EL SISTEMA REDUCTOR DE NITRATO DE Azotobacter chroococcum

SECCIÓN DE BIOLOGÍAS

Trabajo presentado para optar al grado de Doctor en Ciencias por el Licenciado D. MIGUEL GARCIA GUERRERO

Sevilla, Junio de 1973

LOS DIRECTORES

Director y Padrino

Prof. Manuel Losada Villasante
Catedrático de Bioquímica

Codirector

Dr. José Mª Vega Piqueres
Prof. Adjunto de Bioquímica
A mis padres

A Maribel
El presente trabajo ha sido realizado en el Departamento de Bioquímica de la Facultad de Ciencias y C.S.I.C. de la Universidad de Sevilla, bajo la dirección del Profesor Manuel Losada Villasante, Director del citado Departamento y Catedrático de Bioquímica, quien, desde los primeros cursos de la Licenciatura ha sabido inculcarme su gran entusiasmo por la Ciencia. A su orientación y constante dedicación, interés y estímulo, debo cuanto pueda conocer de la investigación y la enseñanza.

Agradezco profundamente al Dr. José Mª Vega, Codirector de este trabajo, su inestimable aportación de ideas, así como la directa y eficazísima participación personal que ha tenido en la obtención de los resultados que aquí se presentan.

Al Profesor Antonio Paneque, que con gran paciencia consiguió iniciarme en las tareas investigadoras, mi sincero agradeamiento por su continuada ayuda a lo largo de todo el tiempo de mi formación, a la que él ha contribuido de modo muy directo.
Al Dr. Ángel Mª Relimpio, que al principio de mi camino en la investigación consiguió animarme en los primeros inevitables tropezos, le agradezco su interés y colaboración.

Mi agradecimiento a los Dres. Jacobo Cárdenas, Pedro J. Aparicio, Enrique Palacios y Joaquín Herrera y a mis compañeros Joaquín Rivas, Carlos Gómez-Moreno, Juan López Barre, Jesús Fernández Alonso, José Moreno, Mª José Pérez de León, Isabel Fernández y Amparo Jiménez por su eficaz ayuda. Mi sincera gratitud además a las Srtas. Mª José Pérez de León, Isabel Fernández e Isabel Sánchez por la confección de esta tesis y por la realización de las gráficas y fotografías.

Por último, quiero agradecer su apoyo económico y material a las siguientes instituciones: Universidad de Sevilla, Ministerio de Educación y Ciencia, Consejo Superior de Investigaciones Científicas, Junta de Energía Nuclear, Philips Research Laboratories y Fundación M. Aguilar.
INDICE

Abreviaturas ... 10

I. INTRODUCCION ... 11

II. MATERIALES Y METODOS .. 31
 1. CULTIVO DE CELULAS ... 32
 1.A. Material y medio de cultivo standard 32
 1.B. Variaciones del medio de cultivo standard 32
 2. ENZIMAS .. 35
 2.A. Preparación de extractos celulares 35
 2.B. Preparación de la nitrato reductasa 36
 2.C. Preparación de la nitrilo reductasa 36
 2.D. Ensayo de actividades enzimáticas 37

 3. TECNICAS EXPERIMENTALES Y METODOS ANALITICOS 39
 3.A. Centrifugación en gradiente de sacarosa 39
 3.B. Determinación de pesos moleculares por filtra-
 ción en gel ... 40
 3.C. Determinaciones espectrofotométricas 41
 3.D. Determinaciones espectrofluorimétricas 42
 3.E. Determinación de Mo y W radioactivos 42
 3.F. Determinación del crecimiento celular. 42
 3.G. Determinación de amoniaco 43
 3.H. Determinación de nitrato 43
3.1. Determinación de nitrito
3.2. Determinación de proteína
3.3. Determinación de pH

4. REACTIVOS
4.1. Procedencia de los productos químicos

III. RESULTADOS
1. EL SISTEMA REDUCTOR DE NITRATO DE ANOTOBACTER
 chroococcum
 1.1. Nitrato reductasa. Propiedades y purificación
 1.1.1. Cofactores y donadores de electrones para la nitrato reductasa
 1.1.2. Reducción enzimática de nitrato con metil-vio
genio reducido químicamente
 1.1.3. Peso molecular de la nitrato reductasa
 1.1.4. Efecto del tiempo en la reacción catalizada
 por la nitrato reductasa
 1.1.5. Inhibidores
 1.1.6. Efecto del cloruro en la actividad nitrato reductasa
 1.1.7. Determinación de la Km para el nitrato de la
 nitrato reductasa
 1.1.8. Purificación de la nitrato reductasa

43
43
43
44
44
45
46
46
47
47
49
53
57
57
63
63
1.B. Nitrato reductasa. Estudio de sus propiedades .. 69

1.B.a. Cofactores y donadores de electrones para la nitrato reductasa 69

1.B.b. Reducción enzimática de nitrato con NADH .. 71

1.B.c. Valores de las K_m para nitrato y NADH 74

1.B.d. Peso molecular de la nitrato reductasa 77

1.B.e. Inhibidores .. 77

1.B.f. Estequiometría de la oxidación de NADH, reducción de nitrato y formación de amoníaco 80

2. PAPEL DEL MOLIBDENO EN LA ASIMILACIÓN DEL NITRATO EN Azotobacter chroococcum 84

2.A. Incorporación de molibdeno radioactivo en la nitrato reductasa 84

2.B. Inhibición por tungsteno del crecimiento de Azotobacter chroococcum en medios con nitrato ... 86

2.C. Efecto inhibidor del tungsteno en relación con la fuente de nitrógeno 89

2.D. Efecto del tungsteno en la actividad de los enzimas del sistema asimilador de nitrato... 89

2.E. Incorporación del tungsteno en la nitrato reductasa 92

2.F. Competencia entre molibdeno y tungsteno por el mismo sitio en la nitrato reductasa 93
3. PAPEL DEL HIERRO EN LA ASIMILACIÓN DEL NITRATO EN Azotobacter chroococcum 96

3.A. Efecto del hierro en las actividades de los enzimas del sistema asimilador de nitrato .. 96

4. FORMAS INTERCONVERTIBLES, ACTIVA E INACTIVA, DE LOS ENZIMAS DEL SISTEMA REDUCTOR DE NITRATO DE Azotobacter chroococcum 99

4.A. Inactivación reversible de la nitrato reductasa .. 99

4.A.b. Caracterización del nitrato como agente inactivante 100

4.A.c. Metil-viológeno y cianato como protectores contra la inactivación 102

4.A.d. El cianato como agente reactivoante 102

4.B. Inactivación reversible de la NADH-nitrito reductasa 105

4.B.a. Inactivación de la NADH-nitrito reductasa por NADH y protección por nitrito 105

4.B.b. Efecto de la concentración de NAD(P)H en la inactivación 107

4.B.c. Reactivación por nitrito de la inactivación causada por NADH 107
4.B.d. Caracterización de los efectos de NAD(P)H y nitrato .. 111

4.C. Efecto de la anaerobiosis sobre la asimilación de nitrato y nitrilo 113

5. REGULACIÓN DE LA SINTESIS DE LOS ENZIMAS
DEL SISTEMA ASIMILADOR DEL NITRATO DE Azotobacter chroococcum 115

5.A. Inducción de la nitrato reductasa 115

5.B. Inducción de la nitrilo reductasa 115

6. DETERMINACIÓN ENZIMÁTICA DE NITRATO CON LA
NADH-NITRATO REDUCTASA DE ESPINACAS 119

6.A. Preparación del enzima 119

6.B. Estudios cinéticos de la reacción catalizada por la NADH-nitrato reductasa de espina-
cas .. 120

6.C. Estequilometría de la reducción de nitrato,
oxidación de NADH y formación de nitrilo .. 122

6.D. Condiciones standard para los análisis de
nitrato en muestras 125

6.E. Interferencias .. 127

IV. DISCUSIÓN .. 128

V. CONCLUSIONES ... 150

VI. BIBLIOGRAFÍA ... 155
<table>
<thead>
<tr>
<th>Abreviatura</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP</td>
<td>Difósfato de adenosina</td>
</tr>
<tr>
<td>ATP</td>
<td>Trifósfato de adenosina</td>
</tr>
<tr>
<td>BV</td>
<td>Bencil-viólógeno</td>
</tr>
<tr>
<td>BVH</td>
<td>Bencil-viólógeno reducido</td>
</tr>
<tr>
<td>DEAE-celulosa</td>
<td>Dietil-aminoetil-celulosa</td>
</tr>
<tr>
<td>FAD</td>
<td>Flavín-adenín-dinucleótido</td>
</tr>
<tr>
<td>FADH₂</td>
<td>Flavín-adenín-dinucleótido reducido</td>
</tr>
<tr>
<td>F MN</td>
<td>Flavín-mono nucleótido</td>
</tr>
<tr>
<td>F MNH₂</td>
<td>Flavín-mono nucleótido reducido</td>
</tr>
<tr>
<td>FN</td>
<td>Flavín-nucleótido</td>
</tr>
<tr>
<td>FNH₂</td>
<td>Flavín-nucleótido reducido</td>
</tr>
<tr>
<td>MV</td>
<td>Metil-viólógeno</td>
</tr>
<tr>
<td>MVH</td>
<td>Metil-viólógeno reducido</td>
</tr>
<tr>
<td>NAD⁺</td>
<td>Nicotinamida-adenín-dinucleótido</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamida-adenín-dinucleótido reducido</td>
</tr>
<tr>
<td>NADP⁺</td>
<td>Nicotinamida-adenín-dinucleotido-fosfato</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamida-adenín-dinucleótido-fosfato reducido</td>
</tr>
<tr>
<td>NO₃ Rasa</td>
<td>Nitrato reductasa</td>
</tr>
<tr>
<td>NO₂ Rasa</td>
<td>Nitrilo reductasa</td>
</tr>
<tr>
<td>p-HMB</td>
<td>p-hidroximercuribenzoato</td>
</tr>
<tr>
<td>PN</td>
<td>Piridín-nucleótido</td>
</tr>
<tr>
<td>PNH</td>
<td>Piridín-nucleótido reducido</td>
</tr>
<tr>
<td>Tris</td>
<td>Tri-hidroximetil-aminometano</td>
</tr>
</tbody>
</table>
1. INTRODUCCIÓN
La gran importancia biológica del metabolismo del nitrógeno inorgánico radica en el hecho de que la fuente de nitrógeno para todas las formas de vida existentes es, en último término, el nitrógeno inorgánico.

Nason (1962) ha expuesto la idea de que la evolución de los sistemas biológicos se ha resuelto según una relación nutricional determinada entre los organismos con respecto a la capacidad de utilización de las diferentes formas de nitrógeno. Así, prácticamente todas las plantas y muchos microorganismos, que son capaces de transformar los diferentes compuestos oxidados inorgánicos de nitrógeno en sus formas más reducidas, esto es, amoníaco y grupos amino, representarían la base de una pirámide ecológica típica. Dependientes de esta base, se encontrarían todas las demás formas de vida —tales como determinados microorganismos y virtualmente todos los animales, incluyendo al hombre— que cubren sus requerimientos de nitrógeno tomando exclusivamente como nitrógeno orgánico o amoniacaal, ya que son incapaces de transformar los compuestos más oxidados de nitrógeno inorgánico hasta este nivel.
El metabolismo del nitrógeno inorgánico en todas sus diversas facetas ha sido objeto de amplias revisiones (Nason y Takahashi, 1958; Nason, 1962; Takahashi et al., 1963). Aquí, sin embargo, sólo consideraremos el aspecto de la reducción biológica del nitrógeno nítrico como caso particular del amplio campo del metabolismo del nitrógeno inorgánico, ya que el tema de esta Tesis se centra sobre el punto concreto de la reducción del nitrato con fines asimilatorios en bacterias.

El nitrato, es por su gran abundancia —excepción hecha del nitrógeno atmosférico, que sólo puede ser utilizado por un número reducido de organismos— la forma oxida da de nitrógeno inorgánico que utilizan las plantas y algas verdes, así como otros microorganismos que poseen la facultad de reducirlo. Existen dos diferentes tipos de reducción de nitrato (Nason, 1962; Takahashi et al., 1963): a) reducción disimilatoria de nitrato o reducción respiratoria de nitrato y b) reducción asimilatoria de nitrato o asimilación de nitrato. En la reducción respiratoria de nitrato, que tiene lugar en diversos microorganismos bajo condiciones anaeróbicas o semianaeróbicas, el nitrato se utiliza como acceptor terminal de electrones de la cadena
respiratoria, sustituyendo al oxígeno en este papel; los distintos productos resultantes de su reducción (nitrito, nitrógeno molecular, amoníaco, óxido nítrico, óxido nitroso, etc.) no son utilizados por las células, y normalmente se excretan al medio. En la reducción asimilatoria de nitrato, que tiene lugar en muchos organismos aerobiocos, el nitrato se reduce hasta amoníaco, que es utilizado posteriormente para la biosíntesis de los constituyentes celulares nitrogenados, como son, fundamentalmente, las proteínas y los ácidos nucleícos.

El proceso de la reducción asimilatoria de nitrato en organismos fotosintéticos se encuentra en estos momentos en una fase muy avanzada de estudio -tanto a nivel celular como a nivel bioquímico- (Losada, 1972), así como, también se conocen bastantes aspectos de este proceso en hongos y levaduras que asimilan nitrato (Nason et al., 1954; Silver, 1957; Nicholas et al., 1960; Pichinoty y Hétenler, 1966; Pateman et al., 1967; Cook y Sorger, 1969; Garrett y Nason, 1969; Downey, 1971; Garrett, 1972; Rivas et al., 1973). En contraste con la asimilación de nitrato en el reino vegetal, poco se sabía hasta la fecha sobre el sistema reductor del nitrato en bacterias asimiladoras.
de nitrógeno nítrico (Nason, 1962; Takahashi et al., 1963; Hewitt y Nicholas, 1964), lo que explica el interés existente en aclarar el mecanismo del proceso en estos microorganismos. Esto ha motivado el estudio en la bacteria Azotobacter chroococcum -tanto a nivel celular como subcelular y enzimático- del sistema asimilatorio reductor del nitrato; los resultados obtenidos y la interpretación y discusión de los mismos constituyen el trabajo que aquí se presenta.

La reducción asimilatoria del nitrato a amoníaco en tejidos fotosintéticos ocurre en dos diferentes estudios, ninguno de los cuales requiere ATP ni compuestos de carbono (Losada, 1972). En primer lugar, el nitrato se reduce a nitrito en una reacción que implica la transferencia de dos electrones, catalizada por la nitratoreductasa. A continuación, el nitrito se reduce a amoníaco en una reacción donde se transfieren seis electrones, catalizada por la nitrito reductasa. De manera idéntica tiene lugar la asimilación de nitrato por hongos y levaduras.

En este trabajo, hemos mostrado que, en la bacteria A. chroococcum la reducción asimilatoria de nitrato
a amoníaco transcurre según un mecanismo análogo al anteriormente descrito, lo que supone la existencia de un modelo universal para todos los organismos que utilizan el nitrato con fines asimilatorios.

La nitrato reductasa de organismos fotosintéticos ha sido caracterizada exhaustivamente en los últimos años, habiendo sido clasificada como NADH-nitrato reductasa (Hewitt y Nicholas, 1964; Beevers y Hageman, 1969; Kessler, 1971; Losada, 1972). A excepción de la especificidad para los piridín nucleotidos, la NADH-nitrato reductasa de células verdes (Relimpio et al., 1971 a; Jetschmann et al., 1972; Moreno et al., 1972) parece ser muy similar a la NADPH-nitrato reductasa de levaduras y hongos asimiladores de nitrato (Silver, 1957; Pichinoty y Méthénier, 1966; Garrett y Nason, 1969; Downey, 1971; Rivas et al., 1973). La NAD(P)H-nitrato reductasa de plantas en sentido amplio es un complejo enzimático adaptativo de alto peso molecular con, al menos, dos diferentes actividades, las cuales participan secuencialmente en la transferencia de electrones desde el NAD(P)H al nitrato: la primera es una NAD(P)H dialforasa dependiente de FAD, que pue
de utilizar diferentes compuestos oxidados (tales como el citocromo c) como aceptores de electrones, y la segunda es la molibdoproteína nitrato reductasa terminal, también denominada FNH_2-nitrato reductasa por su capacidad para utilizar flavín nucleótidos (o viológenos) reducidos, como donadores de electrones. Ambas actividades se afectan de distinto modo por diferentes tratamientos e inhibidores selectivos; en general, la actividad diaforásica es muy sensible al calentamiento y a la acción de reactivos que se unen a los grupos -SH, mientras que la nitrato reductasa terminal puede ser inhibida por compuestos acomplejantes de metales (Zumft et al., 1970; Reilimpio et al., 1971 a; Vega et al., 1972).

Los datos acerca de la nitrato reductasa en bacterias que reducen nitrato con fines asimilatorios eran bastante exiguo y han sido recogidos por Nason (1962), Takahashi et al., (1963) y Hewitt y Nicholas (1964). Una nitrato reductasa soluble, obtenida de células de Escherichia coli estirpe B, que, presumiblemente, asimilaban nitrato, fue purificada por Nicholas y Nason (1955); el enzima era una metaloflavoproteína que aceptaba electrones
del NADH, con FAD como grupo prostético y con molibdeno como probable componente metálico. Taniguchi y Ohmachi (1960) aislaron de células de *Azotobacter vinelandii* crecidas en nitrato una NADH-nitrato reductasa que se encontraba asociada a partículas y conectada a un sistema fuertemente aeróbico. La actividad de esta preparación de NADH-nitrato reductasa se inhibía por el oxígeno y se estimulaba unas dos veces por la adición de FAD o FMN, aunque las flavinas no tenían efecto cuando el donador de electrones era el azul Ni- lo reducido. La actividad terminal era sensible a la azida y al clanuro, sugiriendo la existencia de algún metal pesado como constituyente del enzima. Excepto por su naturaleza particulada y el efecto inhibidor que sobre su actividad ejerce el oxígeno, la nitrato reductasa de *A. vinelandii* se asemeja bastante a la de hongos y plantas superiores, siendo aparentemente de tipo asimilatorio, ya que en su actuación no participan ninguno de los citocromos unidos a las partículas y asociados con la NADH-oxidasa.

En este trabajo se ha hecho un estudio de los donadores de electrones y cofactores para la nitrato reductasa de *A. chroococcum*, así como de los inhibidores de esta acti...
vidad, encontrándose sensibles diferencias con respecto a la NAD(P)H-nitrato reductasa de organismos fotosintéticos y hongos.

El enzima que cataliza el segundo paso de la reducción asimilatoria del nitrato, esto es la reducción del nitrato a amoníaco, en algas y plantas superiores se ha caracterizado en detalle durante los últimos años, habiéndose clasificado como ferredoxina-nitrato reductasa (Beavers y Hageman, 1969; Hewitt, 1970; Kassler, 1971; Losada, 1972). La nitrato redoxtransférase purificada hasta homogeneidad a partir de células de diferentes organismos fotosintéticos (Chlorella, hojas de espinaca y hojas de calabaza) contiene dos átomos de hierro en forma no hemínica por molécula de 63.000 daltons, y parece no ser una flavoproteína (Losada y Paneque, 1971; Cárdenas et al., 1972 a, b; Zumft, 1972). Por otra parte, el enzima aislado de los hongos asimiladores de nitrato Neurospora crassa (Nason et al., 1954; Nicholas et al., 1960) y Torulopsis nitratophilus (Rivas et al., 1973) ha sido caracterizado como una NAD(P)H-nitrato reductasa que requiere específicamente FAD y parece tener algunos componentes metálicos.
Como en el caso de la nitrato reductasa, pocos son los datos aportados hasta ahora acerca de las propiedades de la nitrato reductasa de bacterias asimiladoras de nitrato (Nason, 1962; Takahashi et al., 1963; Hewitt y Nicholas, 1964). Spencer et al. (1957) encontraron en extractos de *Azotobacter vinelandii* un sistema soluble que reducía nitrito a hidroxilamina utilizando piridín nucleótidos reducidos como donadores de electrones, y que requería la adición de flavín nucleótidos para alcanzar la actividad máxima. Estudios con inhibidores indicaban que este sistema tenía un componente metálico esencial para la actividad. El producto de la reducción del nitrito por los extractos se identificó como amoníaco, mientras que no pudo establecerse cuál era el producto resultante de la reducción de la hidroxilamina. En células de la estirpe Bn de *Escherichia coli* obtenidas de cultivos sin agitación y con nitrato como única fuente de nitrógeno se han localizado, por lo menos, tres nitrito reductasas que reducen el nitrito (y la hidroxilamina) a amoníaco (Lazzarinl y Atkinson, 1961), aunque sólo el enzima específico para el NADH parece ser responsable de la reducción fisiológica de nitrito (Kemp y Atkinson, 1966). Zarowny y Sanwall (1963) han ob-
servado también la existencia de una NADH-nitrito reductasa en extractos de células de E. coli K-12 crecidas con nitrato como fuente de nitrógeno. Prakash y Sadana (1972) han obtenido recientemente de Achromobacter fisheri cultivado en nitrato con bajas tensiones de oxígeno, una hemoproteína que catalizaba la reducción de nitrito (en hidroxilamina) a amoníaco; sin embargo, estos autores no llegaron a demostrar que el enzima desempeñase ninguna función biosintética.

En este trabajo se han estudiado también diversas propiedades de la nitrito reductasa asimilatoria de A. chroococcum. Los resultados obtenidos indican que este enzima es bastante semejante al correspondiente de hongos, diferiendo sensiblemente en algunos aspectos de la ferredoxina-nitrito reductasa de algas y plantas superiores.

La esencialidad del molibdeno como elemento traza de primordial importancia en la reducción del nitrógeno inorgánico se conoce desde hace más de 40 años. Bortels (1930) indicó ya la importancia de este metal en el proceso de la fijación del nitrógeno gaseoso, precisamente en la bacteria A. chroococcum, que es el organismo utilizado en
el presente trabajo.

La función bioquímica del molibdeno no se limita, sin embargo, a su papel en la fijación del nitrógeno molecular, sino que interviene también en la asimilación de nitrógeno nítrico. La primera prueba de que el molibdeno es esencial para la asimilación del nitrato se debe a Steinberg (1937), quien puso de manifiesto el requerimiento absoluto de este oligoelemento por *Aspergillus niger*, pero sólo cuando el hongo crece en medios con nitrato y no cuando utiliza amoníaco como fuente de nitrógeno. Desde entonces, muchos investigadores han demostrado que este metal es indispensable para un gran número de microorganismos y plantas (Hewitt, 1963; Nason y McElroy, 1963). En las algas clorófíceas *Chlorella* (Walker, 1953) y *Scenedesmus* (Arnon *et al.*, 1955; Ichloka y Arnon, 1955), la función del molibdeno se limita exclusivamente a la reducción del nitrato, ya que el metal deja de ser indispensable para el crecimiento celular cuando se utiliza amoníaco o urea como fuente de nitrógeno.

La inhibición competitiva y específica del tungsteno frente al molibdeno ha permitido profundizar más en
el conocimiento del papel del molibdeno en la asimilación del nitrógeno inorgánico. Higgins et al. (1956) encontraron que el tungsteno es inhibidor competitivo del molibdeno en *Aspergillus niger* cuando el nitrato es la única fuente de nitrógeno. Experimentos similares en *Azotobacter vinelandii* (Keeler y Varner, 1957; Takahashi y Nason, 1957) demostraron que el wolframio compite con el molibdeno tanto en la fijación de nitrógeno molecular como en la utilización del nitrato.

Estudios a nivel celular y enzimático, que incluyen la utilización de tungstato y el empleo de radiisótopos, han permitido concluir que en *Chlorella* (Aparicio et al., 1971; Cárdenas et al., 1971; Vega et al., 1971; Pancha et al., 1972) y en plantas superiores (Helmer et al., 1969; Wray y Filner, 1970; Nutton y Hewitt, 1971 a,b) el molibdeno es un componente esencial de la nitrato reductasa de estos organismos. También en *Neurospora* se tenían evidencias de la asociación del molibdeno con la actividad nitrato reductasa (Garrett y Nason, 1967; Garrett y Nason, 1969).
Sobre la nitrato reductasa de bacterias no existían experimentos concluyentes que demostraran la participación del molibdeno en su actividad. Los estudios con inhibidores han sugerido la participación de algún metal en la actividad del enzima de distintas especies, metal que en muchos casos se ha interpretado como molibdeno, quizás por establecer una similitud con la nitrato reductasa de hongos y organismos fotosintéticos. La escasez de resultados definitivos a este respecto nos ha llevado a la realización de experimentos que demuestran la intervención del molibdeno en la reducción enzimática de nitrato a nitrito, aclarando también la naturaleza del efecto Inhibidor del tungsteno en la asimilación del nitrato por la bacteria *A. chroococcum*.

Con respecto a la posible participación del hierro en los enzimas del sistema asimilador de nitrato en células fotosintéticas, se había sugerido su función como constituyente de la nitrito reductasa, aunque las evidencias de que se disponía hasta hace poco eran muy dudosas (Beavers y Hageman, 1969; Hewitt, 1970). Hucklesby et al. (1970) presumieron que el enzima de *Chlorella*, calabaza y espinaca debía contener hierro, basándose en el efecto que el cloruro y otros inhibidores de acción más específica sobre este me-
tal tenían en la actividad nitrito reductasa de estos organismos. El que las deficiencias de hierro en calabaza y Chlorella se tradujesen en una disminución de su capacidad para reducir el nitrito, indujo a Kessler y Czygan (1968) a considerar el posible contenido en hierro del enzima reductor de nitrito en estas especies. También en Neurospora, Nicholas et al. (1960) llegaron a proponer, aunque sin pruebas muy evidentes, que este metal era componente de la nitrito reductasa de este organismo. Hasta el momento, la participación del hierro en la funcionalidad de la nitrito reductasa de hongos y organismos fotosintéticos, sólo ha sido probada de manera clara y concluyente, tanto a nivel celular (Cárdenas et al., 1972 c) como a nivel enzimático (Aparicio et al., 1971), para el enzima de Chlorella.

En bacterias asimiladoras de nitrato, las pruebas que se tenían sobre la participación de metales, hierro entre ellos, en la nitrito reductasa, se limitaban a la interpretación del efecto de distintos inhibidores sobre la actividad enzimática (Nason et al., 1962; Prakash y Sadana, 1972), lo que dejaba el problema abierto a soluciones más concluyentes.
En _A. chroococcum_ hemos estudiado el papel del hierro en la asimilación de nitrato, concretando su esencialidad para el proceso de reducción del nitrato a amoníaco.

La existencia de formas interconvertibles de los enzimas del sistema reductor del nitrato es un hecho que merece la mayor atención. La mitad terminal del complejo enzimático nitrato reductasa, tanto en células fotosintéticas (_Jetschmann et al._, 1972; _Moreno et al._, 1972; _Maldonado et al._, 1973) como en organismos no fotosintéticos (_Pichinoty y Méténier_, 1966; _Rivas et al._, 1973) se presenta en dos formas _activa e inactiva_ que son interconvertibles. El paso de la forma activa a la inactiva requiere esencialmente la reducción del enzima, mientras que la reversión de este proceso (la conversión de la forma inactiva en activa) está sujeta a la reoxidación de la proteína (_Losada_, 1973). En la nitrato reductasa de _Chlorella_ y _Chlamydomonas_, la interconversión entre estas formas no ocurre sólo en preparaciones enzimáticas, sino que también se da _in vivo_ (_Losada_, 1970; _Losada et al._, 1970; _Herrera et al._, 1972; _Losada_, 1973), lo que señala el importante papel que este proceso de interconversión desempeña en la regulación fisiológica de la actividad de este enzima.
Durante la caracterización de la nitrato reductasa de *A. chroococcum* hemos podido comprobar la posibilidad de inactivar de modo reversible este enzima. Al estudio de la interconversión de las formas activa e inactiva de esta nitrato reductasa se ha prestado la mayor atención en este trabajo.

Aunque hasta el momento no existía ninguna comunicación acerca de la existencia de formas interconvertibles del enzima nitrilo reductasa de organismos eucariotas, se disponía de una observación aislada, pero muy interesante al respecto, en el enzima de *Escherichia coli* (Kemp y Atkinson, 1966) que podía sugerir su ocurrencia en bacterias. Profundizando en este punto, hemos podido demostrar en la nitrilo reductasa de *A. chroococcum* la interconversión entre las formas activa e inactiva del enzima.

Como ha sido discutido por Herrera (1972), la regulación de la síntesis de los enzimas del sistema reductor del nitrato en diferentes organismos ha sido objeto de estudio por diversos investigadores, habiéndose llegado en algunos casos a conclusiones contradictorias, sobre todo en lo que a plantas superiores se refiere. En *Chlorella* (Losada
et al., 1970; Losada, 1972) y Chlamydomonas (Herrera, 1972; Herrera et al., 1972), la síntesis de la nitrato reductasa y la nitrito reductasa se encuentra sometida a represión por el amoniaco. Norton y McMillan (1954) en Scopulariopsis brevicaulis encontraron un bloqueo por parte del amoniaco de la reducción de nitrato a nitrito; el nitrito, sin embargo, se asimilaba aún en presencia de amoniaco. En Aspergillus nidulans (Pateman et al., 1967) tanto la nitrato como la nitrito reductasa se inducen por el nitrato, teniendo el amoniaco una acción represora sobre ambos enzimas. De modo análogo sucede en Neurospora crassa (Cook y Sorger, 1969; Garrett, 1972). En Hansenula anomala (Silver, 1957; Pichinoty y Méténier, 1966) se ha visto que la nitrato reductasa parece tener carácter inducible, aunque tanto la nitrato reductasa como la nitrito reductasa de Torulopsis nitratophila (Rivas, 1973) son represibles por el amoniaco.

En bacterias asimiladoras de nitrato, las evidencias existentes, aunque no demasiado concluyentes, señalan la naturaleza inducible de los dos enzimas del sistema reductor de nitrato (Spencer et al., 1957; Taniguchi y Ohmachi, 1960).
En *A. chroococcum* hemos estudiado este aspecto de la regulación de la síntesis de nitrato reductasa y nitrito reductasa, habiendo aclarado este punto de manera concluyente.

Para el estudio de la asimilación de nitrógeno nítrico en microorganismos era esencial el poder disponer de un método preciso y muy sensible para la determinación de nitrato, que pudiera ser utilizado en el análisis de muestras de los cultivos y extractos celulares, por lo que ha sido necesario la puesta a punto de un método adecuado a estos propósitos.

Aunque ya se habían descrito numerosos métodos químicos para la determinación de nitrato, la mayoría de ellos no son muy satisfactorios por estar sometidos a interferencias o presentar dificultades en su empleo, como han discutido Reilimpio et al. (1972). Dado que la nitrato reductasa es un enzima altamente específico que reduce cuantitativamente el nitrato a nitrito puede emplearse como reactivo con propósitos analíticos. De acuerdo con esto se han descrito varios métodos, revisados por Reilimpio et al. (1972), que utilizan: 1) una preparación de nitrato re-
ductasa de determinadas estirpes de _E. coli_ (que carecen de nitrilo reductasa) con el empleo del sistema formato -azul de metileno-fórmico deshidrogenasa como donador de electrones; 2) células intactas de otros tipos de bacterias con un donador de electrones endógeno; y 3) bacterroides intactos de nódulos de soja con aporte exógeno de succinato como reductor. El nitrilo formado se determinaba en todos los casos colorimétricamente por la reacción de Griess-Ilosvay. Nosotros hemos simplificado y mejorado los procedimientos anteriores, y evitado sus limitaciones, utilizando una preparación parcialmente purificada de NADH-nitrato reductasa de hojas de espinaca, que no ha de estar necesariamente exenta de nitrilo reductasa.

Parte de este trabajo ha sido publicado previamente (Relimpio et al., 1972; Guerrero et al., 1973 a; Vega et al., 1973), habiendo sido también objeto de comunicaciones en congresos nacionales (Relimpio et al., 1971 b) e internacionales (Guerrero et al., 1973 b).
11. MATERIALES Y MÉTODOS
1. CULTIVO DE CELULAS

1.A. Material y medio de cultivo standard

El organismo utilizado en este trabajo es la bacteria flújadora de nitrógeno *Azotobacter chroococcum* A.T.C.C. 4412, procedente de la colección de cultivos tipo de la Universidad de Salamanca.

Las células se cultivaron en frascos erlenmeyer de 2 l de capacidad con 1 l de medio sintético que contiene, en mMoles por litro: manitol, 39; NO₃K, 8; SO₄Mg·7H₂O, 0,8; Cl₂Ca·2H₂O, 0,34; SO₄Fe·7H₂O, 0,19; ClNa, 3,4; MoO₄Na₂, 0,01; EDTA·Na₂, 0,02 y tampón fosfato potásico, pH 7,3, 10.

El crecimiento se llevó a cabo al aire y a la temperatura de 27° en un incubador New Brunswick G-25, que suministraba a los cultivos una agitación constante de 300 rpm.

1.B. Variaciones del medio de cultivo standard

En los casos en que la fuente de nitrógeno era distinta del nitrato, o bien se eliminó simplemente el NO₃K del
medio de cultivo, en cuyo caso las células utilizaban ex-
clusivamente el aire (esto es, 80% de gas nitrógeno) como
fuente de este elemento, o bien se sustituyó por amoniaco
(como $\text{SO}_4(\text{NH}_4)_2$) o nitrato amónico, manteniéndose en am-
bos casos la concentración de nitrógeno a 8 mM. Cuando se
empleó nitrito como fuente de nitrógeno, se tomó la pre-
caución de que la concentración de este ion (suministrado
como NO$_2$Na) no fuese mayor de 1 mM, ya que concentracio-
nenes más altas tenían efecto tóxico en el crecimiento de
este organismo. En las experiencias donde el medio de cul-
tivo contenía simultáneamente nitrito y amoniaco, las con-
centraciones finales fueron de 1 mM para el NO$_2$Na y de
0,5 mM para el $\text{SO}_4(\text{NH}_4)_2$, con objeto de que la concentra-
ción de nitrógeno procedente de ambas fuentes fuese la
misma.

Cuando se estudió el efecto del hierro en las ac-
tividad enzimáticas, o se omitió totalmente este metal
del medio de cultivo o se añadió, en la forma de sulfato
ferroso, a las concentraciones que se indican en cada ca-
s. Del mismo modo se operó cuando los metales en estudio
eran molibdeno y tungsteno, omitiéndose el molibdeno del
medio standard y añadiéndose el correspondiente metal como molibdato sódico o tungstato sódico. En estas experiencias, las células que se utilizaron como inóculo eran deficientes en hierro o molibdeno, lo que se conseguía por crecimiento previo en medios carentes del metal indicado.

En las experiencias donde se estudió el efecto de la anaerobiosis, las suspensiones bacterianas se colocaron en tubos de 250 ml de capacidad que se burbujearon con argón de alta pureza; los controles correspondientes en aerobiosis se agitaron similarmente pero sustituyendo el argón por aire.
2. ENZIMAS

2.A. Preparación de extractos celulares

Las células se recogieron, en fase exponencial de crecimiento por centrífugación a baja velocidad en una centrífuga Sorval RC2-B y se lavaron con tampón fosfato potásico 50 mM, pH 7,0. Para proceder a su rotura se mezclaron con el mismo tampón y perlas de vidrio de 0,1 mm de diámetro, en la proporción de 0,2 ml de tampón y 10 ml de perlas por cada gramo de peso húmedo de células, obteniéndose una pasta que se sometió a fuerte vibración durante 2 min a la temperatura de 2º en un homogenizador por vibración Bühler. Excepcionalmente, y sólo donde se indica, las células se rompieron por sonicación o en un mortero con alúmina. El material roto se extrajo con 10 ml de tampón fosfato potásico 50 mM, pH 7,0 por cada gramo de peso húmedo de células y se centrífugó durante 20 min a 40,000 x g. El sobrenadante de esta centrífugación constituyó el extracto crudo exento de células utilizado para determinación de actividades enzimáticas o para la preparación de los enzimas.
2.B. Preparación de la nitrato reductasa

El extracto crudo se aplicó a una columna conteniendo un lecho de DEAE-celulosa (200 mm de altura, 20 mm diámetro) que se había equilibrado previamente con tampón fosfato potásico 50 mM, pH 7.0, con objeto de adsorber la nitrato reductasa. Después de lavar la columna con el mismo tampón, el enzima se eluyó con tampón fosfato 50 mM, pH 7.0, suplementado con ClNa 200 mM. Finalmente se eliminaron las sales de la preparación enzimática filtrándola por una columna de Sephadex G-25. Todos los pasos indicados se realizaron a la temperatura de 4°C. Las preparaciones de nitrato reductasa obtenidas de esta forma fueron las utilizadas para el estudio de las propiedades del enzima.

2.C. Preparación de la nitrilo reductasa

Los extractos celulares presentaban una actividad NADH-oxidasa muy alta, por lo que se centrifugaron durante 2 horas a 120,000 x g en una centrifuga Spinco L2-50B a la temperatura de 4°C. El sobrenadante resultante, que estaba prácticamente exento de actividad oxidasa, se utilizó como preparación de nitrilo reductasa. Este enzima era muy ines
2. D. **Ensayo de actividades enzimáticas**

El ensayo standard de la actividad nitrito reductasa se llevó a cabo al aire en tubos de ensayo de 10 ml. La mezcla de reacción se incubó a 30° durante 2 min, y constaba en un volumen final de 1 ml: fosfato potásico, pH 7.0, 100 μmoles; NO₃-K, 10 μmoles; metil viológeno, 0.15 μmoles; S₂O₄Na₂, en 0.1 ml de CO₃HNa 95 mM, 0.8 mg, y una cantidad adecuada de preparación enzimática. La reacción se detuvo agitando fuertemente la mezcla de reacción en un aparato vibrador tipo Adams, hasta que el S₂O₄Na₂ se oxidó completamente, lo que se manifestaba por la desaparición del color azul característico del metil-viológeno reducido. El nitrito se estimó entonces añadiendo los reactivos adecuados (Lowe y Evans, 1964; Paneque et al., 1965). Las unidades de actividad enzimática se expresan como micromoles de nitrato formado por minuto.

Para el ensayo de la actividad nitrito reductasa se emplearon dos métodos diferentes. La actividad NADH-nitrito reductasa se midió siguiendo a 340 nm, la oxidación de NADH
dependiente de nitrilo; la reacción se llevó a cabo al aire y a temperatura ambiente. La mezcla de reacción contenía en un volumen final de 2 ml: tampón fosfato potásico, pH 7,0, 150 μmoles; NADH, 0,3 μmoles; NO₂Na, 2 μmoles, y una cantidad apropiada de preparación enzimática. Aunque la centrifugación a alta velocidad eliminaba prácticamente la actividad NADH-oxidasa presente en el extracto crudo, la actividad NADH-nitrilo reductasa se corrigió siempre con la velocidad de oxidación de NADH en ausencia de nitrilo.

La actividad metil viológeno reducido (MNVR)-nitrilo reductasa se midió por desaparición de nitrilo según el método de Ramírez et al., (1966), pero utilizando tampón fosfato potásico, pH 7,0 en lugar de tampón Tris-ClH. Una unidad de actividad corresponde a la reducción de 1 micromol de nitrilo (o la oxidación estequiométrica de 3 μmoles de NADH) por minuto.
3. TECNICAS EXPERIMENTALES Y METODOS ANALITICOS

3.A. Centrifugación en gradiente de sacarosa

Los gradientes se prepararon utilizando un mezclador diseñado por Buchler. Una alícuota de 0,2 ml del extracto a analizar se colocó en la parte superior de un gradiente lineal de sacarosa del 5 al 20% (p/v) de 3,4 ml de volumen, situado sobre 0,15 ml de sacarosa al 50% (p/v). La sacarosa estaba disuelta en tampón potásico 50 mM, pH 7,0.

La centrifugación se llevó a cabo a 24, a la velocidad y tiempo que se indican en cada caso, en una ultracentrifuga Beckman Spinco mod. L2-50B con rotor SW-56 Ti de receptáculos basculantes.

Se tomaron fracciones del gradiente a partir del fondo del tubo con un Densi-Flow de Buchler Instruments Inc.. Utilizando un colector automático de fracciones LKB se recogieron fracciones de 3 gotas. La proteína y actividades enzimáticas se determinaron en alícuotas de cada fracción.
Para la determinación de pesos moleculares por este procedimiento, las alícuotas colocadas en los tubos contenían, además de la muestra problema, proteínas marcadoras de peso molecular conocido (catalasa, 240.000; glucosa-6-fosfato deshidrogenasa, 110.000 y seroalbúmina 67.000). Los pesos moleculares problema se estimaron por la técnica de Martin y Ames (1961), determinándose el desplazamiento de las diferentes proteínas después de centrifugar durante 11 horas a 45.000 rev/min.

3.8. Determinación de pesos moleculares por filtración en gel

El peso molecular de la nitrato reductasa se estimó por filtración en gel como ha sido descrito por Andrews (1964), utilizando una columna de agarosa (Bio-Gel A-1,5 m, malla 100-200) de 400 mm de altura y 25 mm de diámetro o una columna de Sephadex G-100 (800 mm altura, 15 mm diámetro). Las proteínas se eluyeron con tampón fosfato 70 mM, pH 7,5, o con Tris-ClH, pH 8,0, respectivamente. El volumen de las preparaciones o soluciones de proteínas colocado en las columnas, fue de 2 ml para el caso
de la agarosa y de 1 ml para el Sephadex G-100. Con ayuda de un colector LKB se tomaron fracciones de 2 ml cada una, en alícuotas de las cuales se ensayaron actividades enzimáticas y proteína.

Las proteínas de peso molecular conocido utilizadas como marcadoras fueron: apoferritina, 480.000, y-globulina, 170.000; seroalbúmina, 67.000; ovoalbúmina, 45.000; α-quimotripsinógeno, 25.000 y citocromo c, 12.500.

3.C. Determinaciones espectrofotométricas

Se utilizaron indistintamente espectrofotómetros Beckman DK-2A o Pye Unicam SP 1800 para la estimación de piridina nucleotídidos así como para las demás medidas de absorbancia a longitudes de onda correspondientes al ultravioleta. Las medidas de compuestos coloreados se realizaron en espectrofotómetros Bausch & Lomb Spectronic 20 o Spectronic 700.

El coeficiente de extinción molar del NADH a 340 nm y para un paso de luz de 1 cm es de $6,2 \times 10^{-3}$
3.D. Determinaciones espectrofluorimétricas

Para la determinación de la Km para el NADH del enzima nitrito reductasa, se siguió la oxidación del NADH con un espectrofotofluorímetro Aminco-Bowman 4-8202, registrándose, a 450 nm, la fluorescencia producida al excitar con luz de 340 nm.

3.E. Determinación de Mo y W radioactivos

Las muestras utilizadas para estimar la radioactividad correspondiente a estos metales (Mo99 y W185) se colocaron en planchetas de aluminio y se evaporaron hasta sequedad, después de lo cual se determinó su radioactividad en un contador de flujo gaseoso continuo Nuclear Chicago mod. 4342.

3.F. Determinación del crecimiento celular

El crecimiento celular se estimó normalmente por medidas de la absorbancia a 660 nm en alícuotas de los cultivos.
3.G. Determinación de amoníaco

El amoníaco se midió por nesslerización, después de la difusión y absorción del gas en SO\textsubscript{4}H\textsubscript{2} 5 mM, lo que se llevó a cabo en unidades Conway (Conway, 1957).

3.H. Determinación de nitrato

El nitrato se estimó por el método enzimático (Relimpio et al., 1972) que se expone en la sección Resultados.

3.I. Determinación de nitrato

El nitrato se determinó por la reacción de diazotación de Gries-Ilosway, según la técnica propuesta por Snell y Snell (1949).

3.J. Determinación de proteína

Para la determinación de proteína se empleó el método de Lowry et al. (1951) utilizando ovoalbumina como patrón.

3.K. Determinación de pH

Se utilizó un medidor de pH Beckman modelo Spandomatic.
4. REACTIVOS

4.A. Procedencia de los productos químicos

Los siguientes compuestos: FAD, FMN, NAD, NADH, NADP, NADPH, Tris, p-HMB y DEAE-celulosa se adquirieron en SIGMA, San Luis, USA. BV y MV, así como las proteínas patrones utilizadas como marcadores, procedían de MANN, Nueva York, USA y de SERVA, Heidelberg, Alemania. La azida, el clorato, el cloruro y el carbamilo fosfato fueron suministrados por MERCK, Darmstadt, Alemania. CALBIOCHEM, Los Angeles, USA fue el proveedor del gel de agarosa y FARMACIA, Upsala, Suecia, de los diferentes tipos de Sephadex empleados. El resto de los productos utilizados se adquirieron a las firmas SIGMA, MERCK, RIEDEL y FISCHER, siendo todos ellos de grado analítico.

El Mo99 (en forma de molibdato amónico) y el W185 (como tungstato sódico) fueron suministrados por la J.E.N., Madrid y procedían de AMERSHAM, Inglaterra.

El gas argon, de alta pureza, provenía de la S.E.O.
III. RESULTADOS
1. EL SISTEMA REDUCTOR DE NITRATO DE *Azotobacter chroococcum*

La reducción —con fines asimilatorios— del nitrato a amoníaco en la bacteria *Azotobacter chroococcum* tiene lugar en dos estadios sucesivos, cada uno de los cuales se encuentra catalizado por un enzima específico.

En primer lugar, el nitrato se reduce a nitrilo (cambiando el nitrógeno de valencia +5 a +3) en una reacción que implica la transferencia de dos electrones y está catalizada por la nitrato reductasa. A continuación, el nitrilo se reduce hasta amoníaco (cambiando el nitrógeno de valencia +3 a -3) en una reacción donde intervienen seis electrones y que está catalizada por la NADH-nitrilo reductasa. El proceso, en conjunto, puede representarse esquemáticamente así:

\[
\begin{align*}
\text{NO}_3^- & \xrightarrow{2e^-} \text{NO}_2^- & \xrightarrow{6e^-} \text{NH}_3 \\
\text{NO}_3\text{Rasa} & \text{} & \text{NADH-NO}_2\text{Rasa}
\end{align*}
\]

1.1. Nitrato reductasa. Propiedades y purificación

La reacción de reducción de nitrato a nitrilo en *Azotobacter chroococcum* se encuentra catalizada por la molibdoproteína nitrato reductasa.
1. A. a. Cofactores y donadores de electrones para la nitrato reductasa

Los resultados que se presentan en la Tabla 1 de muestran que el enzima nitrato reductasa de Azotobacter chroococcum (parcialmente purificado, a partir de extractos celulares preparados rompiendo las células bien en sonicador, en mortero con alúmina o en un homogenizador por vibración) no podía utilizar ni NADH ni NADPH como donadores de electrones incluso en la presencia de flavín-nucleótidos como transportadores de electrones. Tanto el metil-viológeno como el bencil-viológeno -mantenidos en estado reducido con hidrosulfito- funcionaron eficientemente como donadores de electrones para la reducción enzimática del nitrato a nitrato, mientras que los flavín-nucleótidos reducidos químicamente con el mismo reductor resultaron ser prácticamente inefectivos cuando se ensayaron con el mismo propósito.

1. A. b. Reducción enzimática de nitrato con metil-viológeno reducido químicamente

Para excluir la posibilidad de la existencia de una reducción de nitrato de tipo químico, esto es sin interven -
TABLA 1

DONADORES DE ELECTRONES Y COFACTORES PARA LA NITRATO REDUCTASA DE *Azotobacter chroococcum*

<table>
<thead>
<tr>
<th>Donadores de electrones y cofactores</th>
<th>NO$_2^-$ formado (nmoles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADH</td>
<td>0</td>
</tr>
<tr>
<td>NADPH</td>
<td>1</td>
</tr>
<tr>
<td>NAD(P)H + FAD o FMN</td>
<td>1</td>
</tr>
<tr>
<td>FADH$_2$</td>
<td>3,2</td>
</tr>
<tr>
<td>FMNH$_2$</td>
<td>6</td>
</tr>
<tr>
<td>BVH</td>
<td>28,2</td>
</tr>
<tr>
<td>MVH</td>
<td>35,2</td>
</tr>
<tr>
<td>Ninguno</td>
<td>3,2</td>
</tr>
</tbody>
</table>

En los experimentos con piridín-nucleótidos reducidos, la mezcla de reacción contenía, en un volumen final de 1 ml, tampón fosfato potásico, pH 7,0, 100 μmoles; NAD(P)H, 0.3 μmoles; FAD o FMN, 0.02 μmoles y NO$_3$K, 10 μmoles. En los experimentos en los que se utilizaron flavín-nucleótidos y viológenos (MV o BV) reducidos con hidrosulfito como donadores de electrones, las condiciones fueron las mismas que las del ensayo standard de actividad nitrato reductasa. Nitrato reductasa, 0,2 mg.
ción de la nitrato reductasa, se procedió a caracterizar esta reacción, utilizando metil-virológeno e hidrosulfito como sistema donador de electrones (Tabla II). En ausencia del reductor, transportador de electrones, nitrato, o el enzima, no hubo reducción de nitrato. De modo análogo, tampoco trans currió la reacción cuando se hirvió la nitrato reductasa durante 5 minutos.

Cuando se estudió la relación entre el nitrilo formado y la cantidad de enzima añadido a la mezcla de reacción se observó que existía una perfecta proporcionalidad entre estos dos parámetros (Fig. 1).

El efecto de la concentración de metil-virológeno en la actividad del enzima puede verse en la Fig. 2, en una representación del tipo Lineweaver-Burk. A partir de los datos que se presentan, se calculó una constante de Michaelis para el metil-virológeno reducido de 18 μM.

1.A.c. Peso molecular de la nitrato reductasa

El peso molecular de la nitrato reductasa se estimó utilizando tres criterios diferentes: filtración por Sepha -
TABLA II

REDUCCION DE NITRATO POR LA NITRATO REDUCTASA DE *Azotobacter chroococcum* CON METIL-VIOLOGENO REDUCIDO QUIMICAMENTE COMO DONADOR DE ELECTRONES

<table>
<thead>
<tr>
<th>Sistema</th>
<th>NO$_2^-$ formado (nmoles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completo</td>
<td>35,2</td>
</tr>
<tr>
<td>Menos S$_2$O$_4^2^-$</td>
<td>0</td>
</tr>
<tr>
<td>Menos MV</td>
<td>3,2</td>
</tr>
<tr>
<td>Menos NO$_3^-$</td>
<td>4,2</td>
</tr>
<tr>
<td>Menos nitrato reductasa</td>
<td>0</td>
</tr>
<tr>
<td>Completo, nitrato reductasa calentada (5 min a 100°)</td>
<td>0</td>
</tr>
</tbody>
</table>

Las condiciones experimentales fueron las mismas que las del ensayo standard de actividad nitrato reductasa. Nitrato reductasa, 0,2 mg.
Fig. 1. Actividad de la nitrato reductasa de Azotobacter chroococcum en función de la concentración de proteína. Las condiciones experimentales fueron las del ensayo standard de actividad nitrato reductasa.
Fig. 2. Efecto de la concentración de metil-viológeno reducido en la actividad de la nitrato reductasa de Azotobacter chroococcum. Las condiciones experimentales fueron las del ensayo standard de actividad nitrato reductasa, excepto que el metil-viológeno se añadió según se indica. Nitrato reductasa, 0,8 mg.
dex G-100, filtración por agarosa y centrifugación en gradi-
ente de sacarosa, utilizándose en todos los casos, como
referencia, proteínas marcadoras de peso molecular conoci-
do. De la filtración en Sephadex G-100 se dedujo un peso
molecular de 100.000 daltons. Como este orden de peso mole-
cular se encuentra en el límite de resolución del tipo de
gel utilizado, se procedió a una nueva determinación utili-
zando una columna de agarosa Bio-Gel (Fig. 3) donde se con-
firmó el valor previamente obtenido. Finalmente, por cen-
trifugación en gradiente de sacarosa (Fig. 4) se estimó un
valor idéntico, quedando el peso molecular definitivamente
establecido en 100.000 daltons.

1.A.d. Efecto del tiempo en la reacción catalizada por la
nitrato reductasa

En la Fig. 5 se muestra que la formación de nitri-
to es proporcional al tiempo de reacción sólo durante los
dos o tres primeros minutos del ensayo enzimático; pasado
este tiempo ocurre una sorprendente y rápida disminución de
la velocidad de la reacción. Este fenómeno es consecuencia
de la inactivación reversible de la nitrato reductasa bajo
las condiciones reductoras del ensayo, como podrá verse más
adelante.
Fig. 3. Estimación del peso molecular de la nitrato reductasa de Azotobacter chroococcum por filtración en una columna de agarosa. Las condiciones experimentales se encuentran detalladas en Materiales y Métodos.
Fig. 4. Diagrama de sedimentación de la nitrato reductasa de Azotobacter chroococum por centrifugación en gradiente de densidad de sacarosa. La fracción 1 corresponde al fondo del gradiente. Preparación enzimática, 0,6 mg. Las condiciones experimentales se detallan en Materiales y Métodos.
Fig. 5. Estudio cinético de la actividad de la nitrato reductasa de Azotobacter chroococcum. La mezcla de reacción contenía en un volumen final de 12 ml, tampón fosfato potásico, pH 7,0, 1,2 mmoles; nitrato potásico, 120 μmoles; metil-viológeno, 1,8 μmoles; hidrosulfito sódico, 9,6 mg en 1,2 ml de bicarbonato sódico 95 mM; nitrato reductasa, 2 mg. A los tiempos que se indican se tomaron alícuotas de 1 ml, en las cuales se analizó el nitrito como se describe en Materiales y Métodos.
1.A.e. Inhibidores

En la Tabla III se expone el efecto de diferentes inhibidores clásicos de la nitrato reductasa sobre el enzima de Azotobacter chroococcum. Puede observarse que el p-hidroximercuribenzoato a concentraciones de 0,01-0,1 mM inhibe casi completamente la actividad nitrato reductasa. El clanuro a concentración 1 mM se comporta también como un potente inhibidor. El clanato, la azida y el carbamilo fosfato son excepciones a la regla general, ya que no presentan efecto inhibidor sobre este enzima; de hecho, algunos de ellos: clanato y azida, actúan como reactivadores o protectores de la actividad nitrato reductasa.

1.A.f. Efecto del clanato en la actividad nitrato reductasa

Además de no actuar como inhibidor de la actividad nitrato reductasa de Azotobacter chroococcum, como se indica en el apartado anterior, el clanato presenta un efecto activador que es máximo a la concentración de 1 mM como se desprende de los datos representados en la Fig. 6.

La Fig. 7 muestra la cinética de la actividad nitrato reductasa frente al tiempo de reacción cuando el enzima
TABLA III

EFFECTO DE DIFERENTES INHIBIDORES EN LA ACTIVIDAD NÍTRATO REDUCTASA DE Azotobacter chroococcum

<table>
<thead>
<tr>
<th>Inhibidor</th>
<th>Concentración (M)</th>
<th>Inhibición (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ninguno</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>pHMB</td>
<td>10^{-5}</td>
<td>82</td>
</tr>
<tr>
<td>pHMB</td>
<td>10^{-4}</td>
<td>90.6</td>
</tr>
<tr>
<td>pHMB</td>
<td>10^{-3}</td>
<td>92.7</td>
</tr>
<tr>
<td>CNK</td>
<td>10^{-5}</td>
<td>16.7</td>
</tr>
<tr>
<td>CNK</td>
<td>10^{-4}</td>
<td>69.3</td>
</tr>
<tr>
<td>CNK</td>
<td>10^{-3}</td>
<td>90.6</td>
</tr>
<tr>
<td>Carbamilo-fosfato</td>
<td>10^{-3}</td>
<td>0</td>
</tr>
<tr>
<td>N_3Na</td>
<td>10^{-3}</td>
<td>0</td>
</tr>
<tr>
<td>CNOK</td>
<td>10^{-3}</td>
<td>0</td>
</tr>
</tbody>
</table>

Las condiciones experimentales fueron las mismas que las del ensayo standar de actividad nítrato reductasa, excepto que se añadieron los diferentes inhibidores a las concentraciones finales que se indican. Nítrato reductasa, 0,2 mg.
Fig. 6. Efecto de la concentración de cianato en la actividad de la nitrato reductasa de *Azotobacter chroococcum*. Las condiciones experimentales fueron las del ensayo standard de la actividad nitrato reductasa, excepto que se añadió cianato potásico según se indica y que el tiempo de reacción fue de 10 minutos. Nitrato reductasa, 0,2 mg.
Fig. 7. Efecto del cianato en la cinética de actividad de la nitrato reductasa de Azotobacter chroococcum. Las condiciones experimentales fueron las mismas que las descritas para la Fig. 5, excepto que al tiempo cero o al que se indica por la flecha se añadió cianato potásico.
se ensayó tanto en ausencia como en presencia de cloranato. De acuerdo con los resultados que anteriormente se presentaron en la Fig. 5, la velocidad de la reacción disminuye de manera drástica pasados dos minutos en el caso de que el cloranato estuviera ausente de la mezcla de reacción. Sin embargo, si el cloranato a concentración 1 mM se encuentra presente desde el principio de la reacción, la velocidad original se mantiene constante durante al menos 30 minutos. El cloranato no sólo evita la disminución de la velocidad que tiene lugar durante el ensayo, sino que es capaz de reactivar de modo instantáneo la reacción a su velocidad máxima, si se añade una vez que la inactivación ya ha tenido lugar.

Con objeto de caracterizar este interesantísimo efecto del cloranato en la actividad nitrato reductasa, se llevaron a cabo los experimentos que se sumarizan en la Tabla IV. Puede verse que el cloranato estimula la actividad enzimática del orden de cinco veces y que por otra parte, el sistema presenta sus requerimientos normales de sustrato, cofactor y enzima ya descritos previamente en la Tabla II, excluyéndose de esta manera la posibilidad de cualquier artefacto.
TABLA IV

REDUCCIÓN DE NITRATO EN PRESENCIA DE CIANATO POR LA NITRATO REDUCTASA DE Azotobacter chroococcum CON METIL-VIOLGENO REDUCIDO QUÍMICAMENTE

<table>
<thead>
<tr>
<th>Sistema</th>
<th>NO$_2^-$ formado (nmoles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completo</td>
<td>760</td>
</tr>
<tr>
<td>Menos CNO$^-$</td>
<td>150</td>
</tr>
<tr>
<td>Menos S$_2$O$_4^{2-}$</td>
<td>0</td>
</tr>
<tr>
<td>Menos MV</td>
<td>140</td>
</tr>
<tr>
<td>Menos NO$_3^-$</td>
<td>3</td>
</tr>
<tr>
<td>Menos nitrato reductasa</td>
<td></td>
</tr>
<tr>
<td>Completo, nitrato reductasa calentada (5 min a 100°)</td>
<td>0</td>
</tr>
</tbody>
</table>

Las condiciones experimentales fueron las mismas que las de la Tabla II, excepto que la mezcla de reacción contenía cianato potásico a concentración final 1 mM y que el tiempo de reacción fue de 10 minutos. Nitrato reductasa, 0,37 mg.
1. A. g. Determinación de la K_m para el nitrato de la nitrato reducotasa

Al estudiar el efecto de la concentración de nitrato en la actividad nitrato reductasa, pudo observarse que los resultados obtenidos no se ajustaban a los correspondientes a una cinética enzimática típica.

Al representar los inversos de concentración de substrato frente a los inversos de velocidad (Fig. 8), la relación entre estos dos parámetros no estaba marcada por una simple línea recta, como cabía esperar para el caso de una cinética normal de Michaelis-Menten, sino que evidentemente era de tipo más complejo. En la misma figura puede verse como en presencia de clorato, a concentración 1 mM, el comportamiento cinético del enzima se hace de tipo simple, habiéndose calculado en estas condiciones, una constante de Michaelis (K_m) para el nitrato de 0,25 mM.

1. A. h. Purificación de la nitrato reducotasa

Ante la necesidad de poder separar la nitrato reductasa de la mayor parte de las proteínas que la acompañan en
Fig. 8. Efecto de la concentración de nitrato, en ausencia y presencia de cianato, en la actividad de la nitrito reductasa de Azotobacter chroococcum. Las condiciones experimentales fueron las del ensayo standard de la actividad nitrito reductasa, excepto que el nitrato potásico se añadió según se indica y que, donde se especifica, se incluyó cianato potásico en la mezcla de reacción. Nitrito reductasa, 0,25 mg.
las preparaciones, con el objeto fundamental de hacer posibles los experimentos con metales radioactivos que se presentan en el siguiente apartado, se puso a punto un procedimiento de purificación que incluía tres tratamientos principales: cromatografía en DEAE-celulosa, precipitación con sulfato amónico y cromatografía en agarosa. El factor de purificación finalmente obtenido no fue todo lo alto que se esperaba de estas excelentes técnicas de separación de proteínas, ya que la pérdida de actividad nitrato reductasa era muy considerable a lo largo de estos u otros diferentes tratamientos.

Cromatografía en DEAE-celulosa. El extracto crudo libre de células (100 a 150 ml de volumen) se aplicó a una columna conteniendo un lecho de DEAE-celulosa (600 mm altura, 26 mm diámetro) previamente equilibrado con tampón fosfato potásico 50 mM, pH 7,0, adsorbiéndose en ella la nitrato reductasa. La elución del enzima se efectuó haciendo pasar, a través de la columna, 800 ml de un gradiente continuo -entre 0 y 0,3 M- de cloruro sódico en el mismo tampón de equilibrado, a una velocidad de flujo de 50-60 ml/h, recogiendo fracciones de 5 ml de volumen con un colector automático LKB. La separación obtenida por este procedimiento se recoge
en la Fig. 9, donde se representan el contenido en proteína y la actividad de las diferentes fracciones.

Precipitación con sulfato amónico. Las fracciones procedentes del tratamiento anterior que presentaban alta actividad nitrato reductasa se reunieron y se sometieron a una precipitación con sulfato amónico hasta el 60% de saturación en esta sal, añadiendo lentamente el correspondiente volumen de una solución saturada de $\text{SO}_4(\text{NH}_4)_2$ cuyo pH se había fijado en 7,15 con hidróxido amónico. Después de 15 min a 0° con agitación ocasional, se centrifugó durante 15 min a 27,000 \times g, descartándose el sobrenadante.

Cromatografía en agarosa. El precipitado obtenido anteriormente se redissolvió en 2 ml de tampón fosfato potásico 50 mM, pH 7,0, a los que se añadieron 40 mg de sacarosa para su aplicación en la columna cromatográfica. La cromatografía se realizó en una columna conteniendo Agarosa Bio-Gel A-1,5 m, malla 100-200 (400 mm altura, 25 mm diámetro), equilibrada con tampón fosfato potásico 50 mM, pH 7,0. Se recogieron fracciones de 2 ml con ayuda de un colector LKB. En la Fig. 10 se representa el contenido en proteína y ac-
Fig. 9. Cromatografía de intercambio iónico en DEAE-celu-
losa de un extracto celular de Azotobacter chroococcum.
Las condiciones experimentales se detallan en el texto.
Fig. 10. Diagrama de elución de la nitrato redutasa de Azotobacter chroococcum en una cromatografía de filtración en gel de agarosa. Las condiciones experimentales se encuentran detalladas en el texto.
tividad nitrato reductasa de las fracciones resultantes de este tratamiento de purificación.

Todas las operaciones descritas se llevaron a cabo en cámara fría, a la temperatura de 4°.

1.B. Nitrilo reductasa. Estudio de sus propiedades

La reacción de reducción del nitrilo hasta amoníaco en *Azotobacter chroococcum* se encuentra catalizada por la ferroproteína, dependiente de FAD, NADH-nitrilo reductasa.

1.B.a. Cofactores y donadores de electrones para la nitrilo reductasa

Los resultados que se presentan en la Tabla V muestran que el NADH es un donador de electrones muy efectivo para la reducción del nitrilo catalizada por la nitrilo reductasa de *Azotobacter chroococcum*. La reacción se estimula de manera específica por la adición de FAD, no teniendo efecto alguno sobre ella el FHN. El NADPH resultó ser relativamente inefectivo como donador de electrones si se le compara con el NADH, no produciéndose ningún estímulo en este caso al
<table>
<thead>
<tr>
<th>Donadores de electrones y cofactores</th>
<th>NAD(P)H oxidado o nitrato reducido (nmoles por min por mg proteína)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADH</td>
<td>357</td>
</tr>
<tr>
<td>NADH, FAD</td>
<td>705</td>
</tr>
<tr>
<td>NADPH</td>
<td>66</td>
</tr>
<tr>
<td>NADPH, FAD</td>
<td>66</td>
</tr>
<tr>
<td>(S_2O_4^{2-}), MV</td>
<td>192</td>
</tr>
<tr>
<td>(S_2O_4^{2-}), BV</td>
<td>120</td>
</tr>
<tr>
<td>(S_2O_4^{2-}), FAD</td>
<td>124</td>
</tr>
<tr>
<td>(S_2O_4^{2-}), FMN</td>
<td>120</td>
</tr>
<tr>
<td>(S_2O_4^{2-})</td>
<td>124</td>
</tr>
<tr>
<td>Ninguno</td>
<td>0</td>
</tr>
</tbody>
</table>

En los experimentos con piridín-nucleotidos reducidos como donadores de electrones, la mezcla de reacción contenía, en un volumen final de 2 ml: tampón fosfato potásico, pH 7,0, 150 μmoles; preparación de nitrato reductasa, 0,4 mg; nitrato sódico, 2 μmoles; NAD(P)H, 0,3 μmoles, y, donde se indica, FAD, 5 nmoles. La oxidación de NAD(P)H se siguió por el cambio en la absorbancia a 340 nm. Las demás condiciones experimentales fueron las mismas que en el ensayo standard de la actividad NADH-nitrato reductasa.

En los experimentos con hidrosulfito como reductor, la mezcla de reacción contenía, en un volumen final de 2 ml: tampón fosfato potásico, pH 7,0, 150 μmoles; preparación de nitrato reductasa, 2 mg; hidrosulfito sódico, 7,5 mg en 0,3 ml de una solución al 2,5% de bicarbonato sódico; nitrato sódico, 4 μmoles, y, donde se indica, metil o bencil-violágeno, 1,5 μmoles; FAD o FMN, 1,5 μmoles. La reacción se siguió coloímidricamente por desaparición de nitrato. Las demás condiciones experimentales fueron las mismas que las del ensayo standard de la actividad MV-nitrato reductasa.
añadir el FAD.

El agente reductor hidrosulfito funcionó también como donador de electrones para la reducción enzimática del nitrato. La reacción se estimulaba unas dos veces al añadir metil-viológeno como transportador de electrones artificial, efecto que no se presentaba por la adición de bencil-viológeno ni de flavín-nucleótidos (FMN o FAD).

En la Fig. 11 se muestra el efecto activante de distintas concentraciones de FAD en la reacción catalizada por la nitrato reductasa, cuando el donador de electrones era el NADH. Puede verse que 1 μM resulta suficiente para doblar la velocidad de la reacción, no observándose estimulación más alta al aumentar la concentración de FAD. Idénticos resultados se obtuvieron cuando el efecto del FAD se ensayó con una preparación que había sido dializada previamente.

1.8.b. Reducción enzimática de nitrato con NADH.

La caracterización de la reacción catalizada por la nitrato reductasa utilizando NADH como donador de electrones, se expone en la Tabla VI. Puede apreciarse que la oxidación
Fig. 11. Efecto de la concentración de FAD en la actividad de la nitrito reductasa de Azotobacter chroococcum. Las condiciones experimentales fueron las mismas del ensayo standard de la actividad NADH-nitrito reductasa, excepto que además se añadió FAD a las concentraciones que se indican. Preparación de nitrito reductasa, 0,2 mg.
TABLA VI

REDUCCIÓN DE NITRITO POR LA NITRITO REDUCTASA DE Azotobacter chroococcum CON NADH COMO DONADOR DE ELECTRONES

<table>
<thead>
<tr>
<th>Sistema</th>
<th>NADH oxidado (nmoles/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completo</td>
<td>95</td>
</tr>
<tr>
<td>Menos NADH</td>
<td>0</td>
</tr>
<tr>
<td>Menos NO₂⁻</td>
<td>8</td>
</tr>
<tr>
<td>Menos nitrito reductasa</td>
<td>0</td>
</tr>
<tr>
<td>Completo, nitrito reductasa calentada (5 min a 100°)</td>
<td>0</td>
</tr>
</tbody>
</table>

Las condiciones experimentales fueron las mismas descritas para el ensayo de la actividad NADH-nitrito reductasa. Preparación de nitrito reductasa, 0,6 mg.
de NADH era dependiente de la presencia de nitrato y que la reacción no tenía lugar cuando la preparación enzimática se omitió de la mezcla de reacción o se hirvió durante 5 minutos.

En ausencia de nitrato, la adición de hidroxilamina o sulfito, a concentración final de 1 mM, a la mezcla de reacción, no provocó ninguna oxidación de NAD(P)H, incluso cuando esto mismo se ensayó en presencia de FAD, excluyendo de esta manera la posibilidad de que estos compuestos sean verdaderos sustratos de la nitrato reductasa.

1.8.c. Valores de las Km para el nitrato y el NADH

En la Fig. 12 y en una representación del tipo Lineweaver-Burk puede verse el efecto de la concentración de nitrato en la actividad NADH-nitrato reductasa, calculándose de esos datos una constante de Michaelis para el nitrato de 5.5 μM.

Empleando el mismo tipo de representación, se presenta en la Fig. 13 el efecto de la concentración de NADH en la actividad del enzima, siendo en este caso de 15 μM el valor estimado de la Km para el NADH.
Fig. 12. Efecto de la concentración de nitrito en la actividad de la nitrito reductasa de Azotobacter chroococcum. Las condiciones experimentales fueron las mismas que las del ensayo standard de la actividad NADH-nitrito reductasa, excepto que el nitrito sódico se añadió según se indica. Preparación de nitrito reductasa, 0,6 mg.
Fig. 13. Efecto de la concentración de NADH en la actividad de la nitrito reductasa de *Azotobacter chroococcum*. Las condiciones experimentales fueron las mismas del ensayo standar de la actividad NADH-nitrito reductasa, excepto que el NADH se añadió según se indica. La oxidación del NADH se siguió registrando el cambio de la fluorescencia a 450 nm. Preparación de nitrito reductasa, 0,2 mg.
1.B.d. Peso molecular de la nitrito reductasa

El peso molecular de la NADH-nitrito reductasa se determinó por centrífugación en gradiente de densidad de sacarosa, tal como se describe en la sección Materiales y Métodos, determinándose para el mismo un valor de 67.000 daltons (Fig. 14).

Debido a la marcada inestabilidad del enzima no se obtuvieron resultados positivos cuando se intentó estimar el peso molecular por filtración en geles de Sephadex o Agarosa.

1.B.e. Inhibidores

La Tabla VII muestra el efecto de varios compuestos en la reducción enzimática de nitrito. Puede observarse que tanto el p-hidroximercuribenzoato como el cloruro se comportan como inhibidores muy potentes de la actividad NADH-nitrito reductasa obteniéndose una inhibición prácticamente total a concentraciones de inhibidor de 0,1 mM. Sin embargo, no se observó ningún efecto inhibidor cuando se ensayaron azida, cloruro o carbamilo fosfato.
Fig. 14. Diagrama de sedimentación de la nitrito reductasa de Azotobacter chroococcum por centrifugación en gradiente de densidad de sacarosa. Las condiciones experimentales fueron las mismas que las de la Fig. 4.
<table>
<thead>
<tr>
<th>Inhibidor</th>
<th>Concentración (M)</th>
<th>Inhibición (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ninguno</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>pHMDB</td>
<td>10^{-5}</td>
<td>42</td>
</tr>
<tr>
<td>pHMDB</td>
<td>10^{-4}</td>
<td>100</td>
</tr>
<tr>
<td>CNK</td>
<td>10^{-5}</td>
<td>40</td>
</tr>
<tr>
<td>CNK</td>
<td>10^{-4}</td>
<td>93</td>
</tr>
<tr>
<td>N_3Na</td>
<td>10^{-3}</td>
<td>0</td>
</tr>
<tr>
<td>CNOK</td>
<td>10^{-3}</td>
<td>0</td>
</tr>
<tr>
<td>Carbamil fosfato</td>
<td>10^{-3}</td>
<td>0</td>
</tr>
</tbody>
</table>

Las condiciones experimentales fueron las mismas que las del ensayo standard de la actividad NADH-nitrito reductasa, excepto que se añadieron los diferentes inhibidores a las concentraciones finales que se indican. Preparación de nitrito reductasa, 1,6 mg.
La inhibición producida por el cloruro resultó ser de tipo competitivo con respecto al nitrilo (Fig. 15), calculándose un valor para la KI de 32 nM.

1.8.1. Estequiometría de la oxidación de NADH, reducción de nitrilo y formación de amoniaco

Los resultados que se presentan en la Tabla VIII demuestran que la reducción de nitrilo catalizada por la nitrilo reductasa es concomitante con la oxidación de cantidades estequiométricas de NADH: por cada mol de nitrilo reducido se oxidan 3 moles del nucleótido cuando la reacción se deja transcurrir hasta que el nitrilo se consume totalmente.

El producto de la reducción enzimática del nitrilo se identificó como amoniaco, estableciéndose a diferentes tiempos la estequiometría de reducción de nitrilo y formación de amoniaco: se consume 1 mol de nitrilo por cada mol de amoniaco formado (Tabla IX).
Fig. 15. Inhibición por el cianuro en competencia con el nitrito de la nitrito reductasa de Azotobacter chroococcum. Las condiciones experimentales fueron las mismas del ensayo standard de la actividad NADH-nitrito reductasa, excepto que el nitrito sódico se añadió según se indica y que, donde se especifica, se incluyó cianuro potásico en la mezcla de reacción. Preparación de nitrito reductasa, 0,6 mg.
TABLA VIII

**ESTEQUIOMETRÍA DE LA REDUCCIÓN DE NITRITO Y OXIDACIÓN DE NADH EN LA REACCIÓN CATALIZADA POR LA NITRITO REDUCTASA DE **

Azotobacter chroococcum

<table>
<thead>
<tr>
<th>NO$_2^-$ añadido (nmoles)</th>
<th>NADH oxidado (nmoles)</th>
<th>Razón NADH/NO$_2^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>66</td>
<td>3,30</td>
</tr>
<tr>
<td>40</td>
<td>113</td>
<td>2,83</td>
</tr>
<tr>
<td>60</td>
<td>170</td>
<td>2,84</td>
</tr>
</tbody>
</table>

La mezcla de reacción contenía, en un volumen final de 2 ml, tampón fosfato potásico, pH 7,0, 150 μmoles; preparación de nitrito reductasa, 0,7 mg; NADH, 0,45 μmoles y nitrito sódico, según se indica. Tiempo de reacción, 15 min. Las demás condiciones experimentales fueron las mismas que las del ensayo standard de actividad NADH-nitrito reductasa.
TABLA IX

ESTEQUIOMETRIA DE REDUCCIÓN DE NITRITO Y FORMACIÓN DE AMONIACO EN LA REACCIÓN CATALIZADA POR LA NITRITO REDUCTASA DE Azotobacter chroococcum

<table>
<thead>
<tr>
<th>Tiempo (min)</th>
<th>NO$_2^-$ desaparecido (µmoles)</th>
<th>NH$_4^+$ formado (µmoles)</th>
<th>Razón NO$_2^-$/NH$_4^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1,51</td>
<td>1,64</td>
<td>0,92</td>
</tr>
<tr>
<td>15</td>
<td>2,40</td>
<td>2,44</td>
<td>0,99</td>
</tr>
<tr>
<td>20</td>
<td>3,35</td>
<td>3,14</td>
<td>1,16</td>
</tr>
</tbody>
</table>

La mezcla de reacción contenía, en un volumen final de 2 ml, tampón fosfato potásico, pH 7,0, 150 µmoles, preparación de nitrito reductasa, 3,3 mg; NADH, 12 µmoles y nitrito sódico, 4 µmoles. La reacción se llevó a cabo a la temperatura de 30ºC, en tubos abiertos, tomandose alicuotas a los tiempos que se indican para estimar en ellos nitrito y amoniaco.
2. PAPEL DEL MOLIBDENO EN LA ASIMILACIÓN DEL NITRATO EN:

Azotobacter chroococcum

El molibdeno tiene una función esencial en la asimilación del nitrato en _Azotobacter chroococcum_ al ser un constituyente funcional de la nitrato reductasa. El papel de este elemento en dicho proceso se limita exclusivamente a su intervención en el primer estadio de la asimilación, esto es, la reducción de nitrato a nitrito.

2.A. **Incorporación de molibdeno radioactivo a la nitrato reductasa**

Al crecer células de _Azotobacter chroococcum_ durante 15 horas en un medio con nitrato y 0,15 mC/l de Mo99 (0,5 μM en molibdato amónico radioactivo), se observa una fuerte incorporación por parte de las células de la radioactividad correspondiente al Mo99, radioactividad que se mantiene después de lavadas y en el extracto crudo preparado a partir de ellas.

Cuando el extracto se purificó, gran parte de la radioactividad quedaba asociada a las fracciones con actividad nitrato reductasa. La Fig. 16 muestra el paralelismo existente entre la actividad nitrato reductasa y la radioactividad
Fig. 16. Paralelismo entre la actividad nitrato reducida de *Azotobacter chroococcum* y la radioactividad del Mo99. Las fracciones analizadas corresponden a las obtenidas tras el paso de purificación del enzima por filtración en gel de agarosa.
del Ho99 en las distintas fracciones obtenidas al someter el extracto previamente purificado (por cromatografía de intercambio iónico en DEAE-celulosa y precipitación con sulfato amónico) a cromatografía por filtración en gel de agarosa; resultados análogos se obtuvieron al sustituir la filtración en agarosa por otra en gel de Sephadex G-150.

Cuando el extracto parcialmente purificado se sometió a centrifugación en gradiente de sacarosa, en lugar de filtración por geles, se siguió observando el paralelismo ya indicado entre actividad enzimática y radioactividad (Fig. 17).

2.B. Inhibición por tungsteno del crecimiento de Azotobacter chroococcum en medios con nitrato

En la Fig. 18 puede verse como el tungsteno impide, de forma muy eficaz, el crecimiento de A. chroococcum en medios con nitrato a los que no se les había añadido molibdeno. La inhibición del crecimiento aumenta a medida que lo hace la concentración de tungstato en el medio de cultivo llegando a ser prácticamente total para concentraciones de tungstato entre 0,1 y 1 mM.
Fig. 17. Paralelismo entre la actividad nitrato reductasa de *Azotobacter chroococcum* y la radioactividad del Mo99. Las fracciones analizadas corresponden a las obtenidas tras centrifugación en gradiente de sacarosa, durante 11 h a 50,000 rpm, de una preparación previamente purificada por cromatografía en DEAE-celulosa y precipitación con sulfato amónico. La fracción 1 corresponde al fondo del gradiente. Otras condiciones experimentales en Materiales y Métodos.
Fig. 18. Efecto de la concentración de tungstato en el crecimiento de Azotobacter chroococum en medios sin molibdato añadido y con nitrato como fuente de nitrógeno. Las condiciones experimentales se encuentran descritas en Materiales y Métodos.
2.C. Efecto inhibitor del tungsteno en relación con la fuente de nitrógeno

El efecto inhibitor del tungsteno del crecimiento de *A. chroococcum* solamente se da cuando las células utilizan el nitrato (o el nitrógeno) como fuente de nitrógeno inorgánico. En efecto, si el nitrógeno se suministra en forma de nitrito o de amoníaco, el tungsteno no interfiere con el crecimiento de las células aún a concentraciones de este metal tan altas como 1 mM (Fig. 19).

Los resultados hasta aquí expuestos localizan la inhibición por tungsteno, y por tanto el papel del molibdeno, en la reducción de nitrato a nitrito.

2.D. Efecto del tungsteno en las actividades de los enzimas del sistema asimilador del nitrato

El efecto de la presencia del tungsteno en el medio de cultivo sobre los niveles celulares de actividad de los enzimas nitrato reductasa y nitrito reductasa, se muestra en la Fig. 20.
Fig. 19. Falta de efecto del tungstato en el crecimiento de Azotobacter chroococcum en medios sin molibdato añadido y con amoníaco (a) o nitrato (b) como fuentes de nitrógeno. Las condiciones experimentales se encuentran descritas en Materiales y Métodos.
Fig. 20. Efecto de la concentración de tungstato en los niveles celulares de actividad de los enzimas del sistema reductor del nitrato en Azotobacter chroococcum. Las células se cultivaron en medios con nitrato, exentos de molibdeno, y con las cantidades de tungstato sódico que se indican. A las 20 horas se prepararon extractos celulares y se centrifugaron a 120.000 x g durante 2 h, determinándose las actividades enzimáticas en los correspondientes sobrenadantes.
Puede verse que las actividades específicas de nitrato reductasa en los extractos celulares disminuyen de una forma muy marcada en respuesta a la concentración de tungsteno en el medio de cultivo. La nitrato reductasa llegaba a ser prácticamente inactiva cuando la concentración de tungstato en la solución de nutrientes alcanzaba valores superiores a 10 μM. Por el contrario, estas concentraciones de tungstato no afectaban de manera alguna a las actividades específicas de nitrito reductasa en esos mismos extractos.

Estos resultados distinguen a la nitrato reductasa como único enzima del sistema asimilador del nitrato en esta bacteria cuya actividad se ve interferida por el tungsteno, excluyéndose por otra parte que el metal actúa interferiendo con la entrada del nitrato a la célula, posibilidad que ha de ser descartada debido al hecho de que el nitrato se toma del medio de cultivo aún en la presencia de altas concentraciones de tungstato.

2.E. Incorporación del tungsteno en la nitrato reductasa

Como hemos visto, el tungsteno interfiere la actividad nitrato reductasa. Sin embargo, quedaba por aclarar
si esta interferencia se debe a que el tungsteno impide la entrada del molibdeno en la nitrato reductasa, o bien a que el tungsteno se incorpora en el lugar ocupado por el molibdeno en la molécula del enzima.

Si se cultivan células de A. chroococcum durante 15 horas en un medio con nitrato, exento de molibdeno y conteniendo 0,15 μM de W^{185} (5 μM en tungstato sódico) se obtiene un extracto crudo altamente radioactivo y con baja actividad nitrato reductasa. Al someter a purificación dicho extracto y estimar los contenidos en radioactividad y actividad nitrato reductasa de las fracciones resultantes del último tratamiento de purificación (cromatografía de filtración en gel de agarosa), se encuentra correspondencia entre la radioactividad del W^{185} y la pequeña actividad nitrato reductasa que subsiste después del tratamiento (Fig. 21, a), lo que indica la incorporación del tungsteno a la molécula del enzima.

2.F. Competencia entre molibdeno y tungsteno por el mismo sitio en la nitrato reductasa

Si se repite el experimento anterior con W^{185}, en
Fig. 21. Asociación del tungsteno con la nitrato reductasa de Azotobacter chroococcum y competencia entre molibdeno y volframio por el mismo sitio del enzima. Las células se crecieron en presencia de a) W185-tungstato 5 μM o b) W185-tungstato 5 μM más molibdato frío 5 μM. La radioactividad del W185 y la actividad nitrato reductasa se determinaron en las fracciones resultantes de la purificación del enzima por filtración en gel de agarosa.
las mismas condiciones pero con molibdato frío a concentración equimolecular con el tungstato, el extracto celular en este caso incorpora mucho menos radioactividad que en el caso anterior, en que el molibdeno no se encuentra presente en el medio de cultivo.

Al purificar el extracto celular correspondiente, se observa, en las fracciones resultantes de la filtración en gel de agarosa, que la radioactividad incorporada ha disminuido considerablemente con respecto al caso anterior, mientras se presenta alta la actividad nitrato reductasa dependiente de molibdeno (Fig. 21, b).

Las anteriores experiencias indican que el molibdeno y el wolframio compiten por el mismo sitio funcional en el enzima siendo activas como nitrato reductasa sólo las moléculas de enzima que tienen incorporado su metal fisiológico, esto es el molibdeno.
3. PAPEL DEL HIERRO EN LA ASIMILACIÓN DEL NITRATO EN
Azotobacter chroococcum

En esta bacteria, el hierro juega un interesan-
te papel en el proceso de reducción del nitrato, ya que parece intervenir como importante elemento funcional del enzima nitrito reductasa.

3.A. Efecto del hierro en las actividades de los enzimas
del sistema reductor del nitrato

Aunque la adición de hierro al medio de cultivo
incluso a concentraciones de 0,1 mM no afecta apreciable-
mente al crecimiento de A. chroococcum en medios con ni-
trato, puede observarse, sin embargo, un interesante efec-
to sobre los niveles celulares de actividad nitrito reduc-
tasa.

Efectivamente, se da un incremento notable en
los niveles de actividad nitrito reductasa de los corres-
pondientes extractos crudos en respuesta a la concentra-
ción de hierro añadido al medio (Fig. 22). Por el contra-
río, y como puede observarse en la misma figura, el nivel
Fig. 22. Efecto de la concentración de hierro añadido al medio en los niveles de actividad de los enzimas del sistema reductor del nitrato de Azotobacter chroococcum. Las células se crecieron en medios con nitrato y las cantidades de sulfato ferroso que se indican. A las 20 horas, se prepararon extractos celulares y se centrifugaron a 120,000 x g durante 2 h, determinándose las actividades nitrato reductasa y nitrito reductasa en los correspondientes sobrenadantes.
de actividad nitrato reductasa, bajo las mismas condiciones, no parece afectarse de modo significativo por las diferentes concentraciones de este metal.

Este efecto del hierro sobre la nitrato reductasa permite suponer un papel esencial de este elemento como constituyente funcional de este enzima del sistema reductor del nitrato.
4. FORMAS INTERCONVERTIBLES, ACTIVA E INACTIVA, DE LOS ENZIMAS DEL SISTEMA ASIMILADOR DEL NITRATO DE Azotobacter chroococcum

Tanto la nitrato reductasa como la nitrito reductasa de Azotobacter chroococcum presentan dos formas diferentes –activa e inactiva– interconversibles entre sí. La existencia de estas formas tiene un gran interés, ya que el proceso de interconversión puede ser utilizado por la célula para la regulación de la actividad de ambos enzimas del sistema asimilador del nitrato.

4.A. Inactivación reversible de la nitrato reductasa

La nitrato reductasa se inactiva por la acción del hidrosulfito y bajas concentraciones de nitrato. El clorato puede revertir completamente esta inactivación.

4.A.a. Efecto de nitrato e hidrosulfito en la inactivación de la nitrato reductasa

La actividad nitrato reductasa se afectaba por el nitrato de manera muy particular: bajas concentraciones de
nitrato (0,1 mM) inactivaban considerablemente el enzima en pocos minutos, mientras que concentraciones altas (10 mM) no tenían efecto prácticamente. Este fenómeno era estrictamente dependiente de la presencia simultánea del agente reductor hidrosulfito en la mezcla de reacción.

Como se muestra en la Fig. 23, cuando la nitrato reductasa se incuba a 0°C durante 5 minutos con hidrosulfito y concentraciones crecientes de nitrato, tiene lugar una inactivación completa a concentración de nitrato 0,1 mM. A concentraciones más altas (1 a 10 mM), el nitrato no afecta la actividad del enzima de modo significativo. Puede verse también que la acción del hidrosulfito es esencial para el proceso de inactivación, ya que en su ausencia no se observa pérdida alguna de actividad.

4. A. b. Caracterización del nitrato como agente inactivante

Ante la posibilidad de que el nitrato pudiera no ser el verdadero agente inactivante de la nitrato reductasa, se ensayarán también varios posibles derivados resultantes de su interacción con el hidrosulfito y el enzima,
Fig. 23. Efecto de la concentración de nitrato, en ausencia y en presencia de hidrosulfito, en la actividad de la nitrato reductasa de Azotobacter chroococcum. La nitrato reductasa (0,3 mg/0,7 ml) se preincubó durante 5 min a 0° con tampón fosfato potásico, pH 7,0, 150 mM y las concentraciones de nitrato potásico que se indican, en ausencia y en presencia de hidrosulfito sódico (0,8 mg en 0,1 ml de bicarbonato sódico 95 mM). La actividad nitrato reductasa se estimó entonces, después de suplementar con los reactivos del ensayo standard.
tales como nitrito, hidroxilamina, hidrazina y amoniaco, pero sin conseguirse resultados positivos.

4.A.c. Metil-violígeno y cianato como protectores contra la inactivación

La Tabla X muestra que la inactivación de la nitrito reductasa producida por la acción cooperativa de nitrato e hidrosulfito podría evitarse, de manera prácticamente total, por la presencia de metil-violígeno o cianato en la mezcla de preincubación del enzima.

4.A.d. El cianato como agente reactivante

El cianato, que como hemos visto anteriormente, era capaz de regenerar la velocidad máxima de una nitrito reductasa inactivada durante el curso de la reacción, se comporta también como un eficazísimo reactivo del enzima cuando este se había inactivado por preincubación con la mezcla de hidrosulfito y nitrato, como puede observarse en la Tabla XI. El metil-violígeno que era eficaz como protector, no fue capaz, sin embargo, de revertir la inactivación una vez que este había tenido lugar.
TABLA X

INACTIVACION Y PROTECCION DE LA NITRATO REDUCTASA DE

Azotobacter chroococcum

<table>
<thead>
<tr>
<th>Adición</th>
<th>Actividad relativa (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_2O_4^{2-}$</td>
<td>107</td>
</tr>
<tr>
<td>$S_2O_4^{2-}$, HN</td>
<td>93</td>
</tr>
<tr>
<td>$S_2O_4^{2-}$, CNO$^-$</td>
<td>143</td>
</tr>
<tr>
<td>$S_2O_4^{2-}$, NO$_3^-$</td>
<td>16</td>
</tr>
<tr>
<td>$S_2O_4^{2-}$, NO$_3^-$, HN</td>
<td>85</td>
</tr>
<tr>
<td>$S_2O_4^{2-}$, NO$_3^-$, CNO$^-$</td>
<td>146</td>
</tr>
</tbody>
</table>

La nitrato reductasa (0,4 mg/0,7 ml) se preincubó durante 5 min a 37° con tampón fosfato potásico, pH 7,0, 150 mM y los compuestos siguientes según se indica: clorato potásico, 1 µmol; hidrosulfito sódico, 0,8 mg; nitrato potásico, 0,1 µmol; metil-violofénol, 0,15 µmoles. En cada caso se estimó la actividad nitrato reductasa (corregida cuando fuese necesario, teniendo en cuenta el nitrato formado durante el tratamiento de preincubación) después de suplementar con los reactivos del ensayo standard de la actividad nitrato reductasa.
TABLA XI

INACTIVACION Y REACTIVACION DE LA NITRATO REDUCTASA DE
Azotobacter chroococcum

<table>
<thead>
<tr>
<th>Adición</th>
<th>Tratamiento I</th>
<th>Tratamiento II</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_2O_4^{2-}$, NO_3^-</td>
<td>Ninguno</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>$S_2O_4^{2-}$, NO_3^-</td>
<td>MV</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>$S_2O_4^{2-}$, NO_3^-</td>
<td>CHO$^-$</td>
<td></td>
<td>145</td>
</tr>
</tbody>
</table>

La nitrato reductasa (0,4 mg/0,7 ml) se preincubó durante 5 min a 0°C con tampón fosfato potásico, pH 7,0, 150 mM, hidrosulfito sódico, 0,8 mg y nitrato potásico, 0,1 μmol. A este primer tratamiento siguió un segundo período de 5 min después de añadir metil-viologeno, 0,15 μmoles o cianato potásico, 1 μmol según se indique (Tratamiento II). Otras condiciones experimentales como en la Tabla X.
4.8. **Inactivación reversible de la NADH-nitrito reductasa**

La nitrito reductasa de este organismo presenta también dos formas interconvertibles, activa e inactiva. La inactivación se consigue por tratamiento con NAD(P)H, pudiendo ser revertida por el nitrito.

4.8.a. **Inactivación de la NADH-nitrito reductasa por NADH y protección por nitrito**

La velocidad de oxidación de NADH por el nitrito era lineal con respecto al tiempo durante 15 minutos por lo menos, en las condiciones descritas para el ensayo standard. Sin embargo, cuando la nitrito reductasa se preincuba previamente con NADH a temperatura ambiente y en ausencia de nitrito sufre una inactivación rápidísima, como puede verse en la Fig. 24, donde se representa la cinética de inactivación por NADH de la nitrito reductasa. También se muestra en la misma figura que cuando el enzima se preincuba con NADH y nitrito, la actividad original se mantiene prácticamente constante.
Fig. 24. Cinética de la inactivación por NADH de la NADH-nitrito reductasa de Azotobacter chroococcum y su protección por nitrito. La preparación de nitrito reductasa (0,8 mg/1,8 ml) se preincubó a temperatura ambiente con tampón fosfato potásico, pH 7,0, 80 mM y donde se indica, NADH 0,15 mM y nitrito sódico 1 mM. La actividad NADH-nitrito reductasa se estimó a los tiempos indicados, después de suplementar (cuando fue necesario) con los reactivos del ensayo standard.
4.8.b. Efecto de la concentración de NAD(P)H en la inactivación

La Fig. 25 muestra la inactivación de la nitrato reductasa en función de la concentración de NADH; se alcanza una pérdida total de actividad al preincubar el enzima durante 5 minutos con NADH a concentración 10 μM.

El NADPH es también muy efectivo para inactivar el enzima como se deduce de la Fig. 26, donde puede verse que, a concentración 15 μM, es capaz de anular la actividad nitrato reductasa por preincubación durante 5 minutos.

4.8.c. Reactivación por nitrato de la inactivación causada por NADH

El nitrato no sólo protege a la nitrato reductasa de la inactivación por el NADH, sino que además y como puede verse en la Fig. 27, reactiva casi completamente al enzima en un periodo de tiempo bastante corto, si se añade a la mezcla de preincubación después de que el NADH ha ejercido su efecto inactivante.
Fig. 25. Efecto de la concentración de NADH en la inactivación de la NADH-nitrito reductasa de Azotobacter chroococum. La preparación de nitrito reductasa (0,4 mg/1,8 ml) se preincubó durante 5 min a temperatura ambiente con tampón fosfato potásico, pH 7,0, 80 mM y las concentraciones de NADH que se indican. La actividad NADH-nitrito reductasa se estimó a continuación de suplementar con los reactivos del ensayo standard.
Fig. 26. Efecto de la concentración de NADPH en la inactivación de la NADH-nitrito reductasa de Azotobacter chroococcum. Las condiciones experimentales fueron las mismas que se indican en la Fig. 25, excepto que la preincubación se llevó a cabo en la presencia de NADPH, a las concentraciones que se indican, en lugar de NADH.
Fig. 27. Reversión por nitrito de la inactivación causada por el NADH en la NADH-nitrito reductasa de Azotobacter chroococcum. Las condiciones experimentales fueron las mismas que se indican en la Fig. 24 para la preincubación con NADH, excepto que al tiempo indicado por la flecha se añadió nitrito sódico.
A diferencia de la inactivación causada por el NADH, la que se producía al preincubar con NADPH, ade-
más de transcurrir más rápidamente, no podía ser prote-
gida ni revertida por el nitrato.

4.B.d. Caracterización de los efectos de nitrato y NAD(P)H

Con objeto de caracterizar los efectos de NAD(P)H y nitrato en la inactivación reversible de la nitrato re-
ductasa, se llevó a cabo el experimento cuyos resultados
se presentan en la Tabla XII. Puede verse que sólo la for-
ma reducida del nicotinamida-adenin-dinucleótido era efecti-
va para promover el proceso de inactivación, resultando
inerte a este respecto el NAD⁺. El NADPH, como se ha indi-
cado anteriormente, era también muy efectivo como inacti-
vante, pero el nitrato sólo presentaba sus efectos -protec-
tor y reactivador- contra la inactivación por los piridín-
nucleótidos reducidos cuando el agente reductor era el
NADH; la preincubación con NADPH en presencia de nitrato
se traducía en una inactivación total. La protección por
nitrato resultó ser específica de este compuesto inorgánico
de nitrógeno y nitrato ni el amoníaco presentaban
este tipo de efecto.
TABLA XII

INACTIVACION POR NAD(P)H Y PROTECCION POR NITRITO DE LA NADH-NITRITO REDUCTASA DE Azotobacter chroococcum

<table>
<thead>
<tr>
<th>Adición</th>
<th>Actividad relativa (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ninguna</td>
<td>100</td>
</tr>
<tr>
<td>NADH</td>
<td>5</td>
</tr>
<tr>
<td>NAD⁺</td>
<td>110</td>
</tr>
<tr>
<td>NO₂⁻</td>
<td>100</td>
</tr>
<tr>
<td>NADH, NO₂⁻</td>
<td>90</td>
</tr>
<tr>
<td>NADH, NO₃⁻</td>
<td>4</td>
</tr>
<tr>
<td>NADH, NH₄⁺</td>
<td>5</td>
</tr>
<tr>
<td>NADPH</td>
<td>2</td>
</tr>
<tr>
<td>NADP⁺</td>
<td>100</td>
</tr>
<tr>
<td>NADPH, NO₂⁻</td>
<td>6</td>
</tr>
</tbody>
</table>

La mezcla de preincubación contenía, en un volumen final de 1,8 ml: tampón fosfato potásico, pH 7,0, 150 μmoles; preparación de nitrato reductasa, 0,4 mg y, donde se indica, NAD(P)⁺, 0,3 μmoles; NAD(P)H, 0,3 μmoles; nitrato sódico, 2 μmoles; nitrato potásico, 10 μmoles o sulfato amónico, 1 μmol. Después de 5 min a temperatura ambiente, se estimó la actividad NADH-nitrito reductasa, suplementando cuando fué necesario, con los reactivos del ensayo standard.
4.C. **Efecto de la anaerobiosis sobre la asimilación de nitrato y nitrito**

La carencia de aire en la fase gaseosa del medio de cultivo tiene un efecto muy marcado sobre la utilización del nitrito por las células de *A. chroococcum*.

En efecto, cuando una suspensión de células creciendo logarítmicamente con nitrato se gasea con argón, se observa en el término de 30 minutos una excreción apreciable de nitrito al medio, cosa que no tiene lugar en un control paralelo gaseado con aire.

Cuando la fuente de nitrógeno es el nitrito, la incorporación de este anión por las células es bastante más alta en el caso de que la fase gaseosa es aire que cuando se sustituye por argón, como se muestra en la Fig. 28. Puede verse también en dicha figura que, cuando se restituye la aireación al medio que se encontraba en condiciones anaeróbicas, la velocidad de incorporación de nitrito aumenta muy considerablemente.
Fig. 28. Efecto de la anaerobiosis sobre la asimilación del nitrito por Azotobacter chroococcum. Células que estaban creciendo exponencialmente en nitrato, se recogieron, lavaron y resuspendieron en un nuevo medio con nitrito 2 mM como única fuente de nitrógeno. Dos alícuotas de 100 ml de la suspensión, conteniendo 1,5 g de peso húmedo de células, se burbujearon, una con argón y otra con aire, durante 15 minutos; después de este tiempo, se suplementó con nitrito sódico hasta restablecer la concentración final de este anión a 2 mM (tiempo cero), continuándose el burbujeo indicado. La flecha señala el momento en que el gaseo con argón se sustituyó por aire. A los tiempos que se indican, se tomaron alícuotas del medio y se centrífugaron a baja velocidad, determinándose el nitrito en los correspondientes sobrenadantes. Otras condiciones experimentales, en Materiales y Métodos.
5. REGULACION DE LA SINTESIS DE LOS ENZIMAS DEL SISTEMA ASIMILADOR DE NITRATO DE Azotobacter chroococcum

5.A. Inducción de la nitrato reductasa

Los niveles de actividad nitrato reductasa de los extractos celulares de Azotobacter chroococcum están influyendo de manera muy directa por la naturaleza de la fuente de nitrógeno inorgánico en el medio de cultivo, lo que indica la aparente naturaleza inducible del enzima.

Como se muestra en la Tabla XIII, los niveles celulares de nitrato reductasa son muy bajos cuando la fuente de nitrógeno es exclusivamente aire (esto es, 80% de gas nitrógeno) o amoníaco. Por el contrario, el contenido en nitrato reductasa es alto en células crecidas aeróbicamente con nitrato o nitrito, bien sólos o con amoníaco.

5.B. Inducción de la nitrito reductasa

Similarmente a lo descrito para la nitrato reductasa, los niveles de actividad nitrito reductasa se encontraban muy influenciados por la naturaleza de la fuente de nitrógeno, indicando una naturaleza adaptativa del enzima,
A continuación se muestra la tabla con los niveles de nitrato reductasa en Azotobacter chroococcum:

<table>
<thead>
<tr>
<th>Fuente de nitrógeno</th>
<th>Nitrato reductasa (mU por mg proteína)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂</td>
<td>1,5</td>
</tr>
<tr>
<td>N₂, SO₄[(NH₄)₂</td>
<td>1,0</td>
</tr>
<tr>
<td>N₂, NO₃K</td>
<td>26,5</td>
</tr>
<tr>
<td>N₂, NO₃NH₄</td>
<td>9,1</td>
</tr>
<tr>
<td>N₂, NO₂Na</td>
<td>18,1</td>
</tr>
</tbody>
</table>

A células que habían crecido durante 12 horas con aire como única fuente de nitrógeno, se le añadieron los compuestos de nitrógeno que se indican. Después de 6 horas de crecimiento aeróbico en las nuevas fuentes de nitrógeno, se prepararon extractos celulares para estimar en ellos los niveles de actividad nitrato reductasa. Las demás condiciones experimentales se encuentran en Materiales y Métodos.
de tipo inducible.

Puede verse en la Tabla XIV que el contenido en nitrito reductasa es alto en células crecidas con nitrato o nitrito, sólo o en presencia de amoniaco. Sin embargo, cuando la fuente de nitrógeno es exclusivamente aire o amoniaco, los niveles de actividad son absolutamente nulos.

Conviene señalar además que cuando las células se crecían en nitrato o nitrito y en la presencia de amoniaco, utilizaban tanto las formas oxidadas de nitrógeno como el amoniaco, de forma simultánea.
TABLA XIV

EFFECTO DE LA FUENTE DE NITROGENO INORGANICO EN LOS NIVELES CELULARES DE ACTIVIDAD NITRITO REDUCTASA DE

Azotobacter chroococcum

<table>
<thead>
<tr>
<th>Fuente de nitrógeno</th>
<th>Actividad nitrito reductasa (mU por mg proteína)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{N}_2)</td>
<td>0</td>
</tr>
<tr>
<td>(\text{N}_2, \text{SO}_4(\text{NH}_4)_2)</td>
<td>0</td>
</tr>
<tr>
<td>(\text{N}_2, \text{NO}_3\text{K})</td>
<td>4,2</td>
</tr>
<tr>
<td>(\text{N}_2, \text{NO}_3\text{NH}_4)</td>
<td>3,3</td>
</tr>
<tr>
<td>(\text{N}_2, \text{NO}_2\text{Na})</td>
<td>2,4</td>
</tr>
<tr>
<td>(\text{N}_2, \text{NO}_2\text{Na}, \text{SO}_4(\text{NH}_4)_2)</td>
<td>3,1</td>
</tr>
</tbody>
</table>

Las células se crecieron en medios con las fuentes de nitrógeno que se indican. A las 12 horas, se prepararon extractos celulares y se centrífugaron a 120,000 x g durante 2 h, determinándose la actividad NADH-nitrito reductasa en los correspondientes sobrenadantes. Las demás condiciones experimentales se encuentran descritas en Materiales y Métodos.
6. DETERMINACIóN ENZIMÁTICA DE NITRATO CON LA NADH-NITRATO REDUCTASA DE ESPINACAS

6.A. Preparación del enzima

La preparación de NADH-nitrato reductasa empleada para la determinación de nitrato se purificó a partir de espinaca por una combinación simplificada de los procedimientos descritos anteriormente (Panaque et al., 1965; Panaque y Losada, 1966; Losada et al., 1969). 500 g de hojas deserviadas se homogenizaron en una batidora Turmix con 400 ml de Tris 25 mM (pH 7,5) que contenía 2 mM de cistelina. Después de filtrar a través de una gasa, el filtrado se centrífugó y el sobrenadante se trató con \(\text{SO}_4(\text{NH}_4)_2\) sólido hasta alcanzar el 45% de saturación en este sal. La proteína precipitada se disolvió en aproximadamente 50 ml de Tris 10 mM (pH 7,5) conteniendo 5 \(\mu\text{M}\) de FAD y a esto se añadió una solución al 2% de sulfato de protamina (pH aproximado 2,5) hasta llevar la solución a una concentración final del 0,5% en protamina. Después de centrífugar, el sobrenadante resultante se trató con 20 ml de gel de fosfato cálcico (25 mg por ml). La suspensión se dejó estar y a
continuación se centrifugó, lavándose rápidamente el sedimento con 20 ml de fosfato sódico 40 mM (pH 7,5). El enzima se eluyó finalmente con 20 ml de pirofosfato sódico 100 mM (pH 7,0) que contenía 20 μM de FAD y después de centrífugar, el eluido se utilizó como la fuente de enzima.

Por este procedimiento, que en conjunto no ocupa más de dos horas, se obtuvieron aproximadamente 20 unidades (definidas como moles de nitrato reducido por minuto) de nitrato reductasa, con una pérdida de actividad aproximada del 50% en una semana, si se conserva a 0°C.

6.8. Estudios cinéticos de la reacción catalizada por la NADH-nitrato reductasa de espinacas

Con objeto de seleccionar las condiciones óptimas del ensayo, así como el rango de eficacia para la valoración de nitrato con este enzima, se llevaron a cabo experiencias con cantidades variables de NADH-nitrato reductasa y de nitrato.

La Fig. 29 muestran el estudio cinético -medido por oxidación de NADH- de la reducción de una solución de ni-
Fig. 29. Estudio cinético de la titulación de una solución de NO_3 a 100 µM con NADH en exceso y concentraciones diferentes de nitrato reductasa de espinacas. La mezcla de reacción incluía, en un volumen final de 1 ml, tampón Tris-ClH, pH 7,5, 100 µmoles; NADH, 0,25 µmoles; y nitrato reductasa como se indica. Con objeto de neutralizar el efecto de cualquier NADH-oxidasa inespecífica, la cubeta referida contenía también, junto a los otros componentes de la reacción, NADH en exceso (0,15 µmoles). Al tiempo cero, se añadieron 100 nmoles de nitrato potásico y el correspondiente volumen de agua a las cubetas problema y referencia, respectivamente. La reacción se llevó a cabo al aire libre a temperatura ambiente y se registró con un espectrofotómetro Beckman DK-2A.
trato 100 μM, por cantidades diferentes de nitrato reductasa. Puede verse que 50 mililunidades de enzima resultan suficientes para reducir completamente, en el término de 15 minutos, 100 nmoles de nitrato por ml.

Utilizando 100 mililunidades de enzima por ml de mezcla de reacción, se observó que se pueden titular de modo muy preciso, soluciones de nitrato dentro del rango de 10 a 100 μM en tan sólo 10 minutos (Fig. 30).

6.C. Estequiométrie de la reducción de nitrato, oxidación de NADH y formación de nitrito

Para la exactitud del método de ensayo, convenía establecer la relación existente entre nitrato reducido y NADH oxidado, así como entre nitrato reducido y nitrito formado, para determinar el contenido en nitrato de una muestra, bien por medida del NADH oxidado o por estimación del nitrito resultante de la reducción.

En la Tabla XV puede observarse la perfecta correspondencia existente entre el contenido en nitrato de la muestra y la cantidad de NADH oxidado a los 15 minutos
Fig. 30. Estudio cinético de la titulación de soluciones de nitrato de concentraciones diferentes (dentro del rango de 10 a 100 μM) con NADH y nitrato reductasa de espinacas. La mezcla de reacción y las condiciones experimentales fueron las mismas que las descritas para la Fig. 29, excepto que la cantidad de nitrato potásico se varió según se indica, mientras que la de nitrato reductasa se mantuvo constante (100 miliunidades).
TABLA XV

ESTEQUIOMETRIA ENTRE REDUCCIÓN DE NITRATO Y OXIDACIÓN DE NADH EN LA REACCIÓN CATALIZADA POR LA NITRATO REDUCTASA DE ESPIRACAS EN LAS CONDICIONES DEL ENSAYO STANDARD

<table>
<thead>
<tr>
<th>NO$_3^-$ añadido (nmoles)</th>
<th>NADH oxidado (nmoles)</th>
<th>Razón NO$_3^-$/NADH</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10,3</td>
<td>0,970</td>
</tr>
<tr>
<td>30</td>
<td>30,2</td>
<td>0,993</td>
</tr>
<tr>
<td>50</td>
<td>49,7</td>
<td>1,006</td>
</tr>
<tr>
<td>70</td>
<td>69,8</td>
<td>1,002</td>
</tr>
<tr>
<td>100</td>
<td>99,2</td>
<td>1,008</td>
</tr>
</tbody>
</table>

Las mezclas de reacción y las condiciones experimentales fueron las mismas que en el caso de la Fig. 29, pero utilizando 100 milliunidades de nitrato reductasa y NO$_3$K como se indica. Después de 15 min a 30°C, se calculó la oxidación de NADH directamente por el cambio en absorbencia a 340 nm.
de haberse iniciado la reacción: se consumía un mol de NADH por cada mol de nitrato reducido.

Igualmente se estableció, en las mismas condiciones, que la reducción de un mol de nitrato se traducía en la producción de uno de nitrito (Tabla XVI).

6.D. **Condiciones standard para los análisis de nitrato en muestras**

De los estudios antes citados se determinaron las condiciones óptimas a emplear en los análisis: enzima, 100 milliunidades por ml; NADH, 250 nmoles por ml; nitrato 10 a 100 nmoles por ml; tiempo de reacción, 15 minutos.

En estas condiciones, el método resulta extraordinariamente preciso tanto en el caso de que se mida la oxidación del NADH o cuando la estimación se haga a partir del nitrito formado. En este último caso, que por su simplicidad se recomienda para los análisis de rutina, se hace necesario eliminar el piridín nucleótido con objeto de evitar interferencias en el ensayo.
TABLA XVI

ESTEQUIOMETRÍA ENTRE REDUCCIÓN DE NITRATO Y FORMACIÓN DE NITRITO EN LA REACCIÓN CATALIZADA POR LA NITRATO REDUCTASA DE ESPINACAS EN LAS CONDICIONES DEL ENSAYO STANDARD

<table>
<thead>
<tr>
<th>NO$_3^-$ añadido (nmoles)</th>
<th>NO$_2^-$ formado (nmoles)</th>
<th>Razón NO$_3^-$/NO$_2^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10,2</td>
<td>0,986</td>
</tr>
<tr>
<td>30</td>
<td>30,1</td>
<td>0,996</td>
</tr>
<tr>
<td>50</td>
<td>50,0</td>
<td>1,000</td>
</tr>
<tr>
<td>70</td>
<td>69,5</td>
<td>1,007</td>
</tr>
<tr>
<td>100</td>
<td>100,0</td>
<td>1,000</td>
</tr>
</tbody>
</table>

Las condiciones experimentales fueron las mismas que en el caso de la Tabla XV, estimándose colorimétricamente el nitrato formado, en una alícuota de la mezcla de reacción después de eliminar el piridín nucleótido por precipitación con acetato bárico y etanol (Ramírez et al., 1966; Losada y Panque, 1971).
6.E. Interferencias

Por tratarse de un ensayo enzimático, las interferencias que pueden presentarse corresponden a la presencia en las muestras, de alguno de los inhibidores característicos de la actividad NADH-nitrato reductasa (Relimpio et al., 1971 a). Por otra parte, la materia orgánica que puedan contener las muestras no afecta en modo alguno a la precisión del método, inconveniente que suele presentarse en los métodos químicos usualmente empleados.
IV. DISCUSSION
Los resultados expuestos hasta aquí han permitido resolver, tanto a nivel fisiológico como molecular, un buen número de aspectos del mecanismo de la reducción asimilatoria del nitrato en *Azotobacter chroococcum*, constituyendo una interesante contribución al esclarecimiento de este proceso en bacterias, ya que los escasos datos de que se disponía hasta el momento actual mantenían una considerable confusión en torno al conocimiento de esta faceta del metabolismo del nitrógeno inorgánico en los citados microorganismos.

Uno de los más importantes factores que ha permitido la consecución de estos resultados ha sido, sin lugar a dudas, el haber escogido como material de trabajo una bacteria, tal como *A. chroococcum*, donde la utilización del nitrato en condiciones aeróbicas se efectúa con un fin exclusivamente asimilatorio. Esto excluye la posibilidad de interferencia por parte de enzimas que intervengan en la reducción respiratoria del nitrato y que pudieran ser confundidos con los que realmente actúan con fines asimilatorios, dificultando la obtención de resultados claros, inconveniente que se ha presentado frecuentemente a los investigadores en esta materia.
Resulta obvio que la nitrato reductasa soluble ais-
lada de células de *A. chroococcum* cultivadas en nitrato consi-
tituye el componente final del sistema enzimático nitrato re-
ductasa en este organismo. Dado que los únicos donadores de
electrones efectivos para esta nitrato reductasa soluble son los
deductores artificiales metil- y bencil-viológenos, redu-
cidos químicamente, permanece abierta la cuestión acerca de la
naturaleza del donador de electrones fisiológico para el
enzima.

En relación con esto, es interesante hacer notar que la
azoflavina y la ferredoxina, que son componentes norma-
les de las células de *Azotobacter*, parecen actuar conjunta-
mente en la transferencia de electrones a la nitrogenasa
(Yoch, 1972). Nagal *et al.* (1968) han purificado una NAD(P)H-
bencil-viológeno reductasa soluble, a partir de partículas de
Azotobacter vinelandii; el sistema completo resultó ser muy
efectivo como donador de electrones para la reducción de nit-
trato a nitrato catalizada por extractos de la bacteria ni-
trificante *Nitrobacter agilis* (Wallace y Nicholas, 1968).
Una o varias de estas proteínas podrían encontrarse implica-
das en la donación fisiológica de electrones a la nitrato re-
ductasa soluble de *A. chroococcum*. Otra posibilidad a tener
en cuenta es que fueran los piridín-nucleótidos reducidos los que, de modo directo, cumpliesen en la célula la función de cesión de electrones a este enzima. Esto parece ser poco probable, ya que se han ensayado diversos procedimientos de rotura de las células, así como de extracción de los enzimas, sin que haya sido posible detectar, en ninguno de los casos, actividad NAD(P)H-nitrato reductasa en este organismo.

Esto contrasta con el hecho de que el segundo enzima del sistema asimilador reductor de nitrato, esto es la nitrato reductasa, de esta bacteria requiere específicamente piridín nucleótidos reducidos como donadores de electrones. A este respecto, la nitrato reductasa de _A. chroococcum_ se asemeja mucho a la de hongos con capacidad asimiladora de nitrato (Nason _et al._, 1954; Nicholas _et al._, 1960; Rivas _et al._, 1973), ya que este enzima, al igual que el de estos organismos, acepta electrones que le llegan de NAD(P)H, y además, el FAD actúa como cofactor. Esto le hace diferir de modo considerable de la ferredoxina-nitrito reductasa de plantas verdes, la cual no puede utilizar como donadores de electrones a las formas reducidas de los piridín nucleótidos ni tampoco parece ser una flavoproteína.
Con respecto al efecto de los diferentes inhibidores, tanto sobre la actividad nitrato reductasa como sobre la nitrilo reductasa, la observación de que ambos enzimas sean muy sensibles a la acción del p-hidroximercuribenzoato resulta indicativa de la participación de grupos sulfhidrílicos en ambas actividades enzimáticas. La participación de metales en el funcionamiento de la nitrato reductasa y la nitrilo reductasa de _A. chroococcum_ se hace evidente a partir del efecto que sobre ellas presenta el cianuro, agente quelante de metales. En el caso particular de la nitrilo reductasa, la inhibición por cianuro es de tipo competitivo con respecto al nitrilo, por lo que parece probable que este agente quelante produzca su efecto inhibidor al unirse de forma reversible al enzima, en un lugar esencial de la molécula.

Al comparar el comportamiento frente a inhibidores de la nitrato reductasa de _A. chroococcum_ con el del enzima de otros organismos, se aprecian importantes diferencias. En efecto, aunque la inhibición de la actividad nitrato re-
ductasa por p-HMB y CNK se ha observado también en el enzima de Chlorella (Aparicio et al., 1971; Vega et al., 1972) y espinaca (Paneque et al., 1968; Boevers y Hageman, 1969; Losada et al., 1969; Relimpio et al., 1971 a), la nitrato reductasa de esta bacteria no se inhibe por clorato, azida o carbamilo-fosfato, compuestos que pueden considerarse como inhibidores típicos (de tipo competitivo) del enzima de células verdes (Vega et al., 1971; Relimpio et al., 1971 a); por el contrario, alguno de estos compuestos (azida y cloroato) actúan sobre el enzima de A. chroococccum como verdaderos activadores.

La nitrato reductasa, sin embargo, es más similar, en este aspecto de la inhibición, tanto a la NAD(P)H-nitrito reductasa (Hason et al., 1954; Nicholas et al., 1960; Rivas et al., 1973) como a la ferredoxina-nitrito reductasa (Losada y Paneque, 1971; Cárdenas et al., 1972 a,b; Zumft, 1972), ya que, en todos los casos, p-HMB y CNK son inhibidores muy potentes, mientras que azida, clorato y carbamil fosfato no presentan este efecto.

En el proceso de la reducción asimiladora del nitrato hasta amoniaco han existido bastante discrepancias res-
pecto a la existencia de posibles compuestos intermedios, con la intervención de diferentes enzimas. Así, aunque para el primer estadio de la asimilación, esto es, la reducción de nitrato a nitrato, se ha aceptado de modo general la intervención de un sólo enzima (nitrato reductasa) y la no existencia de intermediarios, no ha ocurrido lo mismo con la reducción de nitrato hasta amoníaco.

Para la reducción de nitrato a amoníaco, proceso que implica la transferencia de seis electrones, se ha propuesto por varios autores la existencia de una serie de transferencias de dos electrones, catalizada cada una de ellas por un enzima diferente (Nason, 1962; Takahashi et al., 1963; Hewitt y Nicholas, 1964). Sin embargo, las evidencias actuales, obtenidas con la ferredoxina-nitrato reductasa de células de Chlorella, espinaca y calabacín, han demostrado que el nitrato se reduce completamente hasta amoníaco sin la existencia de intermediarios libres (Beavers y Hageman, 1969; Losada y Penaque, 1971; Losada, 1972). A conclusiones similares se ha llegado en el caso del enzima de bacterias (Lazzarini y Atkinson, 1961; Kemp y Atkinson, 1966; Prakash y Sadana, 1972). Los resultados que se aportan aquí corroboran este punto y muestran que,
en *A. chroococcum*, el nitrito se reduce también directa y estequimétricamente a amoniaco, sin la formación de hidroxiamina como intermediario libre.

Aunque el molibdeno ha sido identificado como componente de la nitrato reductasa de diferentes organismos (Losada, 1972), la participación de este metal en el correspondiente enzima de bacterias estaba aún por aclarar, existiendo incluso controversias a este respecto. En efecto, Forget (1971) ha purificado recientemente una nitrato reductasa soluble de tipo respiratorio, a partir de células de *Micrococcus denitrificans* crecidas en presencia de nitrato. El enzima ha sido caracterizado como una proteína acídica con hierro no hemínico (peso molecular, 160.000 daltons) que no podía utilizar como donadores de electrones NAD(P)H y no contenía ni flavina, ni molibdeno. Lam y Nicholas (1969) habían comunicado, sin embargo, que la nitrato reductasa soluble de *H. denitrificans* obtenida por ellos, contenía molibdeno, como se mostró por marcado con isótopos. Nuestros resultados, obtenidos al crecer células de *A. chroococcum* en la presencia de molibdato marcado con Mo\(^{99}\), y purificar la nitrato reductasa a partir de extractos de estas células, permiten concluir que el molibdeno es un componen-
te de este enzima, dada la correspondencia que se observa entre la actividad nitrato reductasa y la radioactividad del Mo99 tras la purificación por filtración en gel de agarosa, de modo análogo a como había sido puesto de mani
festo para el enzima de Chlorella (Aparicio et al., 1971) y de espinaca (Notton y Hewitt, 1971 a).

Una manera sencilla y elegante de demostrar el pa
pel del molibdeno en la asimilación del nitrato por micro-
organismos, algas y plantas superiores ha sido la utiliza-
ción del tungsteno como un inhibidor competitivo específi-
co del molibdeno. Estos estudios de competencia han corro-
borado a nivel celular (Higgins et al., 1956; Takahashi y
Nason, 1957; Cárdenas et al., 1971; Vega et al., 1971) la
función del molibdeno como elemento traza esencial para la
reducción enzimática de nitrato a nitrito en varios orga-
nismos capaces de asimilar nitrato. Los resultados present-
tados aquí, concernientes el efecto del tungstato sobre el
crecimiento de A. chroococcum en medios con distintas fuen-
tes de nitrógeno, permiten localizar en la ruta metabólica
asimilatoria del nitrato, que el lugar de acción del molib-
deno es exclusivamente en la reducción de nitrato a nitri-
to.
El efecto competitivo del tungsteno a nivel enzimático se había estudiado en células fotosintéticas (Wray y Filner, 1970; Cárdenas et al., 1971; Nutton y Hewitt, 1971 b; Vega et al., 1971; Paneque et al., 1972; Subramanian y Sorger, 1972), habiendo sido muy útil, en nuestro caso, para confirmar de modo concluyente el papel jugado por el molibdeno en la reducción del nitrato en *A. chroococcum*. El estudio de los niveles celulares de las actividades enzimáticas nitrato reductasa y nitrito reductasa, en células crecidas en nitrato y diferentes concentraciones de tungstato, confirma que el molibdeno es un componente esencial de la nitrato reductasa. Sin embargo, puede afirmarse que este metal no es fundamental para la reacción catalizada por la nitrito reductasa. Suministrando volframio radioactivo a células de *A. chroococcum* creciendo en nitrato, hemos podido demostrar que el volframio se incorpora a la nitrato reductasa. En un experimento paralelo donde las células se crecieron con radiovolframio, pero con molibdeno frío a concentración equimolecular, el volframio no se incorporó al enzima como ocurriría en el caso en que el medio estuviera exento de molibdeno. Esto permite concluir que el molibdeno y el tungsteno compiten por el
mismo sitio activo del enzima; la incorporación del tungsteno a la molécula de nitrato reductasa en el sitio normalmente ocupado por el molibdeno, se traduce en que el enzima así constituido es inactivo, indicando esto que el molibdeno, no sólo es un componente estructural de la nitrato reductasa, sino que además, juega un papel esencial en su funcionalidad como reductasa de nitrato.

Aunque los investigadores que se han ocupado del estudio de la nitrato reductasa de diferentes organismos han adelantado, quizás precipitadamente, como ha sido discutido por Losada (1972), que el enzima requiere —como constituyentes o activadores— diversos metales, la única evidencia clara es la de la participación estructural y funcional del hierro, aparentemente en forma no hemínica, en la nitrato reductasa de Chlorella (Aparicio et al., 1971; Cárdenas et al., 1972 c).

El estudio del efecto de la adición de hierro al medio de cultivo standard sobre las actividades de los enzimas del sistema asimilador del nitrato de A. chroococcum ha permitido observar un incremento notable en el nivel de actividad nitrato reductasa de los correspondientes extrac-
tos celulares, en respuesta a la concentración del hierro añadido al medio de cultivo. Estos resultados permiten concluir, que el hierro es un componente esencial de la nitrilo reductasa de esta bacteria. Por el contrario, y en las condiciones experimentales citadas, el nivel de nitrato reductasa no parece mostrar una dependencia significativa de la concentración del hierro en el medio de cultivo de las células, aunque se necesitan pruebas más concluyentes para poder excluir la posibilidad de que este metal sea constituyente de la nitrato reductasa.

Con respecto a la existencia de dos formas interconvertibles, activa e inactiva, tanto de la nitrato reductasa como de la nitrilo reductasa de A. chroococcum, y a la implicación de condiciones reductoras en el proceso de inactivación de ambos enzimas, es interesante considerar aquí, a la luz de la evidencia actual, el papel tan relevante que desempeñan los dos enzimas del sistema reductor del nitrato en la regulación de la ruta asimilatoria de su reducción, tanto en bacterias, como en hongos, algas y plantas superiores.
Recientemente se ha puesto de manifiesto en nuestro Departamento que el amoníaco -producto final de la ruta asimilatoria de reducción del nitrato- provoca in vivo la inactivación reversible de la segunda mitad del complejo NADH-nitrato reductasa en las algas verdes Chlorella (Losada et al., 1970) y Chlamydomonas (Herrera et al., 1972). Este efecto del amoníaco parece ser indirecto, en el sentido de que este derivado inorgánico de nitrógeno parece actuar como un desacoplante de la fotosfosforilación, dando lugar a una elevación de los niveles celulares de piridín nucleótido reducido y de ADP (Losada et al., 1973). La carencia de oxígeno en los cultivos de Chlamydomonas se traduce en la inactivación de la nitrato reductasa (Losada et al., 1973). La conversión in vitro de la nitrato reductasa activa de Chlorella en su forma inactiva depende de su reducción por NADH en la presencia de ADP y se protege por el nitrato a alta concentración (Maldonado et al., 1973); la transformación es reversible, ya que, si el enzima inactivo -extruido en esta forma de las células o conseguido por tratamiento in vitro- se somete a reoxidación, vuelve a ser activo (Jetschman et al., 1972; Moreno et al., 1972; Maldonado et al., 1973). Este fenómeno parece ser una
propiedad general de la nitrato reductasa de plantas más bien que una particularidad del enzima de células fotosintéticas, ya que se ha observado también con los enzimas de las levaduras *Hansenula anomala* (Pichinoty y Méténier, 1966) y *Torulopsis nitratophila* (Rivas et al., 1973).

Por otra parte, en organismos procarióticos se ha comunicado que, para ser funcional a nivel celular, el sistema reductor de nitrato de *Azotobacter vinelandii* y *Escherichia coli* estirpe Yamaguchi requiere oxígeno como factor esencial tanto para la reducción de nitrato a nitrito como para la reducción de nitrito a amoniaco (Takahashi et al., 1963).

Los resultados presentados aquí muestran que la nitrato reductasa de *A. chroococcum* puede ser inactivada rápidamente, en las condiciones experimentales utilizadas, por el agente reductor hidrosulfito en la presencia de bajas -pero no de altas- concentraciones de nitrato. Sin embargo, no puede decírse por el momento que sea el nitrato **per se** -actuando sinérgicamente con el hidrosulfito sobre el enzima activo- el verdadero agente inactivante. Du-
rante el ensayo de la nitrato reductasa, la inactivación tiene lugar en presencia de alta concentración de nitrato, en muy pocos minutos, bien por la acción directa del nitrato sobre el enzima reducido, o indirectamente, a través de la formación en la mezcla de reacción, de un derivado del nitrato. Esta última posibilidad parece poco probable, ya que al ensayar, como agentes inactivantes del enzima, nitrilo, hidroxilamina, hidrazina y amoníaco -posibles derivados de la interacción del nitrato con el enzima y el hidrosulfito- los resultados fueron negativos.

Este parece ser el momento de analizar, a la luz de los resultados obtenidos, las diferentes posibilidades de actuación que puede tener el nitrato sobre la nitrato reductasa de *A. chroococcum*. En efecto, el papel del nitrato no se limitaría al de simple sustrato del enzima, sino que, además, podría actuar como efector o modulador de la actividad nitrato reductasa. De los resultados obtenidos en el intento de determinación de la *Km* para el nitrato, se deriva la conclusión de un comportamiento cinético anómalo del enzima para con su sustrato. Resultados muy análogos se han obtenido en el estudio del efecto de
la concentración del NAD+ sobre la velocidad de la reac-
ción catalizada por la glutámico deshidrogenasa (Frieden,
1959 a,b) así como en el caso del piruvato y el enzima
piruvato carboxilasa (Scrutton et al., 1965); estos auto-
res han interpretado sus datos experimentales consideran-
do la existencia de diferentes sitios de unión del sustra-
to con el enzima: un sitio catalítico para la transforma-
ción del sustrato, y otro sitio activo donde el sustrato
actúa como activador. Nuestro caso parece ser más comple-
jo, y supone un efecto múltiple del nitrato sobre la ni-
trato reductasa de A. chroococcum, actuando de una parte
como simple sustrato y de otra como efector positivo (o
activador) del enzima. Además de este efecto activante,
el nitrato parece tener, en las particulares condiciones
anteriormente indicadas de concentración baja y presencia
del reductor hidrosulfito, un efecto inactivante sobre la
nitrato reductasa de este organismo. Esta inactivación im-
plicaría la unión del nitrato al enzima en un sitio dife-
rente de donde lo hace cuando actúa como sustrato; este di-
f erente sitio activo presentaría una afinidad variable por
el nitrato, afinidad que sería muy alta para el enzima re-
ducido; alternativamente, es posible que la unión del ni-
trato a la molécula de nitrato reductasa, tanto al actuar de sustrato como de inactivante, se hiciese en un único sitio, teniendo lugar la inactivación al producirse la unión cuando el enzima se halle en estado reducido. Resumiendo, las posibles formas de actuación del nitrato sobre la nitrato reductasa de A. chroococcum serían de tres tipos: como sustrato, como efectivo positivo (activador) y como efectivo negativo (inactivador), estando condicionado este último efecto inactivante a que el enzima se encontra en estado reducido.

El cloranato —un inhibidor de tipo competitivo con el nitrato de la nitrato reductasa de otros organismos (Relimpio et al., 1971; Solomonson y Vennesland, 1972; Vega et al., 1972)— puede proteger contra la inactivación por hidrosulfito y nitrato y puede revertir el proceso una vez que ha tenido lugar. Posiblemente, su efecto sea debido a una acción directa sobre la molécula del enzima que posibilita su reoxidación por el nitrato, reoxidación que el nitrato por sí solo no podría efectuar. La protección contra la inactivación de la nitrato reductasa que ejerce el metil-violetágeno resulta difícil de explicar, aunque un
efecto protector similar se había observado en este enzima de *Rhizobium japonicum* por Lowe y Evans (1964). Estos autores encontraron que, para purificar una nitrato reductasa soluble aislada de este organismo, era necesario mantener unas condiciones muy reductoras con hidrosulfito y benzil-viologeno. Sin embargo, sus intentos para purificar extractos en presencia de hidrosulfito, pero sin benzil-viologeno, resultaron infructuosos. Por tanto, concluyeron que el benzil-viologeno era importante para mantener al enzima en estado reducido. Los resultados presentados aquí sugieren que el viologeno puede actuar de manera diferente, protegiendo a la nitrato reductasa contra la inactivación por el agente reductor y el nitrato.

Pasando ahora a la existencia de formas interconvertibles, activa o inactiva, en la nitrato reductasa de bacterias, es interesante señalar que Kemp y Atkinson (1966) observaron, en la NADH-nitrato reductasa de *E. coli*, que su actividad in vitro se incrementaba al preincubar con nitrato y disminuía por preincubación con NADH; estos autores, sin embargo, no aportaron ninguna explicación para estos fenómenos, dudando de que el efecto inactivante del NADH pudiera tener alguna función fisiológica.
Los resultados que aquí se aportan demuestran que la NADH-nitrito reductasa de *A. chroococcum* puede ser inactivada por preincubación con NAD(P)H en ausencia de nitrito, y que este último compuesto evita y revierte de manera específica esta inactivación, únicamente cuando el NADH —y no el NADPH— es el agente inactivador. Todo lo anterior indica la importancia de condiciones reductores para la inactivación y el interesante papel desempeñado por el sustrato del enzima (nitrito) con respecto a los efectos de protección y reactivación. Esto, junto con los hechos observados de que las condiciones anaeróbicas dificultan de modo considerable la utilización de nitrito por células de *A. chroococcum*, y que cuando las células reducen nitrato en atmósfera de argón, pero no de aire, excretan cantidades crecientes de nitrito al medio de cultivo, es indicativo de la importante significación metabólica que parece tener este proceso de inactivación reversible, que muy probablemente se encuentra ligado a cambios redox en la proteína enzimática.

Los procesos de inactivación reversible observados en los dos enzimas del sistema asimilatorio reductor del nitrito en *A. chroococcum* pueden tener una gran importancia.
metabólica, ya que es posible su ocurrencia in vivo con efectos de control, por parte de la célula, de las actividades enzimáticas nitrato reductasa y nitrito reductasa. En este caso, no es muy aventurado el pensar que sean las condiciones redox intracelulares las que determinen el paso de las formas activas a las inactivas correspondientes, y viceversa, sin olvidar que igualmente, los niveles celulares de los correspondientes sustratos deben cumplir un importante papel, participando también en el proceso de la modulación de estas actividades enzimáticas.

Parece fuera de duda, a juzgar por los resultados obtenidos, que los dos enzimas del sistema asimilatorio del nitrato -nitrato reductasa y nitrito reductasa- de *A. chroococcum* son de naturaleza inducible. En efecto, la nitrato reductasa de forma en células de esta bacteria cuando crecen en nitrato, incluso en presencia de nitrógeno no molecular o amoníaco; el inductor no es obligatoriamente el nitrato, ya que la nitrato reductasa se sintetiza también cuando el nitrato es la fuente de nitrógeno. También el enzima nitrilo reductasa se forma en células que crecen en nitrato o nitrilo, incluso en presencia de ni-
trógeno molecular o amoniaco, pero, al igual que la nitroto reductasa, no se sintetiza cuando las células se crecen en amoniaco o nitrógeno molecular como fuentes de este elemen- to, lo que indica la naturaleza adaptativa inducible de los dos enzimas del sistema asimilador del nitrato en A. chroococcum. Resultados similares se han obtenido para la nitrito reductasa de otras bacterias asimiladoras de nitra-
to (Spencer et al., 1957; Kemp y Atkinson, 1966). El efec-
to del nitrato sobre el sistema de asimilación del nitróge-
no molecular ha sido estudiado por Sorger (1969), habiendo mostrado este investigador, que el nitrato inhibe, aunque no parece reprimir, a la nitrogenasa de A. vinelandii.

En la mayor parte de los métodos de determinación cuantitativa de nitrato que han sido descritos se encuentran inconvenientes para su empleo en análisis de rutina. En algunos casos, la dificultad está en la interferencia por algunos iones, como Cl⁻ (Nicholas y Nason, 1957) o Fe⁴⁺ y Fe⁶⁺⁺ (Szekely, 1967), constituyendo la presencia de materia orgánica en las muestras un grave inconveniente en otros (Szekely, 1967), todos por lo general son muy laboriosos en su empleo y algunos de ellos carecen de la exactitud requerida.
El método aquí desarrollado presenta considerables ventajas frente a los ya conocidos, principalmente en lo que respecta a exactitud, sensibilidad, comodidad de empleo y al hecho que la materia orgánica no tiene influencia sobre la determinación, lo que aconseja su utilización en las determinaciones cuantitativas de nitrato en los medios de cultivo de organismos, así como en extractos de células, con lo que se cumplen los objetivos que habían motivado la puesta a punto de este micrométodo.
V. CONCLUSIONES
1.- En la bacteria *A. chroococcum*, la reducción de nitrato a amoníaco procede en dos etapas enzimáticas independientes: 1) La reducción de nitrato a nitrato, catalizada por la nitrato reductasa y 2) La reducción de nitrato a amoníaco, catalizada por la nitrato reductasa.

2.- La nitrato reductasa es una molibdoproteína soluble, con 100,000 daltons de peso molecular; su actividad se inhibe por p-HMB y cloruro y se estimula notablemente por la presencia de cianato.

3.- La nitrato reductasa se ha purificado parcialmente por un método que incluye, en resumen, los siguientes pasos: Adsorción en columna de DEAE-celulosa y elución con gradiente lineal de cloruro, precipitación con sulfato amónico, y filtración en gel de agarosa.

4.- La nitrato reductasa es una ferroproteína soluble de 67,000 daltons de peso molecular, que puede aceptar electrones del NADH y que se estimula específicamente por el FAD; su actividad se inhibe por p-HMB y cloruro, siendo la inhibición por cloruro de naturaleza competitiva con respecto al nitrato.
5.- La reducción de nitrato a amoníaco, catalizada por la nitrato reductasa, transcurre directamente sin la formación de compuestos intermedios. Se ha establecido una perfecta estequiometría entre oxidación de NADH, reducción de nitrato y producción de amoníaco (se oxidan 3 moles de NADH por mol de nitrato reducido y por mol de amoníaco aparecido).

6.- Por adición de Mo99-molibdato a un cultivo de células de *A. chroococcum* se ha demostrado que este metal se incorpora a la nitrato reductasa y permanece asociado a ella durante la purificación. El papel biológico del molibdeno en la asimilación del nitrato es el de ser constituyente funcional indispensable para la actividad nitrato reductasa.

7.- El tungstato inhibe el crecimiento de *A. chroococcum* cuando la fuente de nitrógeno es el nitrato, no presentándose este efecto cuando la bacteria crece en nitrato o amoníaco. Esto localiza el efecto del tungsteno en la reacción de reducción de nitrato a nitrato.
8. - Por adición de 185-tungstato ha sido posible incorporar también este metal a la nitrato reductasa de A. chroococcum, que en este caso resulta ser inactiva como reductasa del nitrato. La incorporación in vivo del tungsteno se inhibe competitivamente por el molibdeno.

9. - En A. chroococcum, el nivel celular de actividad nitrato reductasa se incrementa específicamente en respuesta a la concentración de hierro en el medio de cultivo, no afectándose aparentemente la nitrato reductasa.

10. - Tanto la nitrato reductasa como la nitrilo reductasa de A. chroococcum presentan dos formas interconvertibles, activa e inactiva.

11. - El nitrato a bajas concentraciones y en presencia de hidrosulfito provoca la inactivación de la nitrato reductasa de esta bacteria.

12. - El metil-viológeno y el cianato protegen a la nitrato reductasa de A. chroococcum contra la inactivación anteriormente descrita. El cianato no sólo protege al enzima contra esta inactivación, sino que además la revierte una
vez ha tenido lugar.

13.- La nitrilo reductasa de _A. chroococcum_ se inactiva por preincubación con NAD(P)H. El nitrilo protege y revierte de manera específica esta inactivación, pero sólo cuando ha sido causada por el NADH.

14.- En condiciones anaeróbicas, las células de _A. chroococcum_ son incapaces de asimilar el nitrilo. Esto parece relacionarse fisiológicamente con el nivel redox intracelular y con las formas anteriormente descritas, activa e inactiva, de la nitrilo reductasa de este organismo.

15.- Los enzimas del sistema asimilador del nitrato de la bacteria _A. chroococcum_ son de naturaleza adaptativa con carácter inducible.

16.- Los estudios cinéticos realizados sobre la reducción de nitrato a nitrilo por la NADH-nitrato reductasa de espinacas han permitido fijar las condiciones óptimas para la puesta a punto de un método enzimático para la determinación de microcántidades de nitrato, que ha sido utilizado con éxito en el presente trabajo.
VI. BIBLIOGRAFÍA

Relimpio, A.M., Guerrero, M.G., Paque, A., Losada, M.: A spectrophotometric method for the enzymatic microdetermina-
tion of nitrate. 5ª Congreso Nacional de Bioquímica, Resúmenes, p. 111. Barcelona (1971 b).

Asistió el Tribunal integrado por los académicos,
en el día de la fecha, para juzgar la Tesis doctoral
D. MIGUEL GARCÍA GUERRERO,
titulada "El sistema reductor de Nitrato en Azoto-bacter chroococcum",
acuerdo otorgó la calificación de SOBRESALIENTE
"cum laude"

Sevilla, 20 de Septiembre 1973

El Vocal, El Vocal,

El Presidente, El Secretario,