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The uniformly accelerated motion in General Re-
lativity from a geometric point of view

Daniel de la Fuente

Abstract. The notion of a uniformly accelerated rectilinear motion of an ob-
server in a general spacetime is analysed in detail. From a geometric viewpoint,
a uniformly accelerated observer may be seen as a Lorentzian circle. Finally, we
�nd geometric assumptions to ensure that an inextensible uniformly accelerated
rectilinear observer does not disappear in a �nite proper time.

1. Introduction

The de�nition of uniformly accelerated motion in General Relativity has
been discussed many times over the last 50 years. In the pioneering work by
Rindler [4], it was partially motivated by some aspects of intergalactic rocket
travel by use of the special relativistic formulas for hyperbolic motion.

The relation between uniformly accelerated motion and Lorentzian circles
in Lorentz-Minkowski spacetime was used by Rindler in [4] to de�ne what he
named hyperbolic motion in General Relativity, extending uniformly accelerated
motion in Lorentz-Minkowski spacetime.

First, we present an approach to the study of uniformly accelerated motion
in General Relativity in the realm of modern Lorentzian geometry. In order
to do that, let γ : I −→ M be an observer in the spacetime M . Its (proper)
acceleration is given by the covariant derivative of its velocity γ ′, i.e., Dγ ′

dt .
Intuitively, the particle obeys a uniformly accelerated motion if its acceleration
remains to be unchanged. Mathematically, we need a connection along γ which
permits to compare spatial directions at di�erent instants of the life of γ. In
General Relativity this connection is known as the Fermi-Walker connection

of γ. Thus, using the Fermi-Walker covariant derivative D̂
dt , we will say that a

particle obeys a uniformly accelerated (UA) motion if,

D̂
dt

(
Dγ ′

dt

)
= 0. (1)

The family of UA observers in the Lorentz-Minkowski spacetime Ln was
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completely determined long time ago [4]. It consists of timelike geodesics and
Lorentzian circles. For instance, in L2, using the usual coordinates (x, t), the
UA observer γ(τ) =

(
x(τ), t(τ)

)
throughout (0, 0) with zero velocity relative to

certain family of inertial observers (the integral curves of vector �eld ∂t) and
proper acceleration a is given by,

x(τ) = c2

a

[
cosh

(
aτ
c

)
− 1
]
, t(τ) =

c

a
sinh

(aτ
c

)
,

where τ ∈ R is the proper time of γ, and c is the light speed in vacuum.

In this paper we expose how UA observers can be seen as Lorentzian cir-
cles in any general spacetime. After that, we characterize UA observers as the
projection on the spacetime of the integral curves of a vector �eld de�ned on a
certain �ber bundle over the spacetime. Using this vector �eld, the completeness
of inextensible UA motions is analysed in the search of geometric assumptions
which assure that inextensible UA observers do not disappear in a �nite pro-
per time (in particular, the absence of timelike singularities). In particular, any
inextensible UA observer is complete under the assumption of compactness of
the spacetime and that it admits a conformal and closed timelike vector �eld.

2. Uniformly accelerated observer as a Lorentzian

circle

A spacetime is a time orientable n(≥ 2)− dimensional Lorentzian manifold
(M, 〈 , 〉), endowed with a �xed time orientation. As usual, we will consider an
observer in M as a (smooth) curve γ : I −→ M , I an open interval of R, such
that 〈γ ′(t), γ ′(t)〉 = −1 and γ ′(t) is future pointing for any proper time t of γ.
At each event γ(t) the tangent space Tγ(t)M splits as

Tγ(t)M = Tt ⊕Rt,

where Tt = Span{γ ′(t)} and Rt = T⊥t . Rt is interpreted as the instantaneous
physical space observed by γ at t. Clearly, the observer γ is able to compare
spatial directions at t, but in order to compare v1 ∈ Rt1 with v2 ∈ Rt2 , the
observer γ must use a suitable connection. We proceed to describe it.

For each Y ∈ X(γ) put Y Tt , Y
R
t the orthogonal projections of Yt on Tt and

Rt, respectively, i.e., Y Tt = −〈Yt, γ ′(t)〉 γ ′(t) and Y Rt = Yt − Y Tt . In this way, if
∇ denotes the Levi-Civita connection, we have, [5, Prop. 2.2.1],

Along this paper the signature of a Lorentzian metric is (−,+, ...,+).
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Proposition 2.1. There exists a unique connection ∇̂ along γ such that

∇̂XY =
(
∇XY T

)T
+
(
∇XY R

)R
,

for any X ∈ X(I) and Y ∈ X(γ).

This connection ∇̂ is called the Fermi-Walker connection of γ. It shows the
suggestive property that if Y ∈ X(γ) satis�es Y = Y R (i.e., Yt may be observed

by γ at any t) then
(
∇̂XY

)
t
∈ Rt for any t.

Denote by D̂/dt the covariant derivative corresponding to ∇̂. Then, we have
[5, Prop. 2.2.2],

D̂Y

dt
=
DY

dt
+ 〈γ ′, Y 〉 Dγ

′

dt
− 〈Dγ

′

dt
, Y 〉 γ ′, (2)

for any Y ∈ X(γ). Note that D̂
dt = D

dt if and only if γ is free falling.

The acceleration Dγ ′

dt satis�es Dγ ′

dt (t) ∈ Rt, for any t. Therefore, it may be
observed by γ whereas the velocity γ ′ is not observable by γ.

Now, we are in a position to give rigorously the notion of UA observer. An
observer γ : I −→M is said to obey a uniformly accelerated motion if

P̂ γt1,t2

(
Dγ ′

dt
(t1)

)
=
Dγ ′

dt
(t2), (3)

for any t1, t2 ∈ I with t1 < t2, equivalently, if the equation (1) holds everywhere
on I, i.e., Dγ

′

dt is Fermi-Walker parallel along γ. Clearly, if γ is free falling, then
it is a UA observer.

Since we deal with a third-order ordinary di�erential equation, the following
initial value problem has a unique local solution,

D̂
dt

(
Dγ ′

dt

)
= 0, (4)

γ(0) = p, γ ′(0) = v, Dγ ′

dt (0) = w,

where p ∈ M and v, w ∈ TpM such that |v|2 = −1, 〈v, w〉 = 0, |w|2 = a2, and

a is a positive constant. In addition, from de�nition it is clear that
∣∣Dσ ′
dt

∣∣2(t) is
constant on I.

Taking into account formula (2), an observer γ satis�es equation (1) if and
only if

D2γ ′

dt2
=

〈
Dγ ′

dt
,
Dγ ′

dt

〉
γ ′, (5)
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which is a third order equation.

Consider a UA observer γ : I −→ M with a =
∣∣Dγ ′
dt

∣∣ > 0 and put e1(t) =

γ ′(t), e2(t) = 1
a
Dγ ′

dt (t). Then, from (5) we have

De1
dt

= ae2(t) and
De2
dt

= ae1(t).

Conversely, assume this system holds true for an observer γ with a > 0 constant.
Then, a (non free falling) UA observer may be seen as a Lorentzian circle of
constant curvature a and identically zero torsion.

The previous results can be summarized as follows,

Proposition 2.2. γ : I −→M is a UA observer i� one of the following asser-
tions holds:

(a) γ is a solution of third-order di�erential equation (5).

(b) γ is a Lorentzian circle or it is free falling.

(c) γ has constant curvature and the remaining curvatures equal to zero.

(d) γ, viewed as an isometric immersion from (I,−dt2) to M , is totally um-
bilical with parallel mean curvature vector.

3. Completeness of the inextensible UA trajecto-

ries

First of all, we are going to relate the solutions of equation (5) with the
integral curves of a certain vector �eld on a Stiefel bundle type on M .

Given a Lorentzian linear space E and a ∈ R, a > 0, denote by V an,2(E) the
(n,2)-Stiefel manifold over E, de�ned by

V an,2(E) =
{

(v, w) ∈ E2 : |v|2 = −1, |w|2 = a2, 〈v, w〉 = 0
}
.

We will call (n,2)-Stiefel bundle, V an,2(M), to the bundle over M with �ber
V an,2(TpM).

A key tool in the study of completeness is contained in the following lemma,
which is proved in detail in [2].

Lemma 3.1. There exists a unique vector �eld G on V an,2(M) such that the

curves t 7−→
(
γ(t), γ ′(t), Dγ

′

dt (t)
)
are the integral curves of G, for any solution

γ of equation (4).
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Once de�ned G, we will look for assumptions which assert its completeness.
The following result directly follows from Lemma 3.1.

Lemma 3.2. Let γ : [0, b) −→M be a solution of equation (4) with 0 < b <∞.
The curve γ can be extended to b as a solution of (4) if and only if there exists

a sequence
{
γ(tn), γ ′(tn), Dγ

′

dt (tn)
}
n
which is convergent in V an,2(M).

Although we know that |γ ′(t)|2 = −1, this is not enough to apply Lemma
3.2 even in the geometrically relevant case of M compact.

Recall that a vector �eld K on M is said closed and conformal if satis�es

∇XK = hX for all X ∈ X(M). (6)

Note that for any curve γ : I −→M , if K is closed and conformal, we have

d

dt
〈K, γ ′〉 =

〈
K,

Dγ ′

dt

〉
+ h(γ)| γ ′|2. (7)

The following result, inspired from [1, Lemma 9], will be decisive to assure
that the image of the curve in V an,2(M), associated to a UA observer γ, is
contained in a compact subset.

Lemma 3.3. Let M be a spacetime and let Q be a unitary timelike vector �eld.
If γ : I −→ M is a solution of (4) such that γ(I) lies in a compact subset of

M and 〈Q, γ ′〉 is bounded on I, then the image of t 7−→
(
γ(t), γ ′(t), Dγ

′

dt

)
is

contained in a compact subset of V an,2(M) where a is the constant |Dγ
′

dt |.

Proof. Consider the 1-form Qb metrically equivalent to Q and the associated
Riemannian metric gR := 〈 , 〉+ 2Qb ⊗Qb. We have,

gR(γ ′, γ ′) = 〈γ ′, γ ′〉+ 2 〈Q, γ ′〉2,

which, by hypothesis, is bounded on I. Hence, there exists a constant c > 0 such
that (

γ(I), γ ′(I), Dγ
′

dt (I)
)
⊂ C,

C :=
{

(p, v, w) ∈ V an,2(M) : p ∈ C1, gR(v, v) ≤ c
}
,

where C1 is a compact set on M such that γ(I) ⊂ C1. Hence, C is a compact
in V an,2(M). 2

Now, we are in a position to state the following completeness result.
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Theorem 3.1. Let M be a spacetime which admits a timelike conformal and
closed vector �eld K. If ı́nfM

√
−〈K,K〉 > 0 then, each solution γ : I −→M of

(4) such that γ(I) lies in a compact subset of M can be extended.

Proof. Let I = [0, b), 0 < b < +∞, be the domain of a solution γ of equation
(4). Derivating (7), it follows

d2

dt2
〈K, γ ′〉 =

〈DK
dt

,
Dγ ′

dt

〉
+ 〈K, D

2γ ′

dt2
〉 − d

dt
(h ◦ γ).

The �rst right term vanishes becauseK is conformal and closed. On the other
hand, the second right term equals to a2〈K, γ ′〉. Thus, the function t 7→ 〈K, γ ′〉
satis�es the following di�erential equation,

d2

dt2
〈K, γ ′〉 − a2〈K, γ ′〉 = (h ◦ γ)′(t). (8)

Using now that γ(I) is contained in a compact of M , the function h ◦ γ is
bounded on I. Moreover, since I is assumed bounded, using (8) there exists a
constant c1 > 0 such that

|〈K, γ ′〉| < c1. (9)

Now, if we put Q := K
|K| , where |K|

2 = −〈K,K〉 > 0, then Q is a unitary
timelike vector �eld such that, by (9),

|〈Q, γ ′〉| ≤ mc1 on I,

where m = supM |K|−1 < ∞. The proof ends making use of Lemmas 3.2 and
3.3. 2
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