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Cell-like recognizing membrane systems are computational devices in the framework of membrane 
computing inspired from the structure of living cells, where biological membranes are arranged 
hierarchically. In this paper tissue-like recognizing membrane systems are presented. The idea is to 
consider that membranes are placed in the nodes of a graph, mimicking the cell intercommunication in 
tissues.
In this context, polynomial complexity classes associated with recognizing membrane systems can be 
defined. We recall the definition for cell-like systems, and we introduce the corresponding complexity 
classes for the tissue-like case. Moreover, in this paper two efficient solutions to the satisfiability 
problem are analyzed and compared from a complexity point of view.

1. INTRODUCTION

Membrane computing is a young branch of natural computing providing dis-
tributed parallel computational devices called membrane systems, which are inspired 
from some basic biological features of living cells, as well as from the cooperation of 
cells in tissues, organs, and organisms.

In this area, there are basically two ways to consider computational devices: cell-
like membrane systems and tissue-like membrane systems. The first one uses 
membranes arranged hierarchically, inspired from the structure of the cell, and the 
second one uses membranes placed in the nodes of a graph, inspired from the cell 
intercommunication in tissues.



In the past years, several computing models using powerful tools from nature
have been developed (because of this, they are known as bioinspired models) and
several solutions in polynomial time to NP-complete problems have been presented,
making use of nondeterminism and/or of an exponential amount of space. This is the
reason why a practical implementation of such models (in biological, electronic, or
other media) could provide a significant advance in the resolution of computationally
hard problems.

In this paper, we present recognizing membrane systems (both cell-like and
tissue-like variants) as a framework to address ways to efficiently solve computation-
ally hard problems, capturing the true concept of algorithm instead of providing a
(classical) nondeterministic solution. Also, we present a solution to the satisfiability
problem in both variants.

The paper is structured as follows. First, in Section 2, cell-like recognizing
membrane systems are defined, together with the complexity classes associated
with them. In this context, Section 3 discusses the P versus NP problem, and
Section 4 shows how membrane division rules in the active membranes model allow
for polynomial-time solutions to NP-complete problems. We conclude the cell-like
approach by solving the satisfiability problem in a linear time, using polarization-
less active membranes. Then, in Section 5 we introduce polarizationless tissue-like
recognizing membrane systems with active membranes (adapting the general defi-
nition of recognizing systems), and we also introduce the corresponding complexity
classes (analogously as for the cell-like case). We also present a quadratic solution
to the satisfiability problem in this framework. Finally, conclusions are presented in
the last section.

2. CELL-LIKE RECOGNIZING MEMBRANE SYSTEMS

In the structure and functioning of a cell, biological membranes play an essential
role. The cell is separated from its environment by means of a skin membrane, and
it is internally compartmentalized by means of internal membranes.

The main syntactic components of a cell-like membrane system (also called P
system, see Ref. 1 for details) are a membrane structure, multisets, and evolution
rules. A membrane structure consists of several membranes arranged in a hier-
archical structure inside a main membrane (the skin), and delimiting regions (the
space in-between a membrane and the immediately inner membranes, if any). Each
membrane identifies a region inside the system. A membrane structure can be con-
sidered as a rooted tree. Regions defined by a membrane structure contain objects
corresponding to chemical substances present in the compartments of a cell. The
objects can be described by symbols or by strings of symbols, in such a way that
multiset of objects are placed in regions of the membrane structure. The objects can
evolve according to given evolution rules, associated with the regions (hence, with
the membranes).

The semantics of the cell-like membrane systems is defined through a
nondeterministic and synchronous model (in the sense that a global clock is as-
sumed) as follows: A configuration of a cell-like membrane system consists of a
membrane structure and a family of multisets of objects associated with each region



of the structure. At the beginning, there is a configuration called the initial config-
uration of the system. In each time unit, we can transform a given configuration in
another configuration by applying the evolution rules to the objects placed inside the
regions of the configurations, in a nondeterministic and maximally parallel manner
(the rules are chosen in a nondeterministic way, and in each region all objects that
can evolve must do it). In this way, we get transitions from one configuration of
the system to the next one. A computation of the system is a (finite or infinite)
sequence of configurations such that each one is obtained from the previous one by
a transition, and shows how the system is evolving. A computation that reaches a
configuration where no more rules can be applied to the existing objects is called a
halting computation. The result of a halting computation is usually defined through
the multiset associated with a specific output membrane (or the environment) in the
final configuration.

In the basic definition, cell-like membrane systems can be seen as generative
devices, working in a nondeterministic and maximally parallel manner, with output
membrane, and without input membrane. However, as we are interested in using cell-
like membrane systems for solving decision problems, we can adapt the definition
as follows:

DEFINITION 2.1. A cell-like membrane system with external output is said to be a
recognizing system if: (a) The working alphabet contains two distinguished elements
yes and no; (b) all computations halt, and if C is a computation of the system, then
either some object yes or some object no (but not both) must have been released
into the environment in the last step of the computation.

A computation of a recognizing system is said to be an accepting computation
(respectively, rejecting computation) if the object yes (respectively, no) appears in
the environment associated with the corresponding halting configuration.

We want these kinds of systems (which are nondeterministic devices) to prop-
erly solved decision problems according to the true algorithmic concept. With this
aim, instead of using classical nondeterministic acceptance (it is enough that one
computation gives an affirmative answer), it is necessary to require a condition of
confluence; that is, the system processing an instance of the problem must always
give the same answer in all computations. This idea leads us to the concepts of
soundness and completeness.

2.1. Soundness and Completeness

A family of cell-like recognizing P systems will provide a solution to a deci-
sion problem if for each instance of the problem: (a) if there exists an accepting
computation of the membrane system processing it, then the instance of the problem
has an affirmative answer (soundness); and (b) if the instance of the problem has an
affirmative answer, then any computation of the system processing that instance is
an accepting computation (completeness).

Next, we formalize these ideas in the following definition:



DEFINITION 2.2. Let X = (IX, θX) be a decision problem. Let � = (�(w))w∈IX
be

a family of recognizing membrane systems without input.

• The family � is sound with regard to X if for each instance w ∈ IX such that there exists
an accepting computation of �(w), we have θX(w) = 1.

• The family � is complete with regard to X if for each instance w ∈ IX such that θX(w) = 1,
we have every computation of �(w) is an accepting computation.

These concepts can be extended to families of cell-like recognizing membranes
with input membrane in a natural way, but in this case a P system belonging to the
family can process several instances of the problem, provided that an appropriate
input is supplied to the system.

DEFINITION 2.3. A P system with input is a tuple (�, �, i�), where. (a) � is a P
system with working alphabet �, with p membranes labeled by 1, . . . , p, and initial
multisets M1, . . . ,Mp associated with them; (b) � is an (input) alphabet strictly
contained in �, and the initial multisets are over � − �; and (c) i� is the label of a
distinguished (input) membrane.

If m is a multiset over �, then the initial configuration of (�, �, i�) with input
m is (μ,M1, . . . ,Mi� ∪ m, . . . ,Mp).

DEFINITION 2.4. Let X = (IX, θX) be a decision problem. Let � = (�(n))n∈N be a
family of cell-like recognizing P systems with input. A polynomial encoding of X in
� is a pair (cod, s) of polynomial time computable functions over IX such that for
each instance w ∈ IX, s(w) is a natural number and cod(w) is an input multiset of
the system �(s(w)).

DEFINITION 2.5. Let X = (IX, θX) be a decision problem. Let � = (�(n))n∈N be
a family of cell-like recognizing membrane systems with input. Let (cod, s) be a
polynomial encoding of X in �.

• The family � is sound with regard to (X, cod, s) if for each instance w ∈ IX such that
there exists an accepting computation of �(s(w)) with input cod(w), we have θX(w) = 1.

• The family � is complete with regard to (X, cod, s) if for each instance w ∈ IX such that
θX(w) = 1, we have every computation of �(s(w)) with input cod(w) is an accepting
computation.

Next, we consider different complexity classes in the framework of cell-like
recognizing membrane systems.

2.2. Polynomial Semiuniform Solutions

The first results about solvability of NP-complete problems in polynomial time
by membrane systems were given by Păun,2 Zandron et al.,3 Krishna and Rama,4 and
Obtulowicz,5 in the framework of membrane systems that lack an input membrane.



Thus, the constructive proofs of such results design one system for each instance of
the problem.

In this context, let us define polynomial complexity classes in cell-like rec-
ognizing P systems without input. To solve a decision problem we need, then, to
associate with each instance of the problem a system which decides the instance.

DEFINITION 2.6. Let R be a class of cell-like recognizing P systems without input
membrane. A decision problem X = (IX, θX) is solvable in polynomial time by a
family � = (�(w))w∈IX

, of P systems of R, and we denote it by X ∈ PMC∗
R, if the

following holds:

• The family � is polynomially uniform by Turing machines; that is, there exists a deter-
ministic Turing machine working in polynomial time which constructs the system �(w)
from the instance w ∈ IX .

• The family � is polynomially bounded; that is, there exists a polynomial function p(n)
such that for each w ∈ IX , every computation of �(w) halt in, at most, p(|w|) steps.

• The family � is sound and complete with regard to X.

We say that the family � is a semiuniform solution to the problem X.
As a direct consequence of working with recognizing membrane systems we

have these complexity classes are closed under complement. Moreover, they are
closed under polynomial time reduction.

2.3. Polynomial Uniform Solutions

Next, we deal with cell-like recognizing P systems with input membrane and we
propose to solve problems in an uniform way in the following sense: All instances of
a decision problem that have the same size (according to a prefixed polynomial time
computable criterion) are processed by the same system, on which an appropriate
input is supplied.

Let us formalize these ideas in the following definition:

DEFINITION 2.7. A decision problem X = (IX, θX) is solvable in polynomial time
by a family of cell-like recognizing P systems with input � = (�(n))n∈N, and we
denote it by X ∈ PMCR, if the following holds:

• The family � is polynomially uniform by Turing machines; that is, there exists a deter-
ministic Turing machine that constructs in polynomial time the system �(n) from n ∈ N.

• There exists a polynomial encoding (cod, s) of X in � such that

– The family � is polynomially bounded with regard to (X, cod, s); that is, there
exists a polynomial function p(n) such that for each w ∈ IX , every computation
of the system �(s(w)) with input cod(w) is halting and, moreover, it performs at
most p(|w|) steps.

– The family � is sound and complete with regard (X, cod, s).

These complexity classes are closed under complement. Moreover, they are closed
under polynomial time reduction.



3. P VERSUS NP PROBLEM IN THE CONTEXT OF CELL-LIKE
RECOGNIZING MEMBRANE SYSTEMS

We consider deterministic Turing machines as language recognizing devices.
Then, we can associate with each deterministic Turing machine a decision problem,
which will allow us to define when such a machine is simulated by a family of P
systems (this issue was also addressed, e.g., in Refs. 6 and 7).

DEFINITION 3.1. Let M be a Turing machine with input alphabet �M . The decision
problem associated with M is the problem XM = (I, θ), where I = �∗

M , and for
every w ∈ �∗

M , θ(w) = 1 if and only if M accepts w.

Obviously, the decision problem XM is solvable by the Turing machine M .

DEFINITION 3.2. We say that a Turing machine, M , is simulated in polynomial time
by a family of cell-like recognizing P systems of the class R, if XM ∈ PMCR.

In cell-like membrane systems, evolution rules, communication rules, and rules
involving dissolution are called basic rules. Note that by applying this kind of rules
the size of the membrane structure does not increase. Hence, it is not possible to
construct an exponential number of membranes in polynomial time using only basic
rules in a cell-like membrane system.

We recall here a result from Chapter 9 of Ref. 8.

PROPOSITION 3.1. Let M be a deterministic Turing machine working in polynomial
time. Then M can be simulated in polynomial time by a family of cell-like recognizing
P systems using only basic rules.

Reciprocally, in Ref. 7 the following result was proved:

PROPOSITION 3.2. For every decision problem solvable in polynomial time by a
family of cell-like recognizing P systems using only basic rules, there exists a Turing
machine solving it in polynomial time.

Under the hypothesis P �= NP, Zandron et al.3 established the limitations of
cell-like membrane systems, which use only basic rules concerning the efficient
solution to NP-complete problems. This result was generalized by Pérez-Jiménez
et al.7 obtaining the following two characterizations of the P �= NP relation by
means of unsolvability results in polynomial time for NP-complete problems by
families of cell-like recognizing membrane systems using only basic rules.

THEOREM 3.1. The following assertions are equivalent:

1. P �= NP.
2. There exists an NP-complete decision problem unsolvable in polynomial time by a family

cell-like recognizing membrane systems using only basic rules.



3. Each NP-complete decision problem is unsolvable in polynomial time by a family of
cell-like recognizing membrane systems using only basic rules.

Let us denote by RB the class of cell-like recognizing membrane systems
using only basic rules. In Ref. 9 the complexity class P has been characterized in
terms of cell-like recognizing P systems, by proving the following theorem.

THEOREM 3.2. P = PMCRB.

4. RECOGNIZING CELL-LIKE P SYSTEMS WITH
ACTIVE MEMBRANES

A particularly interesting class of cell-like membrane systems is the systems
with active membranes, where the membrane division can be used to solve compu-
tationally hard problems, e.g., NP-complete problems, in polynomial or even linear
time, by a space-time trade-off.

DEFINITION 4.1. A recognizing cell-like P system (�, �, i�) is called with active
membranes, if the rules of � are of the following forms (� being the working
alphabet, and H the set of labels of �):

(a) [ a → ω ]αh for h ∈ H , α ∈ {+,−, 0}, a ∈ �, ω ∈ �∗: An object a within a membrane
labeled with h and polarity α evolves to a multiset ω.

(b) a [ ]α1
h → [ b ]α2

h for h ∈ H , α1, α2 ∈ {+,−, 0}, a, b ∈ �: An object from the region
immediately outside a membrane labeled with h is introduced in this membrane, possibly
transformed into another object, and simultaneously, the polarity of the membrane can
be changed.

(c) [ a ]α1
h → b [ ]α2

h for h ∈ H , α1, α2 ∈ {+, −, 0}, a, b ∈ �: An object is sent out from
membrane labeled with h to the region immediately outside, possibly transformed into
another object, and simultaneously, the polarity of the membrane can be changed.

(d) [ a ]αh → b for h ∈ H , α ∈ {+, −, 0}, a, b ∈ �: A membrane labeled with h is dissolved
in reaction with an object. The skin is never dissolved.

(e) [ a ]α1
h → [ b ]α2

h [ c ]α3
h for h ∈ H , α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ �: A membrane can

be divided into two membranes with the same label, possibly transforming some objects
and their polarities.

These rules are applied according to the following principles:

• All the rules are applied in parallel and in a maximal manner. In one step, one object of
a membrane can be used by only one rule (chosen in a nondeterministic way), but any
object which can evolve by one rule of any form, must evolve.

• If a membrane is dissolved, its content (multiset and internal membranes) is left free in
the surrounding region.

• If at the same time a membrane labeled by h is divided by a rule of type (e) and there are
objects in this membrane which evolve by means of rules of type (a), then we suppose
that first the evolution rules of type (a) are used, and then the division is produced. Of
course, this process takes only one step.

• The rules associated with membranes labeled by h are used for all copies of this membrane.
At one step, a membrane can be the subject of only one rule of types (b)–(e).



Let us denote by AM the class of recognizing P systems with active membranes
using 2-division. Different polynomial time solutions to NP-complete problems
have been obtained using this class of cell-like recognizing membrane systems:
Knapsack,10 SAT,11 Clique,12 and Bin Packing.13 Hence, the following proposition
holds:

PROPOSITION 4.1. NP ⊆ PMCAM, and co-NP ⊆ PMCAM.

Moreover, Sosı́k14 proved that PSPACE ⊆ PMC∗
AM0(+d,+ne), where

AM0(+d, +ne) is the class of recognizing P systems with active membranes al-
lowing division for nonelementary membranes.

Therefore, the complexity class PMCAM does not seem precise enough to
describe classical complexity classes below NP. Consequently, it is challenging
to investigate weaker models of cell-like membrane systems able to characterize
classical complexity classes.

Following this line, several efficient solutions to NP-complete problems have
been obtained within the following variants of cell-like P systems with active
membranes:

• P systems with active membranes but using only two electrical charges (Alhazov,15

Riscos16;
• P systems with active membranes without polarizations, but using bistable catalysts (Pérez

and Romero17);
• P systems without polarizations, without cooperation, without priorities, without label

changing, without division, but using three types of membrane rules: separation, merging,
and release (Pan et al.18);

• P systems with separation rules instead of division rules, in two different cases: in the
first, using polarizations and separation rules; and in the second one, without polarizations
but using separation rules that can change membrane labels (Pan and
Ishdorj19).

We can define polarizationless cell-like P systems with active membranes in a
similar manner by removing electrical charges, that is, considering only rules of the
following types:

(a) [ a → u ]h for h ∈ H , a ∈ �, u ∈ �∗.
(b) a [ ]h → [ b ]h for h ∈ H , a, b ∈ �.
(c) [ a ]h → b [ ]h for h ∈ H , a, b ∈ �.
(d) [ a ]h → b for h ∈ H , a, b ∈ �.
(e) [ a ]h → [ b ]h [ c ]h for h ∈ H , a, b, c ∈ �.

We denote by AM0 the class of polarizationless cell-like recognizing P systems
with active membranes.

At the beginning of 2005, Păun (problem F from Ref. 20) wrote: “My favorite
question (related to complexity aspects in P systems with active membranes and with
electrical charges) is that about the number of polarizations. Can the polarizations
be completely avoided? The feeling is that this is not possible—and such a result



would be rather sound: passing from no polarization to two polarizations amounts
to passing from non-efficiency to efficiency.”

That is, formally we can formulate the so-called Păun’s conjecture as follows:
“The class of decision problems solvable in polynomial time by families of cell-like
recognizing P systems belonging to AM0 is the standard complexity class P.”

We denote by AM0(α, β), where α ∈ {−d, +d} and β ∈ {−ne, +ne}, the
class of all polarizationless cell-like recognizing P systems with active membranes
such that (a) if α = +d (resp. α = −d) then dissolution rules are permitted (resp.
forbidden); and (b) if β = +ne (resp. β = −ne) then division rules for elemen-
tary and non-elementary (resp. only division rules for elementary) membranes are
permitted.

In the framework of polarizationless cell-like recognizing P systems with active
membranes, it turns out that dissolution rules play a surprising role, as they make
the difference between efficiency and nonefficiency. More precisely, the following
result is presented in Ref. 21:

THEOREM 4.1. We have the following:

(1) P = PMCAM0(−d,β) = PMC∗
AM0(−d,β)

, for each β ∈ {−ne,+ne}.
(2) NP ∪ co − NP ⊆ PMC∗

AM0(+d,+ne)
.

That is, Păun’s conjecture has a negative answer if dissolution rules are allowed
(assuming that P �= NP), and an affirmative answer otherwise.

The inclusion shown in (2) was improved in Ref. 22, where PSPACE ⊆
PMCAM0(+d,+ne) is proved.

The inclusion relations between complexity classes can be summarized graph-
ically in Figure 1.

4.1. Solving the SAT Problem by Using Polarizationless Cell-Like
P Systems with Active Membranes

The first efficient semiuniform solution to SAT (satisfiability problem) was
given by Păun,2 using division for nonelementary membranes. This result was
improved by Păun et al. in Ref. 23 using only division for elementary membranes (in
that paper a semiuniform solution to the Hamiltonian path problem using membrane
creation is also presented).

In this section, we present a semiuniform solution to the SAT problem in
linear time by using polarizationless cell-like recognizing P systems with active
membranes.

THEOREM 4.2. The satisfiability of any propositional formula in the conjunctive
normal form, using n variables and m clauses, can be decided in a linear time
with respect to n by a polarizationless cell-like recognizing P system with active
membranes, constructed in linear time with respect to n and m.
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Figure 1. Hierarchy of complexity classes.

Let us consider a propositional formula ϕ = C1 ∧ · · · ∧ Cm, such that each
clause Cj (1 ≤ j ≤ m), is of the form Cj = yj,1 ∨ · · · ∨ yj,kj

, kj ≥ 1, for yj,r ∈
{xi, ¬xi | 1 ≤ i ≤ n}. For each i = 1, 2, . . . , n, let us denote

t(xi) = {cj | there exists r, 1 ≤ r ≤ kj , such that yj,r = xi},

f (xi) = {cj | there exists r, 1 ≤ r ≤ kj , such that yj,r = ¬xi}.

These are the sets of clauses that assume the value true when xi is true, and when
xi is false, respectively.

We construct the cell-like recognizing P system �(ϕ) with the following
components.

O = {ai, fi, ti | 1 ≤ i ≤ n}

∪ {cj , dj | 1 ≤ j ≤ m}

∪ {pi | 1 ≤ i ≤ 2n + 1}

∪ {ri | 1 ≤ i ≤ 7}

∪ {b1, b2, yes, no},

H = {s, s ′, p, 0, 1, 2, . . . , m},

μ = [ s[ s ′[0[p ]p[1 ]1[2 ]2 . . . [m ]m]0] s ′] s,



Mp = p1, M0 = a1,

Ms = Ms ′ = Mj = λ, for all j = 1, 2, . . . , m,

The set of evolution rules, R, consists of the following rules:

(a) [ pi → pi+1]p , for all 1 ≤ i ≤ 2n,
[ ri → ri+1] 0 , for all 1 ≤ i ≤ 3,
[ ri → ri+1] s′ , for all 4 ≤ i ≤ 6.

(b) [ ai] 0 → [ fi] 0[ ti] 0 , for all 1 ≤ i ≤ n,
[ fi → f (xi)ai+1] 0 and [ ti → t(xi)ai+1] 0, for all 1 ≤ i ≤ n − 1,
[ fn → f (xn)] 0 ; [ tn → t(xn)] 0.

(c) cj [ ] j → [ cj ] j and [ cj ] j → dj , for all 1 ≤ j ≤ m.
(d) [ p2n+1 ]p → p2n+1 ; [ p2n+1 → b1r1] 0.
(e) b1[ ] j → [ b1] j ; and [ b1] j → b2, for all 1 ≤ j ≤ m,

[ b2 ] 0 → b2.
(f) [ r4] 0 → yes ; [ yes] s′ → yes ; [ yes] s → yes[ ] s

[ r7] s′ → no ; [ no] s → no[ ] s

4.1.1. An Overview of the Computations

The membranes with labels p, q, and r , with the corresponding objects pi, qi ,
and ri , respectively, are used as counters, which evolve simultaneously with the
main membrane 0, where the truth assignments of the n variables x1, . . . , xn are
generated. The evolution of the counter pi is done by the rules of the type (a).

In parallel with these rules, membrane 0 evolves by means of the rules of the
type (b). In odd steps (from the step 1 to step 2n), we divide the (nonelementary)
membrane 0 (with fi, ti corresponding to the truth values false, true, respectively, for
variable xi); in even steps we introduce the clauses satisfied by xi, ¬xi , respectively.
When we divide membrane 0, all inner objects and membranes are replicated;
in particular, all membranes with labels 1, 2, . . . , m, as well as membrane p, are
replicated, hence they are present in all membranes with label 0.

This process lasts 2n steps. At the end of this phase, all 2n truth assignments
for the n variables are generated and they are encoded in membranes labeled by 0.

In parallel with the division steps, if a clause Cj is satisfied by the previously
expanded variable, then the corresponding object cj enters membrane j , by means
of the first rule of the type (c), permitting their dissolution by means of the second
rule of that type and sending objects dj to membrane 0.

This is done also in steps 2n + 1 and 2n + 2, in parallel with using the rules
of type (a) and (d) for evolving membrane p. In step 2n + 2, the second rule of the
type (d) produces objects b1 and r1 in each membrane 0.

Thus, after 2n + 2 steps, the configuration C2n+2 of the system consists of
2n copies of membrane 0, each of them containing the membrane p empty, pos-
sible objects cj and dj , 1 ≤ j ≤ m, as well as copies of only membranes with
labels 1, 2, . . . , m corresponding to clauses which were not satisfied by the truth
assignment generated in that copy of membrane 0. The clauses satisfied by the
truth assignments generated have been dissolved by the corresponding object cj .
Moreover, in that configuration membranes s ′ and s are empty.



Therefore, formula ϕ is satisfied if and only if there is a membrane 0 in the
configuration C2n+2 without any membrane j (1, 2, . . . , m) inside it. To check this
last condition, we proceed as follows.

In step 2n + 3, we use the first rule of the type (e) which introduces the object b1

in each membrane j which has not been dissolved. In parallel, the counter r keeps
evolving. The object b1 in membrane j (step 2n + 4) dissolves that membrane
producing an object b2 in membrane 0.

In step 2n + 5, the counter r3 evolves to r4 and, simultaneously, each membrane
0 containing an object b2 is dissolved by the third rule of the type (e). Then, formula
ϕ is satisfied if and only if in the configuration C2n+5 there exists a membrane 0 that
has not been dissolved (and so, containing the object r4).

In the next step, objects r4 in membrane 0 produce objects yes, and objects
r4 in membrane s ′ produce objects r5. In step 2n + 7 the object r5 in membrane
s ′ evolves to r6. Simultaneously, if the formula ϕ is satisfiable then an object yes
dissolves the membrane s ′ by applying the second rule of the type (f) producing an
object yes in the skin, that in the next step is sent to the environment; and the P
system halts.

If the formula ϕ is not satisfiable, then in configuration C2n+7 the membrane s ′
has not been dissolved and each object r6 appearing in that membrane, evolves to r7

in the next step. Then, in step 2n + 9 an object r7 dissolves membrane s ′ producing
an object no in the skin, by using the fourth rule of the type (f), and in the next step
sends to the environment an object no; and the system halts.

Therefore, if the formula is satisfiable, then the object yes exits the system in
step 2n + 8, and, if the formula is not satisfiable, then the object no exits the system
in step 2n + 9. In both cases, this is the last step of the computation.

The system � uses an alphabet of 5n + 2m + 12 objects, m + 4 initial mem-
branes containing initially only 2 objects, and 5n + 2m + 15 rules. The length of
any rule is bounded by m + 3. Clearly, all computations halt (after at most 2n + 9
steps) and all of them give the same answer, yes or no, to the question whether
formula ϕ is satisfiable.

5. TISSUE-LIKE RECOGNIZING MEMBRANE SYSTEMS
WITH ACTIVE MEMBRANES

In this section, we consider computational devices inspired from the cell
intercommunication in tissues, and adding the ingredient of cell division rules of the
same form as in the case of polarizationless cell-like membrane systems with active
membranes.

DEFINITION 5.1. A polarizationless tissue-like membrane system with active mem-
branes of the degree p ≥ 1 is a tuple � = (�, �,M1, . . . ,Mp, E, R, iin), where

1. � is the working alphabet containing two distinguished objects yes and no;
2. � is an (input) alphabet strictly contained in �.



3. M1, . . . ,Mp are multisets over � − �, describing the objects placed in the cells of the
system (we suppose that at least one copy of yes and no is in some of these multisets);

4. E ⊆ � is the set of objects present in the environment in arbitrary many copies each (the
objects yes and no are not present in E);

5. R is a finite set of developmental rules, of the following forms:

(a) (i, u/v, j ), for i, j ∈ {0, 1, 2, . . . , p}, i �= j , and u, v ∈ �∗; 1, 2, . . . , p identify the
cells of the system, 0 is the environment: When applying a rule (i, u/v, j ), the
objects of the multiset represented by u are sent from region i to region j and
simultaneously the objects of the multiset v are sent from region j to region i;

(b) [ a ] i → [ b ] i[ c ] i , where i ∈ {1, 2, . . . , p} and a, b, c ∈ �: Under the influence of
object a, the cell with label i is divided in two cells with the same label; in the first
copy the object a is replaced by b, in the second copy the object a is replaced by c;
all other objects are replicated and copies of them are placed in the two new cells.

6. iin ∈ {1, . . . , n} is the label of the input cell.

Let m be a multiset over �. The initial configuration of � with input m is the tuple
(M1, . . . ,Miin ∪ m, . . . ,Mp).

The rules of a tissue-like membrane system as mentioned above are used in the
nondeterministic maximally parallel manner as customary in membrane computing.
In each step, we apply a set of rules which is maximal (no further rule can be added),
with the following important restriction: if a cell is divided, then the division rule is
the only one which is applied for that cell in that step, its objects do not participate
in any communication rule.

The computation starts from the initial configuration and proceeds as defined
above; only halting computations give a result, and the result is given by the presence
of a distinguished object in the environment (i.e., we work with systems with external
output).

DEFINITION 5.2. A tissue-like membrane system is said to be a recognizing system
if (a) the working alphabet contains two distinguished elements yes and no;
(b) all computations halt, and if C is a computation of the system, then either some
object yes or some object no (but not both) must have been released into the
environment in the last step of the computation.

We say that a computation is an accepting (rejecting) computation if the object
yes (respectively, the object no) appears in the environment associated with the
corresponding halting configuration.

We denote by T R the class of polarizationless tissue-like recognizing mem-
brane systems with active membranes.

To present the concept of uniform solvability in the framework of tissue-like
membrane systems, we translate the concept of polynomial encoding.

DEFINITION 5.3. Let L be a language, and � = (�(n))n∈N a family of tissue-like
systems of T R. A polynomial encoding of L in � is a pair (cod, s) of polynomial-
time computable functions whose domain is L, and for each u ∈ L, s(u) is a natural
number and cod(u) is an input multiset of the tissue-like system �(s(u)).



Next we define the concept of solvability by using polarizationless tissue-like
recognizing systems with active membranes.

DEFINITION 5.4. A decision problem X = (IX, θX) is solvable in polynomial time
by a family � = (�(n))n∈N, of tissue-like systems of T R, and we denote it by
X ∈ PMCT R, if the following holds:

• The family � is polynomially uniform by Turing machines.
• There exists a polynomial encoding (cod, s) from IX to � such that the family � is

polynomially bounded, sound and complete with regard to (X, cod, s).

We also have the class PMCT R is closed under polynomial-time reduction and
complement.

We shall not explain in detail the way the computations proceed; in particular,
they can be nondeterministic, as standard in membrane computing. It is important,
however, to note that the systems always stop and they always send out an object
which is the correct answer to the instance of the problem that they are processing.

5.1. Solving the SAT Problem by Using Polarizationless Tissue-Like
P Systems with Active Membranes

Next, we present a uniform solution to the SAT problem in polynomial time,
in a confluent way by using recognizing tissue P systems with active membranes.

THEOREM 5.1. The satisfiability of any propositional formula in the conjunctive
normal form, using n variables and m clauses, can be decided in a quadratic time
with respect to n by a polarizationless tissue-like recognizing P system with active
membranes, constructed in a quadratic time with respect to n and m.

Let us consider a propositional formula ϕ = C1 ∧ · · · ∧ Cm, consisting of m

clauses Cj = yj,1 ∨ · · · ∨ yj,kj
, where yj,r ∈ {xi, ¬xi | 1 ≤ i ≤ n} (there are used

n variables). Without loss of generality, we may assume that no clause contains
two occurrences of some xi or two occurrences of some ¬xi (the formula is not
redundant at the level of clauses), or both xi and ¬xi (otherwise such a clause is
trivially satisfiable, hence can be removed).

We consider the family � = {�(〈n, m〉) : n, m ∈ N} of tissue-like recognizing
membrane systems, being 〈n, m〉 = (n+m)·(n+m+1)

2 + n.
The tissue-like recognizing membrane system

�(〈n, m〉) = (�(〈n, m〉), �(〈n, m〉),M1,M2, E(〈n, m〉), R(〈n, m〉), iin)

will process all Boolean formulae in conjunctive normal form with n variables and
m clauses, and is defined as follows:



�(〈n, m〉) = {ai, ti, fi | 1 ≤ i ≤ n} ∪ {ri | 1 ≤ i ≤ m}

∪ {Ti,1, Fi,1 | 1 ≤ i ≤ n}

∪ {T ′
i,j , F

′
i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m + 1}

∪ {si,j , s
′
i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}

∪ {bi | 1 ≤ i ≤ 3n + m + 1} ∪ {ci | 1 ≤ i ≤ n + 1}

∪ {di | 1 ≤ i ≤ 3n + nm + m + 2}

∪ {ei | 1 ≤ i ≤ 3n + nm + m + 4}

∪ {f, g, yes, no},

�(〈n, m〉) = {si,j , s
′
i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m},

M1 = yes no b1c1d1e1,

M2 = fga1a2 . . . an,

E(〈n, m〉) = �(〈n, m〉) − {yes, no},

iin = 2,

and the following rules.

1. [ ai ]2 → [ Ti,1 ]2 [ Fi,1 ]2, for all i = 1, 2, . . . , n.
2. (1, bi/b

2
i+1, 0), for all i = 1, 2, . . . , n + 1.

3. (1, ci/c
2
i+1, 0), for all i = 1, 2, . . . , n + 1.

4. (1, di/d
2
i+1, 0), for all i = 1, 2, . . . , n + 1.

5. (1, ei/ei+1, 0), for all i = 1, 2, . . . , 3n + nm + m + 3.
6. (1, bn+1cn+1/f, 2).
7. (1, dn+1/g, 2).
8. (2, cn+1Ti,1/cn+1T

′
i,1, 0).

9. (2, cn+1Fi,1/cn+1F
′
i,1, 0), for each i = 1, 2, . . . , n.

10. (2, T ′
i,j /tiT

′
i,j+1, 0).

11. (2, F ′
i,j /fiF

′
i,j+1, 0), for each i = 1, 2, . . . , n and j = 1, 2, . . . , m.

12. (2, bi/bi+1, 0).
13. (2, di/di+1, 0), for all i = n + 1, . . . , (n + 1) + (2n + m) − 1.
14. (2, b3n+m+1ti si,j /b3n+m+1rj , 0).
15. (2, b3n+m+1fis

′
i,j /b3n+m+1rj , 0), for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

16. (2, di/di+1, 0), for all i = 3n + m + 1, . . . , (3n + m + 1) + nm − 1.
17. (2, d3n+nm+m+i ri/d3n+nm+m+i+1, 0), for all i = 1, 2, . . . , m.
18. (2, d3n+nm+2m+1/f yes, 1).
19. (2, yes/λ, 0).
20. (1, e3n+nm+2m+2f no/λ, 2).
21. (2, no/λ, 0).



5.1.1. An Overview of the Computations

Membrane 2 is repeatedly divided, each time expanding one object ai , corre-
sponding to a variable xi , into Ti,1 and Fi,1, corresponding to the values true and false
which this variable may assume. In this way, in n steps, we get 2n cells with label
2, each one containing one of the 2n possible truth assignments for the n variables.
The objects f, g are duplicated, hence a copy of each of them will appear in each
cell.

In parallel with the operation of dividing cell 2, the counters bi, ci, di, ei from
cell 1 grow their subscripts. In each step, the number of copies of objects of the first
three types is doubled, hence after n steps we get 2n copies of bn+1, cn+1, and dn+1.
Objects bi will check which clauses are satisfied by a given truth assignment, objects
ci are used to multiply the number of copies of ti , fi as we will see immediately, di

are used to check whether there is at least one truth assignment which satisfies all
clauses, and if such an assignment does not exist, then ei will be used in order to
produce the object no at the end of the computation.

In step n + 1, the counters bn+1, cn+1, dn+1 are brought in cells with label 2,
in exchange of f and g. Because we have 2n copies of each object of these types
and 2n cells 2, each one containing exactly one copy of f and one of g, due to the
maximal parallel use of the rules, each cell 2 gets precisely one copy of each of
bn+1, cn+1, dn+1. Note that cells 2 cannot divide anymore, because the objects ai

were exhausted.
In the presence of cn+1, the objects Ti,1, Fi,1 get primed, which initiates the

possibility of introducing m copies of each ti and fi in each cell 2. As we have m

clauses, then to check their values for a given truth assignment, we need for each
clause one set of objects encoding the values of all variables. Note that this phase
needs 2n steps for priming the objects Ti,1, Fi,1—for each object we need one step,
because we have only one copy of cn+1 available—then m further steps for each
T ′

i,1, F
′
i,1; all these steps are done in parallel, but for the last primed Ti,1, Fi,1 we

have to continue m steps after the 2n necessary for priming. Thus, the total number
of steps performed in this process is 2n + m.

In parallel with the previous operations, the counters bi and di increase their
subscripts, until reaching the value 3n + m + 1. This is done in all cells 2 at the
same time. Simultaneously, ei increases its subscript in cell 1.

In the presence of b3n+m+1—and not before—we check the values assumed
by clauses for the truth assignments from each cell 2. We have only one copy of
b3n+m+1 in each cell, hence we need at most nm steps for this: each clause contains
at most n literals, and we have m clauses. In parallel, d increases the subscript, until
reaching the value 3n + nm + m + 1.

In each cell with label 2 we check whether or not all clauses are satisfied by
the corresponding truth assignment. For each clause which is satisfied, we increase
by one the subscript of d, hence the subscript reaches the value 3n + nm + 2m + 1
if and only if all clauses are satisfied.

If one of the truth assignments from a cell 2 has satisfied all clauses, then
we reach d3n+nm+2m+1, which is sent to cell 1 in exchange of the objects yes
and f .



In the next step, the object yes leaves the system, signaling the fact that the
formula is satisfiable. In cell 1, the counter e will increase one more step its subscript,
but after that it will remain unchanged—it can leave cell 1 only in the presence of
f , but this object was already moved to cell 2.

If the counter e reaches the subscript 3n + nm + 2m + 2 and the object f is
still in cell 1, then the object no can be moved to a cell 2, randomly chosen, and
from there it exits the system, signaling that the formula is not satisfiable.

Next, we justify that the solution provided is an uniform solution.
We consider the polynomial encoding (cod, s) of ISAT in �, defined as follows:

If the formula ϕ is an instance of SAT with size parameters n (number of variables)
and m (number of clauses), then s(ϕ) = 〈n, m〉 and cod(ϕ) is the set

⋃

1≤i≤n,1≤j≤m,1≤r≤kj

{si,j | yj,r = xi} ∪ {s ′
i,j | yj,r = ¬xi, }

That is, in the multiset cod(ϕ) we replace each variable xi from each clause Cj with
si,j and each negated variable ¬xi from each clause Cj with s ′

i,j , then we remove
all parentheses and connectives. In this way we pass from ϕ to cod(ϕ) in a number
of steps which is linear with respect to n · m.

The presented family of tissue-like recognizing membrane systems is polyno-
mially uniform by Turing machines, because the definition of the family is done in
a recursive manner from a given instance of SAT, in particular from the constants n

(number of variables) and m (number of clauses). Furthermore the tissue P system
�(〈n, m〉) uses an alphabet of 5nm + 17n + 4m + 12 objects, 2 initial cells contain-
ing n + 8 objects in all, and n rules. The length of any rule is bounded by 3. Clearly,
all computations halt, and the number of steps is bounded by 3n + nm + 2m + 4
(when the answer is negative; if the answer is affirmative, then the number of steps
is 3n + nm + 2m + 2).

From the above we deduce the following results:

THEOREM 5.2.

1. SAT ∈ PMCT R.
2. NP ⊆ PMCT R, and NP ∪ co − NP ⊆ PMCT R.

Remarks. We have presented two solutions to the SAT problem by using polariza-
tionless recognizing membrane systems with active membranes. The first one, in
the cell-like framework is semiuniform, does not use cooperation (i.e., the left-hand
sides of the rules only have one object), and it is linear in time and in (the initial)
space. The second one, in the tissue-like framework is a uniform solution, uses coop-
eration, and it is quadratic in time and in (the initial) space. Both solutions construct
an exponential working space (in terms of membranes or cells) in linear time.

6. CONCLUSIONS

In this paper, we have presented cell-like (inspired from the structure of the cell)
and tissue-like (inspired from the cell inter-communication in tissues) recognizing



membrane systems as computational devices specially suitable to attack the efficient
solvability of computationally hard problems.

In that new framework, two characterizations of the relation P = NP have been
described through the solvability of NP-complete problems by a family of cell-like
recognizing membrane systems using only basic rules.

The main contribution of this paper is to formalize the concept of tissue-
like membrane systems, and to present, in the framework of tissue-like recognizing
membrane systems, a formal definition of the polynomial complexity class PMCT R.
Besides, two polynomial time solutions to the satisfiability problem by using po-
larizationless (cell-like and tissue-like) recognizing membrane systems with active
membranes are presented.

Finally, we would like to mention two open questions for future research.
What happens if in tissue-like P systems division rules are forbidden? What if
communication rules are restricted to (i, a/b, j ), where i, j are labels and a, b are
objects (instead of multisets)?
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2. Păun Gh. P systems with active membranes: attacking NP–complete problems. J Automata,

Lang Comb 2001;6(1):75–90.
3. Zandron C, Ferreti C, Mauri G. Solving NP–complete problems using P systems with active

membranes. In: Antoniou I, Calude CS, Dinneen MJ, editors. Unconventional models of
computation, UMC’2K, Berlin: Springer-Verlag; 2000. pp 289–301.

4. Krishna SN, Rama R. A variant of P systems with active membranes: solving NP–complete
problems. Romanian J Inform Sci Technol 1999;2(4):357–367.

5. Obtulowicz A. Deterministic P systems for solving SAT problem. Romanian J Inform Sci
Technol 2001;4(1–2):551–558.
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