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In [14], a topologically consistent framework to support parallel topological analysis and recognition for

2 D digital objects was introduced. Based on this theoretical work, we focus on the problem of finding

efficient algorithmic solutions for topological interrogation of a 2 D digital object of interest D of a pre- 

segmented digital image I , using 4-adjacency between pixels of D . In order to maximize the degree of

parallelization of the topological processes, we use as many elementary unit processing as pixels the

image I has. The mathematical model underlying this framework is an appropriate extension of the clas- 

sical concept of abstract cell complex: a primal–dual abstract cell complex (pACC for short). This versatile

data structure encompasses the notion of Homological Spanning Forest fostered in [14,15]. Starting from

a symmetric pACC associated with I , the modus operandi is to construct via combinatorial operations

another asymmetric one presenting the maximal number of non-null primal elementary interactions be- 

tween the cells of D . The fundamental topological tools have been transformed so as to promote an

efficient parallel implementation in any parallel-oriented architecture (GPUs, multi-threaded computers,

SIMD kernels and so on). A software prototype modeling such a parallel framework is built.
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. Introduction

This paper is concerned with the problem of developing a

opologically-consistent framework for efficient parallel topologi- 

al analysis of discrete objects in 2D digital imagery. The topo-

ogical consistency proof of such systems is provided in most of

he cases by means of a mathematical model of digital images

nd objects, under which all theoretical formulae related to topol-

gy are true and there is no room for paradoxes. Moreover, this

ramework must substantially simplify the algorithmic design of

n advanced topological calculus and recognition of the objects of

nterest. We aim to achieve parallel architectures compatible with

his framework and to reduce drastically the time complexity in

opological computations. In order to avoid segmentation issues
nd noise which are common to mathematically ill-posed prob- 

ems ubiquitous in the area of Digital Imagery, the input data are 

-dimensional integer-valued matrices associated with a binary or 
ray-level pre-segmented 2D digital image I.  Our interest here is to

d  

o  

[

 

v  
esign and to implement a parallel framework providing efficient

nd fast algorithmic answer to any topological interrogation for a

egion of interest (ROI for short) D of I , using 4-adjacency between

ixels of D . 

Roughly speaking, topology helps to understand the different

degrees of connectivity” a geometric object has. To deal with

opological isomorphisms or homeomorphisms between continu- 

us geometric objects is a very hard task and discretization strate-

ies, such as triangulations, are employed for reducing the com-

utational complexity of the topological interrogation. Within a

emi-continuous context, geometric subdivided objects are com-

only represented by cell or CW-complexes (for example, [16] ).

inally, within a purely discrete level, combinatorial versions of

W-complexes, called abstract cell complexes (ACC, for short), can

e used for a correct algorithmic development. They are formed

f basic elements (representing the cells using topological coordi-

ates) of different dimension together with a bounding function

escribing the combinatorial relationship “to be in the boundary

f”. Different definitions of ACCs can be found in the literature (see

11] for a thorough survey).

Concerning the computability of topological features and in-

ariants, there are two main ways for computing n -dimensional
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Fig. 1. Two combinatorial scenarios: (Left) ACC associated with a digital object D

formed by black pixels within a 3 × 4 digital image I ; (Right) pACC ( D ) ⊂ pACC ( I ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“(co)holes” measuring the lack of connectivity: (co)homology and

(co)homotopy. Homology considers the notion of hole in linear al-

gebra terms and homotopy in purely combinatorial terms. All the

previous descriptions of ACCs are convenient for codifying chain

complexes (algebraic versions of cell complexes) and designing ho-

mological computational techniques. Nevertheless, homotopy com-

putation is much more harder in general than homology compu-

tation and cannot be appropriately developed in a parallel frame-

work exclusively based on this ACC coding. An exception to this is

given by the Euler number (see, for example [2] ) that can be com-

puted exclusively using local information on pixels. 

We use as model of our parallel combinatorial framework an

extension of the classical ACC notion called primal–dual abstract

cell complex , in the sense that two bounding functions are em-

ployed for specifying the connectivity of the structure. This notion

encompasses the concept of HSF developed in [14,15] which en-

sures the reliability of topological interrogation both at homology

and homotopy levels. In fact, an HSF of a cell complex D can be

seen as an asymmetric pACC strongly “connected” (in combinato-

rial terms) to a fully symmetric pACC defining D . From this topo-

logical model in 2D digital ambiance, we can reach homotopy-type

features and characteristics like topological trees or thinning. 

There are numerous contributions in the literature (see, for

example, [8–10,12,13,17,19,22,24] ) dealing with parallel algorithms

computing a concrete topological invariant or feature (for example,

Euler number, connected component labeling, simple points and

thinning algorithms, Betti numbers, persistent homology, topolog-

ical trees,….) for a region of a 2D digital image. A much more re-

duced quantity of papers (see, for example, [1,4,14] ) propose a the-

oretical topologically-consistent framework in this digital context.

To our knowledge, the present paper is the first one implementing

such a parallel framework for advanced topology computation. 

The combinatorial technique used here for constructing asym-

metric pACCs encoding faithful topological information takes some

inspiration from methods developed in Simple Homotopy Theory

[25,26] , Discrete Morse Theory [5,6] , Effective Homology [23] and,

mainly Algebraic-Topological models [7,14,15,20] . 

Summing up, the primary contributions of this work is to de-

sign and implement a purely combinatorial algorithm for con-

structing topological HSF models of two-dimensional digital ob-

jects in a parallel architecture context. 

2. Topological rationale

The different steps of any topological processing in our frame-

work are in order: (a) Input data; (b) Extraction of the ROI; (c) Ele-

mentary sequential or parallel step; (d) Output: Topological model

of the ROI. Following this pipeline, we gradually introduce the

main mathematical notion involved in the present generic frame-

work: a pACC. The computational techniques for generating new

special pACCs employed in stages (c) and (d) will be detailed in

the next two sections. 

(a) Input data: The pair ( I , D ). The 2D digital image I :

{ 1 , . . . , m } x { 1 , . . . , n } → { 0 , 1 , . . . , 2 k − 1 } is represented by a

m × n ( m, n, k ∈ N ) integer-valued matrix. The digital ob-

ject D , called region-of-interest (or ROI, for short), is formed

by set of pixels (given by their “coordinates” row-column)

of I . For example, D can be the set I −1 (r) , for some r ∈
{ 0 , 1 , . . . , n − 1 } .

(b) Extraction of the ROI: From I , we extract the ROI D by

means of new digital image I D of the same dimension than

I . The set of black pixels (numbered by 1’s) of I D is exactly

D .

(c) Elementary sequential or parallel step: generation of

topological pACCs: In this phase, we compute two kind of
pACCs: (a) symmetric ones, modeling D and I in terms of cell

complexes; (b) asymmetric ones, starting from to the pre-

vious symmetric pACCs, called Morse Spanning Forest. We

distinguish three parts: 

(c.1) Embedding in regular subdivided scenario . Our strat-

egy for processing digital objects within a digital image

is based on constructing topological models within an

appropriate combinatorial “ambiance” context. This sce-

nario in which we need to embed the digital image I D 
is a pACC intimately associated with the contractible set

of cells denoted by Cell ( I D ). Cell ( I D ) only depends on the

dimensions of I D and can be constructed in a straightfor-

ward way: 0-cells are the pixels of I D (black or whites),

1-cells are given by the set of two 4-adjacent pixels (hor-

izontal or vertical) and 2-cells are given by sets of four

mutually 4-adjacent pixels. Thus, a dimension function

dim : Cell ( I D ) → {0, 1, 2} is well-defined in this way. One

cell c ′ is in the boundary (resp. in the coboundary) of an-

other c ′ ′ if the set of pixels of c ′ (resp. c ′ ′ ) is included in

the set of pixels of c ′ ′ (resp. c ′ ). In an analogous way, we

can construct the set of cells Cell ( D ), in which only the

black pixels of I D are involved. 

In Fig. 1 , two possible combinatorial scenarios for topol-

ogy computation are shown: that of classical ACC, good

enough to efficiently compute homology features and

characteristics (left); and that of pACC (right). The last

one will make possible to give us fast answers to ho-

motopy interrogation problems. Although the second op-

tion seems to introduce a higher complexity, it can be

reduced by means of a careful local analysis in the huge

ambiance space that it builds. 

Now, it is time to define the notion of pACC within a gen-

eral n-dimensional setting. A finite primal–dual abstract

cell complex (pACC for short) C = (C, B p , B d , dim p , dim d )

is composed of: 
• C 

⋃ {∅} , where C is a finite set of cells.
• Two dimension functions: (primal dimension) dim p :

C → { 0 , 1 , 2 , . . . , k p } and (dual dimension) dim d : C →
{ 0 , 1 , 2 , . . . , k d } , where k p , k d ∈ N ∪ { 0 } . The primal

and dual dimension of the empty set ∅ is −1 . The set

C 
p 
i

(resp. C d 
i 

) is the set of cells such that their primal

(resp. dual) dimension is i . 
• Two bounding relations: (primal bounding relation)

a graded function B 
p 
i

: C 
p 
i

× C 
p 
i +1

→ N ∪ { 0 } ( ∀ 0 ≤ i ≤
k p − 1 ) and (dual bounding relation) a graded func-

tion B d 
i 

: C d 
i 

× C d 
i +1

→ N ∪ { 0 } , ∀ 0 ≤ i ≤ k d − 1 . Both

bounding relations can be extended to C × C , defining

their value on any other pair of cells by 0. The pACC

C is called primal–dual one-dimensional if its primal

and dual dimensions both depend on a primal–dual

dimension function dms : C → { 0 , 1 , 2 , . . . , k } , being

k = k p = k d . In fact, dim p = dms and dim d = k − dms .

In this case, let us denote the set of cells C 
p 
i

of primal

dimension i simply by C and an i -cell mean a primal
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Fig. 2. An specification of a PE. Circles are mutually 4-adjacent pixels; process- 

ing unit is identified with the orange pixel. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i -cell. In this case, the pACC C is called symmetric if

B p (c, c ′ ) = B d (c ′ , c) , ∀ c , c ′ ∈ C .
Given two cells c and c ′ of C , we say that the ordered

pair ( c , c ′ ) is a primal (resp. dual) vector of the pACC

if B p ( c ′ , c ′ ′ ) � = 0 (resp. if B d ( c ′ , c ′ ′ ) � = 0). We say that

the set { c ′ , c ′ ′ } is a primal (resp. dual) interaction of

the pACC if B p ( c ′ , c ′ ′ ) � = 0 or B p ( c ′ ′ , c ′ ) � = 0 (resp. if

B d ( c ′ , c ′ ′ ) � = 0 or B d ( c ′ ′ , c ′ ) � = 0). A link associated with

the primal (resp. dual) vector ( c , c ′ ) is the set lnk ( c , c ′ )
of triplets ( c , c ′ , c ′ ′ ), for all the cells c ′ ′ such that ( c ′ ,
c ′ ′ ) is a dual (resp. primal) vector. A link can also be

considered as a sub-pACC of C . lnk ( c , c ′ ) can be con-

sidered as an asymmetric primal–dual one-dimensional

pACC, such that its bounding functions B̄ p and B̄ d sat-

isfy an “orthogonality” condition: for all the triplets ( c ,

c ′ , c ′ ′ ) of lnk ( c , c ′ ), B̄ p (c, c ′ ) = B p (c, c ′ ) � = 0 , B̄ p (c ′ , c ′′ ) = 0 ,

B̄ d (c ′ , c ′′ ) = B d (c ′ , c ′′ ) � = 0 , B̄ d (c, c ′ ) = 0 . 

We are able to define the pACC pAC C (I D ) =
(Cel l (I D ) , B 

p , B d , dim p , dim d ) in order to satisfy the

following conditions: 
• (to be primal–dual one-dimensional) The primal and

dual dimensions are both defined in terms of the di-

mension function dim : Cell ( I D ) → {0, 1, 2} previously

defined in this section.
• (symmetric condition) pACC ( I D ) must be symmet-

ric. The primal (resp. dual) bounding relation is de-

fined by B p (c ′ , c ′′ ) = 1 (resp. B d (c ′ , c ′′ ) = 1 ), if c ′ is

in the boundary (resp. in the coboundary) of c ′ ′ and

B p (c ′ , c ′′ ) = 0 (resp. B d (c ′ , c ′′ ) = 0 ) otherwise.

Notice that pAC C (I D ) = pAC C (I) and, therefore, it is a con-

cept dependent of the dimensions of the image I and in-

dependent of the ROI D . In an analogous way, we can

define another primal–dual symmetric one-dimensional 

sub-pACC pACC ( D ) of pACC ( I D ), having Cell ( D ) as set of

cells. 

In the rest of the paper, all the pACCs C we deal with

are primal–dual symmetric one-dimensional pACCs . A com-

plete theory of combinatorial optimization about pACC-

homology and pACC-homotopy operations can be devel-

oped in order to provide theoretical robustness to our al-

gorithmic work. This is out of the scope of the present

paper and will be discussed by the authors in a future

paper. 
(c.2) Installing the set of processing units. The description

of the parallel architecture is the same than that em-

ployed in Section 6 of [14] . There are as many processing

elements (PE) as pixels the image has (equivalently, as

cells ACC ( I D ) has). A PE can be specified using the Fig. 2

in which the four mutually 4-adjacent pixels (primal 0-

cells of ACC ( I D )) are expressed by circles (the processing

unit is identified with the pixel colored in orange). The

crosses determine the primal 1-cells and the red square

is a primal 2-cell. Concerning to the pair of numbers

( d , p ) associated with each node, d is its dual dimen-

sion and p indicates its primal dimension. The topolog-

ical coordinates of the cells are determined by the sym-

bols x ∈ { 1 , 2 , . . . , m } and y ∈ { 1 , 2 , . . . , n } . In fact,( x , y ) is

a 0-cell (pixels of I D ), (x + 

1 
2 , y ) and (x, y + 

1 
2 ) represent

1-cells and (x + 

1 
2 , y + 

1 
2 ) are 2-cells. 

Surrounded by a closed curve in yellow, we have four

cells P E 4 (x, y ) = { (x, y ) , (x + 

1 
2 , y ) , (x, y + 

1 
2 ) , (x + 

1 
2 , y +

1 
2 ) } that are the active nodes-cells of the sub-pACC

PE 4 ( x , y ) of ACC ( I D ) associated with the pixel ( x , y ).

Surrounded by a gray light closed curve, we have all the

active nodes and links of the bigger sub-pACC PE 9 ( x , y )

composed by the nine cells. There are two possible states
for the PE, 0 or 1, depending of the orthogonal privi-

leged direction chosen. The value “0” (resp. “1”) means

that its updated primal bounding function has value

1 for the primal vectors v̄ 01 = { ((x, y ) , (x + 

1 
2 , y )) } and

{ ̄v 12 } = { ((x, y + 1 
2 ) , (x + 

1 
2 , y + 

1 
2 )) } and 0 for the rest

(horizontal or East) (resp. by w̄ 01 = { ((x, y ) , (x, y + 

1 
2 )) }

and { ̄w 12 } = { ((x + 1 
2 , y ) , (x + 

1 
2 , y + 

1 
2 )) } and 0 for the

rest (vertical or North)). Identifying all the primal vec-

tors v̄ 01 , w̄ 01 , v̄ 12 and w̄ 12 with its corresponding primal

links, we determine in this way all the non-null primal

and dual bounding relations in PE ( x , y ). One rule (called

HSF-rule) must be applied in a complete activation of all

the PEs of I D : if initially B d (c, c ′ ) = 1 , being c a 2-cell of

pACC ( I D ) and c ′ a 1-cell of pACC ( I D ) involved in a primal

0–1 link of a neighbor (north or east), then B d (c, c ′ ) = 0

in the final asymmetric pACC resulting from this global

activation of PEs. We assume that the PEs corresponding

to the pixels of the north and east border of the image

are always activated. They exclusively consist of the link

of v̄ 01 (north border) or, correspondingly, the link of w̄ 01 

(east border). 

If I is represented by a matrix of size m × n , the num-

ber of cells of the corresponding primal–dual cell com-

plex pACC ( I D ) is (2 n − 1) × (2 n − 1) ≈ 4 n 2 . 

(c.3) Asymmetric dynamics within huge scenario: Morse 

Spanning Forests . In this phase, there are two main PE’s

activation techniques: (a) Starting from an initial geomet-

ric symmetric pACC pACC ( I D ), the output of one elemen-

tary step of parallel processing is a (non-unique) new

particular asymmetric pACC MrSF ( I D ), called Morse Span-

ning Forest (MrSF for short). An MrSF has the property

that the set of its elementary primal vectors (or their

corresponding links) applied in some order in a sequen-

tial process of reduction based on primal homotopy op-

erations provides us a final minimal pACC consisting in

one 0-cell. In this way, a MrSF for I D is seen as a kind

of “dense combinatorial skeleton” of the contractible cell

complex Cell ( I D ). This notion has been already developed

in [14] making use exclusively of homological arguments;

(b) Starting from a MrSF, the output of one parallel step

in this framework is a new MrSF, such that its number of

primal links between cells of Cell ( D ) is greater or equal to

that of the initial MrSF. In a later section, a condition for

stopping this activation phase is given. The final output

is a MrSF presenting a sub-pACC HSF ( D ) for Cell ( D ) hav-



Fig. 3. (Left) Combinatorial MrSF model MrSF ( I D ) measuring asymmetric topological

dynamics on pACC ambiance: (Right) Homological Spanning Forest HSF ( D ) of D as

sub-pACC of MrSF ( I D ).
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ing the maximal number of primal links. HSF ( D ) can also

be considered as a Homological Spanning Forest [15] . 

In Fig. 3 , we try to graphically show how to extract a

HSF HSF ( D ) of a ROI from a HSF (in fact, a MrSF) of the

ambiance. In general, this simple extraction technique of

keeping only pACC information related to cells of the ROI

does not work and, as we see in the next section, much

more technical work must be done for getting the HSF ( D ).

3. Morse Spanning Forests

We are able to design a computational method for computing

a kind of topological dense skeleton over the pACC pACC ( I D ),

based on an appropriate reduction of cells via primal homotopy

operations. 

First, it is necessary to define the notion of primal–dual (i, i +
1) -path between cells of a (non-necessarily symmetric) pACCs.

Given a pACC C = (C, B p , B d , dim p , dim d ) and an integer 0 ≤ i ≤ k , a

primal–dual (i, i + 1) -path is a sequence c 1 , c 2 , . . . , c r ( r ≥ 0) of cells

of dimensions i and i + 1 such that any { c j , c j+1 ) } is an elemen-

tary interaction of the pACC ( ∀ 1 ≤ j ≤ r − 1 } ). Notice that c 1 and c r
can be cells of dimension i or i + 1 . We say that a cell c ′ is primal

(resp. dual) (i, i + 1) -reachable from the cell c ∈ C i (resp. c ∈ C i +1 ) if

there is a (i, i + 1) path starting at c and terminating at c ′ . This is

straightforward to check that primal–dual (i, i + 1) -reachability is a

equivalence relation. Working now with symmetric pACCs, the set

of all the equivalence classes with regards primal–dual reachabil-

ity is called primal–dual i-pACC–homology set of C and its cardinal-

ity primal–dual i-pACC-Betti number . It is straightforward to show

that primal or dual pACC-homotopy operations preserve pACC-

Betti numbers. 

To develop in full detail the theory of pACC-homotopy opera-

tions and its power for topological analysis and recognition is be-

yond the scope of this paper. Here, we limit ourselves to interpret

the HSF notion, which has been proved to be useful for topologi-

cal calculus, [15] , in terms of pACC-homotopy operations. With this

interpretation at hand, the theory developed in this paper allows

us to efficiently compute homology and homotopy invariants (in-

cluding homotopy groups) of cell versions of digital objects of any

dimension and using any adjacency. 

A key piece for this translation is a particular kind of asymmet-

ric pACC based on a primal–dual (i, i + 1) -path c 1 , c 2 , . . . , c r , with

c 1 ∈ C i . An analogous dual strategy ( c 1 ∈ C i +1 ) can also be devel-

oped. In order to be understandable, we focus only in the primal

strategy. The asymmetric pACC naturally constructed from the “se-

quence” of primal link-pACCs ( c 1, c 2), lnk (c3 , c4) , . . . , lnk (c 2 j−1 , c 2 j )

( j = � r/ 2 � ) allows us to compute maximal (in terms of the number

of cells involved) primal pACC-“tree” structures measuring pACC-

homology. A pseudo-code for this algorithm is given in Algorithm

1 [3] (Note: card ( S ) is the cardinal function of a set S ). 

The output of Algorithm 1 consists in an asymmetric pACC

T (0 , 1) + T (1 , 2) , a minimal pACC H consisting in a set of isolated

cells of primal dimension 0 and 1 and a vector field lnk of cell pair-

ings. The cells of H are called critical cells . These are the unique

cells of C which are not paired by lnk . The number of critical
ells of dimension 0 and 1 respectively determine the pACC-Betti

umbers of C and B 
p 
C (c, c ′ ) = 1 for any primal vector ( c , c ′ ) of

nk . 

Adding additional constraints to the cell c̄ to be chosen in each

onditional instruction allow us to get that lnk is a primal vec-

or field of mutually disjoint pairs of cells. These constraints can

e formulated in terms of a function called oriented flow . The ori-

nted flow of a cell c of primal dimension i is specified in terms

f a particular primal–dual (i, i + 1) -path “connecting” any cell to

 representative cell of its pACC-homology set. In order that the

ax-pACC-Forest algorithm provides us of an oriented flow func-

ion, we reduce ourselves to say that processes of arrow reversing

6] in lnk are compulsory to be done.
In consequence, to describe HSF-structures of cubical cell ver-

ions of digital objects or binary digital images mean to apply

ax-pACC-Forest algorithm to the pACCs associated with them and

o describe later a new redistribution of the primal vectors of the

ACC T (0 , 1) , T (1 , 2) , such that two of them in lnk are disjoints. 
It can be proved that any output of the Max-pACC-Forest algo-

ithm applied to pACC ( D ) is a HSF of D . For computing an intrinsic

eature as HSF ( D ), we use here a different algorithmic strategy to

revious one, which is based on successive modifications of an ini-

ial topological model of the ambiance space: a Morse Spanning

orest of digital images. 

A Morse Spanning Forest (MrSF for short) for a digital image I

f dimension m × n is any output ((T (0 , 1) , T (1 , 2) ) , H, lnk ) of the

ax-pACC-Forest algorithm applied to pACC ( I ). T (0 , 1) and T (1 , 2) are

espectively called the 0–1 tree and 1–2 tree of the MrSF . Given a

igital object D ⊂ I and a MrSF of I D , a primal 0–1 link lnk p (c, c ′ ) =
 (c, c ′ , c ′′ ) } belonging to lnk is called a sink (or simply the cell c ′ is

 sink) if the 0-dimensional cell (pixel) c is black (or belongs to D )

nd the 0-dimensional cell c ′ ′ is white (does not belong to D ). A

ource of this MrSF is a 1-cell { c , c ′ ′ } of Cell ( I D ), such that c and c ′ ′
re black pixels and the primal (0, 1)-links lnk (c, c ′ ) = { (c, c ′ , c ′′ ) }
nd lnk (c ′′ , c ′ ) = { (c ′′ , c ′ , c) } (being c ′ the unique 1-cell in pACC ( I D )

with c , c ′ ′ ∈ int p ( c ′ )) does not belong to vector field lnk . 

It is straightforward to prove that any complete activation of

he PEs corresponding to the parallel architecture of Step (c.2) of

ection 2 , give raise to a MrSf. 

Fig. 5 shows the visualization of two MrSFs

((T (0 , 1) , T (1 , 2) ) , H, lnk ) associated with a digital image of di-

ensions 4 × 4. The existence of a unique critical cell in these

articular closed discrete dynamical systems is a consequence of

he contractibility of this particular tessellation embedded in the

uclidean plane. The 0–1 (resp. 1–2) primal vectors are colored

n red (resp. in blue). The 0–1 (resp 1–2) dual vectors are colored

n green (resp. in blue) in the resulting primal 1–2 (resp. 0–1)

rees. Both MrSFs show only one 0–1 tree T (0 , 1) . This directed tree

odifies in a smart way the contribution of each primal 0-cell to

e part of the unique connected component whose representative

lement is the critical cell. This contribution is “measured” in

erms of a directed path within the tree from the cell to the

ritical one. There are three 1–2 trees in T (1 , 2) on the left and only

ne in the MrSF on the right. 

In order to generate MrSFs presenting only one 1–2 tree

n T (1 , 2) , we must simply apply the algorithm Max-pACC-Forest

3] taking as sub-sequence c 1 1 , . . . , c 
1 
� 1

of primal 1-cells of C , such

hat its first 1-cells all belong to the border of the image. In this

ay, we guarantee that all the border 1-cells of the image except-

ng one are nodes of the 0–1 tree. From now on, all our MrSFs have

his “topological shape”. 

If D is an object-of-interest within a digital image I of dimen-

ions m × n , a MrSF ((T (0 , 1) , T (1 , 2) ) , H, lnk ) for I (or, equivalently

or I D ) becomes a HSF structure for D if the MrSF superimposed

ver the image I D have the maximum number of cells of Cell ( D )

hich are paired by lnk . Fig. 4 illustrates some examples of HSF



Fig. 4. Examples of HSFs for object of interests with different topologies. (a) An ob- 

ject topologically equivalent to two closed curves; (b) An object topologically equiv- 

alent to two concentric closed curves. The sinks are surrounded by dotted ellipses

and the sources by dotted triangles.

Fig. 5. Two MrSFs for a binary digital image I of dimensions 4 × 4. Their respective 

representative cells of the pACC 0-homology of I are surrounded by a hollow square.

(For interpretation of the references to colour in the text, the reader is referred to

the web version of this article.)
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Fig. 6. A rotated E shape showing three sinks with dotted circles and two sources

(surrounded with dotted triangles). Two sink/source pairs should be canceled in

order to get the HSF.
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or object of interests with different topologies. The next shapes

nd their corresponding HSFs are shown: (a) two closed curves,

b) two concentric closed curves. Critical 0-cells (for the ROIs) are

arked with a dotted circle and critical 1-cells with a dotted tri-

ngle. 

Images of Fig. 4 contain objects whose connected components

ave only one 0–1 sink. This fact guarantee that a true HSF of the

oreground (set of black pixels) is obtained. To understand better

his problem and to find a possible solution, let us analyze the ro-

ated E shape of Fig. 6 . The construction of the MrSF exhibits three
inks (tagged a , b , c ) and two foreground sources (named 1 and 2,

urrounded by dotted triangles). It is obvious that the MrSF of this

bject must be transformed so as its final HSF would have only

ne sink. 

. A parallel implementation for obtaining HSF of ROIs

This section includes the sequential and parallel version of the

ame algorithm: the determination of a HSF of a digital object

 ⊂ I D , being I D a digital image of dimension m × n . Let us recall

hat we compute a HSF of D via iterative process of “optimization”

f an initial MrSF. Let us assume here that I D is a binary digital

mage and that D is the foreground (set of black pixels) of it. 

HSF ( D ) means, in particular, an optimal pairing of cells of D

o that it has the minimal possible number of critical (non-paired

ithin Cell ( D )) 0-cells and 1-cells. Note that in this scenario there

ill be no critical 2-cells; only critical 0-cells (connected compo-

ents) and 1-cells (homological holes of dimension 1). All the ho-

ological and homotopical magnitudes of the connected compo-

ents (CC) of the foreground of I D can be extracted from this HSF.

his means that necessarily global information must be extracted,

hich unavoidably implies to insert some kind of global search-

ng across some points of the whole image. Nevertheless, due to

he structure of the MrSF, it is possible to perform large part of

he work in parallel. Thus, time complexity is preserved very near

o the logarithm of the width plus height of the image. In this

ense, we have addressed the codification that it scales well with

he number of Processing Elements of the target parallel architec-

ure (like multi or many-core, GPUs, SIMD kernels, FPGA,...). Oth-

rs software frameworks like REDHOM, [21] , are also based on this

deas. 

From now on, let us suppose that all the border of whole im-

ge is always composed of background pixels. The first step of Al-

orithm 2 [3] computes the initial MrSF of I D denoted by MrSF 0 .

he computation of every primal and dual vectors in MrSF 0 is ex-

lusively based on the values of its adjacent cells. The rest of steps

re necessary to transform this MrSF into a HSF of D (that is, into

nother MrSF of I D such that the number of primal links involving

ells of D is maximal. 

There are different strategies to compute the primal and dual

ounding relations for MrSF 0 . We choose here this strategy based

n the activation of PEs (what we call L01): (a) the activation value

or the PEs associated with pixels of the west and east (resp. north

nd south) border of the image is 1 (resp. 0); (b) The activation

alue for a PE associated with a non-border black (resp. white)

ixel ( x , y ) is 1 if the pixel (x, y + 1) is also black (resp. white),

t is 0 if the pixel (x, y + 1) is white (resp. black) and (x + 1 , y ) is

lack (resp. white) and it is 1 if the pixels (x, y + 1) and (x + 1 , y )

re both white (resp. black). Algorithm 2 shows a sequential im-

lementation for computing MrSF 0 based on the previous strategy,

hereas Algorithm 3 is its parallel version. 



Fig. 7. Left: two crack patterns of 0-cells for 8 adjacent background cells. Middle:

Sink pattern of 0-cells. Right: foreground source pattern of 0-cells. F: foreground

0-cells. B: background 0-cells.

Fig. 8. MrSF for an image with two foreground sinks (marked with dashed ellipses)

and two foreground sources (marked with triangles). The paths that some two 0-

cells must follow to find their corresponding sinks are drawn with thin rectangles.

The paths that two 2-cells must follow to reach their corresponding cracks are

drawn with (south or west) arrows. (For interpretation of the references to colour

in the text, the reader is referred to the web version of this article.)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Left: a fragment of Fig. 8 showing a sink (rounded with a dashed ellipse)

with a source (marked with a triangle). Right: the same fragment after the transport

that cancels the sink and the source.

Fig. 10. Left: symbolic notation of east and west sinks pointed by sources of Fig. 8 .

Right: re-tagging due to the transport process after the cancellation of a and 1.
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This activation of all the PEs can be graphically understood us-

ing the example of MrSF 0 of Fig. 8 . Any red primal vector referred

to the vectors v̄ 01 and w̄ 01 is followed in the same direction by

blue dual vectors. The 1–2 primal vectors referred to the vectors

v̄ 12 and w̄ 12 are colored by blue and 2–1 dual vectors by green. It

is straightforward to see that we obtain a MrSF at the end of this

process. 

The second step of Algorithm 2 determines which 0-cells are

background/foreground sinks and which 2-cells are what we have

called cracks. We say that a 2-cell is a crack if the 1–2 links that

depart from it cross two 4-adjacent foreground 0-cells or two 8-

adjacent background 0-cells. This notion of crack is used for fix-

ing the “ends” of some transport path included in the 1–2 tree of

MrSF 0 , allowing afterward the interchanging between a sink and

a source. Due to previous criteria for L01, it is straightforward to

demonstrate that there are two types of 2-cell cracks for fore-

ground CC: 1) A NS crack happens when a 0-cell has the same

color than its adjacent North 0-cell and there is not a primal inter-

action between them. The crack will be located in the correspond-

ing 2-cell of this 0-cell; 2) A EW crack happens when a 0-cell has

the same color than its adjacent East 0-cell and there is not a pri-

mal interaction between them. The crack will be located in the cor-

responding 2-cell of this 0-cell. Besides, for background cells there

is another crack case because of the 8 adjacent condition, which

correspond to the two patterns of Fig. 7 (left). The crack will be

located in the center 2-cell of this pattern. Similarly, sinks are di-

rectly identified by the pattern of Fig. 7 (middle), where symbol ∗

means any 0-cell. The 0-cell sink will be located in the foreground

0-cell of this pattern.

Next, the third step of Algorithm 2 is necessary to introduce

global relations between 0-cells and the sinks. The aim is de-

termining the sink resulting of following any 0-cell through the
ector field lnk of MrSF 0 . Thus, a 0-cell follows its activated primal

ink v̄ 01 or w̄ 01 and then checks its neighbor point to find out its

orresponding activated primal link. This operation is repeated for

he next neighbor and so on, until a sink is reached. Finally, each

-cell can store a label of the sink to which points to. This rep-

esentation is called here MrSF 0–1 tree. This process is depicted

in Fig. 8 . The resulting MrSF for this image has two foreground

inks (marked with dashed ellipses). It has been drawn with thin

ectangles the paths that two 0-cells must follow to find their

orresponding sinks.

After the 0–1 MrSF tree has been obtained, the MrSF can be

onverted into a HSF by pairing foreground sources with sinks. It

s straightforward to demonstrate that a foreground source exists if

nd only if the 0-cells form an internal corner in quadrant 1. That

s to say, the 2 × 2 pattern of Fig. 7 right (B means background

alue and F foreground value). The 1-cell source will be located in

etween the two foreground bottom 0-cells of this pattern. 

A pairing supposes the cancellation of the sink and the source

y a path of the 0–1 MrSF tree and the interchanging of its cor-

esponding link patterns. This “transport” can be explained graph-

cally in a straightforward manner (see Fig. 9 ). 

As previously stated, only those 1-cell foreground sources

hose east and west 0-cells point to two different sinks in the

–1 MrSF tree (as that of Fig. 9 ) are susceptible to be canceled

ith one of these sinks. On the contrary, if a source pointed to

he same sink, it would be the representative 1-cell of a hole, so it

ust not be canceled. Any transport implies the re-labeling of the

–1 MrSF tree, which can be explained using the symbolic nota-

ion from Fig. 10 . In this figure, the sinks and sources of Fig. 8 are

amed 1, 2 and a , b respectively, so that the east and west 0-cells

epresented by a , b are given by the left graph of Fig. 10 . If a and

 are chosen to be canceled, the re-labeling implies that any ap-

arition of the sink 1 in the 0–1 MrSF tree must be changed into 2

which is the other sink of a , as the dashed wide arrow indicates).

s a result, the source b is now a critical 1-cell that represents the

nly hole of the black CC in Fig. 8 ; so it must not be canceled here-

fter. This cancellation must be repeated until there are no more

an be done. The resulting MrSF (restrained to D ) provides us the

SF of the image. The remaining sinks and sources are the critical

-cells and 0-cells of the HSF of the foreground.

Algorithm 3 [3] is the parallel version for determining a HSF

f D (having the same goal than Algorithm 2). Some steps of the

equential version can be easily parallelized but other steps need

 different treatment to promote parallelism. 



 

3  

p  

p  

 

t

 

t  

t  

t  

F  

t  

u  

m  

p  

t  

t  

o  

a  

t  

o  

g  

a  

e

 

c  

t  

T  

t  

Y  

a  

d  

t  

c  

a  

Y  

n  

(  

i  

e  

m  

t  

c  

i  

t  

u  

 

t  

4

p  

t  

h  

a  

s  

1  

w  

t  

o  

fl  

e  

w  

2

n

c

1

c

r  

b  

t  

s  

h  

s

 

d  

t  

t  

n  

u  

p

 

p  

p  

b  

p

 

s  

i  

p

a  

T  

l  

u  

i  

p  

e  

4  

l  

h  

d  

c  

o  

h

 

a  

b  

t  

c  

t  

b  

I  

w  

c  

t  

b  

s  

a  

s  

t  

t  

m

 

q  

a  

a  

s  

t  

n

 

t  

s  

g  

s  
As we have previously mentioned, the first step of Algorithm

 is equivalent to the steps 1, 2 of Algorithm 2. Supposing that a

rocessing element is implemented for each pixel, the time com-

lexity order (for a parallel execution) of step 1 would just be O(1).

The second step of Algorithm 3 computes the representation of

he 0–1 MrSF tree and also the 1–2 MrSF tree for 2-cells. 

The 1–2 MrSF tree is used in the following steps to perform

ransports in parallel. A reduced number of steps finally give us

he final HSF (which obviously contain all the information about

he CC contours). An example of the contouring is observed in

ig. 8 : the depicted paths (drawn with south or west arrows) of

wo 2-cells in this figure follow the contour of the foreground CC

ntil they reach a foreground or background crack. Similar paths

ust be computed for any 0 and 2-cell. It can be seen that these

aths follow the contour of each CC in southwest direction until

he “end” of a CC has been reached (or a source is found), because

he condition for the disappearance of a CC is exactly the existence

f a crack. The chosen representations for these trees in this work

re the following: every 0-cell stores a label of the first sink that

he cell points to, and in the same way every 2-cell stores a label

f the first crack that the cell points to. As it can be seen in Al-

orithm 3(a), the way to proceed starting from a 0-cell (or from

 2-cell) labeling in an efficient parallel manner is to jump with

xponentially increasing hops (whose value is in X 12, Y 12). 

In order to clarify the parallel behavior of the exponentially in-

reasing hops, let us consider a trivial ( m , 1)-image having iden-

ical cells, and hence with a unique crack in the most south cell.

hus, according to the initialization (step a), for any non-crack cell:

ag 12 = 0, address = k (being k = 1 , 2 , . . . , m − 1 the row index),

 12 = 1. On the contrary, the bottom cell will have: tag12 = m,

ddress = m , Y 12 = 0. Step b.i gives for each non-crack cell ad-

ress = 1 + k , while the bottom cell stays with address = m . Af-

er that, step b.ii introduces a first additional nonzero tag in the

ell with index m −1; that is, tag vector will be (0, 0,…, 0, m , m ),

nd it gives a value Y 12 = 2 for the first m − 2 cells, by means of

 12 = Y 12 + Y 12(ad d ress ) . Next iteration will propagate (step b.i)

ew values for the first m − 2 cells: address = k + 2 , which means

step b.ii) that tag vector will contain two new nonzero tags, that

s: (0, 0,…, 0, m , m , m , m ), and the nonzero Y 12 values will be now

qual to 4. In the same way, in the third iteration and for the first

 − 4 cells: address = k + 4 , and Y12 values will be 8. Therefore,

ag vector will contain four new nonzero tags, and so on. The in-

reasing jumps propagate the address from one cell to its neighbor-

ng cells until a sink (crack, correspondingly) is reached. Supposing

hat a processing element was implemented for each cell, this let

s preserve a time complexity order for this step of O (log(m + n )) .

Using the information of the 0–1 and 1–2 MrSF trees, many

ransports to the south (step 3) and afterward to the west (step

) can be done in parallel. This is because the uniqueness for the

airs of sinks/sources along the 1–2 tree of MrSF 0 can be guaran-

eed. Based on Fig. 12 , a graphical demonstration of this is given

ere. In this figure, one sink points to a foreground (1-cell) source

long the 1–2 tree of MrSF 0 in south direction. With the expres-

ion “pointing in south direction” we mean going along the links

–2 and 2–1 from the nearest southeast 2-cell of the sink and

ithout crossing other crack. The existence of a path from a sink

o a foreground source means that there must be a 4-adjacent set

f foreground pixels to the “right” of this path (with regards to the

ow from sink to source), and an 8-adjacent set of background pix-

ls to its “left”. If not, another (background or foreground) source

ould exist. This supposes a “tube” from the nearest southeast

-cell of the sink to the source (see dashed lines in Fig. 12 ). Then,

ote that the nearest north and east background 0-cells of the

onsidered 0-cell sink are a background crack. Therefore, no other

-2-1 link path can approach the source from the north without

rossing this background crack. To prove that no other sink can
each the foreground source coming from the east, we can proceed

y reductio ad absurdum. If there were another foreground sink

hat points to the same source, another tube must exist with the

ame flanking. But this new tube is not possible because it must

ave a set of 4-adjacent foreground pixels to its “right”, and this

et would cross the background pixels of the other tube. 

Likewise, there exist no more than one sink pointing in west

irection to a 1-cell foreground source according to a 1–2 MrSF

ree of a binary image. The expression “pointing in west direc-

ion” means going along the links 1–2 and 2–1 from the nearest

orthwest 2-cell of the sink and with crossing no other crack. This

niqueness condition can be demonstrated in a similar way to the

revious one. 

Moreover, note that cancellations done at step 3 (south trans-

orts) does not imply any loss of uniqueness for the west trans-

ort (step 4). On the contrary, once south and west transports have

een done, the 1–2 and 0–1 MrSF trees have changed, so it is not

ossible to guarantee new similar uniqueness conditions. 

Consequently, for each foreground sink, the source of its corre-

ponding southeast 2-cell in the south direction is reached by us-

ng the 1–2 MrSF tree. If it is reached a foreground source, trans-

ort is executed (see Fig. 9 ), the sink and the source are “canceled”

nd the 0–1 and 1–2 MrSF trees must be “re-labeled” (see Fig. 10 ).

he next step is the same than the previous one but we are now

ooking for the west direction of the west 2-cell of each sink. The

niqueness condition of sink/source pairs guarantees that suppos-

ng that a processing element exists for each sink, the time com-

lexity order for the transports in steps 3 and 4 are O (1). How-

ver, looking for the corresponding west source for a sink in step

 needs a searching along the 1–2 MrSF tree, because it was re-

abeled in the previous step 3. Due to this, a certain number of

ops along this tree (until a survival source is reached) must be

one in parallel for each sink. Under the assumption that a pro-

essing element exists for each 1-cell, the final time complexity

rder for step 3 and 4 is O ( s ), where s is the maximum number of

ops along the 1–2 MrSF tree in step 4. 

Once previous steps have been processed in parallel the 0–1

nd 1–2 MrSF trees have been completely re-labeled, thus, it must

e checked if the remaining sources are critical 1-cells (represen-

ative of holes of the foreground) or simply sources that must be

anceled with one of the remaining sinks. Step 5 checks this condi-

ion and, at the same time, builds a table with the correspondences

etween sources and sinks (like the one appearing in Fig. 10 , left).

n parallel, for the east and west 0-cells of each remaining source,

e can access to the re-labeled 0–1 MrSF tree to gather the two

orresponding sinks of each source and to build a table or a ma-

rix with these correspondences. Due that previous steps have rela-

el many elements of 0–1 MrSF tree, the search for the two corre-

ponding sinks of each source supposes a certain number of hops

long this tree (until a survival sink is reached). Using this last data

tructure (a matrix with as many elements as 1-cells), and under

he assumption that a processing element exists for each 1-cell,

he time complexity order for the step 5 is O ( r ), where r is the

aximum number of hops along the 0–1 MrSF tree. 

Finally, step 6 of Algorithm 3 is the same as step 5 in the se-

uential version, but now it works only for the remaining sinks

nd sources. For this last part, sequential processing cannot be

voided, but in general it can be shown that the percentage of

ink/source pairs involved here is rather small (see Fig. 11 ). The

ime complexity order for this final step is O ( q ), where q is the

umber of remaining sink/source pairs. 

Once the transports and re-labeling of the 0–1 and 1–2 MrSF

ree have been performed, the resulting modified MrSF is the de-

ired HSF. The remaining sinks are the critical 0-cells of the fore-

round, that is, representative elements of the CC. The remaining

ources, each of them pointing to the same sink, are the critical



Fig. 11. Statistical data using the first 8 available medical images of http://

goldminer.arrs.org/top-40.php .

Fig. 12. A “tube” from the nearest southeast 2-cell of the sink to the source (dashed

lines), which is flanked by a 4-adjacent set of foreground pixel at its “left”, and a

8-adjacent set of background pixel at its “right”.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. HSF for a rotated E shape. The discontinued ellipses indicate the paths

where earlier MrSF sinks and sources have been canceled and transports have been

done. Finally this shape contains only one foreground critical 1-cell (little dotted

circle).
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1-cells of D in the HSF, that is, combinatorial representatives of

holes.

To sum up, the time complexity order of Algorithm 3 is

O (log(m + n )) + O ( s ) + O ( r ) + O ( q ). The value of q is different for

each image but in the sixth column of Fig. 11 we can see that q

means in average approximately a 6.5 % of the initial amount of

sources. More clearly, the average number of sequential iterations

within step 6 is less than 0.014% of the number of pixels (exactly:

70/(596 ̂ ∗872) = 1,35e −4), or which is more remarkable, less than

the 5% (exactly 70/(596 + 872) = 0.048) of (m + n ) . Likewise, the

values of r and s largely varies from one image to another, because

it is related to the existence of a “twisted” shape in the CC (like in

spirals). The fifth column of Fig. 11 shows that the average value of

s is 65, which means also less than the 5% (exactly 65/(596 + 872)

= 0.044) of the (m + n ) . Similarly, the last column shows that the

average value of r is 71, which means an inferior value to 5% of the

average of (m + n ) (71/(596 + 872) = 0.048). 

These medical images were binarized by simply selecting a

threshold that is the mean of the maximum and minimum gray

tones of each image. There is only one image for which the num-

ber of iterations is considerably higher than the rest (AJR2009).

This is a consequence of the fact that all of its gray tones are very

near to the threshold (in fact, its resultant binary image seems to

be a pure “salt-and-pepper” image). 

In order to declare explicitly the parallelism an implementa-

tion [3] in OCTAVE/MATLAB has been first written. All the fig-

ures along this work have been generated with these codes. Those
atrix operations that cannot be carried out in an element-by-

lement manner (like matrix inversions, matrix multiply, etc.) have

een avoided. Algorithms do not contain any explicit if ... else con-

itional sentences. The avoidance of conditional sentences in the

hot spot” zones prevents the so-called thread divergence for GPUs,

hich is one the main reasons why the performance on this plat-

orms diminishes, [18] . In this sense, some conditional operations

ave been transformed into predicative-like code, by using firstly

lement-by-element logical ANDs or multiply operations for the

ossible results, and second by fusing these results through logi-

al ORs or addition operations. 

Hence, this implementation indicates exactly which is the ex-

sting data parallelism, and which are the only spots where some

oop carried dependencies between iterations exist. As a matter of

act, these spots are only those parts of steps 2, 4, 5, 6 of Algorithm

, where complexity has been previously revealed as being bigger

han O(1), and that are coded as while loops. An additional ad-

antage is preventing complex data structures (trees, chained lists,

tacks, etc.), which are very inefficient when running on massive

ata parallel computer architectures (GPUs, SIMD, systolic proces-

ors, etc.). Therefore, OpenMP codes can be written directly using

his notation, in most of the cases by converting the matrix pro-

essing into two nested loops, and preceding the outer loop (de-

oted to the rows) with the directive pragma omp parallel for . Tim-

ng results for the OpenMP implementation are shown in next sec-

ion. Going further, the memory access pattern (which is in most

ccasions a critical point for the performance that can be achieved

n GPUs, [18] ) can be clearly observed with the OCTAVE/MATLAB

mplementation. 

Two different exam ples serve to understand how the preceding

lgorithms process different shapes. Previous Fig. 6 showed that a

otated E shape contained three MrSF sinks and two foreground

ources. These must be canceled (and their corresponding links

atterns interchanged) to generate the correct HSF. After applying

he previous algorithms, the resultant forest is shown in Fig. 13 .

he discontinued ellipses indicate the paths where earlier MrSF

inks and sources have been canceled and transports have been

one. Finally, this shape contains only one critical 0-cell (little dot-

ed circles), which corresponds to one CC. 

Sources and sinks of Fig. 13 are easy to cancel since they lie

s consecutive corners. This is the most common case for natural

mages, where the discretization process usually introduces many

tair-like lines that contain many consecutive sinks and sources

http://goldminer.arrs.org/top-40.php


Fig. 14. The MrSF of a spiral shape figure with three MrSF sinks (dotted circles)

and two foreground sources (dotted triangles).

Fig. 15. Homotopic relations for Fig. 4 (a) (left) and Fig. 4 (b) (right).
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Fig. 16. Timing results in seconds for medical images of different size of http://

goldminer.arrs.org/top-40.php , using an Intel Xeon E5 2650 server.

Fig. 17. Speedup for the medical images of previous Fig. 16 vs. the number of

threads.
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a  
nd whose cancellation is straightforward like in the previous case.

evertheless this is not the case when the curve encloses sev-

ral windings. Let us consider Fig. 14 the object of interest is a

piral, which actually consists of only one connected component.

ig. 14 shows a draft of the spiral and the MrSF, with three sinks

tagged as a , b , c ) and two sources (named 1, 2). For this case,

he south and west transports (steps 3 and 4 of Algorithm 3) can-

ot cancel any sink/source pair because all the primal–dual paths

rom the sinks fall into background cracks. Thus, the last step 6

f Algorithm 3 must process (in a sequential manner) the last fi-

al sink/source pairing, and finally only sink a remains as the CC

epresentative 0-cell. 

As previously stated, from the HSF of a ROI D it is possible to

utomatically deduce homology and homotopy information of D

s a cell complex. From the homological point of view the shapes

f Fig. 4 (a) and (b) are equivalent: their Euler number is 0. From

heir corresponding HSFs, it is easy to understand that the objects

a) and (b) are different from a homotopy viewpoint. If we label

he two critical 0-cell as a , b and the critical 1-cell as 1, 2, then

ig. 4 (a) have the relations of Fig. 15 , left, whereas Fig. 4 (b) present

he relations of Fig. 15 , right.

. Testing results

In order to check the scalability of the algorithms, a non-fully

unctional but complete implementation has been done in C++ us-

ng OpenMP directives [3] . The compiler used was Microsoft Visual

xpress 12, using flags for full optimization and OpenMP language.

nfortunately this compiler does not produce SIMD-style code (to

e executed at the Intel AVX kernels) for the for loops. 

Initial testing for a PC with an Intel Core i5-4 4 40 (3.10 GHz,

 × 4 cores, 8 × 32 KB data caches, Level 2 cache size 4 × 256

B, Level 3 cache size 6 MB, 8 GB RAM) shows that the so-called

emory bandwidth bottleneck was reached very early (even for 2

hreads) for images above a certain size. This bottleneck appears
ainly in the step 2 (the computation of the 0–1 and 1–2 MrSF

ree) due the numerous memory accesses that are necessary. This

ehavior is well predicted by the Roof-line Model [27] . 

However timing results for another server are very different.

his is the case of using an Intel Xeon E5 2650 v2, whose maxi-

um RAM bandwidth is much higher. Its main characteristics are:

.6 GHz, 8 cores (up to 16 threads), 8 × 32 KB data caches, Level

 cache size 8 × 256 KB, Level 3 cache size 20 MB, maximum

AM bandwidth: 59.7 GB/s. For this machine, the so-called mem-

ry bandwidth bottleneck was reached for images of bigger sizes

nd for more threads. The mean execution times of 50 repetitions

re shown in Fig. 16 for figures of several sizes. Due that the server

here tests have been done runs concurrently lots of processes (of

ifferent users) distortion appeared in some real time measures.

his is more patent for small images and one thread (for bigger

imes the probability of being interrupted is higher). Due to this,

ome false superlinear speedup appears for small images. In future

esting, our intention is to use a dedicated system that prevents

his timing noise. 

Scalability (time for various threads divided by time for 1

hread) works pretty well for images where all data structures are

ept in L3 caches (see Fig. 17 ). However, for bigger images scalabil-

ty decays when the bandwidth RAM bottleneck is reached. How-

ver, the almost fully parallelization of our algorithm and these

rst results seems to point on the direction that the HSF construc-

ion may be easily implemented on other parallel architectures. It

s expected that the behavior on GPUs could be even better for big

mages, because GPUs bandwidth to the GDRAM is much bigger

han current servers, so the memory bottleneck may probably be

eached further. 

. Conclusions

The usefulness and validity of the Homological Spanning Forest

pproach [14,15] within the context of the 2D Digital Imagery is

http://goldminer.arrs.org/top-40.php
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further consolidated in this paper under the format of primal–dual

abstract cell complex. We deliver a parallel framework for topolog-

ical computation based on HSF structures of images and objects.

Both homology and homotopy type information of a ROI D of a

digital image I can be efficiently extracted from HSF-models for I .

A HSF forest of D is built via parallel and sequential iterative rec-

tification of a HSF of the ambiance space I , increasing in each step

the density of cells of the HSF belonging to Cell ( D ). The technique

used in all the elementary steps (excepting the construction of the

initial MrSF) of this combinatorial optimization process is based on

the pACC-homology notion of primal–dual path. 

The time complexity order of this framework is close to the log-

arithm of the sum of the width and the height of the image. Only

a linear term (supposing less than its 15% of this sum in the mean)

appears on the last steps. Moreover, the software framework is al-

most fully parallel, so it is expected to scale well for any parallel

architecture (GPUs, SIMD kernels, multithreaded, etc.). Finally, in a

near future we want to face to the following challenges: the addi-

tion of weights to the cells of our abstract primal–dual cell com-

plex definition, because it appears to be an appropriate solution to

deal with problems of topological dynamics and physically-based

simulation; developing a similar framework for higher dimensional

images and ROIs with any kind of adjacency relation. 
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