume here that H contains n labels),
μ is the initial membrane structure, consisting of m mem-
branes labelled (not necessarily in a one-to-one manner)
with elements of H , w1, · · · , wm are strings over O rep-
resenting the multisets of objects present in the m com-
partments (also called regions) of μ, and R1, · · · , Rn are
the (finite) sets of rules associated with the n labels from
H . These rules can be of the forms (1) a → v and (2)
a → [i b] i where v ∈ O∗, a, b ∈ O, i ∈ H , and
either v ∈ (O × tar)∗ or v ∈ (O × tar)∗ {δ}, with
tar = {here, out} ∪ {inj | j ∈ H}. The presence of δ
on the right-hand side of a rule means that the application
of the rule leads to the dissolution of the membrane.

The meaning of a rule of type (1) is that the object a
from the region associated with the rule “reacts”, and as a
result the objects specified by v are produced. The objects
from v have associated target commands, of the forms here,
out, inj , which specify where the object should be placed:
here means that the object remains in the region where it
is produced, inj means that it has to go to the membrane
j, provided that it is directly inside the membrane where
the rule is applied (otherwise the rule cannot be used), and
out indicates that the object should exit the current mem-
brane, going to the surrounding region – which is the en-
vironment in the case of the skin membrane of the system.
In general, the indication here is not explicitly written. If
the special symbol δ is present, this means that after us-
ing the rule the membrane is dissolved, and all its contents,
objects and membranes alike, become elements of the sur-
rounding region. The skin membrane is never dissolved. A
rule a → [i b] i of type (2) means that object a produces a
new membrane, with label i, containing the object b.

Knowing the label of the membrane, we also know the
rules associated with it. We recall that the number of mem-
brane labels (i.e., kinds of membranes) is n (the rules are

associated with the membrane labels), while the number of
membranes initially is m and can change during the compu-
tation. The rules are used in the non-deterministic (the ob-
jects and the rules are chosen non-deterministically) maxi-
mally parallel way (no further object can evolve after having
chosen the objects for the rules), thus obtaining transitions
from one configuration of the system to another one.

P systems with active membranes with k polarizations
(activek) are constructs

Π = (O,H,E, μ,w1, · · · , wm, R)

where the components O,H, μ,w1, · · · , wm are defined in
the same way as above, the membranes of μ also have asso-
ciated polarizations from E (having cardinality k), and the
rules from R are of the following forms: (a): [a → v]e

h
–

rewriting-like, (b): a[]e
h → [b]e′

h and (c): [a]e
h → []e′

h b
– bring an object inside the membrane/send an object out
of the membrane (possibly changing its polarization), (d):
[a]e

h → b – dissolve the membrane, producing another ob-
ject (the contents of the dissolved membrane is released to

the surrounding region), (e): [a]e
h
→ [b]e′

h
[c]e′′

h
– mem-

brane division, where two membranes with the same la-
bel (but possibly different polarizations) are produced, each
containing a new object (all other objects are duplicated).
In all cases, a, b, c ∈ O, v ∈ O∗, e, e′, e′′ ∈ E and h ∈ H .

The rules of type (a) are applied in the maximally paral-
lel way, while at most one rule of types (b), (c), (d), (e) can
be applied for each membrane at any step of the computa-
tion. If we have only one polarization, we omit specifying
it (and in the literature, the subscript 0 then is usually added
to the types of rules defined above, thus yielding (a0), etc.).

In both models, when a configuration is reached where
no rule can be applied, the computation stops, and the mul-
tiplicity of objects sent into environment during the com-
putation is said to be computed by the system along that
computation. By Ps(Π) we denote the set of vectors gener-
ated in this way (by means of all computations) by a system
Π. If we take into account the sequence of symbols as they
are sent out into the environment (when two or more objects
leave the system at the same moment, then all permutations
of these objects are considered), then we obtain the string
language generated by Π, denoted by L (Π) . When con-
sidering Π as an accepting system for a set of vectors, we
put the input multiset into the skin membrane and accept by
halting computations.

We denote the resulting families generated by such P sys-
tems by XOn1,n2,n3Pn4,n5,n6F where (1) X is either L for
languages or Ps for sets of vectors of non-negative integers;
we add the subscript a when considering accepting systems;
(2) F is the list of features used in the model (e.g., we
consider (ncoo, tar,mcre, δ), (active1, a, b, c, d, e), and
(active2, a, c)); (3) the numbers n4, n5, n6 represent the

bounds on the starting number of membranes, the maximal
number of membranes in any computation, and the number
of membrane labels, ∗ representing the absence of a bound
(if all three numbers are ∗, then we simply omit them all);
(4) the numbers n1, n2, n3 have the same meaning, but for
the objects inside the system; the middle parameter, n2 or
n5, can be replaced by n′

2/n2 or n′
5/n5 where the primed

numbers indicate the bounds on the number of objects or
membranes ever present in the system during halting com-
putations only, thus refining this complexity measure.

3. Membrane Creation

Figure 1 describes the membrane structure used in the
first theorems.

Th. 1 1��1
�2 �2· · ·︸︷︷︸
n1

��2
�2 �2· · ·︸︷︷︸
n2

Th. 2 1��2
�2 �2· · ·︸︷︷︸
n1

��1��2
�2 �2· · ·︸︷︷︸
n2

. . . 1�� ��12
�2 �2· · ·︸︷︷︸
ndTh. 3

s
��· · ·︸︷︷︸

nonterminals

Th. 4,5 s����1
�

�1· · ·︸︷︷︸
n1

�
�2

����2· · ·︸︷︷︸
n2

������l
l′

Figure 1. Membrane structures for membrane
creation proofs

Generating The first theorem shows how recursively enu-
merable languages can be generated by P systems with a
small number of objects inside the system and a small num-
ber of membrane labels.

Theorem 1 LO1,2,∗P1,∗,2(ncoo, tar,mcre, δ) = RE.

Proof. Due to Proposition 1, we construct a P system simu-
lating a register machine M = (2, T, P, l0, lh); P− denotes
the set of all SUB instruction labels.

Π =
(
O,H, [

1
]
1
, w1, R1, R2

)
,

O = T ∪ {a1, a2, C1, C2, g0, g1, g2, t}
∪ P ∪ {l1, l2, l3, l4, l5, l6, l7 | l ∈ P−},

H = {1, 2} ,
w1 = g0,
R1 = R1,I ∪ R1,A ∪ R1,S ∪ R1,D ∪ R1,Z ∪ R1,O,
R2 = R2,I ∪ R2,A ∪ R2,S ∪ R2,D ∪ R2,Z .

For clarity, the rules are grouped in categories (initializa-
tion, add, subtract, decrement case, zero case, output).

Initialization:
R1,I = {g0 → [2 g0]2, g1 → [1 g2]1, g2 → (l0)out},
R2,I = {g0 → (g1)out},

Output:
R1,O = {l → l′aout | a ∈ T,

l : (write(a), l′) ∈ P},
Add:
R1,A = {l → l′ (C2)ini

, l → l′′ (C2)ini| l : (A(i), l′, l′′) ∈ P, i ∈ {1, 2}}
∪ {C2 → [2 t]2, t → λ}

R2,A = {C2 → [2 t]2, t → λ},
Subtract:
R1,S = {l → (l1C1)ini

| l : (S(i), l′, l′′) ∈ P, i ∈ {1, 2}},
∪ {C1 → [1 t]1}∪ {l1 → (l2)in2 , | l : (S(1), l′, l′′) ∈ P},

R2,S = {C1 → [1 t]1}∪ {l1 → (l2)in2 | l : (S(2), l′, l′′) ∈ P},
Decrement case:
R1,D = {l4 → l5δ | l ∈ P−}

∪ {l3 → (l4)in1 , l5 → (l′)out

| l : (S(1), l′, l′′ ∈ P)},
R2,D = {l2 → l3δ | l ∈ P−}

∪ {l3 → (l4)in1 , l5 → (l′)out

| l : (S(2), l′, l′′ ∈ P)},
Zero case:
R1,Z = {l6 → l7δ | l ∈ P−}

∪ {l1 → (l6)in1 , l7 → (l′′)out

| l : (S(1), l′, l′′ ∈ P)},
R2,Z = {l1 → (l6)in1 , l7 → (l′′)out

| l : (S(2), l′, l′′ ∈ P)}.
Initially, by means of the auxiliary objects gi, we create

two membranes inside the skin region, labelled by 1 and
2, respectively. These membranes will be referred to as
cluster-membranes (because they will contain inside them
a number of elementary membranes). We finish the initial-
ization phase by generating an object l0 in the skin region.

The values of the two registers i, i ∈ {1, 2}, are repre-
sented by the number of elementary membranes labelled by
2 that occur inside the corresponding cluster-membrane i.
The duty of the object Ci is to create membrane i. Object
t is not needed for the computation, it is only used to keep
the usual form of membrane creation rules and immediately
erased after having been created.

Writing an output symbol a ∈ T is done by a non-
cooperative rule changing the instruction label and produc-
ing a symbol a that is immediately sent out. To increment
a register, a membrane labelled by 2 is created inside the
corresponding cluster-membrane.

In order to simulate a subtraction on register i we send
the objects l1 and C1 into the cluster-membrane i and then
proceed in the following way: while creating a membrane
with label 1, object l1 tries to enter in some membrane with
label 2 as l2. If such a membrane exists (i.e., register i is
not empty), then l2 changes to l3 and dissolves the mem-
brane, thus being spilled back into the cluster-membrane.

Before proceeding to the next label, we have to get rid of the
auxiliary membrane 1 that was created inside the cluster-
membrane by C1. To this aim, l3 enters into membrane 1 as
l4 and dissolves it, thereby changing to l5. Finally, l5 sends
an object l′ out to the skin region. As an overall result, l
has been replaced by l′ and the number of membranes with
label 2 inside the cluster-membrane i has been reduced by
1. If, on the other hand, no membrane with label 2 exists
in the cluster membrane, then l1 waits for one step and then
enters the newly created membrane 1 as l6. Immediately
afterwards, it changes to l7 and dissolves the membrane.
Finally, l7 sends out an object l′′ into the skin region. As
an overall result, in the absence of membranes with label 2
inside the cluster-membrane i, l has been replaced by l′′.

Notice that inside the system there can never be more
than one copy of the same object. In fact, the number of
objects inside the system never exceeds two (it can only be
two after the first step of an ADD or a SUB instruction). �

Accepting Notice that the simulation of the register ma-
chine instructions in Theorem 1 is deterministic (the non-
determinism arises from the non-determinism of the regis-
ter machine program itself, not from the simulation). For
the case of accepting sets of vectors in a deterministic way,
we also specify the cardinality of the input alphabet, i.e., the
number of components in the (Parikh) vectors.

Theorem 2 DPsa(m)OP1,∗,2(ncoo, tar,mcre, δ) =
PsRE(m).

Proof. Given a recursively enumerable set of vectors of
non-negative integers, we now simulate a register machine
M = (m + 2, P, l0, lh) (see Proposition 1); the input vector
is represented in the skin by the corresponding numbers of
symbols (ai, i), 1 ≤ i ≤ m, for the i-th component.

Π =
(
O,H, [1]1, w1, R1, R2

)
,

O = {(ai, j) | 1 ≤ i ≤ m + 2, 1 ≤ j ≤ i}
∪ {C1, C2, t} ∪ {gi | 0 ≤ i ≤ 4(m + 2)}
∪ P ∪ {l1, l2, l3, l4, l5, l6, l7 | l ∈ P−},
∪ {(l, k, j) | l ∈ P−,

0 ≤ k ≤ 2, 1 ≤ j ≤ m + 2},
H = {1, 2} ,
w1 = g0,

R1 = R1,I ∪ R1,A ∪ R1,S ∪ R1,D ∪ R1,Z ,
R2 = R2,I ∪ R2,A ∪ R2,S ∪ R2,D ∪ R2,Z .

Like in the previous theorem, we list the rules
by categories (initialization, add, subtract, decrement
case, zero case). We again start with the object g0

which now starts the creation of the membrane structure(
[1 [2]2

)m+2(
]1

)m+2

, where each membrane with la-

bel 2 (cluster membrane) corresponds to a register. In par-

allel, the input objects enter the corresponding membranes
and become membranes with label 2, see Figure 1.

Initialization:
R1,I = {g3i → [

2
g3i+1]

2
, g3i+2 → [

1
g3i+3]

1
,

g3(m+2)+i →
(
g3(m+2)+i+1

)
out| 0 ≤ i ≤ m + 1}

∪ {g4(m+2) → l0}
∪ {(ai, j) → (ai, j − 1)in1

| 1 ≤ i ≤ m,
2 ≤ j ≤ i}

∪ {(ai, 1) → (C2)in2
| 1 ≤ i ≤ m},

R2,I = {g3i+1 → (g3i+2)out | 0 ≤ i ≤ m + 1}
∪ {C2 → [

2
t]

2
, t → λ}.

Then we perform a deterministic simulation of the in-
structions in the program of the deterministic accepting reg-
ister machine M . We now list the rules for ADD instruc-
tions (registers m+1, m+2 for the simulation of the work-
ing registers; observe that for the input initialization of the
registers i, 1 ≤ i ≤ m, similar rules for the corresponding
symbols (ai, i) are used):

Add:
R1,A = {l → l′ (ai, i) , l → l′′ (ai, i) ,

(ai, j) → (ai, j − 1)in1
,

(ai, 1) → (C2)in2
| l : (A(i), l′, l′′) ∈ P,

m + 1 ≤ i ≤ m + 2, 2 ≤ j ≤ i},
R2,A = {C2 → [2 t]2, t → λ}.

The main reason for additional rules is that we have to go
to that level of the membrane structure which corresponds
to the register affected by the instruction. The same has to
be done for the SUB instructions:

Subtract:
R1,S = {l → (l, 0, i), (l, 0, 1) → (l1C1)in2

| l : (S(i), l′, l′′) ∈ P}
∪ {(l, 0, j) → (l, 0, j − 1)in1 | 2 ≤ j ≤ i,

l : (S(i), l′, l′′) ∈ P}
∪ {(l, k, j) → (l, k, j − 1)out | 2 ≤ j ≤ i,

1 ≤ k ≤ 2, l : (S(i), l′, l′′) ∈ P}
∪ {(l, 1, 1) → l′, (l, 2, 1) → l′′

| l : (S(i), l′, l′′) ∈ P}
∪ {t → λ},

R2,S = {l1 → (l2)in2 , C1 → [1 t]1}.
The decrement case and the zero case are handled very

much like it is done in Theorem 1 for register 2.

Decrement case:
R1,D = {l4 → l5δ | l ∈ P−}
R2,D = {l2 → l3δ | l ∈ P−}

∪ {l3 → (l4)in1 , l5 → (l, 1, i)out

| l : (S(i), l′, l′′ ∈ P)},
Zero case:
R1,Z = {l6 → l7δ | l ∈ P−},
R2,Z = {l1 → (l6)in1 , l7 → (l, 2, i)out

| l : (S(i), l′, l′′ ∈ P)}.

After the correct simulation of the decrement case or the
zero case, the symbol (l, 1, i) or the symbol (l, 2, i), re-
spectively, is released; by decrementing the third compo-
nent, these symbols can travel along the line of membranes
labelled by 1 back to the skin membrane, where the rule
(l, 1, 1) → l′ or the rule (l, 2, 1) → l′′ is applied; hence,
after decrementing, the label l′ is obtained, whereas in the
zero case we continue with label l′′.

We finally observe that all the derivations in Π are per-
formed deterministically, which completes the proof. �

Generating with one object Considering P systems only
having one object inside the system during the whole com-
putation, we realize that such P systems with one object
work in a sequential way, hence, the following holds:

Theorem 3 PsMATλ is characterized by P systems

Π = (O,H, μ,w1, · · · , wm, R1, · · · , Rn)

where (a) the initial membrane structure is limited by two
levels (any membrane inside the skin is elementary) and the
label 1 of the skin membrane is unique (i.e., the labels of
the other membranes inside are different from 1), (b) ex-
actly one of the multisets wi consist of exactly one object,
whereas all the other initial multisets are empty, (c) the
rules in R1 are of the forms a → buout, a → bini

uout,
a → b, or a → [

i
b]

i
with a, b ∈ O, u ∈ O∗, and i ∈ H ′

where H ′ = H − {s} , (d) the rules in Ri, 2 ≤ i ≤ n, are
of the forms a → b, a → bout, or a → bδ.

Proof. Let Π be a P system obeying to the conditions given
above. We first observe that due to the form of the initial
configuration as well as due to the restricted forms of the
rules, during any computation (i) the membrane structure is
limited by two levels (any membrane inside the skin is el-
ementary), (ii) the number of symbols inside the system is
exactly one. Therefore, when constructing a matrix gram-
mar G = (N,T, S,M) simulating Π, with T ⊆ O, a mem-
brane i can be represented by the nonterminal i, while the
object a and its position in membrane i can be stored as
a pair (a, i). With InCon denoting the set of representa-
tions of the initial configuration given by μ,w1, · · · , wm (in
fact only one such representation is necessary), we now can
specify the matrix grammar G as follows:

N = H ∪ O × H ∪ {(a, i) | (a, i) ∈ F},
M = {(S → w) | w ∈ InCon}

∪ {((a, s) → (b, s)u) | a → buout ∈ Rs}
∪ {((a, s) → (b, i)u, i → i) |

a → bini
uout ∈ Rs, i ∈ H ′}

∪ {((a, i) → (b, i)) | a → b ∈ Ri, i ∈ H}
∪ {((a, i) → (b, s)) | a → bout ∈ Ri, i ∈ H ′}
∪ {

((a, s) → (b, i)i) | a → [i b] i ∈ Rs, i ∈ H ′}

∪ {((a, i) → (b, s), i → λ)
| a → bδ ∈ Ri, i ∈ H ′}

∪ {((a, i) → (a, i)), ((a, i) → λ) | (a, i) ∈ F}
∪ {(a, i) → (a, i), j → λ) | (a, i) ∈ F,

i ∈ H ′, j ∈ H}
∪ {(a, s) → (a, s), j → λ) | (a, s) ∈ F,

j ∈ H − Ha}.
The set F ⊂ O × H is defined in such a way that a pair

(a, i) is in F if and only if no rules of region i are applicable
to a, eventually except for rules of the form a → binj

uout

in R1, and for any a ∈ O, Ha ⊂ H ′ denotes the set of
membrane labels j such that Rs contains rules of the form
a → binj

uout, a, b ∈ O, u ∈ O∗. We now can see that
a configuration with object a in region i is a halting one if
and only if (a, i) ∈ F and (i) either i
= s or (ii) i = s
and no membranes with labels from Ha are present. The
rules with the barred symbols (a, i) allow us to remove all
non-terminal symbols from the sentential form of M when
Π has reached a halting configuration. Hence, Ps(L(M))
equals the set of vectors generated by Π.

For showing the converse inclusion, we consider a ma-
trix grammar G = (N,T, S,M) without appearance check-
ing in the f -binary normal form and construct a P system Π
simulating G: Π starts with the initial configuration [s S]s.

Π = (O,H, [
s

]
s
, S,RAinit

, · · · , Rs),
O = {S, S1, f,#} ∪ N1

∪ {li | l ∈ M, 0 ≤ i ≤ 4},
H = N2 ∪ {s},
Rs = {S → [Ainit

S1]Ainit| (S → XinitAinit) ∈ M}
∪ {X → (l0)inA

| l : (X → Y,A → uv) ∈ M}
∪ {l1 → [

u
l2]

u| l : (X → Y,A → uv) ∈ M, u ∈ N2}
∪ {l1 → l3uout

| l : (X → Y,A → uv) ∈ M, u ∈ T ∪ {λ}}
∪ {l3 → [v l4]v| l : (X → Y,A → uv) ∈ M, v ∈ N2},
∪ {l3 → Y vout

| l : (X → Y,A → uv) ∈ M, v ∈ T ∪ {λ}}
∪ {X → #, | X ∈ N1 ∪ {#}
∪ {f → #inA

| A ∈ N2},
RA = {S1 → (Xinit)out | (S → XinitA) ∈ M}

∪ {l0 → l1δ | l : (X → Y,A → uv) ∈ M}
∪ {l2 → (l3)out | l : (X → Y,B → Av) ∈ M}
∪ {l4 → (Y)out | l : (X → Y,B → uA) ∈ M}
∪ {# → #}.

The rules S → [
Ainit

S1]
Ainit

∈ Rs as well as
S1 → (Xinit)out ∈ RAinit

simulate the start matrix by
producing a membrane corresponding to the literal symbol
Ainit and an object corresponding to the control symbol
Xinit. A matrix l : (X → Y,A → uv) is simulated as fol-
lows: first, object X removes a membrane with label A by

the rules X → (l0)inA
∈ Rs and l0 → l1δ ∈ RA; then, it

creates membranes with labels u, v if u, v are non-terminal
symbols, or sends u, v into the environment if u, v are ter-
minal symbols. Finally, the object X changes to Y . The
rules X → #, # → # ∈ Rs guarantee that if the deriva-
tion of G is “stuck” in a form which is not terminal, then the
corresponding computation in Π will enter an infinite loop.
Finally, the result of a derivation in G is terminal if and only
if f is produced and no other non-terminal symbols have re-
mained; this is checked by the rules f → #inA

∈ Rs (after
the application of such a rule, the rule # → # ∈ RA then
guarantees that the corresponding computation in Π will en-
ter an infinite loop).

Observing that the P system constructed above fulfills all
the conditions stated in the theorem concludes the proof. �

We conjecture that we need not restrict the membrane
structure, i.e., even the following should be true:

PsMATλ = PsO1,1,∗P∗,∗,∗(ncoo, tar,mcre, δ).

Number of Symbols The cardinality of the alphabet in
the computational completeness proofs usually depends on
the complexity parameters of the simulated device. We
will now show that any recursively enumerable set of m-
dimensional vectors of non-negative integers can be gener-
ated by P systems with membrane creation and dissolution,
having the alphabet of 10 + m symbols.

Theorem 4 L(m)O2,2,10+mP1,∗,∗(ncoo, tar,mcre, δ)
= RE(m).

Proof. We simulate a register machine M = (2, T, P, l0, lh)
where T = {ai | 1 ≤ i ≤ m}; let P+ denote the set of all
ADD instruction labels, and let P− denote the set of all SUB
instruction labels.

Π = (O,H, [
s

[
I

]
I

]
s
, λ, b, Rl0 , · · · , RD),

O = T ∪ {b, c, d, e} ∪ {r+, r−, r′− | r ∈ {1, 2}},
H = P ∪ {I, 1, 2, s,D},
Ri = Ri,I ∪ Ri,O ∪ Ri,A ∪ Ri,S ∪ Ri,D

∪ Ri,Z ∪ Ri,N , i ∈ H.

For clarity, the rules are grouped (initialization, output,
add, subtract, decrement case, zero case, next instruction).

Initialization:
RI,I = {b → [

l0
d]

l0
},

Ri,I = ∅, i ∈ H − {I},
Output:
Rl,O = a → aout | l : (write(a), l′), a ∈ T},

∪ {a → aδ | a ∈ T}, l ∈ P ∪ {I},
Rs,O = {a → aoutb, a → aoutc | a ∈ T},
Ri,O = ∅, i ∈ H − (P ∪ {I, s}) ,

Add:

Rl,A = {d → (r+)out | l : (A(r), l′, l′′) ∈ P,
r ∈ {1, 2}} ∪ {r+ → r+δ | r ∈ {1, 2}},
l ∈ P ∪ {I},

Rs,A = {r+ → [r d]r | r ∈ {1, 2}},
Rr,A = {d → bout, d → cout}, r ∈ {1, 2} ,
RD,A = ∅,

Subtract:
Rl,S = {d → (r−)out | l : (S(r), l′, l′′) ∈ P,

r ∈ {1, 2}} ∪ {r− → r−δ | r ∈ {1, 2}},
l ∈ P ∪ {I},

Rs,S = {r− → r′−d, d → [
D

d]
D

| r ∈ {1, 2}},
RD,S = {d → λ} ,
Ri,S = ∅, i ∈ H − P − {I, s,D},

Decrement case:
Rs,D = {r′− → (r′−)inr

, e → einD
| r ∈ {1, 2}},

Rr,D = {r− → r′−d, d → [d d]D}, r ∈ {1, 2} ,
RD,D = {r′− → eout}, r ∈ {1, 2} ,
Ri,D = ∅, i ∈ H − {1, 2, s,D},

Zero case:
Rs,Z = {r′− → (r′−)inD

} | r ∈ {1, 2}},
RD,Z = {r′− → bδ | r ∈ {1, 2}},
Ri,D = ∅, i ∈ H − {s,D},

Next instruction:
Rs,N = {b → binl

, c → cinl
| l ∈ P},

Rl,N = {b → [l′ a] l′ , c → [l′′ a] l′′ |
l : (X(r), l′, l′′) ∈ P, X ∈ {A,S}}.

The instruction labels are encoded into membrane labels,
and the values of the registers are encoded by the number
of copies of some membranes associated with them. The
proof mainly relies on the fact that the amount of informa-
tion needed to be transmitted between the instructions and
the registers is “small”, i.e., the instructions tell us which
operation (ADD or SUB, represented by r+, r−, r ∈ {1, 2})
has to be applied and to which register r it has to be applied.
The objects r′−, r ∈ {1, 2} , and e are used to implement the
SUB instruction, and the object d here is used to organize
a delay for the appearance checking, similar to the tech-
nique from Theorem 1, whereas otherwise it is used when
the membranes already contain all the information needed.

After an operation has been simulated, the next instruc-
tion is chosen from two variants, non-deterministically cho-
sen in the ADD case and as well in the SUB case here de-
pending on whether decrementing has been successful or
not. These variants are represented by the objects b, c. The
transition to the next instruction is done in the following
way: Object b in membrane l creates membrane l′, or ob-
ject c in membrane l creates membrane l′′. After this, the
object “memorizes” the next register to be operated on and
the operation to be performed, and then membrane l is dis-
solved, leaving the newly created membrane in the skin. �

If we want to start with the simplest membrane structure,
one more symbol is needed as is exhibited in the following:

Theorem 5 L(m)O1,2,11+mP1,∗,∗(ncoo, tar,mcre, δ)
= RE(m).

Proof. We here again simulate a register machine M =
(2, T, P, l0, lh) as in the proof of the preceding theorem, but
in the P system Π′ we use an additional symbol a for an
initial step starting in the skin membrane:

Π′ = (O,H, [
s

]
s
, a, Rl0 , · · · , RD),

O = T ∪ {a, b, c, d, e} ∪ {r+, r−, r′− | r ∈ {1, 2}},
H = P ∪ {I, 1, 2, s,D},
Ri = Ri,I ∪ Ri,O ∪ Ri,A ∪ Ri,S ∪ Ri,D

∪ Ri,Z ∪ Ri,N , i ∈ H.
Initialization:

Rs,I = {a → [
I

b]
I
},

RI,I = {b → [
l0

d]
l0
},

Ri,I = ∅, i ∈ H − {s, I}.
Except for the initialization, the sets of rules are exactly

the same as for the P system Π constructed in the preceding
proof, which observation already completes this proof. �

Figure 2 depicts the membrane structures of the P sys-
tems constructed in the succeeding proofs.

Th. 6 s����1
�

�1· · ·︸︷︷︸
n1 + 1

�
�2

����2· · ·︸︷︷︸
n2 + 1

������s

Th. 7 1��1
�2 �2· · ·︸︷︷︸
n1 + 1

��1

��2
�2 �2· · ·︸︷︷︸
n2 + 1

��1

Th. 8
.1

(polariza-

tion 0)

Figure 2. Membrane structures for active
membrane proofs

4. One Polarization

The theorem below provides a result, similar to that of
Theorem 1, for P systems with active membranes with only
one polarization (usually called P systems with active mem-
branes without polarizations). The construction gives no
upper bound on the number of objects present inside the
system in general, but during any halting computation the
number of objects never exceeds 3.

Theorem 6 LO1,3/∗,∗P4,∗,3 (active1, a, b, c, d, e) = RE.

Proof. In the description of the P system Π below, ws de-
scribes the initial multiset for the skin membrane, whereas
w′

s denotes the initial multiset in the elementary membrane
having the same label as the skin membrane. We now sim-
ulate a register machine M = (2, T, P, l0, lh):

Π = (O,μ,ws, w1, w2, w
′
s, R) ,

μ = [s [1]1[2]2[s]s]s,
O = T ∪ {ai | 1 ≤ i ≤ 2} ∪ {l, l1, l2 | l ∈ P}

∪ {b1, b2, t, d,#},
ws = l0, w1 = w2 = w′

s = λ,
R = RO ∪ RA ∪ RS ∪ RD ∪ RZ .

The rules are grouped in categories: output, add, sub-
tract, decrement case and zero case.

Output:
RO = {[l → l′a]

s
, [l → l′′a]

s
, [a]

s
→ []

s
a

| l : (write(a), l′), a ∈ T},
Add:
RA = {l[] i → [l] i, [l] i → [l1] i[t] i,

[t → λ]
i
, [l1]

i
→ []

i
l′,

[l1] i → [] il
′′ |

l : (A(i), l′, l′′), i ∈ {1, 2}},
Subtract:
RS = {[l → dbil1]s, bi[] i → [bi] i,

[bi] i → [] it, [t → λ]s,
[bi → #]

s
, [bi → #]

i
,

[# → #] i | l : (S(i), l′, l′′), i ∈ {1, 2}}
∪ {d[]s → [t]s, [t → λ]s

[d → #]
s
, [# → #]

s
},

Decrement case:
RD = {l1[]

i
→ [l1]

i
, [l1]

i
→ l′

| l : (S(i), l′, l′′), i ∈ {1, 2}},
Zero case:
RZ = {l1[]s → [l2]s, [l2]s → []sl

′′

| l ∈ P−}.
Like in the previous theorem, we simulate a register ma-

chine with output tape and two registers; the values of reg-
isters i, i ∈ {1, 2}, are represented by the multiplicities of
membranes i. However, since new membranes can only be
created by dividing existing ones, one extra membrane is
needed for every register. The duty of d is to “keep busy”
the elementary membrane with label s (otherwise # appears
and the computation does not halt), and the use of the ob-
jects bi is to “keep busy” one membrane with label i for
two steps. Object t is not needed for the computation, it is
only used to keep the usual form of membrane division and
communication rules, it is immediately erased.

Generating an output is done by a non-cooperative rule
changing the instruction label and producing the corre-
sponding symbol, which is then sent out. Incrementing a
register (l : (A(i), l′, l′′)) is done in the following way: l
enters membrane i (there is always at least one), dividing it.
The object l1 in one copy is sent to the skin as l′ or l′′, while
the object t in the other copy is erased.

Subtracting with (l : (S(i), l′, l′′)) is done by keeping
busy the elementary membrane with label s for one step
and one membrane with label i for two steps, while object
l1 tries to enter any membrane with label i. If the regis-
ter is not zero, then l1 enters one of the other membranes
with label i, dissolves it, and changes to l′. Otherwise, after
having waited for one step, object l1 enters the elementary
membrane with label s and returns to the skin as l′′.

During a correct simulation of a run of the register ma-
chine (in particular, during any halting computation) there
are never more than 3 objects present inside the system. �

It is possible to reduce the number of membrane labels
to two at the price of starting with seven membranes.

Theorem 7 LO1,3/∗,∗P7,∗,2 (active1, a, b, c, d, e) = RE.

Proof. (sketch) In a way quite similar to the proof of
Theorem 1, let us now start with a membrane structure
[1 [1 [1]1[2]2]1[2 [1]1[2]2]2]1 (see also Figure 2),
represent the values of a working register i by the number of
elementary membranes with label 2, inside the membranes
with labels i, minus one. The elementary membranes with
label 1 will be used for delay, just like the elementary mem-
brane labelled by s was used in the proof of Theorem 6, and
the instructions are simulated accordingly. The main differ-
ence is that when simulating an ADD or a SUB instruction
we have one additional initial step at the beginning choos-
ing the “cluster membrane” representing the corresponding
register (see the proof of Theorem 1). Obviously, at the
end of the simulation of the instruction in the right “cluster
membrane”, we need an additional final step for moving the
instruction label back to the skin membrane. �

5. Two Polarizations

The last theorem established in this paper shows that
with two polarizations we need only one membrane to sim-
ulate register machines in a deterministic way:

Theorem 8 DPsaOP1,1,1(active2, a, c) = PsRE.

Proof. We will simulate the actions of a deterministic reg-
ister machine M = (d, P, l0, lh) with d registers by a de-
terministic P system with one membrane and two polariza-
tions. For every instruction l, let us denote the register l acts
on by r(l) and the operation l carries out by op(l).

Π = (O, {0, 1}, [1]0
1
, (l0, 0, 0), R),

O = {(a, i, j) | 1 ≤ i ≤ d, 0 ≤ j ≤ d + 2}
∪ {(l, i, j) | l ∈ P, 0 ≤ i ≤ 2,

1 ≤ j ≤ d + 2} ∪ {#}, .
The system receives the input (a, 1, 0)n1 · · · (a, d, 0)nd in
addition to w1 in the skin membrane. The set R contains
the following rules

[z]e
1 → []1−e

1 z, e ∈ {0, 1}, (1)

[(a, i, j) → (a, i, j + 1)]0
1
, 1 ≤ i ≤ d,

0 ≤ j ≤ d + 1, (2)

[(a, i, d + 2) → (a, i, 0)]01, 1 ≤ i ≤ d, (3)

[(a, i, j + 1)]1
1
→ []0

1
(a, i, j + 1) ,

1 ≤ i ≤ d, (4)

[(l, 0, j) → (l, 0, j + 1)]01, l ∈ P,

0 ≤ j < r(l) − 1, (5)

[(l, i, j) → (l, i, j + 1)]0
1
, l ∈ P, i ∈ {1, 2} ,

r(l) ≤ j ≤ d + 1, (6)

[(l, 1, d + 2) → (l′, 0, 0)]0
1
, l ∈ P, (7)

[(l, 2, d + 2) → (l′′, 0, 0)]0
1
, l ∈ P, (8)

[(l, 0, j) → (l, 1, j + 1) (a, j, j + 1)]01, l ∈ P,

j = r(l) − 1, op(l) = A, (9)

[(l, 0, j) → (l, 0, j + 1) z]0
1
, l ∈ P,

j = r(l) − 1, op(l) = S, (10)

[(l, 0, j) → (l, 0, j + 1)]0
1
, l ∈ P,

j = r(l), op(l) = S, (11)

[(l, 0, j) → (l, 0, j + 1)]1
1
, l ∈ P,

j = r(l) + 1, op(l) = S, (12)

[(l, 0, j) → (l, 1, j + 1)]0
1
, l ∈ P,

j = r(l) + 2, op(l) = S, (13)

[(l, 0, j) → (l, 2, j) z]1
1, l ∈ P,

j = r(l) + 2, op(l) = S, (14)

[(l, 2, j) → (l, 2, j + 1)]11, l ∈ P,

j = r(l), op(l) = S, (15)

[(lh, 0, 0)]01 → []11(lh, 0, 0), 1 ≤ i ≤ d. (16)

The idea of this proof is similar to the one from [2, 3]: the
symbols corresponding to the registers have states (second
subscript) 0, · · · , d + 2, and so do the symbols correspond-
ing to the instructions of the register machine. The first sub-
script of the instruction symbols is 0 if the instruction has
not yet been applied, and it is 1 if increment or decrement
has been applied, and 2 if the decrement has failed.

Most of the time the polarization is 0; object z can re-
verse the polarization by (1). When the polarization is 0, the
register symbols cycle through the states by (2), (3). Before
the current instruction l is applied, the instruction symbols
also cycle through the states until the state becomes r(l)−1,
i.e., the index of the register (the instruction operates on)
minus one. We will explain the details of the application
below. After the instruction has been applied, the first sub-
script of the instruction symbol changes to 1 or 2 and it
cycles through the states by (6), finally changing into l′ by
(7) or into l′′ by (8).

Addition is done by rule (9). Decrement is done by a
“diagonalization technique”: polarization 1 when register
i is in state i + 1 signals a decrement attempt of register
i by (4), and the polarization will change if and only if it
has been successful. Thus, to apply l : (S(i), l′, l′′), the
instruction symbol in state i − 1 additionally produces a
symbol z. By the time z changes the polarization to 1 by
(1), all other symbols reach state i + 1. After one more step
the state symbol checks whether the decrement has been

successful, (13), or not, (14). After a successful decrement
all symbols continue changing states with polarization 0 and
state i + 1. Otherwise, the instruction symbol additionally
produces a symbol z and after one more step all symbols
continue changing states with polarization 0 and state i+1.

After the simulation of M has reached the final label,
the instruction symbol exits the system, changing the polar-
ization to 1. Since the register symbols are in state 1, the
system halts. �

Looking into the proof of the preceding theorem we re-
alize that even a more general result is shown: the multisets
remaining in the skin membrane at the end of a halting com-
putation can be interpreted as the computation result:

Corollary 1 Any partially recursive function can be com-
puted by a deterministic P system with one membrane, two
polarizations and internal output.

6. Conclusions and Open Problems

We have shown that P systems with membrane creation
generate RE, using two membrane labels and at most two
objects present inside the system throughout the computa-
tion. Accepting any recursively enumerable language can
also be done with two membrane labels. On the other hand,
it is possible to bound the number of symbols by m+10 and
still generate RE(m), provided that the number of mem-
brane labels is unbounded.

We also have shown that RE is generated by P systems
using four membranes and three labels or seven membranes
and two labels in the initial configuration, where at most
three objects are ever present in any halting computation.

It is known from [2, 3] that P systems with two polariza-
tions and rules of types (a) and (c) generate PsRE using
two membranes, or accept PsRE using one membrane. In
this article, we have proved that deterministic systems of
this kind with one membrane accept PsRE. Moreover, in
the proof of this result (Theorem 8), the rules are global
(there is only one membrane) and rules of type (c) are non-
renaming (the contents of the environment does not matter).

Improving any complexity parameter greater than one
(especially in the case of ∗) in any theorem is an open ques-
tion. Moreover, the following questions are of interest:

• How can the types of rules be restricted in Theorem 6?

• How can target indications be restricted in Theorem 1?

• What further restrictions cause a complexity trade-off?

• What is the generative power of P systems without po-
larizations and m membranes, m = 1, 2, 3?

• What is the generative power of one-membrane P sys-
tems with two polarizations and external output?

Acknowledgments

The first author is supported by the project TIC2002-
04220-C03-02 of the Research Group on Mathematical Lin-
guistics, Tarragona, and acknowledges the Moldovan Re-
search and Development Association (MRDA) and the U.S.
Civilian Research and Development Foundation (CRDF),
Award No. MM2-3034.

The third author would like to acknowledge the support
from Ministerio de Ciencia y Tecnologı́a of Spain, through
Plan Nacional de I+D+I (2000–2003) (TIC2002-04220-
C03-01), co-financed by FEDER funds.

References

[1] A. Alhazov. P systems without multiplici-
ties of symbol-objects. Information Process-
ing Letters, submitted, 2004 (preprint version:
www.geocities.com/aartiom).

[2] A. Alhazov, R. Freund, Gh. Păun. Computational
Completeness of P Systems with Active Membranes
and Two Polarizations. Machines, Computations, and
Universality, International Conference, MCU 2004,
Saint Petersburg, 2004, Revised Selected Papers (M.
Margenstern, Ed.), Lecture Notes in Computer Sci-
ence 3354, Springer-Verlag, 2005, 82–92.

[3] A. Alhazov, R. Freund, Gh. Păun. P Systems with Ac-
tive Membranes and Two Polarizations. Second Brain-
storming Week on Membrane Computing, Sevilla,
2004, (Gh. Păun, A. Riscos-Núñez, A. Romero-
Jiménez, F. Sancho-Caparrini, Eds.), RGNC Tech.
Rep 01/2004, University of Seville, 2004, 20–36.

[4] J. Dassow, Gh. Păun. Regulated Rewriting in Formal
Language Theory. Springer-Verlag, Berlin, 1989.

[5] M. Minsky. Computation. Finite and Infinite Ma-
chines. Prentice Hall, Englewood Cliffs, New Jersey,
1967.

[6] Gh. Păun. Computing with membranes, Journal of
Computer and System Sciences, 61 (1): 108–143,
2000 and TUCS Research Report 208, 1998.

[7] Gh. Păun. Membrane Computing. An Introduction.
Springer-Verlag, Berlin (Natural Computing Series),
2002.

[8] A. Salomaa, G. Rozenberg, Eds. Handbook of Formal
Languages. Springer-Verlag, Berlin, 1997.

[9] P systems page, psystems.disco.unimib.it.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

