Evaluation of rare earth on Layered Silicates under Subcritical Conditions: Effect of the Framework and Interlayer Space Composition

Pablo Chain¹, Agustín Cota¹², Said El Mrabet¹, Esperanza Pavón³, M. Carolina Pazos¹, María D. Alba¹*

¹Instituto Ciencia de los Materiales de Sevilla- Departamento de Química Inorgánica, CSIC-Universidad de Sevilla. Avda. Américo Vespucio, 49. 41092-Sevilla (Spain)
²Laboratorio de Rayos-X. Centro de Investigación, Tecnología e Investigación de la Universidad de Sevilla (CITIUS). Avda. Reina Mercedes, 4b. 41012-Sevilla (Spain)
³Unité de Catalyse et de Chimie du Solide, UCCS, CNRS, UMR8181, Université Lille Nord de France, 59655 Villeneuve d’Ascq (FRANCE)

Abstract

Clay-based minerals are considered to be an important component in backfill barriers due to both their ability to seal and adsorb radioactive waste and to interact chemically with it under subcritical conditions. Herein, we describe a systematic study of the properties of layered silicates that could affect their hydrothermal reactivity, namely type of layers, octahedral occupancy, origin and total amount of the layer charge, and nature of the interlayer cation. The silicates studied were selected on the basis of their different characteristics associated with these properties and were treated hydrothermally at 300°C for 48 h in a 7.3·10⁻² M Lu(NO₃)₃·3.6H₂O solution. The final products were analyzed by X-ray diffraction and solid-state NMR spectroscopy. All the layered silicates studied were found to be able to generate a Lu₂Si₂O₇ phase after hydrothermal treatment.

* e-mail address of the corresponding author: alba@icmse.csic.es
under subcritical conditions, thereby confirming the participation of a chemical mechanism of the clay barrier generating phases being stables with temperature and pH conditions. However, the extent of this reaction depends to a large extent on the physicochemical properties of the framework and the interlayer space composition, such as the presence or absence of an octahedral sheet, the degree of occupancy of this sheet, and the origin and total layer charge. Therefore, this study allows tuning the clay mineral framework characteristic that favors the rare earth cations (as trivalent actinide simulator) immobilization.

Key Words—Bentonite, smectite, Engineered barrier, disilicates, rare-earth, hydrothermal treatment, subcritical conditions, X-ray diffraction, MAS-NMR, radioactive waste.

1. Introduction

High-level actinide-containing radioactive waste has become a key environmental problem with the development of nuclear energy as a safe and efficient approach for long-term waste storage must be found. A deep geological repository (DGR) based on an engineered and natural multibarrier system is considered to be the most promising method for the management of long-lived nuclear waste (Savage and Chapman., 1982). However, the radionuclides stored in a DGR may reach the geosphere and the biosphere in the long-term as a result of groundwater-induced dissolution of the canister and subsequent upward transport by the water through the barriers and host rock. The most efficient way to enhance radionuclide retention by sorption involves the construction of engineered barriers, which are usually composed of clays (Meunier et al., 1998). Within the DGR, clay-engineered barriers, which are usually placed between the metal canister containing the radioactive
waste and external concrete barriers, play a major role in radionuclide retention. The clay minerals used tend to have low permeability and diffusivity, a high sorption capacity, and strong buffering properties (Meunier et al., 1998; Landais, 2006; Itakura et al., 2010). Smectites (the main constituent of the bentonites) are generally considered to be the most efficient of the clays used for this purpose due to their ability to undergo strain without fracturing, their low hydraulic conductivity, high cation sorption capacity, and their ability to expand and enter into close contact with both waste and rock (Pusch, 2006). However, both the physical and chemical nature of smectites is a key issue in the design of these barriers as factors related to their microstructure and chemical properties, such as clay geometry and isomorphic substitutions, may affect radionuclide sorption (Galunin et al., 2010).

Groundwater infiltration, which can transport the radionuclides in dissolved form or as colloids or small particles, is one of the main handicaps to be overcome during the design and construction of safe nuclear waste repositories. Thus, if the water reaches the canister and corrodes it, the barrier system should be able to retain the radionuclides in the water and avoid their transport away from the repository (Cuadros, 2008). Interaction of this barrier material with groundwater can, however, modify its physical and chemical properties, thus decreasing its groundwater isolation capacity or, in the case of canister failure, decreasing the radionuclide retention capacity of clay materials (Pusch et al., 2007). Loss of the swelling and the cationic-exchange capacity of these materials under DGR conditions has been well studied (Jennings and Thompson, 1986; Eberl et al., 1993; Cuadros and Linares, 1996) and is recognized to be the main drawback to the use of bentonite in DGRs (Meunier et al., 1998; Bauer et al., 2001). In light of this, an alternative and effective immobilization mechanism could involve the chemical retention of actinides
by bentonite. This assumption is supported by studies of Perdigón (2002) and Alba and Chaín (2005, 2007), who demonstrated that lutetium disilicate (Lu$_2$Si$_2$O$_7$) forms when a nitric acid solution of lutetium reacts with saponite under pressures and temperatures similar to those found in a DGR, even after weathering of the smectite. Moreover, the persistence of Lu$_2$Si$_2$O$_7$ under hydrothermal conditions covering a wide range of pH and different salt solutions has been demonstrated (Alba and Chain, 2007). Disilicate-phase synthesis has therefore been proposed to be a possible long-term retention solution for trivalent actinide cations.

To ensure optimal trivalent radioactive cation immobilization by chemical interaction, it is important to understand the structural properties of smectites that enhance their reactivity with Ln$^{3+}$ ions and lead to formation of the disilicate phase. This information could be extremely useful in finding smectites that yield the disilicate phase under even milder conditions than those already reported, and would be especially relevant to the design of effective repositories for high-level radioactive waste.

The main aim of this paper is to characterize the formation of Lu$_2$Si$_2$O$_7$ from a set of different phyllosilicates upon treatment with a Lu$^{3+}$ solution under subcritical conditions and to establish the chemical and structural characteristics of these phyllosilicates that favor this chemical reaction. Although Lu$^{3+}$ is not the best lanthanide mimic of the trivalent actinides most commonly found in high activity radioactive waste (Np, Am, and Cm) (Astudillo, 2001), it is has been chosen because Alba et al. (2009) have shown that the formation of rare-earth disilicates is common to all rare earths, with lutetium being the most reactive.
2. Materials and methods

2.1. Materials

One of the seven well-characterized phyllosilicates selected for this study (structural formulae are shown in Table 1) was a 1:0 phyllosilicate (with only a tetrahedral sheet, T), whereas the remainder had a 2:1 layer structure (T-O-T structure). The 1:0 phyllosilicate selected was a synthetic kanemite, Na[Si₂O₄(OH)].3H₂O, which is a layered silicate containing only one sheet of orthosilicate tetrahedra. The orthosilicate groups are condensed into three of its vertices (Q³) in an irregular hexagonal arrangement. The silicate sheets are bound by hydrogen bonds, and hydrated Na⁺ cations that interact strongly with the hydroxyl groups of the sheets are found in the interlayer space. A more detailed structural description of this silicate can be found elsewhere (Alba et al., 2006). The selected 2:1 phyllosilicates include a dioctahedral and a trioctahedral layered silicate, which are almost free of no substitutional charge (pyrophyllite and talc respectively), three trioctahedral smectites (saponite, hectorite, and Laponite®), and one trioctahedral vermiculite, namely eucatex (Williams-Daryn et al., 2002). Two of these silicates (vermiculite and saponite) contain Al substituting for Si in the tetrahedral sheet of the clay, whereas the rest contain only Si in the tetrahedral sheet. Hectorite and Laponite® contain Li substituting for Mg in the octahedral sheet and differ in their degree of crystallization, which is poorer in Laponite® than in hectorite. Original samples with particle diameters of less than 2 μm were used after removal of carbonates and organic matter.

Finally, a Na- Hectorite was prepared by ion-exchange according to the method described by Miller et al. (1982).
2.2. Hydrothermal treatments

A 300 mg sample of the powdered silicate and 50 mL of 7.3×10^{-2} M Lu(NO$_3$)$_3$·3.6H$_2$O solution were transferred into a stainless steel T316SS hydrothermal reactor and heated to 300º C for 48 hours under autogenous pressure. After this time the reactor was cooled to room temperature and the solids separated by filtration, washed repeatedly with distilled water, and allowed to dry in air at 25ºC. Although geochemical waste degradation and waste/rock interaction processes in the hydrothermal environment remain predictable up to temperatures of about 200º C, many studies devoted to simulating deep geological disposal conditions use temperatures of up to 350º C to increase the reaction rates (Mather et al., 1982; Savage and Chapman, 1982; Allen and Wood, 1988; Alba and Chain, 2007). The low solid/liquid ratio has been used in accordance with previous related works (Alba and Chain, 2005; Alba et al., 2009; Galunin et al., 2009; 2010; 2011) and to allow performing the comparison of the results.

2.3. Characterization

2.3.1. X-ray powder diffraction (XRD).

XRD patterns were obtained using a Bruker D8I instrument at CITIUS (Centre of Research, Technology and Innovation of Seville University), University of Seville (Spain). This diffractometer works with a Ni-filtered Cu K$_\alpha$ radiation, at 40 kV and 40 mA. Diffractograms were obtained from 3 to 70º 20 at a scan step of 0.05º 20 and with a counting time of 3 s.
2.3.2. NMR spectroscopy (MAS NMR).

29Si, 27Al, and 1H single-pulse spectra were recorded using a Bruker DRX400 spectrometer with a magnetic field of 9.36 T and equipped with a multinuclear probe by the Spectroscopy Service at ICMS (Material Science of Seville, CSIC-US). powdered samples were packed in 4 mm zirconia rotors and spun at 12 kHz. 1H MAS NMR spectra were obtained at a frequency of 400.13 MHz using a typical $\pi/2$ pulse width of 4.5 μs and a delay time of 5 s. 29Si MAS NMR spectra were obtained at a frequency of 79.49 MHz using a pulse width of 2.7 μs ($\pi/2$ pulse length = 8.1 μs) and a delay time between 60 and 600 s. 27Al MAS NMR spectra were recorded at 104.26 MHz with a pulse width of 1.1 μs ($\pi/2$ pulse length = 11.0 μs) and delay time of 3 s. Chemical shifts are reported in ppm with respect to tetramethylsilane for 29Si and 1H and a 0.1 M solution of AlCl$_3$ for 27Al. All spectra were simulated using a modified version of the Bruker Winfit program to handle the finite spinning speed in MAS experiments (Massiot et al., 2002). A Gaussian–Lorentzian model was used for all peaks. The fitted parameters were intensity, position, line-width, and Gaussian/Lorentzian ratio.

3. Results

3.1. Phyllosilicates with no substitutional charge

The XRD pattern of kanemite (Fig. 1a) consisted of a set of reflections corresponding to those of the standard kanemite structure PDF 25-1309 with a θ20 basal spacing of 10.2 Å (Johan and Maglione, 1972). All these reflections disappeared after hydrothermal treatment in Lu$^{3+}$ solution (Fig. 1b) to give a pattern similar to that of
Lu$_2$Si$_2$O$_7$ (PDF 35-0326) with small reflections corresponding to the secondary phases tridymite (PDF 18-1170) and H$_2$Si$_2$O$_5$ (PDF 74-1548).

The XRD pattern of pyrophyllite (Fig. 1a) was indexed according to the PDF 46-1308 pattern, with a basal spacing of 9.1 Å. Hydrothermal treatment in Lu$^{3+}$ solution (Fig. 1b) did not alter the structure, crystallinity, or the collapsed state of the layers, which maintained the basal spacing of the starting material. The emergence of a new reflection at 14.6 ° 2θ was observed in the XRD pattern corresponding to boehmite (PDF 76-1871), which was previously observed as a product of hydrothermal treatment of pyrophyllite under aqueous acidic conditions at 300ºC (Alba et al., 2010), thus indicating that this structure shows some stability under hydrothermal conditions (Bentabol et al., 2003). The whole set of reflections for the Lu$_2$Si$_2$O$_7$ phase was also evident alongside some minor reflections for the H$_2$Si$_2$O$_5$ phase.

The XRD pattern of talc (Fig. 1a) was indexed according to PDF 29-1494, with a basal spacing of 9.2 Å due to the non-swelling layered silicate. The presence of talc in the XRD pattern of the treated sample (Fig. 1b) was minor, with the diffractogram being dominated by the Lu$_2$Si$_2$O$_7$ phase. No other secondary phases arising from the decomposition of talc were detected.

Analysis of the samples by MAS NMR spectroscopy was carried out to determine the presence of any change in short-range order. The 29Si MAS NMR spectra of the starting materials and those obtained after hydrothermal treatment (Fig. 2, Table 2) revealed a typical single signal centered at -97.3 ppm for kanemite due to the existence of Q3 silicon tetrahedra (Blasco et al., 1995). The spectra for treated samples show three signals at -91.8, -100.5, and -111.5 ppm. The absence of a signal at -97.3 ppm indicates the absence of a Si environment typical of kanemite. The most intense signal at -111.5 ppm was assigned to
the Q4(0Al) environment of tridymite, which presents a set of signals between -109.0 and -113.0 ppm with a maximum at -111.0 ppm (Engelhardt and Michel, 1987). The signal at -91.8 ppm corresponds to the Q1 environment of Lu\textsubscript{2}Si\textsubscript{2}O\textsubscript{7} (Alba et al., 2001a; 2001b) and implies a transformation of 11.4\% of kanemite to this phase. Finally, the minor contribution at -100.5 ppm was assigned to H\textsubscript{2}Si\textsubscript{2}O\textsubscript{5} (Heidemann et al., 1985). This finding is in good agreement with the XRD data. The transformation of kanemite after hydrothermal reaction was also evident in the 1H MAS NMR spectra (Fig. 2 right). Thus, the 1H MAS NMR spectrum of the initial sample contains two broad signals, one at 4.80 ppm, which was assigned to hydroxyl groups and free interlayer water, and the other at 14.80 ppm due to water involved in the bridging hydrogen bonds (Alba et al., 2006). Only a narrow signal at 4.70 ppm, which could be assigned to hydration water of the Lu\textsubscript{2}Si\textsubscript{2}O\textsubscript{7} and H\textsubscript{2}Si\textsubscript{2}O\textsubscript{5} phases, was observed after the hydrothermal treatment (Perdigón, 2002).

The 29Si NMR spectrum of pyrophyllite (Fig. 2, Table 2) shows a signal at -95.2 ppm corresponding to a Q3 coordination sphere with no Al atoms in the neighboring tetrahedra (Q3(0Al); Engelhardt and Michel, 1987). The spectra recorded after hydrothermal treatment show a contribution in the same position as for the untreated sample, along with two minor contributions due to Lu\textsubscript{2}Si\textsubscript{2}O\textsubscript{7} and H\textsubscript{2}Si\textsubscript{2}O\textsubscript{5} in a proportion of 4.3\% and 1.8\%, respectively. The 1H MAS NMR spectra of untreated and treated pyrophyllite show a single signal at 2.19 ppm, as could be expected for the 1H resonance signal of the hydroxyl group in dioctahedral 2:1 phyllosilicates (Alba et al., 2003). The 27Al MAS NMR spectra (not shown) of the untreated pyrophyllite (the only sample with framework Al) and that recorded after the hydrothermal treatment were found to be identical, with a single peak at ~0 ppm due to the octahedral Al environments (Engelhardt and Michel, 1987). These results again suggest the stability of the pyrophyllite structure.
after treatment. The formation of boehmite upon treatment of pyrophyllite produced no
spectral changes due to the octahedral coordination of Al in this phase (Engelhardt and
Michel, 1987).

Finally, talc showed a single contribution in the 29Si MAS NMR spectrum at -98.1
ppm due to Q3(0Al) (Sanz and Serratosa, 1984). The main peak (-91.7 ppm) in the
spectrum of the hydrothermally treated sample (83.6%) corresponds to the Q1 environment
of Lu$_2$Si$_2$O$_7$. The remaining talc 29Si signal at -97.7 ppm was found to be shifted towards
higher frequency (higher ppm value) upon hydrothermal treatment, possibly as a result of
vacancies in the octahedral sheet generated by Mg$^{2+}$ leaching (Luce and Park, 1972; Sanz
and Serratosa, 1984; Corma et al., 1987). Mg$^{2+}$ leaching from the octahedral sheet during
treatment was also evident from the shift of the hydroxyl 1H NMR signal (Fig. 2b, right)
towards higher frequency (Alba et al., 2003). The 1H MAS NMR spectrum of the treated
talc also shows a signal at 4.74 ppm due to hydration water of the Lu$_2$Si$_2$O$_7$ phase
(Perdigón, 2002).

3.2. Charged phyllosilicates

Structural changes in the long-range order of the charged trioctahedral 2:1
phyllosilicates after hydrothermal treatment were analyzed by XRD (Fig. 3 and 4). All the
reflections observed for the initial samples (Fig. 3a and 4a) were consistent with the general
and basal reflections of smectite and vermiculite, except the reflection at around 30° 20 in
hectorite, which corresponds to cristobalite (PDF 03-272). The 060 reflections were
observed at a 20 angle that corresponds to a distance of 1.51-1.53 Å between the reflection
planes, which is typical of trioctahedral 2:1 phyllosilicates (Grim, 1968). The 001 basal
reflection corresponds to a \(d_{001} \) value of around 12.0 Å and was assigned to a water monolayer around the interlayer cations (Alba et al., 2001a). The XRD pattern of Laponite\(^{\circledR}\) showed broader reflections than the other silicates, mainly due to its smaller particle size, which causes a relative loss of long-range order, and probably due to a mixed hydration state (Wheeler et al., 2005).

In general, a complete absence of \(hkl \) reflections (Fig. 3b and 4b) is observed after the hydrothermal treatment, thus indicating disruption of the basic structure of the silicates. Indeed, except for vermiculite, hydrothermal treatment caused a partial swelling of the layers due to the total replacement of the original interlayer cations by the trivalent cation Lu\(^{3+}\) (Alba et al., 2001a). The number and intensity of the basal reflections decreased, probably because of a lower-order stacking of the layers after treatment.

The emergence of small reflections corresponding to Lu\(_2\)Si\(_2\)O\(_7\) was evident in both hectorites (natural and homoionized in Na\(^+\)) after hydrothermal treatment (Fig. 3b). The XRD pattern of the treated Na-hectorite was dominated by the crystalline phases of \(\beta \)-cristobalite (PDF 89-3607) and enstatite (PDF 73-1937), which were accompanied by minor reflections due to H\(_2\)Si\(_2\)O\(_5\). No crystalline secondary phases were observed in the XRD pattern of the treated hectorite, which only exhibited a broad signal in the range 20–35° 2\(\theta \) due to the amorphous phase. The XRD pattern of treated Laponite\(^{\circledR}\) (Fig. 3b) only showed reflections due to Lu\(_2\)Si\(_2\)O\(_7\).

The XRD patterns of the treated saponite and vermiculite (Fig. 4b) were dominated by Lu\(_2\)Si\(_2\)O\(_7\), although other minor phases were also observed. Natrosilite (PDF 23-0529) and H(Mg\(_2\)(SiO\(_4\)))\(_8\) (PDF 87-2051) were formed in both samples, and kaolinite (PDF 78-1996) and Mg\(_{10}\)(Si\(_3\)O\(_{14}\))(OH)\(_4\) (PDF 81-544) were also observed in vermiculite.
The changes in short-range order produced by the hydrothermal treatment were followed by MAS NMR spectroscopic analysis of the active nuclei present in each silicate (Fig. 5–7 and Tables 3 and 4). The only major signal in the ^{29}Si MAS NMR spectrum of untreated hectorites (Table 3) was a peak in the range of chemical shifts associated with the Q^3 (0Al) environment at -95.0 ppm. The shift of this signal to higher frequencies with respect to talc is due to the isomorphic substitution of Li^+ for Mg^{2+} in the octahedral sheet, which resulted in a decrease in the electronegativity of the cations coordinated by the apical oxygen of the tetrahedral sheet (Weiss et al., 1987). Hydrothermal treatment resulted in more complex ^{29}Si MAS NMR spectra for both hectorites. These spectra were deconvoluted into six contributions (see Table 3). The signals for both these samples corresponded to similar environments but with different relative intensities. The main differences can be summarized as follows: (i) the $Q^3(0\text{Al})$ signal of the remaining hectorite was 27.1% in the natural hectorite and 5.8% in the Na-hectorite; (ii) the Q^1 environment of Lu$_2$Si$_2$O$_7$ (-91.7 ppm) was 13.3% and 12.7%, respectively; (iii) a signal at -79.8 ppm assigned to the Q^0 environment of X$_2$-Lu$_2$SiO$_5$ (16.4%; Becerro et al., 2004), which was absent in the Na-hectorite, was observed in the natural sample; and (iv) the other signals at around -85 ppm, -101 ppm, and -111 ppm corresponded to the secondary phases enstatite (Mägi et al., 1984), H$_2$SiO$_5$ (Heidemann et al., 1985) and β-cristobalite (Smith and Blackwell, 1983), which together contributed a total of 43.2% and 81.5%, respectively.

The initial spectrum of Laponite® (Table 3) was characterized by a main signal at -94.5 ppm, which was assigned to a $Q^3(0\text{Al})$ environment, along with a shoulder at -97.3 ppm and a minor peak at -85.2 ppm. The main signal shifted to higher frequency with respect to that for hectorite due to the increased layer-charge deficit in Laponite® (Weiss et al., 1987). The signal at -97.3 ppm was due to the presence of partially condensed Si
tetrahedra with anionic basal oxygens, in other words (SiO)$_3$SiO$^-$ (Wheeler et al., 2005), whereas the higher-frequency signal was assigned to silanol groups, namely (SiO)$_3$SiOH (Weiss et al., 1987; Wheeler et al., 2005). The signals of the original spectrum disappeared after hydrothermal treatment and two new signals, corresponding to δ-Na$_2$Si$_2$O$_5$ (Mortuza, 1989) and Lu$_2$Si$_2$O$_7$, appeared at -90.6 ppm (27.2%) and -91.7 ppm (72.8%), respectively.

The 29Si MAS NMR spectrum of the untreated saponite showed a signal with three contributions (Table 4): an intense signal at -95.8 ppm and two lower-intensity signals at -90.8 and -85.0 ppm, corresponding to Q3(0Al), Q3(1Al), and Q3(2Al) Si environments, respectively (Alba et al., 2001b). Calculation of the Si/Al ratio gave a value of 8.4, which agrees well with the theoretical value of 9.0 obtained from the chemical formula. The treated sample exhibited a 29Si MAS NMR spectrum containing four signals. The remaining saponite showed only a single 29Si contribution at -95.0 ppm (2.4%) due to the Q3(0Al) Si environment, thus indicating that hydrothermal treatment results in the absence of Q3(1Al) and Q3(2Al) Si environments, possibly due to partial leaching of Al from the tetrahedral sheet. The other three new signals are found at -91.7, -88.5, and -72.5 ppm and correspond to Lu$_2$Si$_2$O$_7$ (71.4%), natrosilite (Alba and Chain, 2005), and the Q1 Si environments of H(Mg$_2$(SiO$_4$))$_8$ (Engelhardt and Michel, 1987; Haiber et al., 1997).

The 29Si NMR signals obtained for vermiculite (Table 4) were abnormally broad due to the presence of Fe in its structure. Thus, the single signal with a maximum at -88.5 ppm, due to Q3 environments, observed for the untreated sample could be fitted to four peaks (Table 4). The small Si/Al ratio in this silicate (3.5) resulted in a greater contribution of Q3(mAl) with m\neq0 environments to the 29Si signal than in the saponite sample. The signals corresponding to the vermiculite disappeared after hydrothermal treatment and the 29Si MAS NMR spectrum was composed of three new signals at -91.4, -88.2, and -76.3
ppm, which were assigned to Lu₂Si₂O₇ (57.9%), natrosilite, and the Q¹ and Q⁰ Si environments of the magnesium silicate phases (Pacalo and Parise, 1992; Haiber et al., 1997) observed by XRD.

The ¹H MAS NMR spectra of the untreated smectites (Fig. 5 and 6, right) showed two well-resolved peaks, one in the range 0.30-0.65 ppm, which was assigned to framework hydroxyl groups, and the other in the range 3.70-4.30 ppm, which was assigned to interlayer water. The position of both signals was found to depend on the chemical composition of the smectite (Alba et al., 2003). In general, hydrothermal treatment resulted in a shift of the hydroxyl signal to greater frequency, as observed previously when vacancies in the octahedral sheet were produced by leaching of framework cations (Alba et al., 2003). This treatment also caused the water signal to shift to higher frequency due to replacement of the Na⁺ or Ca²⁺ interlayer cation by framework Mg²⁺, Al³⁺, or Lu³⁺ from the solution (Alba et al., 2003). Moreover, the water signals were found to be broader after treatment due to the miscellaneous composition of the interlayer space. The ¹H MAS NMR spectra of the untreated and treated vermiculite did not allow the two expected proton environments to be resolved due to the amount of paramagnetic impurities present in the silicate, thus meaning that these spectra were of little analytical value.

A ²⁷Al MAS NMR study was only carried out for the aluminum silicates saponite and vermiculite (Fig. 7), both of which showed a single signal at around 60 ppm due to tetrahedral Al (Engelhardt and Michel, 1987). The hydrothermal treatment of both samples resulted in the appearance of a new signal at around 0 ppm due to octahedral Al (Engelhardt and Michel, 1987) and disappearance of the signal at around 60 ppm as a result of Al leaching from the tetrahedral sheet. These findings are in good agreement with the
disappearance of the $Q^3(m\text{Al})$ with $m\neq0$ environments from the ^{29}Si MAS NMR spectra after treatment.

4. Discussion

The XRD and NMR results show that the 1:0 and 2:1 phyllosilicates are chemically suitable for $\text{Lu}_2\text{Si}_2\text{O}_7$ formation.

An analysis of the results for kanemite, pyrophyllite, and talc allow the role of the octahedral layer in the generation of lutetium disilicate to be defined. Likewise, the order of reactivity can be extracted from the contribution of the $Q^1\text{Si}$ environment ($\text{Lu}_2\text{Si}_2\text{O}_7$) to the ^{29}Si MAS NMR spectra, with talc being the most reactive (83.6%), followed by kanemite (11.4%), and, finally, pyrophyllite (4.3%). As can be seen from the XRD results, the higher hydrothermal stability of trioctahedral silicates with respect to their dioctahedral counterparts in neutral and acidic media (Alba et al., 2010) could favor the permanence of the laminar structure before the reaction with lutetium, and thus a suitable environment for generating the disilicate phase (Becerro et al., 2003). The laminar structure of the silicate has been shown to be the main factor favoring disilicate phase generation, thus meaning that the SiO_2 as a source of silicon is unable to produce disilicates under hydrothermal conditions (Perdigón, 2002).

The results obtained for kanemite are more difficult to interpret as two competing factors participate in the process. Thus, the absence of an octahedral sheet confers a high flexibility to the layers, thereby allowing this material to be used as a precursor for the synthesis of a large number of compounds (Kooli, 2002; Selvam et al., 2003) that could evolve towards stable structures under hydrothermal conditions. However, this same
flexibility is accompanied by a low hydrothermal stability that results in the evolution of Q^3
environments towards Q^4 condensation and therefore lower reactivity (Perdigón, 2002).

The layer charge in 2:1 phyllosilicates results from isomorphic substitutions in the
tetrahedral or octahedral sheets. The influence of this layer charge can be determined by
comparing the reactivity of saponite and hectorite/Laponite®. Thus, saponite and
Laponite® present a higher reactivity as regards the formation of RE disilicate (71.4% and
72.8%, respectively), followed by hectorite (13.3%). The marked difference in reactivity
between saponite and hectorite in favor of the former is due to substitutions in the
tetrahedral sheet rather than in the octahedral layer (Alba et al., 2001a; 2001b). Thus, Li+
leaches more easily than Mg$^{2+}$ from the octahedral sheet and the latter leaches more easily
than Al$^{3+}$ from the tetrahedral sheet. This is evident upon comparing the XRD diffraction
patterns of hectorite and saponite, with the former being compatible with the presence of
most of the components as an amorphous phase, whereas the persistence of the 001
reflection in the saponite XRD pattern is compatible with the presence of hydrated Lu$^{3+}$
and/or Al$^{3+}$ in the interlayer space. The marked difference in reactivity between Laponite®
and hectorite, which have a similar origin and layer charge, is due to the smaller particle
size in Laponite® (Wheeler et al., 2005). This smaller particle size and the largest number
of structural defects improve the reaction kinetics since this reaction follows a
reconstructive reaction mechanism (Archilla et al., 2006).

The influence of the layer charge on the hydrothermal reactivity can be studied by
comparing the results obtained for saponite and the vermiculite eucatex, with the main
difference between the two being the higher layer charge of the vermiculite. The formation
of Lu$_2$Si$_2$O$_7$ is higher for saponite (71.4%) than for vermiculite (57.9%), thus apparently
contradicting the observed guideline whereby substitutions in the tetrahedral sheet increase
the reactivity. Therefore, the main responsible for this reactivity order may be the highest hydrothermal stability of the saponite versus vermiculite, as previously reported by Alba et al. (2010). A possible explanation for this finding is that an increase in the number of substitutions in the tetrahedral sheet favors the leaching of Al$^{3+}$ cations, which in turn leads to disintegration of the structure to form a more stable and less reactive phase, like kaolinite. This is also reinforced by the greater reactivity shown by talc, which is a neutral trioctahedral layered silicate.

Finally, analysis of the effect of the interlayer cation on the synthesis is based on the results obtained from hectorites (natural Ca- Hectorite and homoionized with Na$^+$). Both these materials display a similar hydrothermal reactivity as regards Lu$_2$Si$_2$O$_7$ formation (ca. 13%) but with an important difference in terms of hydrothermal stability in favor of the natural hectorite (the remaining Q3(0Al) contribution was 27.1% and 5.8%, respectively). The long-range order is lost in both cases, as observed by XRD. In addition, the degree of crystallization of secondary products is more advanced in the Na- hectorite. Finally, the presence of X$_2$-Lu$_2$SiO$_5$, which has previously been detected as a degradation product when Ca is present in the reaction medium, was observed for the natural hectorite (Alba and Chain, 2007).

5. Conclusions

All the layered silicates studied are able to generate a Lu$_2$Si$_2$O$_7$ phase after hydrothermal treatment under subcritical conditions, thus demonstrating the additional chemical immobilization mechanism of the clay barrier. However, the extent of this
reaction depends on the presence or absence of an octahedral sheet, the degree of
occupancy of this sheet, and the total layer charge and its origin.

In the context of engineered-barrier safety, the structure of the selected bentonite
must fulfill the following conditions: 2:1 layer stacking (T-O-T structure) with complete
occupancy of the octahedral sheet, the absence of octahedral isomorphic substitutions, and
a moderate tetrahedral isomorphic substitution of Al for Si. As a secondary factor, sodium
is preferred to calcium as an interlayer cation because the presence of calcium in the
medium favors the formation of the Lu₂SiO₅ vs Lu₂Si₂O₇, a most stable phase. These
requirements provide a higher hydrothermal reactivity.

Acknowledgements

We gratefully acknowledge financial support from DGICYT and FEDER funds (Projects CTQ2010-14874).

References

smectites: Part I. A long-range order study. American Mineralogist 86, 115-123.

American Mineralogist 86, 124-131.

layered silicates in neutral and acidic media: Effect on engineered-barrier safety. Clays and Clay
Minerals 4, 501-514.

Alba, M.D., Chain, P., 2005. Interaction between Lutetium Cations and 2:1 Aluminosilicates under
19

Rare earth disilicate formation under subcritical conditions. Applied Clay Science 43, 369-375.

Economic Geology 53, 22-37.

Principios básicos y tecnología.”, Editorial ENRESA.

Becerro, A.I., Escudero, A., Florian, P., Massiot, D., Alba, M.D., 2004. Revising \(Y_2Si_2O_7\) and \(Y_2SiO_3\)

and 300 degrees C. Clay Minerals 38, 161-172.

Corma, A., Mifsud, A., Sanz, E., 1987. Influence of the chemical composition and textural characteristic of

Heidemann, D., Grimmer, A.R., Hübert, C., Starke, P., Mägi, M., 1985. Solid-state high-resolution Si-29 NMR-studies of polycrystalline phyllosilicic acids (H$_2$Si$_2$O$_5$)$_x$ at low and high magnetic-field. Zeitschrift für Anorganische und Allgémene Chemie 528, 22-36.

Table 1. Layered aluminosilicates used as starting materials

<table>
<thead>
<tr>
<th>Silicate</th>
<th>Source</th>
<th>Chemical Formulae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanemite(^1)</td>
<td>Synthetic(^a)</td>
<td>Na([Si_2O_4(OH)] \cdot 3H_2O)</td>
</tr>
<tr>
<td>Pyrophyllite(^2)</td>
<td>Natural Hillsboro</td>
<td>((Ca_{0.006}Na_{0.012}K_{0.018})[Si_4][Al_{1.95}Fe_{0.01}Ti_{0.005}Mg_{0.001}]O_{10}(OH)_2)</td>
</tr>
<tr>
<td>Talc(^3)</td>
<td>Natural Lillo</td>
<td>([Si_4][Mg_{2.95}Fe_{0.017}]O_{10}F_{0.15}(OH)_{1.81})</td>
</tr>
<tr>
<td>Hectorite(^4)</td>
<td>Natural(^b) S.Bernardino</td>
<td>(Ca_{0.17}[Si_{3.98}Al_{0.02}][Mg_{2.65}Al_{0.02}Li_{0.33}]O_{10}(OH)_2)</td>
</tr>
<tr>
<td>Laponite(^5)</td>
<td>Synthetic(^c)</td>
<td>(Na_{0.35}[Si_4][Mg_{7.71}Li_{0.2}]O_{10}(OH)_2)</td>
</tr>
<tr>
<td>Saponite(^6)</td>
<td>Natural(^b) California</td>
<td>(Na_{0.31}K_{0.0}Ca_{0.04}[Si_{3.6}Al_{0.4}][Mg_{2.8}Fe_{0.07}]O_{10}(OH)_2)</td>
</tr>
<tr>
<td>Vermiculite(^7)</td>
<td>Natural Eucatex</td>
<td>(Na_{0.7}[Si_{1.1}Al_{0.5}][Mg_{2.48}Al_{0.08}Fe_{0.31}Ti_{0.3}Mg_{0.01}]O_{10}(OH)_2)</td>
</tr>
</tbody>
</table>

(a) synthesized by Alba et al. (2006); (b) Source Clays Repository of the Clay Minerals Society, *University of Missouri, Columbia, USA*; (c) Solvay Alkali GMBH

(1) Alba et al., 2006; (2) Sánchez Soto et al., 1994; (3) Petit et al., 2004; (4) Laporte Industries Ltd, 1990; Levitz et al., 2000; (5) Prost, 1984; Alba et al., 2001a and 2001b; (6) Ames et al., 1958; (7) Williams-Daryn et al., 2002
Table 2. 29Si chemical shift, FWHM and area under the curve of the different contributions obtained from the fitting of the 29Si MAS NMR spectrum of kanemite, pyrophyllite and talc.

<table>
<thead>
<tr>
<th></th>
<th>δ (ppm)</th>
<th>FWHM (Hz)</th>
<th>%</th>
<th>phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>kanemite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting material</td>
<td>-97.3±0.1</td>
<td>99±1</td>
<td>100</td>
<td>Q^3(0Al)</td>
</tr>
<tr>
<td>After hydrothermal treatment in a 7.3·10⁻² M $\text{Lu(NO}_3\text{)}_3\cdot3.6\text{H}_2\text{O}$ solution</td>
<td>-91.8±0.1</td>
<td>97±2</td>
<td>11.4</td>
<td>$\text{Lu}_2\text{Si}_2\text{O}_7$</td>
</tr>
<tr>
<td></td>
<td>-100.5±0.2</td>
<td>134±37</td>
<td>0.9</td>
<td>$\text{H}_2\text{Si}_2\text{O}_5$</td>
</tr>
<tr>
<td></td>
<td>-111.5±0.1</td>
<td>461±3</td>
<td>87.7</td>
<td>Q^4(0Al)</td>
</tr>
<tr>
<td>pyrophyllite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting material</td>
<td>-95.2±0.1</td>
<td>111±1</td>
<td>100</td>
<td>Q^3(0Al)</td>
</tr>
<tr>
<td>After hydrothermal treatment in a 7.3·10⁻² M $\text{Lu(NO}_3\text{)}_3\cdot3.6\text{H}_2\text{O}$ solution</td>
<td>-92.1±0.1</td>
<td>161±11</td>
<td>4.3</td>
<td>$\text{Lu}_2\text{Si}_2\text{O}_7$</td>
</tr>
<tr>
<td></td>
<td>-95.0±0.1</td>
<td>104±1</td>
<td>93.9</td>
<td>Q^3(0Al)</td>
</tr>
<tr>
<td></td>
<td>-99.0±0.1</td>
<td>122±15</td>
<td>1.8</td>
<td>$\text{H}_2\text{Si}_2\text{O}_5$</td>
</tr>
<tr>
<td>talc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting material</td>
<td>-98.1±0.1</td>
<td>141±1</td>
<td>100</td>
<td>Q^3(0Al)</td>
</tr>
<tr>
<td>After hydrothermal treatment in a 7.3·10⁻² M $\text{Lu(NO}_3\text{)}_3\cdot3.6\text{H}_2\text{O}$ solution</td>
<td>-91.7±0.1</td>
<td>126±1</td>
<td>83.6</td>
<td>$\text{Lu}_2\text{Si}_2\text{O}_7$</td>
</tr>
<tr>
<td></td>
<td>-97.7±0.1</td>
<td>134±4</td>
<td>16.4</td>
<td>Q^4(0Al)</td>
</tr>
</tbody>
</table>
Table 3. 29Si chemical shift, FWHM and area under the curve of the different contributions obtained from the fitting of the 29Si MAS NMR spectrum of hectorite, Na- Hectorite and Laponite®

<table>
<thead>
<tr>
<th></th>
<th>δ (ppm)</th>
<th>FWHM (Hz)</th>
<th>% phase</th>
<th>phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>** Hectorite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting material</td>
<td>-95.0±0.1</td>
<td>239±2</td>
<td>100</td>
<td>Q3(0Al)</td>
</tr>
<tr>
<td>After hydrothermal treatment in a 7.3·10$^{-2}$ M Lu(NO$_3$)$_3$·3.6H$_2$O solution</td>
<td>-79.8±0.1</td>
<td>629±25</td>
<td>16.4</td>
<td>X$_2$-Lu$_2$SiO$_5$</td>
</tr>
<tr>
<td></td>
<td>-86.4±0.1</td>
<td>687±43</td>
<td>27.4</td>
<td>enstatite</td>
</tr>
<tr>
<td></td>
<td>-91.4±0.1</td>
<td>261±15</td>
<td>13.3</td>
<td>Lu$_2$Si$_2$O$_7$</td>
</tr>
<tr>
<td></td>
<td>-94.6±0.1</td>
<td>392±16</td>
<td>27.1</td>
<td>Q3(0Al)</td>
</tr>
<tr>
<td></td>
<td>-100.9±0.3</td>
<td>740±74</td>
<td>10.8</td>
<td>H$_2$Si$_2$O$_5$</td>
</tr>
<tr>
<td></td>
<td>-110.2±0.1</td>
<td>390±28</td>
<td>5.0</td>
<td>cristobalite</td>
</tr>
<tr>
<td>**Na-Hectorite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>After hydrothermal treatment in a 7.3·10$^{-2}$ M Lu(NO$_3$)$_3$·3.6H$_2$O solution</td>
<td>-84.1±0.2</td>
<td>481±44</td>
<td>7.1</td>
<td>enstatite</td>
</tr>
<tr>
<td></td>
<td>-91.6±0.1</td>
<td>167±6</td>
<td>12.7</td>
<td>Lu$_2$Si$_2$O$_7$</td>
</tr>
<tr>
<td></td>
<td>-95.3±0.1</td>
<td>215±28</td>
<td>5.8</td>
<td>Q3(0Al)</td>
</tr>
<tr>
<td></td>
<td>-100.7±0.3</td>
<td>667±65</td>
<td>14.4</td>
<td>H$_2$Si$_2$O$_5$</td>
</tr>
<tr>
<td></td>
<td>-111.5±0.1</td>
<td>273±15</td>
<td>60.0</td>
<td>cristobalite</td>
</tr>
<tr>
<td>**Laponite®</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting material</td>
<td>-85.2±0.1</td>
<td>316±7</td>
<td>7.7</td>
<td>Q3(0Al), (SiO)$_3$SiOH</td>
</tr>
<tr>
<td></td>
<td>-94.5±0.1</td>
<td>263±2</td>
<td>79.0</td>
<td>Q3(0Al)</td>
</tr>
<tr>
<td></td>
<td>-97.3±0.1</td>
<td>188±5</td>
<td>13.3</td>
<td>Q3(0Al), (SiO)$_3$SiO$^-$</td>
</tr>
<tr>
<td>After hydrothermal treatment in a 7.3·10$^{-2}$ M Lu(NO$_3$)$_3$·3.6H$_2$O solution</td>
<td>-90.6±0.1</td>
<td>258±4</td>
<td>27.2</td>
<td>δ-Na$_2$Si$_2$O$_3$</td>
</tr>
<tr>
<td></td>
<td>-91.7±0.1</td>
<td>90±1</td>
<td>72.8</td>
<td>Lu$_2$Si$_2$O$_7$</td>
</tr>
</tbody>
</table>
Table 4. 29Si chemical shift, FWHM and area under the curve of the different contributions obtained from the fitting of the 29Si MAS NMR spectrum of saponite and vermiculite eucatex

<table>
<thead>
<tr>
<th></th>
<th>δ (ppm)</th>
<th>FWHM (Hz)</th>
<th>%</th>
<th>phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>saponite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting material</td>
<td>-85.3±0.1</td>
<td>55±10</td>
<td>0.4</td>
<td>Q3(2Al)</td>
</tr>
<tr>
<td></td>
<td>-90.8±0.1</td>
<td>210±2</td>
<td>35.0</td>
<td>Q3(1Al)</td>
</tr>
<tr>
<td></td>
<td>-95.8±0.1</td>
<td>220±1</td>
<td>64.6</td>
<td>Q3(0Al)</td>
</tr>
<tr>
<td>After hydrothermal treatment in a 7.3·10^{-2} M Lu(NO$_3$)$_3$·3H$_2$O solution</td>
<td>-72.5±0.1</td>
<td>146±11</td>
<td>2.6</td>
<td>Q1</td>
</tr>
<tr>
<td></td>
<td>-88.5±0.1</td>
<td>582±26</td>
<td>23.8</td>
<td>natrosilite (β-Na$_2$Si$_2$O$_5$)</td>
</tr>
<tr>
<td></td>
<td>-91.7±0.2</td>
<td>122±1</td>
<td>71.4</td>
<td>Lu$_2$Si$_2$O$_7$</td>
</tr>
<tr>
<td></td>
<td>-95.0±0.1</td>
<td>122±14</td>
<td>2.4</td>
<td>Q3(0Al)</td>
</tr>
<tr>
<td>vermiculite eucatex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting material</td>
<td>-84.2±0.1</td>
<td>679±23</td>
<td>10.6</td>
<td>Q3(2Al)</td>
</tr>
<tr>
<td></td>
<td>-88.6±0.1</td>
<td>590±4</td>
<td>40.5</td>
<td>Q3(1Al)</td>
</tr>
<tr>
<td></td>
<td>-93.4±0.1</td>
<td>549±18</td>
<td>8.8</td>
<td>Q3(0Al)</td>
</tr>
<tr>
<td></td>
<td>-99.6±0.2</td>
<td>2872±3</td>
<td>40.0</td>
<td>Q3(0Al), (SiO)$_4$SiOH</td>
</tr>
<tr>
<td>After hydrothermal treatment in a 7.3·10^{-2} M Lu(NO$_3$)$_3$·3H$_2$O solution</td>
<td>-76.3±0.1</td>
<td>818±43</td>
<td>4.5</td>
<td>Q1, Q0</td>
</tr>
<tr>
<td></td>
<td>-88.2±0.1</td>
<td>828±5</td>
<td>37.6</td>
<td>natrosilite (β-Na$_2$Si$_2$O$_5$)</td>
</tr>
<tr>
<td></td>
<td>-91.4±0.2</td>
<td>212±1</td>
<td>57.9</td>
<td>Lu$_2$Si$_2$O$_7$</td>
</tr>
</tbody>
</table>
FIGURE CAPTIONS

Fig. 1. XRD patterns of kaemite, pyrophyllite and talc: (a) starting material, and, (b) after hydrothermal treatment at 300º C for 48 h in a $7.3 \cdot 10^{-2}$ M Lu(NO$_3$)$_3$·3.6H$_2$O solution. *$=$Lu$_2$Si$_2$O$_7$ (PDF 35-0326), T=tridymite (PDF 18-1170), H=H$_2$Si$_2$O$_5$ (PDF 74-1548), and, b=boehmite (PDF 76-1871).

Fig. 2. 29Si MAS NMR (left) and 1H MAS NMR (right) spectra of kaemite, pyrophyllite and talc: (a) starting material, and, (b) after hydrothermal treatment at 300º C for 48 h in a $7.3 \cdot 10^{-2}$ M Lu(NO$_3$)$_3$·3.6H$_2$O solution.

Fig. 3. XRD patterns of hectorite, Na- Hectorite and Laponite $^®$: (a) starting material, and, (b) after hydrothermal treatment at 300º C for 48 h in a $7.3 \cdot 10^{-2}$ M Lu(NO$_3$)$_3$·3.6H$_2$O solution. *$=$Lu$_2$Si$_2$O$_7$ (PDF 35-0326), E=enstatite (PDF 73-1937), H=H$_2$Si$_2$O$_5$ (PDF 74-1548), and, C=β-cristobalite (PDF 89-3607).

Fig. 4. XRD patterns of saponite and vermiculite Eucatex: (a) starting material, and, (b) after hydrothermal treatment at 300º C for 48 h in a $7.3 \cdot 10^{-2}$ M Lu(NO$_3$)$_3$·3.6H$_2$O solution. *$=$Lu$_2$Si$_2$O$_7$ (PDF 35-0326), M=H(Mg$_2$(SiO$_4$))$_8$ (PDF 87-2051), O=Mg$_{10}$(Si$_3$O$_{14}$)(OH)$_4$ (PDF 81-544), k=kaolinite (PDF 78-1996), and, n=natrosilite (PDF 23-0529).

Fig. 5. 29Si MAS NMR (left) and 1H MAS NMR (right) spectra of hectorite, Na- Hectorite and Laponite $^®$: (a) starting material, and, (b) after hydrothermal treatment at 300º C for 48 h in a $7.3 \cdot 10^{-2}$ M Lu(NO$_3$)$_3$·3.6H$_2$O solution.

Fig. 6. 29Si MAS NMR (left), 1H MAS NMR (middle) and 27Al MAS NMR (right) spectra of saponite and vermiculite Eucatex: (a) starting material, and, (b) after hydrothermal treatment at 300º C for 48 h in a $7.3 \cdot 10^{-2}$ M Lu(NO$_3$)$_3$·3.6H$_2$O solution.
Fig. 1

Kanemite

Pyrophyllite

Talc
Fig. 2
Fig. 3

Hectorite

Na-Hectorite

Laponite
Fig. 4

Saponite

Vermiculite Eucatex
Fig. 5
Fig. 6