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T-cell intracellular antigen-1 (TIA-1) is a key DNA/RNA binding protein 

that regulates translation by sequestering target mRNAs in stress granules (SG) 

in response to stress conditions. TIA-1 possesses three RNA recognition motifs 
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(RRM) along with a glutamine-rich domain, with the central domains (RRM2 and 

RRM3) acting as RNA binding platforms. While the RRM2 domain, which 

displays high affinity for U-rich RNA sequences, is primarily responsible for 

interaction with RNA, the contribution of RRM3 to bind RNA as well as the 

target RNA sequences that it binds preferentially are still unknown. Here we 

combined nuclear magnetic resonance (NMR) and surface plasmon resonance 

(SPR) techniques to elucidate the sequence specificity of TIA-1 RRM3. With a 

novel approach using saturation transfer difference NMR (STD-NMR) to 

quantify protein–nucleic acids interactions, we demonstrate that isolated RRM3 

binds to both C- and U-rich stretches with micromolar affinity. In combination 

with RRM2 and in the context of full-length TIA-1, RRM3 significantly enhanced 

the binding to RNA, particularly to cytosine-rich RNA oligos, as assessed by 

biotinylated RNA pull-down analysis. Our findings provide new insight into the 

role of RRM3 in regulating TIA-1 binding to C-rich stretches, that are abundant 

at the 5 TOPs (5 terminal oligopyrimidine tracts) of mRNAs whose translation 

is repressed under stress situations. 

Introduction 

Stress granules (SG) formation is a protective mechanism that eukaryotic cells 

implement in response to environmental stresses that require repression of mRNA 

translation.1,2 Stress conditions such as heat shock, UV irradiation, oxidative stress, or 

starvation trigger SG assembly in the cytoplasm, where mRNAs are sequestered by their 

associated proteins and protected from degradation for the duration of the stress. 

T-cell intracellular antigen-1 (TIA-1) and TIA-1 related (TIAR) are DNA/RNA 

binding proteins (D/RBPs) that shuttle between the nucleus and the cytoplasm so as to 

regulate transcriptional and post-transcriptional processes.3-6 Under stress conditions, 
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these proteins accumulate in the cytoplasm and regulate the translation and the turnover 

of an ample set of mRNAs.7-10 In fact, TIA-1/TIAR are key proteins in SG formation,3,11 

as they first bind mRNAs, and then self-associate to initiate SG assembly.12 Some of 

these mRNAs are defined by the presence of A/U-rich elements (AREs)13,14 and others 

by their C-rich 5 terminal oligopyrimidine tracts (5 TOPs)10,15,16 at the 3- and 5-

untranslated regions (UTRs), respectively. In addition, the binding specificity of TIA-

1/TIAR proteins to the UTRs-motifs has been detected and analyzed in several in vitro 

studies.17-21 

The D/RBP TIA-1 shows high-sequence homology with TIAR.22 It is comprised 

of three RNA recognition motifs (RRM) followed by a glutamine-rich prion-related 

domain (PRD) at the C-terminal region. Notably, each single TIA-1 domain is 

characterized by different DNA/RNA specificities and affinities. RRM1 binds to T-rich 

DNA,20,23 and not to RNA, but enhances TIA-1 binding to U-rich sequences.17,21 The 

PRD domain seems to be essential for SG assembly as it mediates TIA-1/TIAR 

aggregation12 and is involved in splicing together with RRM1.24 Among all the TIA-1 

constituent-domains, RRM2 is necessary, and actually the major contributor, to the U-

rich/T-rich RNA/DNA binding sequences.17,21 The C-terminal RRM domain, RRM3, 

was described to bind RNA sequences that differ from U-rich motifs,17 but little is 

known about its sequence specificity and contribution to TIA-1/RNA interactions. 

Recent studies show that RRM3 enhances RRM2 binding to U-rich elements, 

suggesting a significant role in RNA binding.21 

TIA-1 RRM domains 1 and 2 exhibit the typical βαββαβ RRM fold,25,26 whereas 

RRM3 shows a non-canonical N-terminal α-helix using the TIAR RRM3 domain (PDB 

ID 1X4G) as a template.27 This extra element in the third RRM domain has also been 

identified in the homologous Sacharomyces cerevisiae Pub1p protein.28 In addition, 
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these proteins share some other unusual features such as a Trp-Gly-[Arg/Lys] motif and 

a distorted β-sheet. The presence of these features suggests that a new type of RRM 

family called TIA-1 C-terminal domain like RRM could be considered (TRRM).27,28 

Given its singular structural features along with the evidence of contribution to 

the overall binding to RNA, the present work investigates the RNA specificity and 

affinity of RRM3 in the context of TIA-1 function. Here, an NMR approach based on a 

Scaffold-independent analysis (SIA)29-31 allowed us to decipher the RNA sequence 

specificity of the TIA-1 RRM3 domain. As an outcome, a remarkable affinity for C-rich 

RNA was identified, which was further corroborated by saturation transfer difference 

NMR spectroscopy (STD-NMR). This technique is a powerful tool to analyze protein–

ligand interactions that provides quantitative information about the binding affinity by 

monitoring the ligand signals.32-34 In addition, STD-NMR can be used to measure KD 

for protein–ligand interactions over a wide range of affinities, from nM to high mM 

values.32 STD-NMR has been used before to detect protein–DNA/RNA interactions,35,36 

although binding affinities were not determined. In fact, this is a novel approach to 

study protein–RNA interactions as the use of STD-NMR allows not only to detect the 

interactions and confirm SIA data, but also to obtain KD values and discriminate among 

the tested sequences. Finally, the influence of RRM3 on TIA-1 binding to RNA was 

evaluated in the context of RRM2 by SPR, as well as in the full-length TIA-1 protein in 

pull-down assays using proteins expressed in human cervical carcinoma (HeLa) cells. 

The presence of RRM3 significantly enhanced the RNA binding of TIA-1 to C-rich 

motifs. The RNA sequence specificity elucidated in this work along with the influence 

on RRM2 binding suggest that RRM3 confers additional RNA sequence specificity to 

TIA-1/RNA binding, with a potential role in the regulation of mRNAs containing 5 

TOPs regions defined by C-rich elements. 
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Results 

TIA-1 RRM3 significantly binds to C-rich RNA sequences 

The SIA method was applied to TIA-1 RRM3 in order to determine its 

specificity for particular nucleotide sequences (Fig. 1). This method compares 

interactions between an array of short quasi-randomized RNA sequences and a RRM 

domain detected by NMR providing the preferred RNA binding sequence of the protein 

domain. Oligonucleotides comprising five bases were used to maximize the interaction 

of an RRM domain and minimize the possibility of multiple binding. The prevalence of 

a nucleotide in a specific position of the RNA sequence is indicated by a score ranging 

between 0–1 and the comparison of these scores for the four possible nucleotides in 

each position are used to evaluate the binding preference of a RRM for a target RNA.29-

31 

15N RRM3 NMR titrations (Fig. 1A) were performed according to the protocol 

described in Materials and Methods with 20 RNA pools to follow protein–RNA 

interactions. To analyze nucleotide preference of RRM3 in a particular position of its 

RNA target, the scores for the fixed position pools were obtained and classified 

(Materials and Methods, Fig. 1B and C). In the case of the second position, as an 

example, NCNNN yielded the highest score (1.00) in comparison to the other three 

NA/G/UNNN pools, thus the preferred nucleotide in the second position of RNA 

sequence is a C. Interestingly, SIA showed that the RRM3 domain preferentially bound 

Cs at the second, the fourth, and the fifth positions of RNA targets, whereas the first and 

the third positions were occupied by G/A and U/C, respectively. 

To validate the SIA method, several 5-mer RNA oligonucleotides were 

designed, according to the RNA preference results (Fig. 1C), to assess binding using 

NMR (Fig. 2). GCUCC and ACUCC were chosen among the “best” RRM3 targets, 
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while CAGGU was used as the “worst” target sequence. In addition, several 

“intermediate-affinity” targets were designed for testing possible discrimination 

between nucleotides in the first and the third RNA positions like ACCCC and GCCCC. 

RNA binding was monitored by acquiring 15N HSQC spectra (Materials and Methods, 

Fig. 2) of TIA-1 RRM3 titrated with the described oligonucleotides. Most observed 

chemical-shifts perturbations were small for the affected residues in all sets of assays 

with the exception of CAGGU titration that showed no signal changes even at a 1:4 

RRM3:RNA ratio (Fig. 2). Notably, GCUCC and ACUCC showed larger chemical-

shifts perturbations than ACCCC or GCCCC, suggesting that RRM3 preferentially 

binds a U at the third position over a C, in agreement with SIA results. Nevertheless, 

RRM3 binding affinities between ACUCC/GCUCC or ACCCC/GCCCC pairs might be 

similar based on the magnitude of chemical-shift perturbations, suggesting that G or A 

at the first position were equally probable. The RNA interaction platform was mainly 

located at the central RRM3 β strands (β1 and β3), along with the distorted β4 and the C-

terminal stretch from Gly273 to Tyr276 (Fig. S1) as it has been recently described for 

TIA-1 and the homologous Pub1p.21,28,37 

As the magnitudes of the chemical-shifts perturbations were too small to be used 

for quantitative assessment of binding affinities (Fig. 2; Fig. S1), STD-NMR was 

applied to measure the TIA-1 RRM3-RNA target equilibrium dissociation constants 

(Fig. 3; Fig. S2; Table 1). Several RNA oligos were tested as potential binders of TIA-

1 RRM3 protein as described in Materials and Methods. The STD results shown in 

Table 1 were consistent with SIA data confirming not only that GCUCC/ACUCC and 

U-rich are good RRM3 targets but also that CAGGU does not bind to RRM3 at all. 

According to the KD values determined for the tested targets, RRM3 binds C’s in 

several RNA sequence positions. RRM3 binds ACUCC with a KD 50 μM (Fig. 3; Fig. 
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S2; Table 1), ~20-fold stronger than ACCCC in agreement with the observed trends in 

the NMR titrations. Similar results were observed for the GCUCC and GCCCC KD 

values. Thus, STD-NMR was able to discriminate preferential binding of a U at the 

third position over a C. With respect to the first position at the RNA oligo, KD values of 

A/GCUCC pair indicated that A was favored over G, although both purines arise with 

similar SIA scores (Fig. 1C). 

C- and U-rich motifs are both RRM3 targets 

To evaluate the significance of RRM3 binding to C-rich sequences compared 

with the canonical U-rich targets,17,18,21 STD-NMR titration with the UUUUU oligo was 

performed. RRM3 bound to the 5-mer U-rich with ~3-fold weaker affinity than to the 

best target ACUCC (KD 140 μM and 50 μM, respectively), but with a similar KD as 

GCUCC oligo (KD 155 μM; Table 1). The differences in KD values between the 

sequences ACUCC/GCUCC suggest that the presence of one adenine at the first 

position of these RNA motifs is clearly favored. Moreover, the central U flanked is 

essential for RRM3 binding, as inferred from STD-NMR measurements comparing 

ACUCC/ACCCC and GCUCC/GCCCC pairs. Thus, although C- and U-rich RNA 

stretches are targets of TIA-1 RRM3 domain, the protein shows slight preference by 

ACUCC sequences. 

RRM3 enhances the overall binding of TIA-1 to C-rich RNA targets 

In order to use another method to validate the comparative binding affinities of 

RRM3 to the C-rich sequences, we also utilized SPR. This approach involved tethering 

tetrameric repeats of the target RNA sequences to the surface of the chip to ensure that 

the binding site would be available without steric hindrance from the 5-tether and to 

effectively enhance the affinity for quantitative comparison. Figure 4 shows a series of 
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RRM3 sensorgrams at a range of concentrations binding to the ACUCC, GCUCC, and a 

U-rich sequence for comparison. 

Binding affinities of RRM3 were at the lower limit of detection for this method 

(in the mid-micromolar range; Fig. 4, Table 2), but were consistent with the affinities 

estimated by STD-NMR. Importantly, RRM3 binding to ACUCC gave rise to higher 

responses than those to GCUCC. Binding to the poly-U sequence seemed to be higher 

affinity than any of the C-rich sequences determined by the SIA method. However, this 

is likely to reflect the enhancement of the association-rate that occurs when there are 

many possible binding registers at the target, rather than reflecting a binding preference 

for U-rich RNA, as shown using NMR above. 

In order to also consider the contribution to binding that RRM3 makes in the 

context of an adjacent RRM2, the equivalent SPR measurements were made with TIA-1 

RRM23 and RRM2 alone. Binding of TIA-1 RRM23 to all three sequences was of sub- 

micromolar affinity (Fig. 4, Table 2). Binding to RRM2, in each case, was of slightly 

lower affinity. By comparing these measurements, the contribution made by RRM3 

within the RRM23 construct could thus be ascertained. In the case of poly-U binding, 

RRM3 enhanced binding by 6-fold. In the case of ACUCC and GCUCC binding, 

RRM3 enhanced binding by 18- and 17-fold, respectively. 

Similar results were obtained from the assays performed with the C-rich motif 

(UUGCCACCUC CUGCUCCUGC CCAGA), which is present in several putative 

target mRNAs of TIAR protein18 (Table 2; Fig. S3). In these experiments, the RRM23 

domain affinity by such oligo (KD = 3.50 ± 0.01 μM) was slightly lower than those from 

the other C-rich RNA targets, although RRM3 enhanced binding over 9-fold too. Thus, 

SPR confirms the ability of RRM3 to contribute to binding specifically to these C-rich 

sequences. 
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To further evaluate the RRM3 domain effect over the TIA-1 protein binding to 

RNA and their biological significance, biotin pull-down assays were performed (Fig. 5). 

TIA-1 full-length (TIA-1 FL) and TIA-1 devoid of RRM3 domain (TIA-1-ΔRRM3) 

were first expressed in HeLa cells transfected with the corresponding vectors, and the 

lysates were used to study protein binding to biotinylated RNA. TIA-1 FL preferentially 

bound to poly-U and certain C-rich motifs in contrast to the others, as those enriched 

with G. Among the C-rich oligos tested, (ACUCC)x5 sequence was the more effective 

in binding to TIA-1 FL protein, and the affinity significantly decreased when the TIA-1-

ΔRRM3 mutant was tested. The specificity of TIA-1 FL by the (ACUCC)x5 and the 

consensus target-sequence of TIAR18 RNA sequences is clear in comparison to the 

affinity observed by the (ACCCC)x5 motif. In fact, C-rich motifs negligibly bound to 

the mutant while the affinity for the U-rich oligo was nearly the same as that seen with 

the wild-type protein, highlighting the “enhancer effect” of RRM3 domain over the 

TIA-1 binding to C-rich sequences. Importantly, these observations fully corroborate 

the SPR results with RRM2 and RRM23 domains, as well as the remarkable binding of 

the TIA-1 RRM3 domain by ACUCC RNA motifs elucidated by SIA and STD-NMR. 

Discussion 

The contribution of the third RRM domain of TIA-1 and its homologs to the 

RNA recognition process has been hinted in recent studies, which suggest a key role for 

RRM3 in RNA binding and mRNA transcript selection.21,28 In the current study, the 

specific binding to certain RNA sequences by this domain was determined by the SIA 

method and evaluated by a combination of STD-NMR and SPR techniques. Further, the 

RRM3 influence in the context of RRM2 domain and the full-length TIA-1—using a 

tandem construct of RRM23 for SPR and the TIA-1 FL and TIA-1-ΔRRM3 mutant for 
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pull-down assays with mammalian cells—was analyzed to better understand the TIA-

1/RNA interaction. 

Regarding the NMR-based approach, we first determined the RNA sequence 

specificity of TIA-1 RRM3 domain, and later confirmed that it binds to C-rich and U-

rich motifs in the sub-micromolar range (Fig. 1 and Table 1). The RNA interaction 

platform is located at the canonical β1, β3, and the distorted β4 strands along with the 

C-terminal stretch from Gly273 to Tyr276 (Fig. S1). Since the magnitude of the 

chemical-shift perturbations were too small for accurate quantitative analysis, STD-

NMR was used to evaluate the RRM3–RNA interactions detected by the SIA method. 

In the STD-NMR experiments, no isotopic labeling of the molecules under study was 

required. Rather, the 1H resonances of the RNA nitrogen-bases, either in their protein-

bound or free states, were followed. Protein-nucleic acids complexes have been 

previously studied by Cross Saturation measurements.38 However, this NMR method 

monitored only the protein resonances instead of the nucleic acid ones. Previous works 

used the STD-NMR method to detect protein–DNA/RNA interactions, although binding 

affinities were not determined.35,36 To our knowledge, this is the first instance in which 

such an approach has been used to quantify the affinity of protein–RNA complexes 

(Fig. 3, Table 1). In this system, the TIA-1 RRM3 domain was a particularly 

demanding protein for STD NMR analysis due to its small size (~14 kDa) that limits the 

sensitivity of the experiment because it could not be effectively saturated by spin 

diffusion, hindering the intra- and intermolecular saturation transfer. To overcome this 

problem, low temperature (5 °C) was used in the titrations to optimize the relaxation 

properties of the protein and favor the saturation process. In addition, the RNA 

concentration employed in the titrations was adjusted to optimize the signal-to-noise 

ratios of STD-NMR spectra and quantify the binding affinities of TIA-1 RRM3 domain. 
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The accuracy of this approach is further corroborated by the use of SPR and biotin pull-

down assays. This analysis revealed that ACUCC was the preferred RNA target by 

RRM3 (with KD in the micromolar range), with the most specific positions of the RNA 

located at the first and the middle nitrogen-bases. SPR measurements performed on C-

rich motifs were in agreement with STD data, although the affinity constants were not 

as accurate because RRM3 bound more weakly. These data are consistent with Dember 

and co-workers who concluded that TIA-1 RRM2 binds to U-rich RNA sequences, and 

suggested that RRM3-RNA binding specificity could be distinct from U-rich motifs.17 

Our results also correlate with more recent works that describe TIAR protein binding 

not only to U-rich RNA motifs, but also AU-rich and C-rich stretches with lower but 

significant binding affinities.18,19 Interestingly, enhanced binding to an AU-rich 

sequence of TIAR123 (three-domain construct) over TIAR12 (two-domain construct) 

was also reported,19 whereas this effect was negligible for U-rich elements. The high 

homology between TIAR and TIA-1,22 along with TIAR in vitro studies, allows one to 

speculate that RRM3 may influence the binding affinity and sequence preference of 

TIA-1 by RNA oligos. In fact, the SIA and STD-NMR data highlight the fact that the 

TIA-1 RRM3 domain exhibits a sequence preference, which goes clearly beyond the 

canonical U-rich sequences, namely C-rich motifs. 

The contribution of the C-terminal RRM3 domain in the binding of TIA-1 

protein to C-rich (A/GCUCC) or U-rich RNA motifs was first analyzed by SPR assays 

(Fig. 4, Table 2) using either combined or isolated RRM domains, and then in the 

context of mammalian cells transfected with the gen coding for the TIA-1 full-length 

protein. As was expected, the SPR assays showed that the RRM2 domain was mainly 

responsible for TIA-1 binding to RNA in terms of affinity, with the U-rich motifs being 

preferred (KD of 0.6 μM) over the C-rich motifs. The addition of RRM3 fused to RRM2 
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revealed enhanced binding to all RNA sequences. However, this effect was dramatically 

stronger (17- or 18-fold) for C-rich sequences in comparison to U-rich sequences (6-

fold). Pull-down assays, performed with TIA-1 FL protein and the TIA-1-ΔRRM3 

mutant expressed in HeLa cells and incubated with the RNA sequences elucidated by 

the former NMR experiments, confirmed these findings in a biological context. These 

experiments indicated that the presence of RRM3 domain was essential for the TIA-1 

binding to C-rich motifs and further supported the preference for ACUCC sequences. 

The role of RRM3 as an RNA binding-enhancer for TIA-1 was previously 

suggested only for U-rich stretches.21,39 Nevertheless, our study reveals that such a role 

strongly depends on the RNA sequence. Although the RNA binding of TIA-1 is mainly 

dictated by RRM2, we conclude that RRM3 significantly enhances the affinity, 

especially for certain sequences such as C-rich motifs. 

Under stress conditions, TIA-1/TIAR proteins are translational repressors that 

target specific mRNAs sequestering them into SG.1,8 TIA-1 interacts with these mRNAs 

by recognizing certain motifs at the 3 or 5 UTRs, such as AREs and 5 TOPs, 

respectively.7,10 The mRNAs containing 5 TOPs, which are C-rich stretches, encode 

ribosomal proteins and translation factors15,40,41 that are selectively repressed in 

response to nutrient deprivation or amino acid starvation.42,43 The results reported herein 

confirm the RNA binding specificity of TIA-1 for C-rich RNA sequences. Actually, 

RRM3 shows a preference for ACUCC, which substantially increases the TIA-1 

specificity for this kind of sequences over the U-rich ones. Overall, this work sheds 

light on the role of the RRM3 domain of TIA-1 in regulating and enhancing the protein 

binding to C-rich RNA stretches. The different contribution of each TIA-1 domain to 

the RNA/DNA recognition seems to be related by the specific RNA sequence, with 
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RRM3 possibly enhancing TIA-1 binding to C-rich elements at 5 TOP mRNAs10 for 

repressing translation. 

Materials and Methods 

Protein and RNA oligonucleotides preparation 

Single- and two-domain constructs of TIA-1, named RRM2 (residues 95–184), 

RRM3 (residues 190–288), and RRM23 (residues 80–288), were obtained from the 

plasmid containing full-length TIA-1 provided by Prof P Anderson (Harvard Medical 

School) as previously described.15,27 N-labeled and unlabeled proteins were expressed in 

Escherichia coli BL21 (DE3) as His-tagged proteins and purified using nickel affinity 

chromatography according to well-established protocols.27 The His-tag was not 

removed from the constructs for NMR experiments since no differences between the 

secondary structure of TIA-1 domains with or without His-tag were observed.27 The 

His-tag was cleaved from the proteins using TEV protease and removed with a second 

nickel affinity step only for SPR experiments. Protein concentration was 

spectrophotometrically determined using predicted extinction coefficients and protein 

purity was assessed by SDS-PAGE. 

All RNA oligonucleotides were chemically synthesized (IDT, Integrated DNA 

Technologies; 1 μmol synthesis). The 20 randomized RNA pools (designed as described 

in the next section) were solubilized in 20 mM potassium phosphate buffer pH 7.0 and 

50 mM KCl to a final concentration in the range 3–3.5 mM. To test the reliability of the 

RNA randomized-based method, the 5-mer RNA oligos GCUCC, ACUCC, ACCCC, 

GCCCC, UUUUU, and CAGGU were redissolved in the same conditions as the pools. 

Those oligos used in STD-NMR experiments were prepared with 99.9% D2O buffer 

containing 20 mM potassium phosphate pH 7.0 and 50 mM KCl in the range of 8–11 

mM. 
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Scaffold-independent analysis (SIA) 

NMR titrations of 50 μM RRM3 samples with 20 randomized 5-mer RNA pools 

were performed to analyze the RNA binding sequence preference of this TIA-1 domain. 

Each of the 20 pools contained 256 different RNA sequences that shared a single 

nucleotide at a single position. Four of the five oligo positions were occupied by a 

randomized mixture of four bases (N) and the fifth position—which could be either 

position one, two, three, four, or five—were occupied by A, G, U, or C (i.e., NANNN, 

NGNNN, NUNNN, NCNNN).15,29 HSQC spectra were recorded at protein–RNA ratios 

of 1:0, 1:1, and 1:4 and chemical-shift perturbations were evaluated for the peaks 

affected upon binding (Fig. 1A). The assignments of TIA-1 RRM3 backbone 

resonances were previously performed with standard 3D NMR experiments (HNCACB, 

HNCA, and HNCO) and were already deposited at the BMRB with the accession 

number 18829. Thirty protein peaks affected by RNA binding that could be followed in 

all titrations were selected and the largest chemical-shift changes were observed for 

NCNNN titration. The averaged chemical-shift changes upon addition of 20 pools to the 

RRM3 domain were plotted in five histograms (Fig. 1B). To evaluate the differences 

between the RNA pools and the RNA binding preference, the four shifts for a given 

nucleotide position displayed in each histogram per residue were normalized to the 

highest of the four. Then, normalized values were averaged over all 30 residues to 

obtain a set of scores as an outcome. Comparison and evaluation of the final scores are 

shown in Figure 1C. 

NMR titrations 

Solutions of 50 μM 15N-labeled samples of RRM3 in 90% H2O/10% D2O buffer 

containing 20 mM potassium phosphate pH 7.0 and 50 mM KCl were titrated with the 

5-mer RNA oligonucleotides inferred from SIA analysis at 25 °C in the protein:RNA 
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ratio from 1:0 to 1:4. It was not possible to reach higher ratios than 1:1.5 with the 

GCUCC and ACUCC sequences, ratios 1:3.5 with the GCCCC and ACCCC oligos, and 

ratio 1:4 with CAGGU in samples prepared in 90% H2O/10% D2O due to protein 

precipitation. 15N-HSQC spectra were recorded at each point of the titrations on a 800 

MHz Varian INOVA spectrometer and were processed using the NMRPipe package.44 

Further, the spectra were analyzed and superimposed with Sparky.45 The pH value of 

the samples was verified after each titration step. Averaged chemical-shift differences 

were measured and calculated as follows: Δδavg = (([ΔδH]2 + [ΔδN/5]2) / 2)1/2, being ΔδH 

and ΔδN chemical-shift increments in 1H and 15N, respectively. The Origin 8.5 program 

(OriginLab) was used for data manipulation. 

The assigned chemical shifts of RRM3 backbone deposited at the BMRB with 

accession number 18829 were used to generate a three-dimensional protein structure at 

the CS23D2.0 web server.46 This structure was used for data discussion and to build 

Figure S1. 

Saturation transfer difference NMR (STD-NMR) spectroscopy 

Solutions of 60 μM unlabeled TIA-1 RRM3 protein in 99.9% D2O buffer 

containing 20 mM potassium phosphate pH 7.0 and 50 mM KCl were titrated with the 

RNA oligos derived from SIA analysis (GCUCC, ACUCC, ACCCC, GCCCC, 

UUUUU, and CAGGU; protein-RNA ratios from 1:0 to 1:13) at 5 °C recording 1D 1H 

STD NMR spectra on a 500 MHz Bruker Avance DRX spectrometer. 

Very briefly, STD NMR experiments consist of two 1D 1H NMR spectra, in 

which we apply a selective low power radiofrequency before the observation 90 pulse in 

two different spectral regions, respectively. In the “off-resonance” experiment it is 

applied at a frequency where no NMR resonances, either from the protein or from the 

ligand, are present (typically 40 ppm), so no effect on any intensity is expected, and a 
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normal 1D spectrum is obtained. In the “on-resonance” experiment, the radiofrequency 

is applied at a frequency characteristic of protein signals, but avoiding any frequency of 

the ligand. This produces a selective saturation of the protein signals, which in the end 

is spread all over the macromolecule due to the efficient process of spin diffusion, 

leading to a more or less homogeneous distribution of saturation over the whole protein. 

The binding of the smaller molecule to the protein-binding site brings some ligand 

protons to a very close spatial position related to the protein protons, and a process of 

intermolecular NOE transfer then part of the saturation from the protein protons to the 

ligand ones. The exchange between the bound and free states of the ligand allows the 

accumulation of that saturation in the bulk solution, and the transferred saturation is 

observed on the ligand resonances. The difference between the “off” and “on” 

experiments give rise to a 1D spectrum containing only the signals that received 

saturation from the protein in the “on” experiment. 

For selective saturation of the protein signals, a train of 20 low power Gaussian-

shaped pulses of 49 ms, separated each by a 1 ms delay, was applied at 0.7 ppm (on-

resonance frequency), whereas for the reference spectrum, the frequency was shifted to 

40 ppm (off-resonance). Spectra were processed and analyzed with TopSpin 3.0. The 

pH value of the samples was verified after each titration step. 

In STD NMR titration experiments, the STD intensity (ηSTD) reflects the 

concentration of ligand–protein complex present in solution33,47 as it depends on the 

fraction of bound ligand. Multiplying the observed STD by the molar excess of ligand 

over protein (ε) the STD intensity is converted into a factor, the STD amplification 

factor, defined by STD-AF = ε (Io-Isat)/Io = ε ηSTD. This factor is proportional to the 

fraction of bound protein.48 The evolution of the STD-AF, along a TIA-1 RRM3 

titration experiment, gave an association isotherm that could be fitted to a Langmuir 
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equation: STD-AF([L]) = (STD-AFmax·[L])/(KD +[L]), where STD-AFmax is the 

maximum STD-AF value during the titration (plateau), [L] is the unbound ligand 

concentration, and KD is the dissociation constant. To determine the KD values of the 

TIA-1 RRM3-RNA complexes from titration experiments, the STD-AF values were 

plotted vs. the concentration of ligand, using a selected ligand STD signal (well-isolated 

in the spectrum). To avoid potential effects of fast ligand rebinding on the measured KD, 

the lowest saturation time that led to observable ligand signals was used (tsat = 1 s).49 

The Origin 8.5 program (OriginLab) was used for data manipulation. 

Protein–RNA binding affinity determined by surface plasmon resonance 

(SPR) 

SPR was performed using a BIAcore T100 (GE Healthcare). RNA oligomers 5–

UUUUUUUUUU UUUUUUU–3, 5–ACUCCACUCC ACUCCACUCC–3, 5–

GCUCCGCUCC GCUCCGCUCC–3, 5–UUGCCACCUC CUGCUCCUGC CCAGA–

3, synthesized with 5 Biotin tags (Dharmacon Research), were diluted to 2 nM in 10 

mM HEPES, 150 mM NaCl, 1 mM DTT, 0.025% P20, pH 7.4, and were immobilized 

on flow cells of a BIAcore SA series S sensor chip (GE Life Science) to levels 48 RU, 

109 RU, 89 RU, and 114 RU, respectively. Flow cell 1 was left blank as a reference. 

Triplicate samples in 10 mM HEPES, 150 mM NaCl, 1 mM DTT, 0.025% P20, pH 7.4 

of TIA-1 RRM2 (0–19 µM), TIA-1 RRM3 (0–13 µM), and TIA-1 RRM23 (0–18 µM) 

were injected for 180 s at 50 µL per min, with a 6 min dissociation, using 10 mM 

HEPES, 150 mM NaCl, 1 mM DTT, 0.025% P20, pH 7.4 as running buffer. 

Experiments were run at 10 °C. Results were analyzed using Scrubber2 (BioLogic 

Software). The data was double referenced. Equilibrium binding responses were 

calculated using averaging over a 91 s window starting 57 s after injection and used to 

determine equilibrium affinities. 
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Biotin pull-down assays 

HeLa cells were transfected with plasmids pCI-neo-3XFlag-TIA-1 (FL) and 

pCI-neo-3XFlag-TIA-1(ΔRRM3) (kind gifts from RN Singh and NN Singh).50 Twenty-

four h later, whole-cell lysates were prepared in a buffer containing 20 mM TRIS-HCl 

at pH 7.5, 100 mM KCl, 5 mM MgCl2, and 0.5% NP-40 by incubation on ice for 10 min 

and centrifugation at 10 000 × g for 15 min at 4 °C. RNAs pre-labeled with 5-end biotin 

[5–UUUUUUUUUU UUUUUUUUUU UUUUU–3, 5–GGGGGCGGGG 

GCGGGGGCGG GGG–3, 5–UUGCCACCUC CUGCUCCUGC CCAGA–3,18 5–

ACUCCACUCC ACUCCACUCC ACUCC–3, and 5–ACCCCACCCC 

ACCCCACCCC ACCCC–3] were purchased from IDT. Biotinylated GAPDH 3UTR 

was synthesized by PCR amplification of cDNA with primers (CCAAGCTTCT 

AATACGACTC ACTATAGGGA GACCTCAACG ACCACTTTGT CA and 

GGTTGAGCAC AGGGTACTTT ATT) in the presence of biotinylated CTP and T7 

RNA polymerase, as described previously.51,52 

Lysates (150 μg per sample) were incubated with biotinylated RNA (1 μg per 

sample) for 30 min at room temperature, and complexes were isolated with streptavidin-

coupled Dynabeads (Invitrogen). Proteins present in the pull-down material were 

studied by western blot analysis as described previously.52,53 
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Figure 1. SIA assays for TIA-1 RRM3. (A) Overlays of a region from 
15

N-HSQC spectra 

recorded along the titration of the TIA-1 RRM3 domain with the NGNNN, NANNN, NUNNN, and 

NCNNN pools. Each panel shows the superimposition of the three spectra corresponding to the 

free protein (blue), 1:1 (yellow), and 1:4 (red) protein:RNA ratios. (B) Averaged chemical-shift 

changes (Δδavg) of selected RRM3 residues in the four protein:RNA titrations with the non-

randomized pools in the second position (NXNNN pools). Δδavg for the 1:4 protein:RNA ratio is 

plotted vs. the residue number. (C) Top, vomparison of the final score for the four nucleotides in 

a specific position on a 0–1 scale. This provides an evaluation of the binding sequence 

preference(s) of the protein. Bottom, graphic representation of the TIA-1 RRM3 RNA sequence 

preference. The picture was obtained by plotting SIA data with the Weblogo server 

(http://weblogo.berkeley.edu/logo.cgi). 

Figure 2. Binding of TIA-1 RRM3 to one of the ‘best’ (GCUCC) and the “worst” (CAGGU) RNA 

targets resulting from SIA scores. Overlays of a region from 15N-HSQC spectra recorded along 

the titration of RRM3 domain with GCUCC (upper panel) and CAGGU (lower panel) RNA oligos. 

Each panel shows the superimposition of the spectra corresponding to free protein (blue) and 

1:1.5 (red) protein:RNA ratio for the GCUCC oligo and 1:4 for the CAGGU. 

Figure 3. STD-NMR experiments for the determination of RRM3-RNA target binding affinity. (A) 

Expansion of the aromatic region of the 1D 
1
H NMR reference spectrum (top) and STD NMR 

spectrum (bottom) of RRM3 with ACUCC RNA at a protein: RNA ratio of 1:13 recorded at 1 s of 

saturation time and 5 °C. Due to the ligand excess, the signals in the reference spectrum 

correspond to aromatic protons of the RNA oligonucleotide. Labeled with a black star stands for 

the signal monitored in the isotherm. (B) Binding isotherm from STD-AF values during the 

titration of RRM3 with the ACUCC oligo. 
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Figure 4. SPR Analysis of the interactions of different TIA-1 constructs with RNA. The binding 

of TIA-1 RRM3 (top), TIA-1 RRM23 (middle), and TIA-1 RRM2 (bottom) to three difference RNA 

sequences is shown. (A) U-rich RNA, (B) (ACUCC)x4 RNA sequence, and (C) (GCUCC)x4 

RNA, biotinylated at the 5-end, were captured on SA coated sensor chips in parallel. Each 

protein was injected across the four flow cells (blank cell and a cell for each RNA sequence) at 

a range of concentrations and in triplicate. Injections were performed for 180 s (association 

phase), followed by a 360 s flow of running buffer to assess dissociation. The data were used to 

construct binding curves for KD determination or approximation (where steady-state binding was 

not achieved). The data shown in the figure are presented with comparative scales. The top row 

sensorgrams show inset graphs with a reduced scale to reflect the critical point of TIA-1 RRM3 

binding. 

Figure 5. Immunoprecipitation of TIA-1 FL and TIA-1-ΔRRM3 proteins with RNA oligos. 

Western blot detection of Flag-tagged TIA-1 FL and TIA-1-ΔRRM3 present in the pull-down 

assays cell extracts. Lane 1 corresponds to the input fraction of TIA-1 FL and TIA-1-ΔRRM3 

expressed in HeLa cells while lanes 2–7 are purified fractions of such TIA-1 proteins bound to 

the RNA sequences tested. Sequence GGGGGCGGGG GCGGGGCGGG GG was used in lane 

3, UUGCCACCUC CUGCUCCUGC CCAGA18 was used in lane 4, and negative control GAPDH 

3`UTR was used in lane 7. 

Table 1. Dissociation constants for RRM3-RNA targets complexes by STD NMR 
Construct RNA KD (μM) 

RRM3 
 

ACUCC 50 ± 20 
ACCCC 1100 ± 480 
GCUCC 155 ± 41 
GCCCC ~600 
UUUUU 140 ± 60 
CAGGU No binding 

Table 2. Dissociation constants for TIA-1 RRM domains-RNA complexes by SPR 
Construct RNA KD (μM) 
RRM2 U-rich 17mer 0.646 ± 0.005 

(ACUCC)x4 7.34 ± 0.07 
(GCUCC)x4 17.1 ± 0.1 
C-rich TIAR* > 30 

RRM3 U-rich 17mer > 40 
(ACUCC)x4 > 100 
(GCUCC)x4 > 200 

RRM23 U-rich 17mer 0.1042 ± 0.0007 
(ACUCC)x4 0.418 ± 0.001 
(GCUCC)x4 0.958 ± 0.002 
C-rich TIAR* 3.50 ± 0.01 

*The C-rich TIAR RNA oligo refers to the UUGCCACCUCCUGCUCCUGCCCAGA biological sequence of 
TIAR reported in reference 18. 


