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Abstract— The top-down approach to system design allows 

obtaining separate specifications for each subsystem. In the case 

of vision systems, this means propagating system-level 

specifications down to particular specifications for e. g. the image 

sensor, the image processor, etc. This permits to adopt different 

design strategies for each one of them, as long as they meet their 

own specifications. This approach can lead to over-design, which 

is not always affordable. Conversely, if higher-level specifications 

are too tight, they can lead to impossible specifications at the 

lower levels. This is certainly the case for embedded vision 

systems in which high-performance needs to be paired with a 

very restricted power budget. In order to explore alternative 

architectures, we need tools that allow for simultaneous 

optimization of different blocks.  However, the link between low-

level non-idealities and high-level performance is missing. CAD 

tools for the design and verification of analog and mixed-signal 

integrated circuits are not well suited for the simulation of 

higher-level functionalities. Our approach is to extract relevant 

data from circuit-level simulation and to build an OpenCV model 

to be employed in the design of the algorithm. The utility of this 

approach is illustrated by the evaluation of the effect of column-

wise and pixel-wise FPN at the sensor on the performance of 

Viola-Jones face detection. 
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I.  INTRODUCTION 

CAD tools for the design of analog and mixed-signal 

integrated circuits are certainly limited for the simulation of 

system-level functionalities. Of course, higher-level processing 

tasks cannot and should not be handled at transistor-level 

accuracy —especially if one does not have supercomputing 

facilities [1]. Because of this, higher-level models and 

architectural descriptions have been introduced for behavioral 

simulation [2]. This connects the work of system designers 

with that of implementation designers. However, in the specific 

field of embedded vision systems, the gap between application 

engineers and physical implementation designers has not been 

filled yet. Several attempts have been reported to secure the 

flow between vision application development software and 

integrated circuit design tools [3] [4]. Yet application engineers 

and system designers have different worldviews. In order to 

make them compatible, a top-down approach is typically 

employed. Therefore, application engineers generate system-

level specifications that sooner or later propagate down the 

implementation hierarchy [5]. Each subsystem is designed to 

meet its own specifications, derived from system-level specs. 

For the conventional model in computer vision, in which image 

capture and processing are completely separated tasks, this 

does not represent a major difficulty. Chip designers will work 

for a particular set of specifications, i. e. spatial and temporal 

resolution, power consumption, etc. At the other end, computer 

scientists will take care of the algorithm once they receive their 

pictures fitting to the prescribed specifications. The result of 

this mindset is an architecture that is theoretically universal, 

although may not be capable of solving every problem. In the 

first place, this approach can lead to over-design. In the second, 

technological limits can be reached and specifications may end 

up being unrealizable. In the case of embedded vision systems, 

where high-performance and power-efficiency need to be 

combined, this approach can easily lead to no results. 

An alternative approach is to explore the interdependences 

between elements at the different levels of the hierarchy, in 

order to find optimal combinations. For this to be implemented, 

the optimization loop must incorporate a detailed, yet 

manageable, description of the system [6]. That includes 

parameters describing the algorithm performance and, at the 

same time, an accurate account of the implementation non-

idealities. Let us emphasize that, in embedded vision systems 

like smart cameras, computational efficiency is generally 

provided by the appropriate partition of algorithm tasks, the 

parallelization of heavy loads, the use of distributed resources 

and the incorporation of close-to-sensor processing and 

memory elements [7].  Sometimes these actions will require the 

design of specific circuit blocks and ad-hoc image sensing 

strategies. All of this needs to be worked out at transistor level, 

but at the same time, their effect in the overall performance of 

the algorithm needs to be quickly and accurately evaluated in 

order to guide the design flow [8]. Our proposal is to make use 

of the flexibility and versatility of an environment like 

OpenCV to incorporate hardware non-idealities to the 

evaluation of the algorithm performance. One of the major 

attractions of this approach is that computer vision experts will 

be able to consider deviations caused by the physical 

implementation when designing and fine-tuning their vision 

algorithms without having to develop any expertise in chip 

design and IC CAD tools. As an example, we have modeled a 
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3T-APS image sensor, incorporating deviations in the 

parameters of critical transistors, following the EMVA 1288 

standard [9]. The utility of this approach is then illustrated by 

the evaluation of the effect of column-wise and pixel-wise 

fixed-pattern-noise (FPN) on the performance of Viola-Jones 

face detection [10]. 

II. MODELING OF PHYSICAL IMPLEMENTATION ERRORS 

The EMVA standard No. 1288 [9] has been defined to 

characterize image sensors and camera chips. It is based on a 

linear mode (Fig. 1) in which photons (𝑛𝑝) are absorbed and 

converted to electrons (𝑛𝑒) according to the quantum efficiency 

(𝑄𝐸). These electrons, together with those that are product of 

noise and other device non-idealities (𝑛𝑑), are translated into a 

voltage (𝑦) by means of a conversion gain (𝐶𝐺). Finally, the 

output voltage is converted to a digital number (𝑦𝐷𝑁) by means 

of an ADC, that introduces a quantization noise (𝜎𝑞). 
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Fig. 1. EMVA standard 1288 image sensor model 

The average value of the pixel´s output voltage is obtained 

from the sum of the average photogenerated electrons and the 

average number of electrons generated by other means, what is 

called dark signal: 

�̅� = 𝐶𝐺(𝑛𝑒̅̅ ̅ + 𝑛𝑑̅̅ ̅) (1)  

Because of temporal and spatial noise contributions, the 

variance of the output voltage is given by:  

𝜎𝑦
2 = 𝐶𝐺2(𝜎𝑒

2 + 𝜎𝑑
2) + 𝜎𝑞

2 (2)  

where signal dependent contributions are included in 𝜎𝑒, like 

photon shot noise, and those contributions related to the reset 

transistor, the readout circuitry and dark current noise, are 

grouped into 𝜎𝑑. Besides,  𝜎𝑞 stands for the quantization noise. 

In the case of a 3T active pixel sensor [11] (Fig. 2), the 

conversion gain corresponds to the ratio between the 

elementary charge and the sensing capacitance: 

𝐶𝐺 = 𝑞 𝐶pix⁄  (3)  

The KTC noise coming from the thermal noise of the reset 

transistor, 𝑀RST, is one of the main sources of temporal noise. 

Expressed in number of electrons, its contribution amounts to:  

𝜎KTC
2 = 𝑘𝐵𝑇𝐶pix 𝑞2⁄  (4)  

 

Fig. 2. 3T Active pixel sensor 

The thermal noise of the readout transistor, 𝑀SF, is 

generated after conversion from electrons to voltage, therefore, 

expressed in electrons is:  

𝜎SF
2 = (1 𝐶𝐺2⁄ )(𝑘𝐵𝑇 𝐶col⁄ ) (5)  

Another important contribution is the fixed-pattern noise 

(FPN). In the model already described, FPN introduces 

additional components to both 𝜎𝑒 and 𝜎𝑑. These contributions 

constitute the so-called photoresponse non-uniformity (PNRU) 

and dark-signal non-uniformity (DSNU), respectively. In order 

to illustrate the effects of non-idealities in the system 

performance, and without loss of generality, we are going to 

consider two different contributions to DSNU. They are related 

with the operation of the source follower, 𝑀SF, which in a first 

approximation provides an output voltage given by:  

𝑉out = 𝑉pix − 𝑉𝑇SF
− √𝐼𝐵 𝛽SF⁄  (6)  

in this simplified model, the spatial variations of the transistor 

threshold voltage (𝑉𝑇SF
) introduce an offset in the output 

voltage that is different for each pixel. In terms of noise 

contributions, it can be incorporated to the model as:  

𝜎𝛥𝑉𝑇SF

2 = (1 𝐶𝐺2⁄ )(𝐴𝑉𝑇
2 𝑊SF𝐿SF⁄ ) (7)  

following Pelgrom’s mismatch model [12]. Also, variations of 

the column bus current (𝐼𝐵) introduce an additional offset. Its 

contribution in electrons to 𝜎𝑑  is: 

𝜎𝛥𝐼𝑄
2 =

𝐼𝐵

4𝛽SF𝐶𝐺2
(

𝐴𝛽
2

𝑊𝐵𝐿𝐵

+ 4
𝛽𝐵

𝐼𝐵

𝐴𝑉𝑇
2

𝑊𝐵𝐿𝐵

) 
(8)  

This model is certainly incomplete. The dependence of the 

saturation current of 𝑀SF on 𝑉out  —not contemplated in 

Eq. (6)— and the variations on its transconductance parameter 

and its substrate effect constant end up in a gain error —

PRNU— that translates into a contribution to  𝜎𝑒 in the model. 

In any case, the already mentioned terms suffice to illustrate 

the procedures. 



III. BEHAVIORAL SIMULATION IN OPENCV 

The Open Source Computer Vision Libray [13]—

commonly known as OpenCV— is a BSD-licensed library for 

computer vision and machine learning. It contains more than 

2500 optimized algorithms for object detection, object 

tracking, stereo vision, etc.  It is one of the most popular tools 

in the computer vision industry; we have therefore incorporated 

the already described sensor model into OpenCV. For example, 

in order to perform object detection we will make use of the 

already pre-trained classifiers. Their data are stored in XML 

files at the opencv/data/haarcascades/ folder. We 

only need to implement an image capture block (Fig. 3) that 

retrieves images from the dataset and processes them according 

to the sensor data, also stored in a XML file. After that, the 

preprocessed image enters the object detection routines. 

 

Fig. 3. Simulation of hardware non-idealities in OpenCV dataflow 

Of course, the object detection cascade can be re-trained to 

adapt to the peculiarities of the defined sensor. However, in our 

experiments we have employed the already available weights 

for face detection. 

IV. CASE STUDY: INFLUENCE OF FPN 

As an illustration of the possibilities of incorporating 

hardware non-idealities to the evaluation of the algorithm 

performance, we have chosen to test the influence of pixel-wise 

(pw) and column-wise FPN on the precision and recall rates of 

the Viola-Jones face detector included in the OpenCV library. 

Precision is the fraction of true positive detections from all 

objects detected —including false positives— and recall is the 

fraction of true positive detections from all the relevant objects 

in the dataset, were they detected or not. The images employed 

to test the algorithm is the Caltech Frontal Face Dataset [14], 

containing 450 896×592-pixel images belonging to 27 different 

people. Fig. 4 displays an example of an image of the dataset 

affected by growing values of both pixel-wise and column-wise 

FPN. 

The consequences of applying different values for the 

mismatch in the threshold of the pixels’ source follower, which 

results in a pw-FPN, and the column’ bias current, that results 

in a cw-FPN, can be seen in Figs. 5 to 9. In all these graphs, 

pw-FPN is varied for a fixed value of the cw-FPN in the (a) 

plot, and the other way around in the (b) plot. Within each 

graph, the darker/reddish lines correspond to the smallest 

values of the alternative parameter —which ranges from 0% to 

100% in steps of 5%— while the lighter/bluish to the largest.   

 
(a) 

 
(b) 

Fig. 4. Output images for growing values of (a) pw-FPN and (b) cw-FPN 

 
(a)    (b) 

Fig. 5. True positive detections as a function of (a) pw- FPN and (b) cw-FPN 

 
(a)    (b) 

Fig. 6. False positive detections vs. (a) pw- FPN and (b) cw-FPN 



 
(a)    (b) 

Fig. 7. False negative detections vs. (a) pw- FPN and (b) cw-FPN 

 
(a)    (b) 

Fig. 8. Precision vs. (a) pw- FPN and (b) cw-FPN 

 
(a)    (b) 

Fig. 9. Recall vs. (a) pw- FPN and (b) cw-FPN 

It can be seen that for a particular value of cw-FPN, by 

increasing the value of pw-FPN —what can be seen in (a) 

plots—, the degradation of different performance indexes like 

the number of true positive detections, false positives, false 

negatives, precision and recall; is much weaker than the 

variation obtained by fixing pw-FPN and increasing cw-FPN 

—which is depicted in (b) plots. It can be concluded that cw-

FPN has a stronger deteriorating effect in the object detection 

algorithm than pw-FPN has. Therefore, the major circuit design 

efforts should be put in eliminating cw-FPN. Or equivalently, 

from the point of view of the algorithm, a new cascade of 

classifiers could be trained to cope with the artifacts caused by 

a large cw-FPN. Either way, the influence of hardware non-

idealities are evidenced with this methodology, allowing 

comprehensive optimization and co-design of image sensor 

hardware and algorithm parameters.  

V. CONCLUSIONS 

The design of an embedded vision system cannot always be 

accomplished by a top-down approach. Optimization involving 

design parameters at different levels may be required. It is 

possible to work at algorithm levels and still incorporate a low-

level description of the image sensor non-idealities in order to 

evaluate their influence on the vision algorithm performance. A 

feasible way to do it is to incorporate the necessary models into 

OpenCV library. The major advantage is that it is well-known 

by the vision application developer community. Co-design of 

vision hardware and software is in this way possible. As an 

example, we have displayed the effect of pw- and cw-FPN on 

precision and recall of the Viola-Jones algorithm. 
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