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Model Transformation Modularization as a
Many-Objective Optimization Problem

Martin Fleck, Javier Troya, Marouane Kessentini, Manuel Wimmer and Bader Alkhazi

Abstract—Model transformation programs are iteratively refined, restructured, and evolved due to many reasons such as fixing bugs
and adapting existing transformation rules to new metamodels version. Thus, modular design is a desirable property for model
transformations as it can significantly improve their evolution, comprehensibility, maintainability, reusability, and thus, their overall
quality. Although language support for modularization of model transformations is emerging, model transformations are created as
monolithic artifacts containing a huge number of rules. To the best of our knowledge, the problem of automatically modularizing model
transformation programs was not addressed before in the current literature. These programs written in transformation languages, such
as ATL, are implemented as one main module including a huge number of rules. To tackle this problem and improve the quality and
maintainability of model transformation programs, we propose an automated search-based approach to modularize model
transformations based on higher-order transformations. Their application and execution is guided by our search framework which
combines an in-place transformation engine and a search-based algorithm framework. We demonstrate the feasibility of our approach
by using ATL as concrete transformation language and NSGA-III as search algorithm to find a trade-off between different well-known
conflicting design metrics for the fitness functions to evaluate the generated modularized solutions. To validate our approach, we apply
it to a comprehensive dataset of model transformations. As the study shows, ATL transformations can be modularized automatically,
efficiently, and effectively by our approach. We found that, on average, the majority of recommended modules, for all the ATL programs,
by NSGA-III are considered correct with more than 84% of precision and 86% of recall when compared to manual solutions provided
by active developers. The statistical analysis of our experiments over several runs shows that NSGA-III performed significantly better
than multi-objective algorithms and random search. We were not able to compare with existing model transformations modularization
approaches since our study is the first to address this problem. The software developers considered in our experiments confirm the
relevance of the recommended modularization solutions for several maintenance activities based on different scenarios and interviews.

Index Terms—model transformation, modularization, ATL, NSGA-III, MDE, SBSE
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1 INTRODUCTION

MODEL-DRIVEN ENGINEERING (MDE) is a methodol-
ogy that advocates the use of models throughout

the software engineering life cycle to simplify the design
process and increase productivity. Model transformations
are the cornerstone of MDE [1], [2] as they provide the
essential mechanisms for manipulating and transforming
models. Most of these model transformations are expressed
by means of rule-based languages. In MDE, models and
model transformations are considered development artifacts
which must be maintained and tested similar to source code
in classical software engineering.

In object-oriented systems, composition and modular-
ization are used to tackle the issues of maintainability and
testability. Similar to any software systems, model transfor-
mation programs are iteratively refined, restructured, and
evolved due to many reasons such as fixing bugs and
adapting existing transformation rules to new metamod-
els version. Thus, it is critical to maintain a good qual-
ity and modularity of implemented model transformation
programs to easily evolve them by quickly locating and
fixing bugs, flexibility to update existing transformation
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rules, improving the execution performance, etc. Although
language support for modularization in model transforma-
tion is emerging [3], it has not been studied in that much
detail and has not been widely adopted. For instance, this is
also reflected by the current application of modularization
within the ATL Transformation Zoo [4], which does not
contain any modularized transformation [5]. Thus, most of
the existing ATL transformations are difficult to evolve, test
and maintain.

In this paper, we therefore propose, for the first time in
the MDE literature, an automatic approach to modularize
large model transformations by splitting them into smaller
model transformations that are reassembled when the trans-
formation needs to be executed. We see this need for an
automatic approach as there are several model transforma-
tion languages now offering modularization concepts [3].
Smaller transformations are more manageable in a sense
that they can be understood more easily and therefore
reduces the complexity of testability and maintainability. In
particular, we focus on the modularization of ATL trans-
formations [6]. To the best of our knowledge, the problem
of the automated modularization of model transformations
beyond the rule concept has not been tackled so far.

The modularization of model transformation programs
is a very subjective process and developers have to deal
with different conflicting quality metrics to improve the
modularity of the transformation rules. The critical question
to answer is what is the best way to cluster the rules that



2are semantically close by reducing the number of inter-
calls between rules in different modules (coupling) and 
increasing the number of intra-calls between rules within 
the same module (cohesion). In such scenario, it is clear that 
both of these quality metrics are conflicting. To this end, we 
leverage the usage of search-based algorithms [7] to deal 
with the potentially large search space of modularization 
solutions. We measure the improvement of both testability 
and maintainability through common metrics such as cou-
pling and cohesion, which have been adapted for model 
transformations and which are also used to guide the search 
process. Our many objective formulation, based on NSGA-
III [8], finds a set of modularization solutions providing a 
good trade-off between four main conflicting objectives of 
cohesion, coupling, number of generated modules and the 
deviations between the size of these modules.

In our evaluation, we demonstrate the necessity for 
such an approach by outperforming random search in all 
selected case studies (sanity check). Furthermore, we inves-
tigate the quality of our generated solutions by determining 
their recall and precision based on comparison with other 
algorithms and manual solutions, ensuring quality of the 
produced results. In this paper, we consider seven different-
sized transformations, of which six are available in the ATL 
Zoo and one has been created within our research group. 
Specifically, we show the configuration necessary to apply 
our modularization approach and how the different metrics 
of the selected transformations can be improved automat-
ically. We found that, on average, the majority of recom-
mended modules for all the ATL programs are considered 
correct with more than 84% of precision and 86% of recall 
when compared to manual solutions provided by active 
developers. The statistical analysis of our experiments over 
several runs shows that NSGA-III performed significantly 
better than multi-objective algorithms and random search. 
We were not able to compare with existing ATL modular-
ization approaches since our study is the first to address 
this problem. The software developers considered in our 
experiments confirm the relevance of the recommended 
modularization solutions for several maintenance activities 
based on different scenarios and interviews. Therefore, the 
contributions of this article can be summarized as follows:

1) Problem Formulation. We define the problem of
modularizing model transformations as a many-
objective optimization problem.

2) Problem Instantiation. We instantiate our proposed
problem formulation for the use case of ATL, which
supports modularization through superimposition,
and apply our approach on six differently-sized ATL
case studies and investigate their results.

3) Solution Quality. We demonstrate the quality of our
approach by comparing the quality of the automat-
ically generated solutions of NSGA-III with other
multi-objective algorithms, one mono-objective al-
gorithm and manually created solutions.

4) Approach Usability. The qualitative evaluation of
the performed user study confirms the usefulness of
the generated modularized solutions based on ATL.

The remainder of this paper is structured as follows.
In Section 2 we introduce the concepts of model-driven

engineering, search-based software engineering and the
modularization capabilities of model transformations. Sec-
tion 3 introduces our approach and describes how we define
the modularization problem in our framework. Section 4
describes the evaluation of our solutions retrieved for the
modularization problem, before we give an overview on
related work in Section 5. Finally, Section 6 concludes the
paper with an outlook on future work.

2 BACKGROUND

In this section we present the main pillars on which our
approach is built, namely MDE and SBSE.

2.1 Model-Driven Engineering
Model-Driven Engineering (MDE) [9], [10] is a methodol-
ogy that advocates the use of models as first-class entities
throughout the software engineering life cycle. It is meant to
increase productivity by maximizing compatibility between
systems, simplifying the process of design and promoting
communication between individuals and teams working on
the system. Next we describe the key concepts of MDE.

2.1.1 Metamodels
A metamodel is a model that specifies the concepts of a
language, their relationships, and the structural rules to
build valid models. As an example, the metamodel for UML
is a model that contains the elements to describe UML
models, such as Package, Class, Operation, Association, etc. In
this way, each model is described in the language defined by
its metamodel, so there has to hold a conformance relation
between a model and its metamodel. A metamodel is itself
a model, and consequently, it is written in the language de-
fined by its meta-metamodel. Metamodels allow to specify
general-purpose languages as well as domain-specific lan-
guages (DSLs). For realizing model transformations, there
exist dedicated DSLs which are explained next.

2.1.2 Model Transformations
They are a key technique to automate software engineer-
ing tasks in MDE [10], [11], by providing the essential
mechanisms for manipulating models. In fact, they allow
to transform models into other models or into code, and
are essential for synthesizing systems in MDE. In [1], [12],
an overview of transformation language concepts as well
as a classification of different transformation types are pre-
sented. In this paper, we focus on model-to-model (M2M)
transformations. Generally speaking, a M2M transformation
is a program executed by a transformation engine which
takes one or more models as input to produce one or more
models as output as is illustrated by the model transforma-
tion pattern [1] in Fig. 1. One important aspect is that model
transformations are developed on the metamodel level and
are thus reusable for all valid models.

Many different model transformation languages
emerged in the last decade such as Henshin [13], AGG [14],
AToM3 [15], e-Motions [16], VIATRA [17], QVT [18],
Kermeta [19], JTL [20], and ATL [21]. In this paper, we
focus on ATL since it has come to prominence in the
MDE community. This success is due to ATL’s flexibility,
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support of the main metamodeling standards, usability that 
relies on tool integration with Eclipse, and a supportive 
development community [22].

2.1.3 ATLAS Transformation Language (ATL)
ATL is a hybrid model transformation language containing 
a mixture of declarative and imperative constructs. Listing 1 
shows an excerpt of an ATL transformation taken from 
the ATL Zoo [4] that generates a relational schema from 
a class diagram. The input and output metamodels of this 
transformation are depicted in Fig. 2. In this excerpt, we 
have included two declarative rules (so-called “matched 
rules”). The first rule, ClassAttribute2Column, takes elements 
of type Attribute whose type is a Class and whose are single-
valued. These elements are transformed into elements of 
type Column. The value assigned to the name attribute is 
the same as the name of the Attribute element concatenated 
with “Id”. The element referenced by the type relationship is 
retrieved by a helper function.

Listing 1. Excerpt of the Class2Relational Transformation.
1 module Class2Relation;
2 create OUT : Relational from IN : Class;
3
4 helper def : objectIdType : Relational!Type =
5 Class!DataType.allInstances() -> select(e | e.name =

'Integer') -> first();
6
7 rule ClassAttribute2Column {
8 from
9 a : Class!Attribute (a.type.oclIsKindOf(Class!Class)

and not a.multiValued)
10 to
11 foreignKey : Relational!Column (
12 name <- a.name + 'Id',
13 type <- thisModule.objectIdType) }
14
15 rule Class2Table {
16 from
17 c : Class!Class
18 to
19 out : Relational!Table (
20 name <- c.name,
21 col <- Sequence {key}->union(c.attr->select(e |

not e.multiValued)),
22 key <- Set {key}),
23 key : Relational!Column (
24 name <- 'objectId',
25 type <- thisModule.objectIdType) }

The second rule, Class2Table, takes an element of type
Class as input and creates two elements: one of type Table
and one of type Column. The name given to the Column
is “objectId”, and its type is also assigned with the helper.
Regarding the Table, its key points to the new Column cre-
ated. As for its col reference, it also points to the Column
and to other elements. In order to retrieve these other
elements, ATL performs a transparent lookup of output
model elements for given input model elements. Thus, since
such elements are of type Class!Attribute, it automatically
retrieves the corresponding Relational!Column elements that
are created from the former elements.

Transformation
Specification

Source 
Models

Source 
Metamodel

Target 
Models

Target 
Metamodel

«conformsTo» «conformsTo»

Transformation
Engine

«reads» «writes»

«executes»

«refersTo» «refersTo»

Fig. 1. Model transformation pattern (from [1]).

(a) Source metamodel. (b) Target metamodel.

Fig. 2. Metamodels of the Class2Relational transformation.

The transparent lookup is performed in ATL by using
an internal tracing mechanism. Thereby, every time a rule is
executed, it creates a new trace and stores it in the internal
trace model. This is graphically illustrated in Fig. 3. In the
left-hand side of the figure there is a sample input model,
where elements are given an identifier (e.g., at1 and c1), that
conforms to the metamodel shown in Fig. 2a. The right-
hand side shows the model produced by the Class2Relation
transformation and that conforms to the metamodel in
Fig. 2b. In the central part of the figure contains the traces
that have been produced from the execution of the two rules
described. The traces keep track of which output elements
are created from which input ones and by which rule. Thus,
rule ClassAttribute2Column creates creates Trace 1 and rule
Class2Table creates Trace 2. In order to properly set the col
reference of the element t1, the engine searches in the trace
model for the traces where c1.attr is the input element. It
selects those traces of type Trace 1 and retrieves the elements
created from such traces, co1 in our example, so they are
selected as target for t1.col.

at1 : Attribute
name : “age”
multivalued : false

co1 : Column
name : “ageId”

c1 : Class

t1 : Table
name : “Man”

Input model Output model

attr col

Trace 1 by ClassAttribute2Column

Trace 2 by Class2Table

Trace model

name : “Man” co2 : Column
name : “objectId”

keycol

c.attr‐>
select(e |not e.multivalued)

Fig. 3. Representation of a sample transformation execution.

Thus, the elements created by rule Class2Table depend
on the elements created by rule ClassAttribute2Column. For
this reason, we say that the former rule has a dependency
with the latter. Furthermore, both rules have a dependency
with helper objectIdType. These dependencies are crucial for
the approach we present in Section 3. In fact, from any ATL
transformation, we can obtain a dependency graph showing
the dependencies among rules, between rules and helpers,
and among helpers. For the given example, such graph is
visualized in Fig. 4.

2.1.4 Modularization in ATL

ATL supports three kinds of units: modules, queries, and
libraries. An ATL module corresponds to a M2M transfor-
mation. This kind of ATL unit enables ATL developers to
specify the way to produce a set of target models from a
set of source models. Modules are composed of a set of
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objectIdType

Class2Table

DataType2Type

ClassAttribute2Column

MultiValuedDataTypeAttribute2Column

MultiValuedClassAttribute2Column

DataTypeAttribute2Column

Fig. 4. Class2Relational transformation elements dependencies.

transformation rules, and may also contain helper func-
tions (helpers). ATL modules are the only kind of unit that
can return output models. ATL queries are operations that
compute a primitive value from a set of source models.
ATL queries are not considered in this paper due to their
rare use [5]. Finally, ATL libraries enable to define a set of
ATL helpers that can be called from different ATL units.
Compared to both modules and queries, an ATL library
cannot be executed independently.

All ATL units support composition. In particular, ATL
libraries can import other libraries and ATL modules can
import libraries and other modules. Wagelaar et al. [23]
distinguish between external composition, where the output
of one transformation serves as input for the next one, and
internal composition, where one transformation is split into
a number of transformation definitions which are combined
when the transformation needs to be executed. The superim-
position feature of ATL is the internal composition method.

Module superimposition [23] is used to split transforma-
tion modules into modules of manageable size and scope,
which are then superimposed on top of each other. This
results in (the equivalent of) a transformation module that
contains the union of all transformation rules. In addition
it is also possible to override rules with superimposition.
However, in this paper, we are not interested in this aspect,
since our purpose is to split a transformation composed of
a large module into modules of smaller size, but we do not
modify existing rules.

One of the reasons that motivate our work is that the
ATL Zoo [4] does not provide a single modularized trans-
formation currently. An explanation for this may be that the
modularization mechanism was introduced retrospectively
for ATL, while ATL has been used for some time in practice.
Furthermore, we believe there is a huge potential for an au-
tomatic modularization approach as there are many legacy
transformations available that have an extensive size. The
introduction of module concepts in other transformation
languages [3], such as QVT-O, TGGs, QVT-R, ETL and
RubyTL, reinforces the importance of modules for trans-
formations reaching a critical size, where the rule concept
is not sufficient anymore. However, we could not find any
populated transformation repository for these languages, as
it is provided for ATL.

2.2 Search-based Software Engineering

Search-based software engineering [7] is a field that applies
search-based optimization techniques to software engineer-
ing problems. Search-based optimization techniques can be
categorized as metaheuristic approaches that deal with large
or even infinite search spaces in an efficient manner.

These metaheuristic approaches are divided in two
groups, namely local search methods and evolutionary al-
gorithms. The aim of the former is to improve one single
solution at a time, examples of algorithms of this type
are Tabu Search [24] or Simulated Annealing [25]. On the
other hand, evolutionary algorithms [26] manage a set of
solutions, referred to as population, at once. Some widely
used evolutionary algorithms include NSGA-II [27] and
NSGA-III [8].

For many real-world problems, multiple partially con-
flicting objectives need to be considered in order to find a
set of desirable solutions. In fact, the field of Evolutionary
Multiobjective Optimization (EMO) is considered one of the
most active research areas in evolutionary computation [28].
Especially in recent years, SBSE has also been applied suc-
cessfully in the area of model and program transformations.
Examples include the generation of model transformations
from examples [29], [30], [31], the optimization of regres-
sion tests for model transformations [32], the detection of
high-level model changes [33] or the enhancement of the
readability of source code for given metrics [34], [35].

Let us briefly discuss the need for applying metaheuris-
tic search for the given problem. We can categorize the
modularization problem as a problem related to the parti-
tioning of a set of labeled elements into non-empty modules
so that every element is included in exactly one module.
The number of possible partitions, i.e., modules, is given by
the Bell number (cf. Equation 1). The nth of these numbers,
Bn, counts the number of different ways a given set of
n elements can be divided into modules. If there are no
elements given (B0), we can in theory produce exactly one
partition (the empty set, ∅). The order of the modules as well
as the order of the elements within a module does not need
to be considered as this is not a semantic concern.

Bn+1 =
n∑

k=0

(
n

k

)
Bk

B0 = 1

(1)

Considering the first Bell numbers (cf. sequence
A0001101 in the OEIS online database for Integer se-
quences), we can see that the number of partition possi-
bilities grows exponentially and is already quite high for a
low number of elements. For example, an instance where
you need to assign 15 elements to an unknown amount of
modules already yields 1382958545 different possibilities.

In the following subsections, we introduce some details
about the used algorithm to handle the different conflicting
objectives considered in our modularization formulation.

2.2.1 Multi/Many-objective Problem
A multi-objective problem can be stated as follows [36]:


Minf(x) = [f1(x), f2(x), . . . , fM (x)]T

gj(x) ≥ 0 j = 1, . . . , P ;

hk(x) = 0 k = 1, . . . , Q;

xLi ≤ xi ≤ xUi i = 1, . . . , n;

1. http://oeis.org/A000110

http://oeis.org/A000110
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In this formulation, M is the number of objective func-
tions, P is the number of inequality constraints, Q is the 
number of equality constraints, and xiL and xiU correspond 
to the lower and upper bounds of the decision variable xi. 
A solution x consists of a set of decision variables which 
are optimized by the metaheuristic algorithm. A solution 
satisfying the (P + Q) constraints is said to be feasible 
and the set of all feasible solutions defines t he feasible 
search space denoted by Ω. The objective value for a specific 
solution is calculated by the provided objective function fi 
and the aggregation of all objective functions defines the 
fitness function f . In this formulation, a ll objectives need to 
be minimized. Any objective that needs to be maximized can 
easily be turned into an objective that needs to be minimized 
by taking its negative value.

Recently, due to the limits of how many objectives dif-
ferent algorithms can handle, a distinction is made between 
multi-objective and many-objective problems. A many-
objective problem, as opposed to a multi-objective one, is 
a problem with at least four objectives, i.e., M > 3.

2.2.2 Pareto-optimal Solutions
Each of the objective functions defined for a multi-objective 
problem is evaluated for a concrete solution of the problem. 
By comparing the objective vectors of two solutions, we 
can determine whether one solution is ’better’ than another 
with respect to these objectives. A common way to do 
this comparison is to aggregate all objective values of one 
solution and compare it with the the aggregated value of 
another solution. However, this is only possible if all values 
are on the same scale. Alternatively, in SBSE, we often use 
the notion of Pareto optimality. As defined in (2) and in (3) 
for strict inequality [7], under Pareto optimality, one solution 
is considered better than another if it is better according to at 
least one of the individual objective functions and no worse 
according to all the others. Using this definition, w e can 
determine whether one solution is better than another, but 
not measure by ’how much’ it is better.

F (x1) ≥ F (x2)⇔ ∀i fi(x1) ≥ fi(x2) (2)
F (x1) > F (x2)⇔ ∀i fi(x1) ≥ fi(x2) ∧ ∃i fi(x1) > fi(x2)

(3)

The algorithms used in SBSE apply the notion of Pareto
optimality during the search to yield a set of non-dominated
solutions. Each non-dominated solution can be viewed as an
optimal trade-off between all objective functions where no
solution in the set is better or worse than another solution
in the set. It should be noted that in SBSE we assume
that the ’true’ Pareto front of a problem, i.e., the subset of
values which are all Pareto optimal, is impossible to derive
analytically and impractical to produce through exhaustive
search [37]. Therefore, each set produced using metaheuris-
tic search is an approximation to this, often unknown, ’true’
Pareto front. Additional runs of such an algorithm may
improve the approximation. In the remaining part of the
article, we always refer to the Pareto front approximation.
The following sub-section gives an overview about the
considered many-objective algorithm to address our mod-
ularization problem.

2.2.3 NSGA-III
NSGA-III is a very recent many-objective algorithm pro-
posed by Deb et al. [8]. The basic framework remains similar
to the original NSGA-II algorithm with significant changes
in its selection mechanism. The algorithm displayed in Fig. 6
gives the pseudo-code of the NSGA-III procedure for a
particular generation t. First, the parent population Pt (of
size N ) is randomly initialized in the specified domain,
and then the binary tournament selection, crossover and
mutation operators are applied to create an offspring pop-
ulation Qt. Thereafter, both populations are combined and
sorted according to their domination level and the best N
members are selected from the combined population to form
the parent population for the next generation.

The fundamental difference between NSGA-II and
NSGA-III lies in the way the niche preservation operation
is performed. Unlike NSGA-II, NSGA-III starts with a set
of reference points Zr. After non-dominated sorting, all
acceptable front members and the last front Fl that could
not be completely accepted are saved in a set St. Members
in St/Fl are selected right away for the next generation.
However, the remaining members are selected from Fl such
that a desired diversity is maintained in the population.
Original NSGA-II uses the crowding distance measure for
selecting well-distributed set of points, however, in NSGA-
III the supplied reference points (Zr) are used to select these
remaining members as described in Fig. 5. To accomplish
this, objective values and reference points are first nor-
malized so that they have an identical range. Thereafter,
orthogonal distance between a member in St and each of
the reference lines (joining the ideal point and a reference
point) is computed. The member is then associated with
the reference point having the smallest orthogonal distance.
Next, the niche count p for each reference point, defined
as the number of members in St/Fl that are associated
with the reference point, is computed for further processing.
The reference point having the minimum niche count is
identified and the member from the last front Fl that is
associated with it is included in the final population. The
niche count of the identified reference point is increased by

Fig. 5. Normalized reference plane for a three-objective case.
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Input: H structured reference points Zs, population Pt 
Output: population Pt+1

1: St ← ∅, i← 1
2: Qt ← VARIATION(Pt)
3: Rt ← Pt ∪Qt

4: (F1, F2, . . . )← NONDOMINATED SORT(Rt)
5: repeat
6: St ← St ∪ Fi

7: i← i+ 1
8: until |St| ≥ N
9: Fl ← Fi // last front to be included

10: if |St| = N then
11: Pt+1 ← St

12: else
13: Pt+1 ←

⋃l−1
j=1 Fj

14: K ← N − |Pt+1| // number of points chosen from Fl

// normalize objectives and create reference set Zr

15: NORMALIZE(FM , St, Z
r, Zs)

// Associate each member s of St with a reference point
// π(s) : closest reference point
// d(s) : distance between s and π(s)

16: [π(s), d(s)]← ASSOCIATE(St, Z
r)

// Compute niche count of a reference point j ∈ Zr

17: pj ←
∑

s∈St/Fl
((π(s)= j) ? 1 : 0)

// Choose K members one by one from Fl to construct Pt+1

18: NICHING(K, pj , π(s), d(s), Zr, Fl, Pt+1)
19: end if

Fig. 6. NSGA-III procedure at generation t.

one and the procedure is repeated to fill up population Pt+1.

It is worth noting that a reference point may have
one or more population members associated with it or
need not have any population member associated with it.
Let us denote this niche count as pj for the j-th refer-
ence point. We now devise a new niche-preserving oper-
ation as follows. First, we identify the reference point set
Jmin = {j : argminj(pj)} having minimum pj . In case of
multiple such reference points, one (j∗ ∈ Jmin) is chosen
at random. If pj∗ = 0 (meaning that there is no associated
Pt+1 member to the reference point j∗), two scenarios can
occur. First, there exists one or more members in front Fl

that are already associated with the reference point j∗. In
this case, the one having the shortest perpendicular distance
from the reference line is added to Pt+1. The count pj∗
is then incremented by one. Second, the front Fl does not
have any member associated with the reference point j∗.
In this case, the reference point is excluded from further
consideration for the current generation. In the event of
pj∗ ≥ 1 (meaning that already one member associated with
the reference point exists), a randomly chosen member, if
exists, from front Fl that is associated with the reference
point Fl is added to Pt+1. If such a member exists, the count
pj∗ is incremented by one. After pj counts are updated, the
procedure is repeated for a total of K times to increase the
population size of Pt+1 to N . We describe in the following
section our adaptation of NSGA-III for our modularization
problem.

3 APPROACH

This section presents our generic approach for tackling
the model transformation modularization problem using
SBSE techniques as well as how it is instantiated for ATL
transformations.

3.1 Many-Objective Transformation Modularization
We formulate the model transformation modularization
problem as a many-objective problem using Pareto optimal-
ity. For this, we need to specify three aspects. First, we need
to formalize the model transformation domain in which
transformations, both unmodularized and modularized, can
be defined in a concise way. This formalization should be in-
dependent of any specific transformation language to make
the approach more widely applicable and generic. Second,
we need to provide modularization operations which can
be used to convert an unmodularized transformation into
a modularized one. Each modularization operation serves
as decision variables in our solution. And finally, we need
to specify a fitness function composed of a set of objec-
tive functions to evaluate the quality of our solutions and
compare solutions among each other. We resort on well-
established objectives from the software modularization do-
main and adapt them for the model transformation domain.
An overview of our approach is depicted in Fig. 7.
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Fig. 7. Overview of our modularization approach.

3.1.1 Transformation Representation
We formalize the problem domain of transformation mod-
ularization in terms of a dedicated Modularization domain-
specific language (DSL), whose abstract syntax is depicted
in Fig. 8.

NamedElement
name: String 

RuleHelper

Module
helpers rules

[0..1]    inheritsFrom

[0..*]   helperDependencies

helperDependencies ruleDependencies [0..*]

Transformation
modules[0..*] 

[0..*] [0..*] 

[0..*] 

Reference
Composition
Inheritance

Fig. 8. Modularization Metamodel.

In this DSL, a transformation is composed of trans-
formation rules and auxiliary functions which are named
helpers. A transformation rule can inherit the functionality
of another rule and may realize its own functionality by
implicitly or explicitly invoking other transformation rules
and helpers. A helper, in turn, provides a piece of executable
code which can be called explicitly by any rule or helper. In
our DSL, dependencies between rules and helpers are made
explicit. The identification of the transformation elements,
i.e., modules, helpers, and rules, is done through a unique
name (cf. class NamedElement).
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3.1.2 Solution Representation
A solution must be able to convert an unmodularized trans-
formation into a transformation with modules, where the 
modules names are assigned random strings. To represent 
the process of this conversion, we consider a solution to be 
a vector of decision variables, where each decision variable 
in this vector corresponds to one application of a modular-
ization operation. Initially, all rules and helpers of a trans-
formation are contained in one module. The modularization 
operations assign a rule or helper from one existing module 
to another existing or newly created module. Thus, the two 
rules depicted in Fig. 9 are sufficient.

(a) ReassignRule Operation to move a rule to another module.

(b) ReassignHelper Operation to move a helper to another module.

Fig. 9. Rules realizing the modularization operation.

The parameters of these operations are the rule or helper
that is shifted and the respective source and target module.
We use an injective matching strategy, i.e., no two left-hand
side nodes are assigned to the same model element, e.g.,
the source and target module parameter in the rules can not
be assigned to the same module element. The bounds for
helper and rule parameters are given by the set of rules and
helpers in the unmodularized transformation. The bound
for the module parameter is a set of modules, where there
can be no more than n modules, where n is the total number
of rules and helpers, i.e., the case in which all rules and
helpers are in their own module. By having such a precise
upper bound for the parameters, we can define the length
of the solution vector as n, i.e., a solution where each helper
and rule is assigned exactly once.

3.1.3 Solution Fitness
To evaluate the quality of the solutions, we consider four
objective functions based on the resulting modularized
transformation. An overview of these functions is depicted
in Table 1. Specifically, we aim to minimize the number of
modules (NMT), minimize the difference between the low-
est and the highest number of transformation elements, i.e.,
rules and helpers, in a module (DIF), minimize the coupling
ratio (COP), and maximize the cohesion ratio (COH). Since
the multi-objective problem formulation only deals with
minimization, in practice, we take the negated value of the
cohesion ratio.

The formulas for each objective function are given in
Equations (4)-(7) (adapted from [38]). In these formulas,
M is the set of all modules and n is the number of all
transformations elements. U(m), R(m) and H(m) refer to
all transformation elements, rules, and helpers of a given
module m, respectively. Furthermore, DRR(mi,mj) in (10),
DRH(mi,mj) in (11), and DHH(mi,mj) in (12) specify the

TABLE 1
Objective functions for a modularization solution.

ID Description Type

NMT Number of modules in the transformation Min
DIF Min/Max difference in transformation elements Min
COH Cohesion ratio (intra-module dependencies ratio) Max
COP Coupling ratio (inter-module dependencies ratio) Min

total number of rule-to-rule, rule-to-helper and helper-to-
helper dependencies between the given modules mi and
mj , respectively. These numbers are calculated to compute
RR(mi,mj) (10), RH(mi,mj) (11), and HH(mi,mj) (12),
which represent the ratio of rule-to-rule, rule-to-helper and
helper-to-helper dependencies between the given modules
mi and mj , respectively. It means that the total number of
rules and helpers within such modules is taken into account
for the calculation of the ratios (see denominator). Finally,
D(mi,mj) in (8) represents the total ratio of dependencies
between the given modules mi and mj .

Please note that in the formulae for calculating coupling
and cohesion ratios, a zero can be obtained in the denom-
inators. In such cases, the result assigned to the division is
zero. The reason for this is to favor those solutions that do
not have modules with only one rule or only one helper.
Specifically, it is not taken into account, i.e., not considered
for the calculation of the ratios, the dependencies that the
only rule of a module has with itself, and the same thing
for modules with only one helper (cf. equations 10 and 12
when i = j). This is used to optimize cohesion (which
measures the dependencies within modules). It is not taken
into account, either, the dependencies from rules to the only
rule of a module, and those from helpers to the only helper
of a module. On the contrary, those dependencies from the
only rule in a module to other rules in modules with more
than one rule, or from the only helper in a module to other
helpers with more than one helper, are taken into account
(cf. equations 10 and 12 when i 6= j). With this strategy,
modules with only one rule or only one helper are partially
taken into account for the calculation of coupling (which
measures the dependencies among modules). Finally, when
we have a module with a rule and a helper, the module has
more than one artifact, so it is considered for the calculation
of cohesion and coupling. This is the reason why equation 11
cannot have 0 in its denominator. Several different ways
of defining coupling and cohesion in different contexts
have been proposed, where we have followed the approach
defined by some of them for solving the class responsibility
assignment problem [38], [39], [40] due to its similarity to
our problem.

The underlying assumption to minimize the NMT objec-
tive is that a small number of modules is easier to compre-
hend and to maintain. Additionally, distributing the rules
and helpers equally among the modules mitigates against
small isolated clusters and tends to avoid larger modules, as
also discussed by [41]. Furthermore, we optimize the cou-
pling and cohesion ratio which are well-known metrics in
clustering problems. Both coupling and cohesion ratios set
the coupling, i.e., the number of inter-module dependencies,
and the cohesion, i.e., the number of intra-module depen-
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dencies, in relation to all possible dependencies between 
the associated modules. Typically, a low coupling ratio is 
preferred as this indicates that each module covers separate 
functionality aspects. On the contrary, the cohesion within 
one module should be maximized to ensure that it does not 
contain rules or helpers which are not needed to fulfil its 
functionality.

NMT = |M | (4)
DIF = max(|U(m)|)−min(|U(m)|), m ∈M (5)

COH =
∑

mi∈M
D(mi,mi) (6)

COP =
∑

mi,mj∈M
mi 6=mj

D(mi,mj) (7)

D(mi,mj) = RR(mi,mj) +RH(mi,mj) (8)
+HH(mi,mj) (9)

RR(mi,mj) =
DRR(mi,mj)

|R(mi)| × |R(mj)− 1|
(10)

RH(mi,mj) =
DRH(mi,mj)

|R(mi)| × |H(mj)|
(11)

HH(mi,mj) =
DHH(mi,mj)

|H(mi)| × |H(mj)− 1|
(12)

Finally, to define the validity of our solutions, we enforce
through constraints that all transformation elements are
assigned to a module and that each module must contain
at least one element. Solutions which do not fulfil these
constraints are not part of the feasible search space, as
defined in Section 2.2.

3.1.4 Change Operators
In each search algorithm, the variation operators play
the key role of moving within the search space. Subse-
quently, we describe the two main used change operators
of crossover and mutation.

Crossover. When two parent individuals are selected,
a random cut-point is determined to split them into two
sub-vectors. The crossover operator selects a random cut-
point in the interval [0, minLength] where minLength is the
minimum length between the two parent chromosomes.
Then, crossover swaps the sub-vectors from one parent
to the other. Thus, each child combines information from
both parents. This operator must enforce the maximum
length limit constraint by eliminating randomly some mod-
ularization operations. For each crossover, two individuals
are selected by applying the SUS selection. Even though
individuals are selected, the crossover happens only with a
certain probability. The crossover operator allows creating
two offspring P1′ and P2′ from the two selected parents
P1 and P2. It is defined as follows. A random position k
is selected. The first k operations of P1 become the first
k elements of P1′. Similarly, the first k operations of P2
become the first k operations of P2′. Then, the remaining
elements of P1 become the remaining elements of P2′

and the remaining elements of P2 become the remaining
elements of P1′.

Mutation. The mutation operator consists of randomly
changing one or more dimensions in the solution. Given a
selected individual, the mutation operator first randomly
selects some positions in the vector representation of the
individual. Then, the selected dimensions are replaced by
other operations.

When applying the mutation and crossover, we used
also a repair operator to delete duplicated operations after
applying the crossover and mutation operators.

3.2 Problem Instantiation: Many-Objective Modulariza-
tion for ATL Transformations
We now instantiate our approach for ATL by performing
three steps (cf. also Fig. 10).2 First, we translate the given
ATL transformation into our aforementioned modulariza-
tion DSL. By doing this translation, we explicate the de-
pendencies within the transformation. Second, we perform
the modularization using the modularization operations
and fitness function as described above. To modularize
the transformation we apply our search-based framework
MOMoT with the NSGA-III algorithm. Third, we translate
the optimized modularization model with 1 to n modules to
ATL files, i.e., transformation modules and libraries. In the
following, these steps are explained in detail.

ATL 
Unit 

ATL 
Units

Search-based 
Modularization 

ATL to
Modularization 

Model 

Modularization 
Model 
[initial] 

Modularization 
Model 

[optimized] 

Modularization 
Model 
to ATL 

ATL 
Unit 

ATL 
Units 

Search-based 
Modularization 

ATL to 
Modularization 

Model 

Modularization 
Model 
[initial] 

Modularization 
Model 

[optimized] 

Modularization 
Model 
to ATL 

Fig. 10. Overview of the ATL modularization approach.

3.2.1 Converting ATL Transformations to Modularization
Models
ATL provides explicit concepts for modules, rules, and
helpers, thus they can be mapped directly to the modu-
larization DSL. However, the extraction of the dependen-
cies between transformation elements is more challenging.
In fact, we can distinguish between implicit dependencies
based on automatic resolution of matched rules and explicit
dependencies based on explicit invocations of lazy rules,
called rules, and helpers [42]. While explicit invocations are
directly manifested in the syntax of ATL transformations,
additional reasoning is needed to statically identify the
dependencies among matched rules.

We have automated the way of producing the depen-
dency model with a high-order transformation (HOT) [43]
that takes the transformation injected into a model-based
representation as well as the metamodels of the transforma-
tion as input and statically infers information about types in
the transformation. As mentioned, the most challenging task
is to extract the dependencies among matched rules. This is
done by the HOT in two steps. First, the types of the rules
are statically extracted, i.e., the classes of the metamodels

2. The complete transformation chain with several case studies is
available at our project website: https://github.com/martin-fleck/
momot/tree/master/examples/tse

https://github.com/martin-fleck/momot/tree/master/examples/tse
https://github.com/martin-fleck/momot/tree/master/examples/tse
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that participate in the rules. This means that it needs to 
extract the types of the elements that are reached by OCL 
navigations [44]. In the second step, after the types of the 
different parts of the rules are extracted, we can trivially cal-
culate the dependencies. Thus, we consider that a rule, R1, 
depends on another rule, R2, if the intersection of the types of 
the bindings of R1 with the ones of the InPatternElements of 
R2 is not empty. For instance, in Listing 1, rule Class2Table 
depends on ClassAttribute2Column since some of the objects 
retrieved in the second binding of the former rule, c.attr 
-> select(e | not e.multivalued), have the same 
type as the one specified in the InPatternElement of the latter 
rule, i.e., Class!Attribute where the multivalued attribute is set 
to false. For more information on the dependency types that 
can take place in ATL transformations and how we statically 
obtain the types of the elements appearing in the rules, we 
kindly refer the interested reader to [42].

The model produced by the HOT conforms to our mod-
ularization DSL and is composed of one module and the 
same number of rules and helpers as the ATL transforma-
tion contains. However, all dependencies between rules and 
helpers are explicitly declared in this model.

3.2.2 Search-based Modularization

Having the modularization model at hand, we apply our 
search-based framework MOMoT [45], [46], to find the 
Pareto-optimal module structure. MOMoT3 is a task- and 
algorithm-agnostic approach that combines SBSE and MDE. 
It has been developed in previous work [45] and builds 
upon Henshin4 [13] to define model transformations and 
the MOEA framework5 to provide optimization techniques. 
In MOMoT, DSLs (i.e., metamodels) are used to model the 
problem domain and create problem instances (i.e., models), 
while model transformations are used to manipulate those 
instances. The orchestration of those model transformations,
i.e., the order in which the transformation rules are applied
and how those rules need to be configured, is derived
by using different heuristic search algorithms which are
guided by the effect the transformations have on the given
objectives. In order to apply MOMoT for the given problem,
we need to specify the necessary input. The instance model
is the modularization model obtained in the previous step,
while the rules are the modularization operations defined
as Henshin rules shown in Fig. 9. Before deciding which
elements go into which module, we have to create modules.
Thereby, we produce input models with different number
of modules in the range of [1, n], where n is the number
of rules and helpers combined. This covers both the case
that all rules and helpers are in one single module and the
case in which each helper and rule is in its own module.
The objectives and constraints described in Section 3.1.3
are implemented as Java methods to provide the fitness
function for MOMoT. Finally, we need to select an algorithm
to perform the search and optimization process. For this
task, we choose the NSGA-III, as it is know to be able to
manage many-objective problems.

3. MOMoT: http://martin-fleck.github.io/momot/
4. Henshin: http://www.eclipse.org/henshin
5. MOEA Framework: http://www.moeaframework.org

3.2.3 Converting Modularization Models to ATL Transfor-
mations

After retrieving the solutions produced by MOMoT, each
module is translated to an ATL unit, resulting in n ATL files.
Modules solely containing helpers are translated to libraries
and modules which have at least one rule are translated
into normal ATL modules. As mentioned in Section 3.1.2,
the names given to the different ATL files are random
strings. Of course, users of our tool may decide to change
these names and add more meaningful names after the
modularization process finishes. The whole transformation
is again implemented as a HOT.

4 EVALUATION

In order to evaluate our approach by instantiating it for
ATL, we answer four research questions regarding the need
for such an approach, the correctness of the solutions and
the usability of the modularization results. In the next sub-
sections, we describe our research questions and the seven
case studies and metrics we use to answer these questions.
Finally, we discuss the answer to each research question and
overall threats to validity of our approach.

4.1 Research Questions

Our study addresses the following four research questions.
With these questions, we aim to justify the use of our
metaheuristic approach, compare the use of NSGA-III with
other algorithms (Random Search, ε-MOEA and SPEA2),
argue about the correctness of the modularization results
retrieved from our approach and validate the usability of
our approach for software engineers in a real-world setting.

RQ1 Search Validation: Do we need an intelligent
search for the transformation modularization
problem? To validate the problem formulation of
our modularization approach, we compared our
many-objective formulation with Random Search
(RS). If Random Search outperforms a guided
search method, we can conclude that our problem
formulation is not adequate [47], [48], [49]. Since
outperforming a random search is not sufficient,
the question is related to the performance of
NSGA-III, and a comparison with other multi-
objective algorithms.

RQ2 Search Quality: How does the proposed many-
objective approach based on NSGA-III per-
form compared to other multi-objective algo-
rithms? Our proposal is the first work that tack-
les the modularization of model transformation
programs. Thus, our comparison with the state
of the art is limited to other multi-objective al-
gorithms using the same formulation. We select
two algorithms, ε-MOEA and SPEA2, to do this
comparison. We have also compared the different
algorithms when answering the next questions.

RQ3.1 Solution Correctness: How close are the solu-
tions generated by our approach to solutions
a software engineer would develop? To see
whether our approach produces sufficiently good

http://martin-fleck.github.io/momot/
http://www.eclipse.org/henshin
http://www.moeaframework.org
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results, we compare our generated set of solu-
tions with a set of manually created solutions by
developers based on precision and recall.

RQ3.2 Solution Correctness: How good are the solu-
tions of our approach based on manual inspec-
tion? While comparison with manually created
solutions yields some insight into the correctness
of our solutions, good solutions which have an
unsuspected structure would be ignored. In fact,
there is no unique best modularization solution,
thus a deviation with the expected manually cre-
ated solutions could be just another good possi-
bility to modularize the ATL program. Therefore,
we perform a user study in order to evaluate the
coherence of our generated solutions by manually
inspecting them.

The goal of the following two questions is to evaluate
the usefulness and the effectiveness of our modularization
tool in practice. We conducted a non-subjective evaluation
with potential developers who can use our tool related to
the relevance of our approach for software engineers:

RQ4.1 Approach Usability: How useful are modular-
izations when identifying or fixing bugs in
a transformation? Identifying and fixing bugs
in a transformation is a common task in MDE,
where transformations are seen as development
artifacts. As such, they might be developed in-
crementally and by different people, leading to
potential bugs in the transformation. We investi-
gate whether the performance of this task can be
improved through modularization.

RQ4.2 Approach Usability: How useful are modular-
izations when adapting transformation rules
due to metamodel changes? During the life-
cycle of an application, the input and/or out-
put metamodel of a model transformation might
change, e.g., due to new releases of the input
or output language. When the input or output
metamodel changes, the model transformation
has to be adapted accordingly not to alter the sys-
tem semantics. We evaluate whether the adapta-
tion of the transformation rules can be improved
through modularization.

In order to answer these research questions we perform
experiments to extract several metrics using seven case
studies and two user studies. The complete experimental
setup is summarized in the next subsection.

4.2 Experimental Setup

4.2.1 Case Studies

Our research questions are evaluated using the following
seven case studies. Each case study consists of one model
transformation and all the necessary artifacts to execute the
transformation, i.e., the input and output metamodels and
a sample input model. Most of the case studies have been
taken from the ATL Zoo [4], a repository where developers
can publish and describe their ATL transformations.

CS1 Ecore2Maude: This transformation takes an Ecore
metamodel as input and generates a Maude specifi-
cation. Maude [50] is a high-performance reflective
language and system supporting both equational
and rewriting logic specification and programming
for a wide range of applications.

CS2 OCL2R2ML: This transformation takes OCL models
as input and produces R2ML (REWERSE I1 Markup
Language) models as output. Details about this
transformation are described in [51].

CS3 R2ML2RDM: This transformation is part of the
sequence of transformations to convert OCL mod-
els into SWRL (Semantic Web Rule Language)
rules [52]. In this process, the selected transforma-
tion takes a R2ML model and obtains an RDM
model that represents the abstract syntax for the
SWRL language.

CS4 XHTML2XML: This transformation receives
XHTML models conforming to the XHTML
language specification version 1.1 as input and
converts them into XML models consisting of
elements and attributes.

CS5 XML2Ant: This transformation is the first step to
convert Ant to Maven. It acts as an injector to obtain
an XMI file corresponding to the Ant metamodel
from an XML file.

CS6 XML2KML: This transformation is the main part
of the KML (Keyhole Markup Language) injector,
i.e., the transformation from a KML file to a KML
model. Before running the transformation, the KML
file is renamed to XML and the KML tag is deleted.
KML is an XML notation for expressing geographic
annotation and visualization within Internet-based,
two-dimensional maps and three-dimensional Earth
browsers.

CS7 XML2MySQL: This transformation is the first step
of the MySQL to KM3 transformation scenario,
which translates XML representations used to en-
code the structure of domain models into actual
MySQL representations.

We have selected these case studies due to their differ-
ence in size, structure and number of dependencies among
their transformation elements, i.e., rules and helpers. Table 2
summarizes the number of rules (R), the number of helpers
(H), the number of dependencies between rules (DRR), the
number of dependencies between rules and helpers (DRH)
and the number of dependencies between helpers (DHH) for
each case study.

TABLE 2
Size and structure of all case studies.

ID Name R H DRR DRH DHH

CS1 Ecore2Maude 40 40 27 202 23
CS2 OCL2R2ML 37 11 54 25 8
CS3 R2ML2RDM 58 31 137 68 17
CS4 XHTML2XML 31 0 59 0 0
CS5 XML2Ant 29 7 28 33 5
CS6 XML2KML 84 5 0 85 2
CS7 XML2MySQL 6 10 5 16 5
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4.2.2 Evaluation Metrics

To answer our research questions, we use several metrics 
depending on the nature of the research question.

Search Performance Metrics (RQ1, RQ2): In order to 
evaluate research questions RQ1 and RQ2, we compare the 
results of NSGA-III with Random Search, ε-MOEA and 
SPEA2 based on Hypervolume and Inverted Generational 
Distance for all case studies.

• Hypervolume (IHV) corresponds to the proportion
of the objective space that is dominated by the Pareto
front approximation returned by the algorithm and
delimited by a reference point. The larger the pro-
portion, the better the algorithm performs. It is inter-
esting to note that this indicator is Pareto dominance
compliant and can capture both the convergence and
the diversity of the solutions. Therefore, IHV is a
common indicator used when comparing different
search-based algorithms.

• Inverted Generational Distance (IGD): A number of
performance metrics for multi-objective optimization
has been proposed and discussed in the literature,
which aims to evaluate the closeness to the Pareto
optimal front and the diversity of the obtained solu-
tion set, or both criterion. Most of the existing metrics
require the obtained set to be compared against a
specified set of Pareto optimal reference solutions. In
this study, the IGD is used as the performance metric
since it has been shown to reflect both the diver-
sity and convergence of the obtained non-dominated
solutions. The IGD corresponds to the average Eu-
clidean distance separating each reference solution
from its closest non-dominated one. Note that for
each system, considered in our experiments, we use
the set of Pareto optimal solutions generated by all
algorithms over all runs as reference solutions. Better
convergence is indicated by lower values.

Solution Correctness Metrics (RQ3.1, RQ3.2): In order
to evaluate research questions RQ3.1 and RQ3.2, we inspect
our solutions with respect to manual solutions and as stand-
alone solutions. Ideally, we would compare our solutions
with ATL modularized solutions. However, as mentioned
in Section 2.1.4, there is not a single modularized solution in
the ATL Zoo [4], what made us follow this approach. Specif-
ically, for RQ3.1, we automatically calculate the precision
(PR) and recall (RE) of our generated solutions given a set
of manual solutions. Since there are many different possible
manual solutions, only the best precision and recall value
are taken into account, as it is sufficient to conform to at least
one manual solution. For answering RQ3.2 with the manual
validation, we asked groups of potential users to evaluate,
manually, whether the suggested solutions are feasible and
make sense given the transformation. We therefore define
the manual precision (MP) metric.

• To automatically compute precision (PR) and recall
(RE), we extract pair-wise the true-positive values
(TP), false-positive values (FP) and false-negative
values (FN) of each module. TPs are transformation
elements which are in the same module and should

be, FPs are elements which are in the same mod-
ule but should not be and FNs are elements which
should be together in a module but are not.

PR =
TP

TP + FP
∈ [0, 1]

RE =
TP

TP + FN
∈ [0, 1]

Higher precision and recall rates correspond to re-
sults that are closer to the expected solutions and are
therefore desired.

• Manual precision (MP) corresponds to the number
of transformation elements, i.e., rules and helpers,
which are modularized meaningfully, over the total
number of transformation elements. MP is given by
the following equation

MP =
|coherent elements|
|all elements|

∈ [0, 1]

A higher manual precision indicates more coherent
solutions and therefore solutions that are closer to
what a user might expect.

For each case study and algorithm, we select one so-
lution using a knee point strategy [53]. The knee point
corresponds to the solution with the maximal trade-off be-
tween all fitness functions, i.e., a vector of the best objective
values for all solutions. In order to find the maximal trade-
off, we use the trade-off worthiness metric proposed by
Rachmawati and Srinivasan [54] to evaluate the worthiness
of each solution in terms of objective value compromise.
The solution nearest to the knee point is then selected and
manually inspected by the subjects to find the differences
with an expected solution. Then, we evaluated the similarity
between that knee point solution and the expected ones
based on Precision and Recall. When two expected solutions
have the same average of Precision and Recall, we presented
in the results the average of Precision and the average
of Recall. However, this scenario never happens in our
experiments since in that case the two expected solutions
are very different (which is very rare to happen in practice).

Modularization Usability Metrics (RQ4.1, RQ4.2): In
order to evaluate research questions RQ4.1 and RQ4.2, we
consider two dimensions of usability: the estimated diffi-
culty and the time (T) that is needed to perform each task.
These tasks are related to bug fixing in the transformations
(T1) and adapting the transformations due to metamodel
changes (T2).

• Subjects in the usability study (cf. Section 4.2.4) are
able to rate the difficulty to perform a certain task
(DF) using a five-point scale. The values of this scale
are very difficult, difficult, neutral, easy and very easy.
The more easy or less difficult in the rating, the better
the result.

• In order to get a better estimate about the efficiency a
modularized transformation can provide, we ask our
study subjects (cf. the Section 4.2.4) to record the time
that is needed to perform each of the tasks. The time
unit we use is minutes and the less time is needed,
the better the result.
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As a helpful remainder for the rest of this evaluation, 
Table 3 summarizes, for each research question, the evalua-
tion metrics that are used and the type of study it is – the 
meaning of ST is explained in Section 4.3.5.

TABLE 3
Evaluation metric and type of study for each Research Question (RQ).

RQ Evaluation Metric Type of Study

RQ1 IHV, IGD Performance Study

RQ2 IHV, IGD Performance Study

RQ3.1 PR, RE, MP Correctness Study

RQ3.2 PR, RE, MP Correctness Study

RQ4.1 DF, T, ST Usability Study

RQ4.2 DF, T, ST Usability Study

4.2.3 Statistical Tests
Since metaheuristic algorithms are stochastic optimizers,
they can provide different results for the same problem
instance from one run to another. For this reason, our
experimental study is performed based on 30 independent
simulation runs for each case study and the obtained results
are statistically analyzed by using the Mann-Whitney U
test [55] with a 99% significance level (α = 0.01). The
Mann-Whitney U test [56], equivalent to the Wilcoxon rank-
sum test, is a nonparametric test that allows two solution
sets to be compared without making the assumption that
values are normally distributed. Specifically, we test the
null hypothesis (H0) that two populations have the same
median against the alternative hypothesis (H1) that they
have different medians. The p-value of the Mann-Whitney U
test corresponds to the probability of rejecting the H0 while
it is true (type I error). A p-value that is less than or equal to
α means that we accept H1 and we reject H0. However, a p-
value that is strictly greater than αmeans the opposite. Since
we are conducting multiple comparisons on overlapping
data to test multiple null hypotheses, p-values are corrected
using the Holm’s correction [57]. This correction procedure
sorts the p-values obtained from n tests in an ascending
order, multiplying the smallest value by n, the next one by
n− 1, etc.

For each case study, we apply the Mann-Whitney U test
for the results retrieved by the NSGA-III algorithm and the
results retrieved by the other algorithms (Random Search,
ε-MOEA and SPEA2). This way, we determine whether the
performance between NSGA-III and the other algorithms is
statistically significant or simply a random result.

4.2.4 User Studies
In order to answer research questions RQ3.1 to RQ4.2, we
perform two studies, a correctness study for RQ3.1 and
RQ3.2 and a usability study for RQ4.1 and RQ4.2. The
correctness study retrieves the precision, recall and manual
precision of our generated solutions in order to evaluate
how good these solutions are. The usability study consists of
two tasks that aim to answer the question of usefulness of
modularized transformations.

Solution Correctness Study: For RQ3.1, we produce
manual solutions to calculate the precision and recall of

our automatically generated solutions (cf. Section 4.2.2).
These manual solutions are developed by members of our
research groups which have knowledge of ATL but are not
affiliated with this paper. Our study involved 23 subjects
from the University of Michigan. Subjects include 14 under-
graduate/master students in Software Engineering, 8 PhD
students in Software Engineering, 2 post-docs in Software
Engineering. 9 of them are females and 17 are males. All the
subjects are volunteers and familiar with MDE and ATL. The
experience of these subjects on MDE and modeling ranged
from 2 to 16 years. All the subjects have a minimum of 2
years experience in industry (Software companies).

For RQ3.2 we need transformation engineers to evalu-
ate our generated solutions, independent from any solu-
tion they would provide. More precisely, we asked the 23
subjects from the University of Michigan to inspect our
solutions manually. The manual precision is computed not
with respect to the best manual solutions (that is used for
the precision and recall). The manual precision is computed
by asking the developers to give their opinion about the
correctness of the knee point solution by validating the mod-
ularization operations one by one. In fact, a deviation with
expected solutions may not mean that the recommended
operations are not correct, but it could another possible way
to re-modularize the program. We computed the average k-
agreement between the developers for all the votes on all
the evaluated operations and the average Cohen’s kappa
coefficient is 0.917. Thus, there is a consensus among the
developers when manually evaluating the correctness of
the modularization operations. The subjects were asked to
justify their evaluation of the solutions and these justifica-
tions are reviewed by the organizers of the study. Subjects
were aware that they are going to evaluate the quality of
our solutions, but were not told from which algorithms the
produced solutions originate. Based on the results retrieved
through this study, we calculate the manual precision metric
as explained in Section 4.2.2.

Modularization Usability Study: In order to answer
RQ4.1 and RQ4.2, we perform a user study using two of the
seven case studies: Ecore2Maude (CS1) and XHTML2XML
(CS4). These two case studies have been selected because
they represent a good diversity of case studies as they differ
in their size and structure. The Ecore2Maude transformation
has a balanced and high number of rules and helpers
and quite a high number of dependencies of all kinds.
The XHTML2XML transformation, on the other hand, only
consists of rules and has a comparatively low number of rule
dependencies. In this study, subjects are asked to perform
two tasks (T1 and T2) for each case study and version, once
for the original, unmodularized transformation and once for
the modularized transformation:

T1 Fixing a Transformation: The first task (T1) is re-
lated to fixing a model transformation due to bugs
that have been introduced throughout the devel-
oping cycle. Such bugs usually alter the behavior
of a transformation without breaking it, i.e., the
transformation still executes but produces a wrong
output. To simulate such a scenario, we introduced
two bugs into the XHTML2XML transformation
and four bugs into the Ecore2Maude transformation
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since it is larger and, therefore, it is more likely
to contain bugs. The bugs have been created ac-
cording to some mutation operators [58], [59], [60],
and the same bugs have been introduced both in
the original and modularized versions. They are
all of equal size and simulate bugs that are likely
to be caused by developers. In this sense, a study
of the specific faults a programmer may do in a
model transformation is presented in [59]. Out of
the several different faults, we have applied changes
in the navigation (according to the relation to another
class change mutation operator [59]) and in the out-
put model creation. Specifically, in the XHTML2XML
transformation, one bug has to do with the incorrect
initialization of a string attribute, while the other
bug has to do with the incorrect assignment of a
reference (the reference should point to a different
element). In the Ecore2Maude transformation, three
bugs have to do with the incorrect initialization of a
string attribute and the fourth one with the incorrect
assignment of a reference. In order to avoid dis-
torting the results for the comparison, all the bugs
have been introduced in bindings, so the difficulty
in finding them should be similar. To gain more
insight in our evaluation, we split this task into two
subtasks: the task of locating the bugs (T1a) and the
task of actually fixing the bugs (T1b).

T2 Adapting a Transformation: The second task (T2)
we ask our subjects to perform is to adapt a model
transformation due to changes introduced in the
input or output metamodels. These changes can
occur during the lifecycle of a transformation when
the metamodels are updated, especially when the
metamodels are not maintained by the transforma-
tion engineer. In many cases, these changes break
the transformation, i.e., make it not compilable
and therefore not executable. Furthermore, either
only one or both the input and output metamod-
els may evolve in real settings. To simulate real-
ity, we have modified the input metamodel of the
XHTML2XML transformation and the output meta-
model of the Ecore2Maude transformation. Thus,
we have changed the name of three elements in
the XHTML metamodel and of two elements in the
Maude metamodel (since this metamodel is a bit
smaller). Therefore, the changes are again equal in
nature.

The usability study was performed with software en-
gineers from the Ford Motor Company and students from
the University of Michigan. The software engineers were
interested to participate in our experiments since they are
planning to adapt our modularization prototype for trans-
formation programs implemented for car controllers. Based
on our agreement with the Ford Motor Company, only the
results for the ATL case studies described previously can be
shared in this paper. However, the evaluation results of the
software engineers from Ford on these ATL programs are
discussed in this section. In total, we had 32 subjects that
performed the tasks described above including 9 software
engineers from the IT department and innovation center at

Ford and 23 participants from the University of Michigan
(described previously). All the subjects are volunteers and
each subject was asked to fill out a questionnaire which con-
tained questions related to background, i.e., their persona,
their level of expertise in software engineering, MDE and
search-based software engineering. We have collected the
data about the participants when completing the question-
naire about their background including the years/months
of professional experience. The experience of these subjects
on MDE and modeling ranged from 2 to 16 years. All the
subjects have a minimum of 2 years experience in industry
(Software companies). To rate their expertise in different
fields, subjects could select from none (0-2 years), very
low (2-3 years), low (2-4 years), normal(4-5 years), high (5-
10 years) and very high (more than 10 years). After each
task, in order to evaluate the usability of the modularized
transformations against the original, unmodularized trans-
formations, subjects also had to fill out the experienced
difficulty to perform the task and the time they spent to
finish the task (cf. metric description in Section 4.2.2). We
did not find a consistent difference between the students
and professionals when we checked the results based on the
same questions. One of the reasons could be related to the
fact that most of the students considered in our experiments
have also good experience in industry and very well familiar
with ATL and model transformations.

For our evaluation, we divided the 32 subjects into four
equal-sized groups, each group containing eight people.
The first group (G1) consists of most software engineers
from Ford, the second and third groups (G2 and G3) are
composed of students from the University of Michigan and
the fourth group (G4) contains one software engineer from
Ford, 2 post-docs and 5 PhD students from the University
of Michigan. All subjects have high to very high expertise
in software development, model engineering and software
modularization and on average a little bit less experience in
model transformations and specifically ATL. To avoid the
influence of the learning effect, no group was allowed to
perform the same task on the same case study for the modu-
larized and unmodularized versions. The actual assignment
of groups to tasks and case studies is summarized in Table 4.

TABLE 4
Assignment of groups to tasks and case studies (no group is allowed to

perform a task on the same case study twice).

CS Task Original Modularized

CS1 Task 1 Group 1 Group 3
Task 2 Group 2 Group 4

CS4 Task 1 Group 3 Group 1
Task 2 Group 4 Group 2

Please note that since the bugs introduced in the trans-
formations are semantic bugs, neither the syntax nor the
runtime analyzers of ATL will throw any error. This means
that the participants will have to spot the errors by in-
specting the ATL transformations, for which we expect a
modularized ATL transformation to be useful with respect
to a non-modularized one. Regarding available search tools
for ATL, users can rely on the out-of-the-box tools offered
by Eclipse. Eclipse allows to search for text in the current
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opened file as well as to search for t ext in a  group of files. 
For better navigability and comprehensibility, ATL offers 
the possibility of realize code navigation and shows the 
text using syntax coloring. Syntax errors should also appear 
highlighted in the IDE.

4.2.5 Parameter Settings
In order to retrieve the results for each case study and 
algorithm, we need to configure the execution process and 
the algorithms accordingly. To be precise, all our results 
are retrieved from 30 independent algorithm executions to 
mitigate the influence of randomness. In each execution run, 
a population consists of 100 solutions and the execution 
finishes a fter 1 00 i terations, r esulting i n a  t otal n umber of 
10, 000 fitness evaluations.

To configure a ll a lgorithms e xcept R andom Search, 
which creates a new, random population in each iteration, 
we need to specify the evolutionary operators the algo-
rithms are using. As a selection operator, we use determin-
istic tournament selection with n = 2. Deterministic tourna-
ment selection takes n random candidate solutions from the 
population and selects the best one. The selected solutions 
are then considered for recombination. As recombination 
operator, we use the one-point crossover for all algorithms. 
The one-point crossover operator splits two parent solu-
tions, i.e., orchestrated rule sequences, at a random position 
and merges them crosswise, resulting in two, new offspring 
solutions. The underlying assumption here is that traits 
which make the selected solutions fitter than other solutions 
will be inherited by the newly created solutions. Finally, we 
use a mutation operator to introduce slight, random changes 
into the solution candidates to guide the search into areas 
of the search space that would not be reachable through 
recombination alone. Specifically, we use our own mutation 
operator that exchanges one rule application at a random 
position with another with a mutation rate of five percent. 
With these settings, the NSGA-III algorithm is completely 
configured. H owever, t he ε -MOEA t akes a n a dditional pa-
rameter called epsilon that compares solutions based on ε-
dominance [61] to provide a wider range of diversity among 
the solutions in the Pareto front approximation. We set this 
parameter to 0.2. Furthermore, in SPEA2 we can control how 
many offspring solutions are generated in each iteration. For 
our evaluation, we produce 100 solutions in each iteration,
i.e., the number of solutions in the population.

As fitness function we use the four objectives described
in Section 3.1.3. As a reminder, these objectives are the
number of modules in the transformation (NMT), the differ-
ence between the number of transformation elements, i.e.,
rules and helpers, in the module with the lowest number
of elements and the module with the highest number of
elements (DIF), the cohesion ratio (COH) and the coupling
ratio (COP). The initial objective values for each case study
are listed in Table 5.

4.3 Result Analysis
4.3.1 Results for RQ1
To answer RQ1 and therefore evaluate whether a sophis-
ticated approach is needed to tackle the model transfor-
mation modularization problem, we compare the search

performance of our approach based on NSGA-III with the
performance of Random Search (RS). If RS outperforms
our approach, we can conclude that there is no need to
use a sophisticated algorithm like NSGA-III. Comparing an
approach with RS is a common practice when introducing
new search-based problem formulations in order to validate
the search effort [47]. Specifically, in our evaluation we in-
vestigate the Hypervolume indicator (IHV) and the Inverted
Generational Distance indicator (IGD), cf. Section 4.2.2, on
30 independent algorithm runs for all case studies.
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Fig. 11. Hypervolume (IHV) and Inverted Generational Distance (IGD)
indicator for all case studies and algorithms. The 'x'marks the mean
value retrieved from a specific algorithm for a specific case study. All
results are retrieved from 30 independent algorithm runs.

TABLE 5
Initial objective values for all seven case studies (the arrow next to the

objective name indicates the direction of better values).

ID Name NMT ↓ DIF ↓ COH ↑ COP ↓

CS1 Ecore2Maude 1 0 0.15830 0.0
CS2 OCL2R2ML 1 0 0.17469 0.0
CS3 R2ML2RDM 1 0 0.79269 0.0
CS4 XHTML2XML 1 0 0.06344 0.0
CS5 XML2Ant 1 0 0.31609 0.0
CS6 XML2KML 1 0 0.30238 0.0
CS7 XML2MySQL 1 0 0.48888 0.0
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The results of our evaluation are depicted in Fig. 11. The 
details of p-value and effect for each case study for the 
IHV and IGD metrics are given in Table 7 and in Table 8, 
respectively. In Fig. 11, each box plot shows the minimum 
value of the indicator (shown by the lower whisker), the 
maximum value of the indicator (shown by the upper 
whisker), the second quantile (lower box), the third quantile 
(upper box), the median value (horizontal line separating 
the boxes) and the mean value of the indicator (marked by 
an 'x'). We can clearly see that for the IHV indicator, RS 
has lower and therefore worse values than NSGA-III for all 
case studies. To investigate these results, we have deployed 
the Mann-Whitney U test with a significance l evel o f 99%. 
As a result, we find a  statistical difference between NSGA-
III and RS for all case studies, except XHTML2XML. One 
reason for this result might be that the XHTML2XLM case 
study has a rather simple structure compared to most of 
the other case studies. To further investigate the differences 
between RS and NSGA-III we calculate the effect size for 
both indicators using Cohen’s d statistic [62]. Cohen’s d 
is defined a s t he d ifference b etween t he t wo m ean values 
x1 − x2 divided√ by the mean squared standard deviation 
calculates by (s21 + s22)/2. The effect size is considered: (1) 
small if 0.2 ≤ d < 0.5, (2) medium if 0.5 ≤ d < 0.8, or (3) 
large if d ≥ 0.8. For IHV, all differences are considered large.

Interestingly, when we compare RS and NSGA-III for 
the IGD indicator the same way, the results are different. 
Please note that for IGD, lower values are considered better, 
as they indicate an overall better convergence of the algo-
rithm. For IGD, there is no significant d ifference between 
the results of NSGA-III and RS, except for the simplest 
case study, XML2MySQL, where also the effect size yields 
a large difference. At the same time, in none of the cases 
the results of RS were significantly b etter d ue t o t he huge 
number of possible solutions to explore (high diversity of 
the possible remodularization solutions). Also interesting 
is the fact that RS produces solutions with a much lower 
variance of values.

While IHV and IGD capture the efficiency of the search, 
we are also interested in the solutions found by each algo-
rithm. To be more precise, we look at the median value of 
each objective value and its standard deviation. The results 
are depicted in Table 6, the bottom two lines of each case 
study. The arrow next to the objective name indicates the 
direction of better values. As we can see from the table, 
in the median case, the results of NSGA-III are better for 
NMT, COH and COP by a factor of around 2 in some 
cases. The only exception is DIF, where RS yields lower 
values in most case studies. This may be explained through 
the way NSGA-III tries to balance the optimization of all 
objective values and by doing so yields good results for all 
objectives, but may be outperformed when looking only at 
single objectives.

In conclusion, we determine that the transformation 
modularization problem is complex and warrants the use of 
a sophisticated search algorithm. Since in none of the cases 
RS significantly o utperforms N SGA-III, w hile o n t he other 
hand there are many instances where NSGA-III dominates 
RS, we further infer that our many-objective formulation 
surpasses the performance of RS thus justifying the use of 
our approach and metaheuristic search.

TABLE 6
Median objective values and standard deviations for all objectives in the
fitness functions, all algorithms and all case studies. The arrow next to
the objective name indicates the direction of better values. All results

are retrieved from 30 independent algorithm runs.

CS Approach NMT ↓ DIF ↓ COH ↑ COP ↓

CS1

SPEA2 28 10.09 40 15.08 1.89 1.22 31.14 27.45
ε-MOEA 21 7.81 45 12.00 2.72 1.42 10.37 13.87
NSGA-III 23 7.96 44 12.48 3.72 1.72 13.10 11.87
RS 35 4.26 28 5.28 2.66 1.26 49.66 19.62

CS2

SPEA2 14 4.96 27 8.03 2.68 1.38 3.91 5.15
ε-MOEA 13 4.51 28 7.45 3.44 1.17 0.84 3.75
NSGA-III 13 2.94 23 3.77 5.23 1.03 3.09 2.31
RS 19 3.56 21 4.72 2.56 1.15 5.80 4.58

CS3

SPEA2 30 9.76 49 14.76 1.12 0.87 12.17 12.88
ε-MOEA 27 8.09 50 12.60 1.28 0.91 2.83 6.20
NSGA-III 25 3.54 46 6.56 3.22 1.19 7.31 5.84
RS 39 4.82 32 5.65 1.45 1.01 19.13 12.24

CS4

SPEA2 7 2.76 21 3.85 0.78 0.54 1.35 2.80
ε-MOEA 7 2.74 20 3.66 0.57 0.36 0.36 2.01
NSGA-III 7 3.00 18 4.38 1.06 0.66 0.43 2.64
RS 6 2.31 22 2.97 0.52 0.34 0.31 1.87

CS5

SPEA2 10 3.99 19 6.58 1.55 0.86 4.95 4.30
ε-MOEA 8 3.36 19 5.48 1.76 1.01 2.06 2.80
NSGA-III 9 2.18 18 3.89 2.76 0.98 3.05 2.05
RS 13 3.03 15 3.98 1.53 0.89 6.60 4.67

CS6

SPEA2 23 9.38 57 13.70 0.73 0.69 10.11 8.30
ε-MOEA 18 7.00 59 10.32 1.50 0.85 7.30 5.88
NSGA-III 19 3.25 55 6.82 2.08 0.96 11.13 4.63
RS 30 5.30 47 6.92 1.00 0.82 19.17 6.73

CS7

SPEA2 5 1.78 6 2.84 2.93 1.30 1.50 2.23
ε-MOEA 4 1.72 7 2.70 3.04 1.16 1.33 1.84
NSGA-III 4 1.75 6 3.16 3.42 1.48 1.05 2.16
RS 6 1.73 5 2.61 2.23 1.16 3.17 2.35

4.3.2 Results for RQ2

To answer RQ2, we compared NSGA-III with two other
algorithms, namely ε-MOEA and SPEA2, using the same
quality indicators as in RQ1: IHV and IGD. All results
are retrieved from 30 independent algorithm runs and are
statistically evaluated using the Mann-Whitney U test with
a significance level of 99%.

A summary of the results is illustrated in Fig. 11. The
details of p-value and effect for each case study for the
IHV and IGD metrics are given in Table 7 and in Table 8,
respectively. As Fig. 11 shows, NSGA-III and ε-MOEA pro-
duce better results than SPEA2 for the IHV indicator. In
fact, the statistical analysis shows that NSGA-III produces
significantly better results than SPEA2 and is on par with
ε-MOEA for most case studies. While ε-MOEA has a more
efficient search for CS1 and CS6, NSGA-III is the best
algorithm for CS7. A slightly reversed picture is shown for
the IGD indicator, where ε-MOEA always produces the best
results and NSGA-III produces worse results than SPEA2.
An exception to that is CS4 where ε-MOEA and NSGA-III
are equally good and SPEA2 is worse, and CS5 and CS7
where NSGA-III and SPEA2 produce statistically equivalent
results. One possible explanation for this might be that
these case studies are small compared to the remaining
ones. According to Cohen’s d statistic, the magnitude of all
differences is large.

Investigating the results further on basis of the retrieved
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objective values (cf. Table 6), we see that NSGA-III and 
ε-MOEA produce similar median values and standard devi-
ations for most objectives and case studies, closely followed 
by SPEA2. For NMT, the difference between NSGA-III and 
ε-MOEA is very small, while for DIF NSGA-III produces 
better median results for all case studies. The reverse is true 
for COH and COP where ε-MOEA produces the best results.

In conclusion, we can state that NSGA-III produces good 
results, but is occasionally outperformed by ε-MOEA. This 
is interesting as NSGA-III has already been applied suc-
cessfully for the remodularization of software systems [36]. 
However, in the case of software remodularization, the 
authors used up to seven different objectives in the fit-
ness function which makes the difference of using many-
objective algorithms compared to multi-objective algorithms 
more evident. Therefore, we think that NSGA-III is still 
a good choice for our problem as it allows to extend the 
number of objectives without the need to switch algorithms. 
Nevertheless, we also encourage the use of other algorithms 
as MOMoT is configurable in this respect [45].

4.3.3 Results for RQ3.1
In order to provide a quantitative evaluation of the correct-
ness of our solutions for RQ3.1, we compare the produced 
modularizations of NSGA-III, ε-MOEA , SPEA2 and RS 
with a set of expected modularization solutions. Since no 
such set existed prior to this work, the expected solutions 
have been developed by the subjects of our experiments 
(cf. Section 4.2.4). We had a consensus between all the 
groups of our experiments when considering the best man-
ual solution for every program. In fact, every participant 
proposed a possible modularization solution. Then, after 
rounds of discussions, we selected the best one for every 
ATL program based on the majority of the votes and we 
computed the average k-agreement between the developers 
for all the votes on all the proposed manual solutions. The 
average Cohen’s kappa coefficient was 0.938, meaning there 
was a consensus among the developers when selecting the

TABLE 7
Detailed values of adjusted p-value, using the Holm correction, and 

effect of the Hypervolume indicator (IHV) for each case study based on 
30 independent runs for all case studies (NSGA-III vs. SPEA2, 

eMOEA, and RS, respectively).

CS IHV SPEA2 eMOEA RS

CS1 p-value
effect

4.05E-17
0.813

3.09E-21
0.834

5.97E-37
0.881

CS2 p-value
effect

3.3405E-19
0.824

2.37E-24
0.806

4.83E-40
0.837

CS3 p-value
effect

5.12E-22
0.811

4.72E-24
0.919

5.87E-37
0.892

CS4 p-value
effect

4.71E-28
0.861

2.19E-27
0.937

5.04E-37
0.849

CS5 p-value
effect

3.09E-19
0.891

4.19E-21
0.829

3.97E-36
0.884

CS6 p-value
effect

2.05E-19
0.810

3.69E-31
0.836

5.94E-37
0.894

CS7 p-value
effect

3.39E-25
0.836

1.89E-26
0.943

4.46E-40
0.916

best manual solution. Then, to quantify the correctness of
our solutions, we calculate the precision and recall of our
generated solutions as described in Section 4.2.2.

Our findings for the average precision (PR) for each
algorithm and for all case studies are summarized in Fig. 12.
From these results, we can see that, independent of the case
study, NSGA-III has the solutions with the highest precision
value, while RS produces solutions that are rather far away
from what can be expected. More precisely, our approach
based on NSGA-III produces solutions with an average of
89% precision and significantly outperforms the solutions
found by the other algorithms. The solutions found by
ε-MOEA have an average precision of 75% and the solutions
found by SPEA2 have an average precision of 73%. The
modularizations produced by RS have the least precision
with an average of 43% which can not be considered useful.
Based on the average and individual values for all case
studies, a ranking of the algorithms would be NSGA-III on
the first place, ε-MOEA on second place, SPEA2 on third
place, and RS on the last place.
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Fig. 12. Quantitative correctness evaluation using precision (PR) for all
case studies and algorithms (higher values indicate better results).

A similar result can be seen for recall (RE) depicted
in Fig. 13, where NSGA-III produces solutions with the
highest values, followed by ε-MOEA and SPEA2, and RS
produces solutions with the lowest values. Particularly, the
average recall of the solutions found across all case studies

TABLE 8
Detailed values of adjusted p-value, using the Holm correction, and
effect of the Inverted Generational Distance indicator (IGD) for each

case study based on 30 independent runs for all case studies
(NSGA-III vs. SPEA2, eMOEA, and RS, respectively).

CS IGD SPEA2 eMOEA RS

CS1 p-value
effect

2.95E-22
0.816

1.09E-21
0.913

3.96E-40
0.891

CS2 p-value
effect

1.91E-29
0.819

2.32E-24
0.812

2.16E-40
0.881

CS3 p-value
effect

3.42E-29
0.819

2.19E-27
0.914

2.91E-37
0.914

CS4 p-value
effect

3.15E-31
0.917

2.01E-29
0.811

4.16E-37
0.926

CS5 p-value
effect

1.85E-29
0.947

3.49E-30
0.812

1.98E-40
0.823

CS6 p-value
effect

2.55E-29
0.843

2.19E-27
0.911

2.96E-40
0.914

CS7 p-value
effect

3.14E-31
0.861

2.04E-30
0.814

3.76E-37
0.924
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by NSGA-III is 90%, for ε-MOEA it is 82%, for SPEA2 
it is 72% and for RS it is 48%. The performance of all 
algorithms is stable independent of the case study size, the 
highest standard deviations are RS and SPEA2 with 4%. As 
with precision, the values produced by the sophisticated 
algorithms can be considered good whereas RS solutions 
have a too small recall to be considered good. Based on 
the average and individual values for all case studies, a 
ranking between the algorithms would look the same as for 
the precision value.
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Fig. 13. Quantitative correctness evaluation using recall (RE) for all case
studies and algorithms (higher values indicate better results)

Concluding, we state based on our findings that our
approach produces good modularization solutions for all
cases studies in terms of structural improvements compared
to a set of manually developed solutions. In fact, NSGA-III
produces the solutions with the highest precision and recall
in all case studies compared to the other sophisticated algo-
rithms, ε-MOEA and SPEA2. Furthermore, all sophisticated
algorithms significantly outperform RS. It is interesting to
note that the quality of the solutions and the ratio among
the algorithms are quite stable across all case studies.

4.3.4 Results for RQ3.2
In RQ3.2, we focus more on the qualitative evaluation of
the correctness of our solutions by gaining feedback from
potential users in an empirical study (cf. Section 4.2.4) as
opposed to the more quantitative evaluation in RQ3.1. To
effectively collect this feedback, we use the manual precision
metric which corresponds to the number of meaningfully
modularized transformation elements as described in Sec-
tion 4.2.2.

The summary of our findings based on the average MP
for all considered algorithms and for all case studies is
depicted in Fig. 14. From these results, we can see that
the majority of our suggested solutions can be considered
meaningful and semantically coherent. In fact, for NSGA-
III, the average manual precision for all case studies is
around 96% and for the smaller case studies, i.e., XML2Ant
(CS5) and XML2MySQL (CS7), even 100%. This result is
significantly higher than that of the other algorithms. To be
precise, ε-MOEA yields solutions with an average of 85%
MP and SPEA2 has an average of 77% MP over all case
studies. On the other hand, the solutions found by RS only
yield solutions with an average of 49% and the worst being
44% for the R2ML2RDM case study (CS3).

In conclusion, we state that our many-objective approach
produces meaningfully modularized transformation solu-
tions with respect to the MP metric. While other sophisti-
cated algorithms also yield satisfactory results that can be
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Fig. 14. Qualitative correctness evaluation using manual precision (MP)
for all case studies and algorithms (higher values indicate better results).

considered good, our approach based on NSGA-III clearly
outperforms these algorithms.

4.3.5 Results for RQ4.1

In order to answer RQ4.1 to evaluate how useful mod-
ularizations are when faced with the task of fixing bugs
in a transformation, we have performed a user study as
described in Section 4.2.4. In this study, subjects first needed
to locate several bugs in the transformation (T1a) and then
fix those bugs by changing the transformation (T1b). Both
subtasks were performed for the original and the modular-
ized version of the Ecore2Maude (CS1) and XHTML2XML
(CS4) case studies. For the evaluation, we focused on the ex-
perienced difficulty and the time that was spent to perform
the task.

The results retrieved from the questionnaires for the
experienced complexity to perform the task are depicted
in Fig. 15, CS1-T1a Original to CS4-T1b Modularized. The
statistical test concerning the p-value and effect is provided
in Table 9. In Fig. 15 we see how many of the eight people in
each group have rated the experienced difficulty from very
easy to very difficult. As can be seen, the modularized version
only received ratings between very easy and neutral, while
the original, unmodularized version received only ratings
from neutral to very difficult. This is true for both subtasks,
i.e., locating a bug and actually fixing the bug.

The second dimension we investigate to answer RQ4.1
is the time that is spent to perform the task. To gain this
data, subjects were asked to record their time in minutes.
The results of this part of the study are depicted in Fig. 17,
CS1-T1a Original to CS4-T1b Modularized. In the figure, each
subtask performed by a group for a specific case study
and a specific version is shown as a boxplot indicating the
minimum and maximum time recorded by each member
of the group as well as the respective quartiles. The mean
value is marked by an 'x'. As we can see, there is a significant
difference between the time needed to perform the tasks on
an unmodularized transformation compared to a modular-
ized transformation. In fact, the data shows that in all cases,
the time needed for the modularized version is around 50%
and less of the time needed in the unmodularized version.
This seems to be true for both subtasks, even though the
distribution within one group may vary.

Concluding, we state that the results clearly show that,
independent of the group that performed the evaluation
and independent of the respective case study, the task of
bug fixing in a model transformation is much easier and
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Fig. 15. Evaluation of experienced difficulty to fulfill the user study tasks
T1 and T2 for Ecore2Maude (CS1) and XHTML2XML (CS4): original vs
modularized transformation.
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Fig. 16. Evaluation of the number of participants who completed
the tasks T1 and T2 successfully (ST) for Ecore2Maude (CS1) and
XHTML2XML (CS4): original vs modularized transformation.

faster with a modularized model transformation than with
an unmodularized transformation. In this aspect, we think
our approach can help model engineers to automate the oth-
erwise complex task of transformation modularization and
therefore increase the investigated aspects of the usability
when working with model transformations.

Since evaluating the time to complete the tasks may
not be sufficient, we have checked the completeness and
correctness of the tasks by the developers as described in
Fig. 16. In 4 out of the 6 tasks for Ecore2Maude (CS1)
and XHTML2XML (CS4), all the participants completed
the tasks successfully when working on the modularized
programs. However, less than half of the 8 participants
successfully completed the tasks on the same programs
before modularization. These results confirm that it is less
difficult to work on the modularized programs comparing
to the original versions.

4.3.6 Results for RQ4.2
To answer RQ4.2, which is concerned with the adaptability
of model transformations due to metamodel changes, we
have performed a user study as described in Section 4.2.4. In
this part of the study, subjects were asked to adapt a model
transformation after the input or output metamodel has
been changed. The necessary changes have been introduced
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Minutes 

Fig. 17. Time needed for tasks T1 and T2 for Ecore2Maude (CS1) and
XHTML2XML (CS4): original vs modularized transformation.

by us, as described previously. As for RQ4.1, the task was
performed for the original and the modularized versions
of the Ecore2Maude (CS1) and XHTML2XML (CS4) case
studies and we focused on the experienced difficulty and
the necessary time.

The results retrieved for the experienced complexity are
depicted in Fig. 15, CS1-T2 Original to CS4-T2 Modularized.
The statistical test concerning the p-value and effect is pro-
vided in Table 9. Similar to what we have seen for the task of
fixing a transformation, there is a significant difference be-
tween performing this task for the original, unmodularized
transformation and for the modularized transformation. The
modularized version received ratings between very easy and
neutral while the original, unmodularized version received
ratings from neutral to very difficult. Compared to the bug
fixing task, the results may suggest that the gain in modu-
larizing transformations when adapting transformations is
a bit higher. This difference, however, may be caused by the
personal interpretation of a few subjects in one group and
can not be said to be statistically significant.

The time the subjects spent on adapting the transforma-
tion for each case study and version is depicted in Fig. 17,
CS1-T2 Original to CS4-T2 Modularized. Here we can see the
same trend as with the bug fixing task: a significant reduced
time of around 50% and more for the modularized version
of the transformation compared to the unmodularized ver-
sion. Interestingly, we can see that while the time needed to
adapt the larger of the two transformations (Ecore2Maude,
CS1) is higher than for the smaller transformation as ex-
pected, the gain for the larger transformation is also higher,
resulting in a reversed result for the two case studies.

In conclusion, we determine that modularizing a trans-
formation has a significant impact on the complexity and
time needed to perform model transformation adaptations.
Therefore, we think our approach can be useful for model
engineers to automate the otherwise complex task of trans-
formation modularization and improve these two metrics
with respect to the investigated task.

4.4 Discussion
Despite the module concept is still not a wide-spread used
transformation language concept, we believe it is impor-
tant for keeping evolving the MDE community. The fact
that the modularization of model transformations is not
known by many MDE practitioners may be related to the
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maturity of the MDE field i tself. I ndeed, t he l ack o f any 
modularized version in the transformations of the ATL 
Zoo (cf. Section 2.1.4), despite the fact that ATL offers the 
superimposition mechanism, proves this.

However, while in the previous years the focus was 
on the functionality of model transformations and how to 
encode this functionality, there is currently a stronger trend 
to reason not only about the correctness [63], [64], [65], but 
also about the non-functional aspects of model transforma-
tions [2], [66]. We see the proper usage of modularization for 
transformations as a major cornerstone for reaching a trans-
formation engineering discipline. This claim is supported 
by the results of our survey, which clearly show the need 
of automation support for modularization. Furthermore, as 
there are hidden dependencies in declarative transformation 
code [42], having an automated way to reason about the 
quality of different modularization possibilities is consid-
ered important. Indeed, the alternative of doing this by 
a manual approach is not realistic as the benefit o f the 
abstraction power of declarative languages is lost when 
designers have to reason about the operational semantics 
that is needed to fully uncover the dependencies.

4.5 Threats to Validity

According to Wohlin et al. [67], there are four basic types of 
validity threats that can affect the validity of our study. We 
cover each of these in the following paragraphs.

4.5.1 Conclusion Validity
Conclusion validity is concerned with the statistical rela-
tionship between the treatment and the outcome. We use 
stochastic algorithms which by their nature produce slightly 
different results with every algorithm run. To mitigate this 
threat, we perform our experiment based on 30 independent 
runs for each case study and algorithm and analyze the 
obtained results statistically with the Mann-Whitney U test 
with a confidence level of 99% (α = 0.01) to test if significant 
differences existed between the measurements for different 
treatments. This test makes no assumption that the data is 
normally distributed and is suitable for ordinal data, so

TABLE 9
Detailed values of p-value, using the Holm correction, and effect for the 
time needed for tasks for Ecore2Maude (CS1) and XHTML2XML (CS4) 

based on all the subjects: original vs modularized transformation.

Task Time Original Program

CS1-T1a p-value
effect

2.19E-35
0.882

CS4-T1a p-value
effect

1.77E-31
0.803

CS1-T1b p-value
effect

2.24E-31
0.883

CS4-T1b p-value
effect

3.14E-33
0.922

CS1-T2 p-value
effect

1.13E-35
0.891

CS4-T2 p-value
effect

3.41E-31
0.884

we can be confident that the statistical relationships we
observed are significant.

4.5.2 Construct Validity
Construct validity is concerned with the relationship be-
tween theory and what is observed. Most of what we
measure in our experiments are standard metrics such as
precision and recall that are widely accepted as good proxies
for quality of modularization solutions. A possible construct
validity threat is related to the absence of similar work to
modularize model transformations. For that reason we com-
pared our proposal with random search and other search
algorithms. Another construct threat can be related to the
corpus of manually defined modularization solutions since
developers may have different opinions. We will ask some
new experts to extend the existing corpus and provide ad-
ditional feedback regarding the manually defined solutions.

4.5.3 Internal Validity
There are several internal threats to validity that we would
like to mention. For instance, even though the trial-and-error
method we used to define the parameters of our search
algorithms is one of the most used methods [68], other
parameter settings might yield different results. Therefore,
we need to investigate this internal threat in more detail
in our future work. In fact, parameter tuning of search
algorithms is still considered an open research challenge.
ANOVA-based techniques could be an interesting direction
to study the parameter sensitivity. Also, the order in which
we placed the objectives might influence the outcome of
the search. We plan to further investigate this influence
by evaluating different combinations of the objectives in
future work. Furthermore, our objectives are limited to static
metrics analysis to guide the search process. The use of
additional metrics that also capture the runtime behavior of
a transformation, e.g., execution time, might yield different
results. While it is quite easy to introduce new objectives
into our approach, we need to further investigate the use
of other metrics in future work, e.g., capturing the perfor-
mance of a transformation before and after modularization.

Moreover, there are four threats to the validity of the
results retrieved from the user studies: selection bias, learn-
ing effect, experimental fatigue, and diffusion. The selection
bias is concerned with the diversity of the subjects in terms
of background and experience. We mitigate this threat by
giving the subjects clear instructions and written guidelines
to assert they are on a similar level of understanding the
tasks at hand. Additionally, we took special care to ensure
the heterogeneity of our subjects and diversify the subjects
in our groups in terms of expertise and gender. Finally, each
group of subjects evaluated different parts of the evaluation,
e.g., no group has worked on the same task or the same
case study twice. To avoid the influence of the learning
effect, no group was allowed to perform the same task
on the same case study for the modularized and unmod-
ularized versions. Different cases are solved by different
participants in one task. There may be learning between
the different tasks, however the types of bugs to identify
and fix are different and related to different levels (rules,
model/metamodel elements, etc.). The same observation is
valid for the features to implement into the ATL programs.
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The used ATL programs are also completely different in the 
context and structure. All these factors may minimize the 
risk of the learning mitigation The threat of experimental 
fatigue focuses on how the experiments are executed, e.g., 
how physical or mentally demanding the experiments are. 
Since the two case studies used in the experiments differ 
in size and number of bugs introduced, fatigue could have 
had an impact in the results. We have tried to prevent the 
fatigue threat with two strategies. First, we provided the 
subjects enough time to perform the tasks and fill o ut the 
questionnaires. All subjects received the instructions per e-
mail, were allowed to ask questions, and had two weeks to 
finish t heir e valuation. S econd, t o t ry t o b alance t he effort 
performed by all the four groups, each group realized two 
tasks, one with each of the case studies (cf. Table 4). Finally, 
there is the threat of diffusion which occurs when subjects 
share their experiences with each other during the course 
of the experiment and therefore aim to imitate each others 
results. In our study, this threat is limited because most 
of the subjects do not know each other and are located 
at different places, i.e., university versus company. For the 
subjects who do know each other or are in the same location, 
they were instructed not to share any information about 
their experience before a given date.

4.5.4 External Validity
The first t hreat i n t his c ategory i s t he l imited n umber of 
transformations we have evaluated, which externally threat-
ens the generalizability of our results. Our results are based 
on the seven case studies we have studied and the user 
studies we have performed with our expert subjects. None 
of the subjects were part of the original team that developed 
the model transformations and to the best of our knowledge 
no modularized transformations exist for the evaluated case 
studies. Therefore, we can not validate the interpretation 
of the model transformation and what constitutes a good 
modular structure of our subjects against a “correct” solu-
tion by the transformation developers. We cannot assert that 
our results can be generalized also to other transformations 
or other experts. In any case, additional experiments are 
necessary to confirm our results and increase the chance of 
generalizability.

Second, we focus on the ATL transformation language 
and its superimposition feature, what allows to divide a 
model transformation into modules. However, ATL is not 
the only rule-based model transformation language. In or-
der for our approach to be generalized also to other model 
transformation languages, we aim to apply it also to other 
popular model transformation languages which also pro-
vide the notion of modules, such as QVT-O, QVT-R, TGGs, 
ETL, and RubyTL.

5 RELATED WORK

Concerning the contribution of this paper, we discuss three 
threads of related work. First, we summarize works con-
sidering modularization in the general field o f software 
engineering. Second, we discuss modularization support in 
different transformation languages. Third, we summarize 
approaches combining search-based techniques and model 
transformations.

5.1 Modularization in Software Engineering

In the last two decades, a large number of research has been
proposed to support (semi-)automatic approaches to help
software engineers maintain and extend existing systems. In
fact, several studies addressed the problem of clustering to
find the best decomposition of a system in terms of modules
and not improving existing modularizations.

Wiggerts [69] provides the theoretical background for the
application of cluster analysis in systems remodularization.
He discusses on how to establish similarity criteria between
the entities to cluster and provide the summary of possible
clustering algorithms to use in system remodularization.
Later, Anquetil and Lethbridge [70] use cohesion and cou-
pling of modules within a decomposition to evaluate its
quality. They tested some of the algorithms proposed by
Wiggerts and compared their strengths and weaknesses
when applied to system remodularization. Magbool and
Babri [71] focus on the application of hierarchical clustering
in the context of software architecture recovery and mod-
ularization. They investigate the measures to use in this
domain, categorizing various similarity and distance mea-
sures into families according to their characteristics. A more
recent work by Shtern and Azerpos [72] introduced a for-
mal description template for software clustering algorithms.
Based on this template, they proposed a novel method for
the selection of a software clustering algorithm for specific
needs, as well as a method for software clustering algorithm
improvement.

There have been several developments in search-based
approaches to support the automation of software modu-
larization. Mancoridis et al. [73] presented the first search-
based approach to address the problem of software mod-
ularization using a single-objective approach. Their idea to
identify the modularization of a software system is based
on the use of the hill-climbing search heuristic to maximize
cohesion and minimize coupling. The same technique has
been also used by Mitchell and Mancoridis [74], [75] where
the authors present Bunch, a tool supporting automatic sys-
tem decomposition. Subsystem decomposition is performed
by Bunch by partitioning a graph of entities and relations in
a given source code. To evaluate the quality of the graph
partition, a fitness function is used to find the trade-off
between interconnectivity (i.e., dependencies between the
modules of two distinct subsystems) and intra-connectivity
(i.e., dependencies between the modules of the same subsys-
tem), to find out a satisfactory solution. Harman et al. [76]
use a genetic algorithm to improve the subsystem decompo-
sition of a software system. The fitness function to maximize
is defined using a combination of quality metrics, e.g.,
coupling, cohesion, and complexity. Similarly, [77] treated
the remodularization task as a single-objective optimization
problem using genetic algorithm. The goal is to develop a
methodology for object-oriented systems that, starting from
an existing subsystem decomposition, determines a decom-
position with better metric values and fewer violations of
design principles. Abdeen et al. [78] proposed a heuristic
search-based approach for automatically optimizing (i.e.,
reducing) the dependencies between packages of a soft-
ware system using simulated annealing. Their optimization
technique is based on moving classes between packages.
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Mkaouer et al. [36] proposed to remodularize object oriented 
software systems using many objective optimization with 
seven objectives based on structural metrics and history of 
changes at the code level. In this paper, we are addressing a 
different problem since transformation programs are a set of 
rules and thus the used objectives are different from those 
that can be applied to JAVA programs. Praditwong et al. [41] 
have recently formulated the software clustering problem as 
a multi-objective optimization problem. Their work aims at 
maximizing the modularization quality measurement, min-
imizing the inter-package dependencies, increasing intra-
package dependencies, maximizing the number of clusters 
having similar sizes and minimizing the number of isolated 
clusters. While there are several modularization approaches, 
we are not aware of any approach dealing with peculiarities 
of modularizing rule-based transformations.

5.2 Modularization in Transformation Languages
The introduction of an explicit module concept going be-
yond rules as modularization concept [6] has been consid-
ered in numerous transformation languages besides ATL to 
split up transformations into manageable size and scope. 
In the following, we shortly summarize module support 
in the imperative transformation language QVT-O [79], the 
declarative transformation languages TGGs [80] and QVT-
R [79], and the hybrid transformation languages ETL [81] 
and RubyTL [82], [83]. All these languages allow to import 
transformation definitions s tatically b y m eans o f explicit 
keywords. In QVT-O the keyword extends is provided, 
in order to base a new transformation on an existing one. 
In TGGs, it is possible to merge the rule types, i.e., the high-
level correspondences from one transformation with those 
of a new one. In QVT-R it is possible to import a dependent 
transformation file a nd t o e xtend a  c ertain transformation 
of this file. E TL a llows t o i mport r ules f rom a  different 
transformation definition a nd s o d oes R ubyTL. G oing one 
step further, in [84] the authors propose transformation 
components which may be considered as transformation 
modules providing a more systematic description of their 
usage context such as required metamodel elements and 
configurations of a transformation’s variability.

As for ATL, we are not aware of any automatic modu-
larization support for transformation written in the afore-
mentioned languages. In general, our proposed approach 
may be also applicable for other transformation languages 
providing a module concept. The only requirement is to find 
a transformation from the language to our modularization 
metamodel.

5.3 SBSE and Model Transformations
Search-based approaches for model transformation have 
been first a pplied t o l earn m odel t ransformations from 
existing transformation examples, i.e., input/output model 
pairs. This approach is called model transformation by 
example (MTBE) [29], [30], [31]. Because of the huge search 
space one has to search for finding t he b est m odel trans-
formations for a given set of input/output model pairs, 
search-based techniques have been applied to automate this 
complex task [85], [86], [87], [88], [89], [90]. While MTBE 
approaches do not include the search for modularization

when searching for model transformations, we discussed in
this paper an orthogonal problem, namely finding the best
modules structure for a given transformation.

In recent work, searching for good solutions in terms
of transformation rule applications for a particular trans-
formation in combination with a transformation context is
investigated which is used for this paper as a prerequisite
by reusing the MOMoT framework. There are two related
approaches to MOMoT. First, Denil et al. [91] propose
a strategy for integrating multiple single-solution search
techniques directly into a model transformation approach.
In particular, they apply exhaustive search, randomized
search, Hill Climbing and Simulated Annealing. Second,
Abdeen et al. [92] also address the problem of finding
optimal sequences of rule applications, but they deal with
population-based search techniques. Thereby, this work is
considered as a multi-objective exploration of graph trans-
formation systems, where they apply NSGA-II [27] to drive
rule-based design space exploration. The MOMoT approach
follows the same spirit as the previous mentioned two
approaches, however, we aim to provide a loosely coupled
framework which is not targeted to a single optimization
algorithm but allows to use the most appropriate one for a
given transformation problem.

To conclude, while there are several approaches enabling
search-based orchestration of transformation rules, we are
not aware of any instantiation of these approaches for
the transformation modularization problem tackled in this
paper.

6 CONCLUSION AND FUTURE WORK

Modularizing large transformations can improve readabil-
ity, maintainability and testability of transformations. How-
ever, most publicly available transformations do not use
modularization even though most transformation languages
support such a concept. One reason for this lack of adoption
may be the complexity this task entails. In this work, we
introduced a new automated search-based software engi-
neering approach based on NSGA-III to tackle the challenge
of model transformation modularization. Specifically, we
formulate the problem as a many-objective problem and use
search-based algorithms to calculate a set of Pareto-optimal
solutions based on four quality objectives: the number of
modules in the transformation, the difference between the
lowest and highest number of responsibilities in a module,
the cohesion ratio and the coupling ratio.

We have applied and evaluated our approach for ATL,
a rule-based model transformation language. The evalua-
tion consists of seven case studies and two user studies
with participants from academia and engineers from Ford.
Our results show that modularizing model transformations
require a sophisticated approach and that our approach
produces good results. Furthermore, the use of modularized
transformations versus non-modularized ones can reduce
the complexity to perform common tasks in model-driven
engineering and can improve productiveness in terms of
time needed to perform these tasks.

The promising results of our approach give raise to sev-
eral future research lines. First of all, we will further inves-
tigate the possibilities for refactoring ATL transformations
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based on quality metrics. In particular, we plan to optimize 
ATL transformations through refactoring using performance 
and memory consumption. Furthermore, we are interested 
in how our proposed modularization metamodel can be 
generalized as a template in which developers can inte-
grate other transformation languages, making our approach 
more broadly accessible. In particular, what is needed for 
adding support for additional transformation languages is 
the conversion transformations from language X to the 
modularization metamodel and vice versa. Of course, the 
main challenge is to detect dependencies which are not 
explicitly represented in the transformation programs. Es-
timating the complexity of the dependency discovery in 
other transformation languages such as QVT and ETL is 
considered as an interesting line of future work. Moreover, 
the modularization metamodel may be further abstracted 
to form a general framework for modularization problems 
which may be instantiated for particular structures. Such 
an approach would allow not only to modularize transfor-
mations but other artefacts used in MDE such as models, 
metamodels [93], and even megamodels [94].

Finally, a different approach could be followed to give 
names to the modules created by our approach. In this 
version, such names are random String values, what can 
be changed by users in a post-processing step. We will 
further study if assigning other names is more useful for the 
modularization usability [95], [96], such as assigning names 
composed of rules names within the module or names of the 
classes from the input and output pattern elements of the 
rules. In any case, our evaluation has demonstrated that it is 
easier and faster for developers to localize the relevant rules 
using modularized ATL programs because they regroup 
together semantically similar rules and helpers. Thus, the 
name of the created modules is not as important as the 
way how the rules and helpers are grouped together. For 
instance, we found that most of the changes to fix specific 
bugs were localized in rules that are part of the same 
module.
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