INTEGRACIÓN DE REFORMADOR DIESEL CON PILAS DE COMBUSTIBLE TIPO PEM

***Instituto de Catálisis y Petroquímica. Campus UAM. Cantoblanco. 28049 Madrid.
****Escuela de Ingenieros Sevilla. Departamento de Ingeniería de Sistemas y Automática. Camino de los Descubrimientos s/n. 41012 Sevilla.

RESUMEN

En este artículo se presentan las actuaciones realizadas para el diseño y construcción de un reformador diesel para la producción de hidrógeno que alimentará a una pila de combustible tipo PEM. Estas actividades se han enmarcado en un Convenio de Colaboración suscrito entre INTA, AICIA, CIDAUT e ICP-CSIC y ha estado financiado en un 50% por INTA y por el resto de los participantes, proporcionalmente a su grado de participación. El artículo presenta las actuaciones realizadas hasta la fecha: selección del catalizador, simulación, diseño y construcción de un reformador diesel autotérmico de 5 kW. Este reformador será caracterizado durante el segundo semestre de 2004 y durante el año 2005 operará acoplado a una pila tipo PEM en el Centro de Experimentación de Arenosillo.

PALABRAS CLAVE: Hidrógeno, Reformador, Diesel, Pila de Combustible, PEM.

ABSTRACT

This paper presents carried out actions to design and construct an autothermal diesel reformer for hydrogen production feeding a PEMFC. These activities have been performed by INTA, AICIA, CIDAUT and ICP-CSIC through a collaborative effort 50% funded by INTA and by partners as in kind contributions as a function of developed tasks. The paper presents activities carried out to date: selection of a catalyst, simulation of the process, design and construction of a 5 kW autothermal diesel reformer. Reformer will be characterized during the second half of 2004 and, finally, will be installed for a proper operation together with a 5 kW PEMFC at the promises of INTA located in Centro de Experimentación de Arenosillo at Huelva.

KEYWORDS: Hydrogen, Reformer, Diesel, Fuel Cell, PEM
INTRODUCCIÓN

La utilización del hidrógeno como vector energético se postula como una de las soluciones a medio y largo plazo frente al carácter no sostenible del sistema energético actual. A tal efecto, los programas de I+D+I, tanto nacionales como europeos, están dedicando unos recursos considerables tanto a actuaciones de producción de hidrógeno a partir de energías renovables, como de almacenamiento y uso del mismo en pilas de combustible.

El sector transporte supone un porcentaje de consumo de energía primaria considerable en la factura energética, del orden del 35% en España y Europa. En este sector, si bien están claras las ventajas derivadas del uso de las pilas de combustible, está aún sujeta a debate la forma de suministro de hidrógeno a las mismas. Diversas opciones están siendo estudiadas: almacenamiento de hidrógeno a bordo (en forma de hidruros metálicos, líquido o a presión) y sistemas de generación de hidrógeno a bordo para su consumo in situ a partir de combustibles de alta densidad energética (metanol, etanol, bioetanol, diesel y otros combustibles fósiles).

A fin de determinar las ventajas e inconvenientes derivadas del uso de diversos combustibles en sectores estratégicos (transporte naval, militar, etc), el INTA está financiando un Programa tecnológico cuya objetivo fundamental es “...Analizar el estado actual de la tecnología de pilas de combustible y reformadores, analizar y propiciar su integración en aplicaciones tanto fijas como móviles ...”. Dicho proyecto comenzó en Enero de 2003 y está dividido en cuatro subproyectos: Pilas de Combustible, Procesado de combustibles, Modelado y Acoplamiento e integración de sistemas.

Como parte de las actuaciones en curso, se han firmado Acuerdos Específicos de colaboración con socios que tienen líneas de actuación científicas coincidentes a las de INTA. Es de destacar el Acuerdo firmado para el año 2004 con AICIA, CIDAUT e ICP-CSIC para la construcción y puesta en marcha de un reformador diesel para la producción de hidrógeno que será utilizado por una pila PEM. Este reformador ha sido diseñado, desde un punto de vista mecánico y catalítico, merced a las actuaciones desarrolladas durante el año 2003 por CIDAUT e ICP-CSIC.

En las siguientes secciones se presentan los logros más destacados en el ámbito de la selección del catalizador (reformador ATR, WGS y PROX), simulación y construcción del reformador.

ESQUEMA DEL PROCESO

El objetivo final de la instalación de reformado de diesel es suministrar una corriente de hidrógeno susceptible de poder ser utilizada por la pila de combustible PEM. El condicionante fundamental impuesto por la pila de combustible es el nivel máximo admisible de monóxido de carbono (habitualmente inferior a 30 ppm). A la hora de definir el esquema global del proceso ha sido preciso tener en cuenta los problemas técnicos específicos que plantea la utilización del combustible diesel como fuente de hidrógeno (fundamentalmente la vaporización/homogenización de sus mezclas, la heterogeneidad de su composición química, su tendencia a formar coque y la presencia de compuestos de azufre venenosos para los catalizadores empleados en el reformador).

Teniendo en cuenta estos requerimientos así como las características de sencillez y respuesta dinámica exigidas al reformador, se analizaron tanto las distintas tecnologías de obtención de H₂ a partir de hidrocarburos (reformado con vapor, oxidación parcial y combinaciones de los anteriores mediante reformado autotérmico), como las tecnologías de tratamiento de la corriente de reformado para adecuar el contenido en azufre (absorción) y en monóxido de carbono (reacción del gas de agua (WGS), oxidación catalítica selectiva (PROX), uso de membranas, absorción, PSA y VSA) a las especificaciones de la pila.

Tras analizar las ventajas e inconvenientes de cada uno de los procesos, se optó por la tecnología de reformado autotérmico como procedimiento base para la producción primaria de hidrógeno en nuestro reformador. El reformado autotérmico, que combina las ventajas del reformado con vapor y de la oxidación parcial, permite un buen rendimiento en producción de hidrógeno, menor tendencia a la formación de coque que la oxidación parcial, buena respuesta dinámica y sencillez en el diseño del equipo. Esta elección se ha visto igualmente apoyada por los resultados que aparecen en bibliografía (Ahmed y Kumpelt, 2001). De modo análogo, para la posterior fase de purificación de la corriente de reformado, se ha seleccionado una realización que incluye tres etapas consecutivas: (1)

Fig. 1: Esquema de procesos del reformador
desulfuración por adsorción sobre ZnO, (2) reducción primaria de CO por WGS y (3) eliminación del CO residual por oxidación catalítica selectiva (PROX).

La Figura 1 representa un esquema del proceso que se lleva a cabo en el reformador: por la parte superior se muestran las líneas de alimentación a la cámara de mezcla, situado a la entrada del reformador. El agua ha de ser previamente desionizada y vaporizada y mezclada con una corriente de aire para proceder al ajuste de presión y temperatura de la mezcla aire-vapor de agua.
En la cámara de mezcla se introduce, por una parte la mezcla aire-vapor y por el otro diesel mediante un inyector convencional; en esta sección tiene lugar un proceso de llama fría que facilita la homogeneización de la mezcla y la regulación de la temperatura de entrada de la mezcla en el lecho catalítico del reformador. En el reformador, es crítico la homogeneización de la mezcla y la uniformidad del flujo. A la salida del ATR, el gas reformado pasa a un intercambiador de calor y a un desulfurizador. A continuación puede pasar a los convertidores de Alta y Baja temperatura (caso más general y representado en la figura 1) o bien a un solo convertidor con un catalizador novedoso capaz de trabajar en un rango de temperaturas más amplio y que ha sido desarrollado específicamente para este proyecto. Tras la etapa de WGS el contenido de CO pasa desde un 10-15% hasta un 0.3-1%. La última etapa en un reactor PROX reduce el contenido de CO hasta un nivel admisible por la pila de combustible (inferior a unos 20 ppm de CO) y una última etapa adecua el contenido en humedad.

SELECCIÓN DE CATALIZADORES

En esta sección se describen los catalizadores utilizados en los tres reactores existentes: reactor ATR, Shift Converter y PROX.

Catalizadores ATR

A fin de obtener la conversión y selectividad hacia los productos deseados, es esencial la elección de un catalizador adecuado. Las características que debe tener dicho catalizador son:

- Presentar un nivel alto de actividad y selectividad a H₂ y CO₂.
- Mantener su actividad a temperaturas elevadas.
- Tolerancia al envenenamiento por azufre y coque.
- Presentar resistencia mecánica.

Los catalizadores utilizados para el reformado autotérmico están constituidos por metales como Pt, Rh, Ru y Ni depositado o incorporado en soporte de óxido de cerio (Carpenter, 1999). A fin de mejorar la resistencia térmica y la actividad se pueden dopar con otros elementos e incluso se ha conseguido una actividad similar con metales no nobles como Fe, Co y Ni soportados en óxido de cerio, dopado con iones conductores (Ghenecu, 2002). Para conseguir las exigencias que la reacción de ATR y el combustible a reformar les impone, los sistemas catalíticos sintetizados en el ICP han sido desarrollados mediante una adecuada combinación de los elementos que lo integran: soporte, promotores y fases metálicas activas. Específicamente, las formulaciones de los catalizadores ATR desarrollados para este Proyecto están basadas en: (i) soportes α-alumina estabilizadas térmicamente, (ii) Pt, Ru y Ni como fases activas y, (iii) MgO y/o óxidos de cerio como promotores de actividad y tolerancia al envenenamiento por azufre y coque. La elección de la formulación y su ajuste de composición se realiza en la actualidad mediante la realización de ensayos de estabilidad y tioresistencia con alimentaciones reales.

Reactor WGS

En este reactor el contenido en CO se reduce hasta un nivel comprendido entre el 1 y el 0.3%. El proceso puede realizarse mediante un sistema clásico en dos etapas (alta temperatura con catalizadores basados en Fe y Cr, y baja temperatura con formulaciones catalíticas que basadas en cobre soportado sobre mezclas de óxidos ZnO-Al₂O₃). Sin embargo, para evitar las limitaciones que impone el uso de los anteriores sistemas catalíticos en cuanto a su cuidadosa activación y piroforicidad en contacto con aire, se propone alternativamente la realización del WGS en una sola etapa utilizando nuevos sistemas catalíticos. Para dichos sistemas, el ICP está desarrollando formulaciones catalíticas (alguna en proceso de patente) basadas en el uso de metales del grupo del Pt o en Au soportados en óxidos metálicos como CeO₂, TiO₂ y Al₂O₃.

Reactor de Oxidación Preferencial

Como se puso de manifiesto anteriormente, el objetivo de este último reactor es adecuar el contenido de CO de la corriente de hidrógeno al límite establecido por la pila de combustible (20 ppm máximo). Teniendo en cuenta el bajo nivel de CO (<1% en volumen) y la existencia de H₂ en la corriente a tratar, se hace necesario el desarrollar catalizadores altamente activos a bajas temperaturas (80-175 °C) y selectivos con el fin de minimizar las pérdidas de hidrógeno en la operación. Para lograr dicho objetivo, se plantean en el presente Proyecto formularonulas catalíticas PROX basadas en Pt y Au como fases activas depositadas sobre soportes de área elevada (gamma-alumina, CeO₂ y zeolitas).

DISEÑO Y SIMULACIÓN DEL PROCESO

El proceso ha sido simulado (Tinaut F, 2004) antes de proceder a la construcción del mismo. En la Figura 2 se muestra la conversión de diesel a H₂, CO y CO₂. A medida que transcurre la reacción se consume H₂O y O₂ y a la salida del reformador ATR se alcanza un contenido en H₂ y CO del 35% y 11.6 respectivamente.

![Fig. 2: Resultados de la simulación del funcionamiento del reformador Diesel.](image-url)
energético a la salida del reactor PROX y el contenido energético del diesel a la entrada es del 85,1%. Este rendimiento se puede incrementar mediante una adecuada integración térmica del sistema. El esquema seguido para la realización del modelo ha permitido obtener una solución unidimensional para una situación en régimen permanente, y es fácilmente extrapolable a otros tipos de reformadores y en general a otros reactores químicos para generación de hidrógeno a partir de combustibles líquidos o gaseosos.

El reformador una vez dimensionado, y analizadas las prestaciones mediante simulación, está siendo construido por parte de CIDAVUT. La simulación efectuada ha de ser contrastada con medidas experimentales (que serán realizadas en la segunda mitad del año 2004) mediante su caracterización que permitirá obtener las funciones de transferencia del sistema. La obtención de modelos dinámicos de tipo caja negra (como las funciones de transferencia) permitirán el diseño del control supervisor del sistema formado por reformador, pila de combustible y carga. Este control supervisor se encarga de la operación óptima de todo el sistema, de manera que sincroniza la operación de cada subsistema para hacer operar el sistema de manera orquestada.

ACTUACIONES FUTURAS.

Como se ha comentado anteriormente, el reformador está siendo construido actualmente en la sede del CIDAVUT y a finales del año 2004, una vez haya sido caracterizado se transportará al Centro de Experimentación de Arenosillo para su integración en una operación conjunto reformador-pila de combustible tipo PEM. Está previsto el funcionamiento bajo distintas condiciones de operación que permitan extraer conclusiones de cara a un escalado de dicho reformador (hasta 250 kW) que permita su uso en diversas aplicaciones, tanto estacionarias como móviles. Adicionalmente, durante el año 2005, está previsto el inicio de las actuaciones para el desarrollo y diseño de un reformador alimentado con etanol, de cara a su operación con una pila de combustible tipo PEM que permita extraer al información necesaria para evaluar las ventajas e inconvenientes de diversos combustibles en cuanto a su uso con pilas de combustibles tipo PEM.

AGRADECIMIENTOS

Este proyecto está siendo financiado en un 50% por el Instituto Nacional de Técnica Aeroespacial y está enmarcado en las actuaciones del Proyecto No Agregado “ Pilas de Combustibles. Aplicaciones para Defensa”.

REFERENCIAS

