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1 Introduction

We combine here two ideas recently considered in the study of the spiking neural P

systems (in short, SN P systems), namely the extended rules from (Păun and Păun to

appear) and the string generation from Chen et al. (2006). Spiking neural P systems were

recently introduced in Ionescu et al. (2006) as an tempt to incorporate in membrane

computing [see a comprehensive introduction in Păun (2002) and current information in

the webpage http://www.psystems.disco.unimib.it ideas from neural computing by spiking

[as found, for instance, in Maass (2002) and Maass and Bishop (1999)].

For the reader’s convenience, we shortly recall that an SN P system consists of a set of

neurons placed in the nodes of a graph and sending signals (spikes) along synapses (arcs of

the graph), under the control of firing rules. One neuron is designated as the output neuron

of the system and its spikes can exit into the environment, thus producing a spike train.

Two main kinds of outputs can be associated with a computation in an SN P system: a set

of numbers, obtained by considering the number of steps elapsed between consecutive

spikes which exit the output neuron, and the string corresponding to the sequence of spikes

in the spike train. This sequence is a binary one, with 0 associated with a step when no

spike is emitted and 1 associated with a step when a spike is emitted.

The case of SN P systems as number generators was investigated in several papers,

starting with (Ionescu et al. 2006), where it is proved that such systems are Turing com-

plete [hence also universal SN P systems exist, because the proof is constructive; uni-

versality in a rigorous framework was investigated in Păun and Păun (to appear)]. In turn,

the string case is investigated in Chen et al. (2006), where representations of finite, regular,

and recursively enumerable languages were obtained, but also finite languages were found

which cannot be generated in this way.

Here we consider an extension of the rules, already used in Păun and Păun (to appear),

namely we allow rules of the form E=ac ! ap; with the following meaning: if the content

of the neuron is described by the regular expression E, then c spikes are consumed and p
are produced and sent to the neurons to which there exist synapses leaving the neuron

where the rule is applied. Thus, these rules cover and generalize at the same time both

spiking rules and forgetting rules as considered so far in this area—with the mentioning

that we do not also consider here a delay between firing and spiking, because in the proofs

we never need such a delay.

As expected, this generalization allows much simpler constructions for the proof of

Turing completeness in the case of considering SN P systems as number generators (we

treat this issue in Sect. ‘‘Extended SN P systems as number generators’’). More

interesting is the case of strings produced by SN P systems with extended rules: we

associate a symbol bi to a step when the system sends i spikes into the environment,
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with two possible cases—b0 is used as a separated symbol, or it is replaced by k
(sending no spike outside is interpreted as a step when the generated string is not

grown). The first case is again restrictive: not all minimal linear languages can be

obtained, but still results stronger than those from Chen et al. (2006) can be proved in

the new framework because of the possibility of removing spikes under the control of

regular expressions—see Sect. ‘‘Languages in the restricted case’’. The freedom pro-

vided by the existence of steps when we have no output makes possible direct char-

acterizations of finite and recursively enumerable languages [not only representations,

as obtained in Chen et al. (2006) for the standard binary case]—Sect. ‘‘Languages in

the non-restricted case’’.

2 Formal language theory prerequisites

We assume the reader to be familiar with basic language and automata theory, e.g., from

Rozenberg and Salomaa (1997) and Salomaa (1973), so that we introduce here only some

notations and notions used latter in the paper.

For an alphabet V, V* denotes the set of all finite strings of symbols from V; the empty

string is denoted by k, and the set of all non-empty strings over V is denoted by V+. When

V ¼ fag is a singleton, then we write simply a* and a+ instead of fag�; fagþ: If

x ¼ a1; a2; . . . ; an; ai 2 V; 1 � i � n; then miðxÞ ¼ an; . . . ; a2a1:
A morphism h : V�1 ! V�1 such that hðaÞ 2 fa; kg for each a 2 V1 is called a projection,

and a morphism h : V�1 ! V�2 such that hðaÞ 2 V2 [ fkg for each a 2 V1 is called a weak

coding.

If L1; L2 � V� are two languages, the left and right quotients of L1 with respect to L2 are

defined by L2nL1 ¼ fw 2 V� j xw 2 L1 for some x 2 L2g; and, respectively,

L1=L2 ¼ fw 2 V� j wx 2 L1 for some x 2 L2g: When the language L2 is a singleton, these

operations are called left and right derivatives, and denoted by @l
xðLÞ ¼ fxgnL and

@r
xðLÞ ¼ L=fxg; respectively.

A Chomsky grammar is given in the form G = (N,T,S,P), where N is the non-terminal

alphabet, T is the terminal alphabet, S [N is the axiom, and P is the finite set of rules. For

regular grammars, the rules are of the form A! aB;A! a; for some A;B 2 N; a 2 T:
We denote by FIN, REG, CF, CS, RE the families of finite, regular, context-free,

context-sensitive, and recursively enumerable languages; by MAT we denote the family of

languages generated by matrix grammars without appearance checking. The family of

Turing computable sets of numbers is denoted by NRE (these sets are length sets of RE

languages, hence the notation).

Let V ¼ fb1; b2; . . . ; bmg; for some m � 1. For a string x 2 V�; let us denote by valm(x)

the value in base m + 1 of x (we use base m + 1 in order to consider the symbols b1; . . . ; bm

as digits 1, 2,..., m, thus avoiding the digit 0 in the left hand of the string). We extend this

notation in the natural way to sets of strings.

All universality results of the paper are based on the notion of a register machine. Such

a device—in the non-deterministic version—is a construct M ¼ ðm;H; l0; lh; IÞ; where m is

the number of registers, H is the set of instruction labels, l0 is the start label (labeling an

ADD instruction), lh is the halt label (assigned to instruction HALT), and I is the set of

instructions; each label from H labels only one instruction from I, thus precisely identifying

it. The instructions are of the following forms:



� li : ðADDðrÞ; lj; lkÞ (add 1 to register r and then go to one of the instructions with labels

lj,lk non-deterministically chosen),

� li : ðSUBðrÞ; lj; lkÞ (if register r is non-empty, then subtract 1 from it and go to the

instruction with label lj, otherwise go to the instruction with label lk),
� lh : HALT (the halt instruction).

A register machine M generates a set N(M) of numbers in the following way: we start

with all registers empty (i.e., storing the number zero), we apply the instruction with label

l0 and we continue to apply instructions as indicated by the labels (and made possible by

the contents of registers); if we reach the halt instruction, then the number n present in

register 1 at that time is said to be generated by M. (Without loss of generality we may

assume that in the halting configuration all other registers are empty; also, we may assume

that register 1 is never subject of SUB instructions, but only of ADD instructions.) It is

known [see, e.g., Minsky (1967)] that register machines generate all sets of numbers which

are Turing computable.

A register machine can also be used as a number accepting device: we introduce a

number n in some register r0, we start working with the instruction with label l0, and if the

machine eventually halts, then n is accepted (we may also assume that all registers are

empty in the halting configuration). Again, accepting register machines characterize NRE.

Furthermore, register machines can compute all Turing computable functions: we

introduce the numbers n1,...,nk in some specified registers r1,...,rk, we start with the

instruction with label l0, and when we stop (with the instruction with label lh) the value of

the function is placed in another specified register, rt, with all registers different from rt

being empty. Without loss of generality we may assume that r1; . . . ; rk are the first k
registers of M, and then the result of the computation is denoted by Mðn1; . . . ; nkÞ:

In both the accepting and the computing case, the register machine can be deterministic,

i.e., with the ADD instructions of the form li : ðADDðrÞ; ljÞ (add 1 to register r and then go

to the instruction with label lj).
In the following sections, when comparing the power of two language generating/

accepting devices the empty string k is ignored.

3 Spiking neural P systems with extended rules

We directly introduce the type of SN P systems we investigate in this paper; the reader can

find details about the standard definition in Ionescu et al. (2006), Păun and Pérez-Jiménez

(2006) and Chen et al. (2006), etc.

An extended spiking neural P system (abbreviated as extended SN P system), of degree

m � 1, is a construct of the form

P ¼ ðO; r1; . . . ; rm; syn; i0Þ;

where

1. O = {a} is the singleton alphabet (a is called spike);

2. r1; . . . ; rm are neurons, of the form ri = (ni, Ri), 1� i � m, where:

(a) ni � 0 is the initial number of spikes contained in ri;

(b) Ri is a finite set of rules of the form E=ac ! ap; where E is a regular expression over

a and c � 1, p � 0, with the restriction c � p;



3. syn � f1; 2; . . . ;mg � f1; 2; . . . ;mg with i = j for each ði; jÞ 2 syn; 1 � i; j � m
(synapses between neurons);

4. i0 2 f1; 2; . . . ;mg indicates theoutput neuronðri0Þ of the system.

A rule E=ac ! ap is applied as follows. If the neuron ri contains k spikes, and

ak 2 LðEÞ; k � c; then the rule can fire, and its application means consuming (removing) c
spikes (thus only k�c remain in ri) and producing p spikes, which will exit immediately

the neuron. A global clock is assumed, marking the time for the whole system, hence the

functioning of the system is synchronized.

Note that we do not consider here a delay between firing and spiking (i.e., rules of the

form E=ac ! ap; d; with d � 0; when using such a rule, the spikes are sent to the receiving

neurons after d steps and during these steps the sending neuron is idle, no rule is used in it

and no spike can enter it), because we do not need this feature in the proofs below, but such

a delay can be introduced in the usual way. (As a consequence, here the neurons are always

open.)

If a rule E=ac ! ap has E = ac, then we will write it in the simplified form ac ! ap: If

all rules E=ac ! ap have LðEÞ ¼ facg; then we say that the system is finite.

The spikes emitted by a neuron ri go to all neurons rj such that (i,j) [ syn, i.e., if ri has

used a rule E=ac ! ap; then each neuron rj receives p spikes.

If several rules can be used at the same time, then the one to be applied is chosen non-

deterministically.

During the computation, a configuration of the system is described by the number of

spikes present in each neuron; thus, the initial configuration is described by the numbers

n1; n2; . . . ; nm:
Using the rules as described above, one can define transitions among configurations.

Any sequence of transitions starting in the initial configuration is called a computation. A

computation halts if it reaches a configuration where no rule can be used. With any

computation (halting or not) we associate a spike train, the sequence of symbols 0 and 1

describing the behavior of the output neuron: if the output neuron spikes, then we write 1,

otherwise we write 0 (note that at this stage we ignore the number of spikes emitted by the

output neuron into the environment in each step, but this additional information will be

considered below).

As the result of a computation, in Ionescu et al. (2006) and Păun and Pérez-Jiménez (2006)

one considers the distance between two consecutive steps when there are spikes which exit the

system, with many possible variants: taking the distance between the first two occurrences of

1 in the spike train, between all consecutive occurrences, considering only alternately the

intervals between occurrences of 1, etc. For simplicity, we consider here only the first case

mentioned above: we denote by N2(P) the set of numbers generated by an SN P system in the

form of the number of steps between the first two steps of a computation when spikes are

emitted into environment, and by Spik2SNePmðrulek; consp; prodqÞ the family of sets N2(P)

generated by SN P systems with at most m neurons, at most k rules in each neuron, consuming

at most p and producing at most q spikes. Any of these parameters is replaced by * if it is not

bounded. (The superscript e points out the fact that we work with extended rules. When using

only standard rules, this superscript is omitted, together with prodq, which is by definition

always prod1.)

An SN P system can also be used in the accepted mode: a number is introduced in the

form of the distance between two spikes entering the system and it is accepted if the

computation eventually halts. Moreover, we can have computing SN P systems: a number



is introduced as the distance between two input spikes and the result of the computation is a

number provided as the distance between two output spikes.

Following (Chen et al. 2006) we can also consider as the result of a computation the

spike train itself, thus associating a language with an SN P system. Specifically, like in

Chen et al. (2006), we can consider the language Lbin(P) of all binary strings associated

with halting computations in P: the digit 1 is associated with a step when one or more

spikes exit the output neuron, and 0 is associated with a step when no spike is emitted by

the output neuron. We denote B = {0,1}.

Because several spikes can exit at the same time, we can also work on an arbitrary

alphabet: let us associate the symbol bi with a step when the output neuron emits i spikes.

We have two cases: interpreting b0 (hence a step when no spike is emitted) as a symbol or

as the empty string. In the first case we denote the generated language by Lres(P) (with

‘‘res’’ coming from ‘‘restricted’’), in the latter one we write Lk(P).

The respective families are denoted by LaSNePmðrulek; consp; prodqÞ; where

a 2 fbin; res; kg and parameters m,k,p,q are as above. We omit the superscript e and the

parameter prodq when working with standard rules.

We recall from Chen et al. (2006) the following results

Theorem 3.1 (i) There are finite languages (for instance, {0k,10j}, for any k � 1, j � 0)

which cannot be generated by any SN P system, but for any
L 2 FIN; L � Bþ; we have Lf1g 2 LbinSNP1ðrule�; cons�Þ; and if
L ¼ fx1; x2; . . . ; xng , then we also have f0iþ3xi j 1 � i � ng 2 Lbin

SNP�ðrule�; cons1Þ:
(ii) The family of languages generated by finite non-extended SN P systems is strictly

included in the family of regular languages over the binary alphabet, but for any
regular language L � V� there is a finite SN P system P and a morphism
h : V� ! B� such that L = h�1(L(P)).

(iii) LbinSNP� ðrule� ; cons� Þ 	 REC; but for every alphabet V ¼ fa1; a2; . . . ; akg there are
a morphism h1 : ðV [ fb; cgÞ� ! B� and a projection h2 : ðV [ fb; cgÞ� ! V� such
that for each language L � V�; L 2 RE; there is an SN P system P such that
L ¼ h2ðh�1

1 ðLðPÞÞÞ:

These results show that the language generating power of non-extended SN P systems is 
rather eccentric; on the one hand, finite languages (like {0, 1}) cannot be generated, on the 
other hand, we can represent any RE language as the direct morphic image of an inverse 
morphic image of a language generated in this way. This eccentricity is due mainly to the 
restricted way of generating strings, with one symbol added in each computation step, and 
this naturally suggests the idea of extended rules, with the possibility of having k as output 
in steps when no spike exits the system. As we will see below, this possibility considerably 
enlarges the generated families of languages.

4 Extended SN P systems as number generators

Because non-extended SN P systems—without delay; see Ibarra et al. (2006)—are already 
computationally universal, this result is directly valid also for extended systems. However, 
the construction on which the proof is based is much simpler in the extended case and it is 
also instructive for the way the small universal systems are found, that is why we briefly 
present it.



Theorem 4.1 NRE ¼ Spik2SNeP�ðrule4; cons5; prod2Þ:

Proof The proof of the similar result from Ionescu et al. (2006) is based on constructing

an SN P system P which simulates a given register machine M. The idea is that each

register r has associated a neuron rr, with the value n of the register represented by 2n
spikes in neuron rr. Also, each label of M has a neuron in P, which is ‘‘activated’’ when

receiving two spikes. We do not recall other details from Ionescu et al. (2006), and we pass

directly to presenting—in Figs. 1–3—modules for simulating the ADD and the SUB

instructions of M, as well as an OUTPUT module, in the case of using extended rules.

Because the neurons associated with labels of ADD and SUB instructions have to

produce different numbers of spikes, in the neurons associated with ‘‘output’’ labels of

instructions we have written the rules in the form a2 ! adðlÞ; with d(l) = 1 for l being the

label of a SUB instruction and d(l) = 2 if l is the label of an ADD instruction.

Because li precisely identifies the instruction, the neurons cia are distinct for distinct

instructions. However, an interference between SUB modules appears in the case of

instructions SUB which operate on the same register r: synapses ðr; cisÞ; ðr; ci0sÞ; s ¼ 4; 5;
exist for different instructions li : ðSUBðrÞ; lj; lkÞ; li0 : ðSUBðrÞ; lj0 ; lk0 Þ: Neurons rci04 ; rci05
receive 1 or 2 spikes from rr even when simulating the instruction with label li, but they are

immediately forgotten (this is the role of rules a! k; a2 ! k from neurons rci4
; rci5

from

Fig. 2).

The task of checking the functioning of the modules from Figs. 1–3 is left to the

reader. h

5 Small universal SN P systems

In both the generating and the accepting case, SN P systems are computationally complete,

they compute the Turing computable sets of numbers. Like the proof of the previous

theorem, all the proofs from Ionescu et al. (2006), Păun and Pérez-Jiménez (2006) are also

based on simulating register machines. Because there are universal register machines, in

this way we can also find universal SN P systems. For instance, universal register machines

are constructed in Korec (1996), with the universality defined as follows. Let ðu0;u1; . . .Þ

Fig. 1 Module ADD, for simulating an instruction li : ðADDðrÞ; lj; lkÞ



Fig. 2 Module SUB, for simulating an instruction li : ðSUBðrÞ; lj; lkÞ

Fig. 3 Module OUTPUT

be a fixed admissible enumeration of the set of unary partial recursive functions. A register 
machine Mu is said to be universal if there is a recursive function g such that for all natural 
numbers x,y we have uxðyÞ ¼  MuðgðxÞ; yÞ: In Korec (1996), the input is introduced in 
registers 1 and 2, and the result is obtained in register 0 of the machine. By simulating the 
universal machine U32 from Korec (1996) (it has 8 registers and, in our setup, 23 
instructions), with a special care paid to saving neurons always when possible, we get the 
following results:

Theorem 5.1 Păun and Păun (to appear) There is a universal standard SN P system with 
84 neurons and one with extended rules having 49 neurons.

In the case when we consider an SN P system as a number generating device, we say 
that an SN P system Pu is universal if, given a fixed admissible enumeration of the unary 
partial recursive functions, ðu0; u1; . . .Þ; there is a recursive function g such that for each 
natural number x, if we input the number g(x) in Pu, by ‘‘reading’’ the sequence 10gðxÞ�11



from the environment, the set of numbers generated by the system is equal to

fn 2 N j uxðnÞ is defined}. Otherwise stated, after introducing the ‘‘code’’ gðxÞ of the

partial recursive function ux in a specified neuron, the system generates (hence halts

sometimes after sending two spikes out) all numbers n for which uxðnÞ is defined.

The universal system proceeds then as follows:

1. Read the string 10gðxÞ�11 from the environment and load 2gðxÞ spikes in neuron r1:
2. Load neuron r2 non-deterministically with an arbitrary natural number n (in the case

of using restricted rules this means to introduce 2n spikes in neuron r2 and in the case

of extended rules means to introduce 6n spikes); at the same time, output the spike

train 10n-11 (hence the number n).

3. Check whether the function ux is defined for n. To this aim, start the register machine

U32 from Korec (1996), with g(x) in register 1 and n in register 2. If the computation in

U32 halts, then also the computation in our SN P system halts, hence n is introduced in

the set of generated numbers.

By implementing this strategy, we get the following results:

Theorem 5.2 Păun and Păun (to appear) There is a universal number generating SN P
system with standard rules having 76 neurons and one with extended rules having 50
neurons.

As one can see, the extended rules are always useful, the number of neurons is much

smaller for this case in each theorem.

6 Languages in the restricted case

We pass now to considering extended SN P systems as language generators, starting with

the restricted case, when the system outputs a symbol in each computation step.

In all considerations below, we work with the alphabet V = {b1,b2,...,bs}, for some s � 1.

By a simple renaming of symbols, we may assume that any given language L over an

alphabet with at most s symbols is a language over V. When a symbol b0 is also used, it is

supposed that b0 62 V:

6.1 A characterization of FIN

As we have seen before, SN P systems with standard rules cannot generate all finite

languages, but extended rules help in this respect.

Lemma 6.1 LaSNeP1ðrule�; cons�; prod�Þ � FIN; a 2 fres; kg:

Proof In each step, the number of spikes present in a system with only one neuron

decreases by at least one, hence any computation lasts at most as many steps as the number

of spikes present in the system at the beginning. Thus, the generated strings have a

bounded length. h

Lemma 6.2 FIN � LaSNeP1ðrule�; cons�; prod�Þ; a 2 fres; kg:



Proof Let L ¼ fx1; x2; . . . ; xng � V�; n � 1; be a finite language, and letxi ¼ xi;1 . . . xi;ri

for xi,j [ V, 1 � i � n, 1 � j � ri = |xi|. Denote l ¼ maxfri j 1 � i � ng: For b [ V, define

index(b) = i if b = bi. Define aj ¼ ls
Pj

i¼1 jxij; for all 1 � j � n.

An SN P system that generates L is shown in Fig. 4.

Initially, only a rule aanþls=aan�ajþs ! aindexðxj;1Þ can be used, and in this way we non-

deterministically choose the string xj to generate. This rule outputs the necessary number of

spikes for xj,1. Then, because aj + (l�1)s spikes remain in the neuron, we have to continue

with rules aajþðl�tþ1Þs=as ! aindexðxj;tÞ; for t = 2, and then for the respective t = 3,4,...,rj�1;

in this way we introduce xj,t, for all t = 2,3,...,rj�1. In the end, the rule

aajþðl�rjþ1Þs ! aindexðxj;rj
Þ is used, which produces xj;rj

and concludes the computation.

It is easy to see that the rules which are used in the generation of a string xj cannot be

used in the generation of a string xk with k = j. Also, in each rule the number of spikes

consumed is not less than the number of spikes produced. The system P never outputs zero

spikes, hence Lres(P) = Lk(P) = L. h

Theorem 6.1 FIN = La SNeP1(rule*,cons*,prod*),a[{res,k}.

This characterization is sharp in what concerns the number of neurons, because of the

following result:

Proposition 6.1 LaSNeP2ðrule2; cons3; prod3Þ � FIN 6¼ ;; a 2 fres; kg:

Proof The SN P system P from Fig. 5 generates the infinite language LresðPÞ ¼
LkðPÞ ¼ b�3b1fb1; b3g: h

6.2 Representations of regular languages

Such representations are obtained in Chen et al. (2006) starting from languages of the form

Lbin(P), but in the extended SN P systems, regular languages can be represented in an

easier and more direct way.

Fig. 4 An SN P system generating a finite language

Fig. 5 An SN P system generating an infinite language



Theorem 6.2 If L � V�; L 2 REG; then {b0}L [Lres SNeP4(rule*,cons*,prod*).

Proof Consider a regular grammar G = (N,V,S,P) such that L = L(G), where

N = {A1,A2,...,An}, n � 1,S = An, and the rules in P are of the forms Ai ? bkAj, Ai? bk,

1 � i, j � n, 1 � k � s.

Then {b0}L can be generated by the SN P system shown in Fig. 6.

In each step, neuron r2 (with the help of neuron r1) will send n + s spikes to neuron r3,

provided that they receive spikes from neuron r3. Neuron r3 fires in the first step by a rule

a2n+s/a2n-j+s ? ak (or a2n+s ? ak) associated with a rule An ? bkAj (or An ? bk) from P,

produces k spikes and receives n + s spikes from neuron r2. In the meantime neuron r4

does not spike, hence it produces the symbol b0, and receives spikes from neuron r3,

therefore in the second step it generates the first symbol of the string.

Assume in some step t, the rule an+i+s/an+i-j+s? ak, for Ai ? bkAj, or an+i+s ? ak, for

Ai ? bk, is used, for some 1 � i � n, and n + s spikes are received from neuron r2.

If the first rule is used, then k spikes are produced, n + i�j + s spikes are consumed

and j spikes remain in neuron r3. Then in step t + 1, we have n + j + s spikes in neuron

r3, and a rule for Aj ? bkAl or Aj ? bk can be used. In step t + 1 neuron r3 also receives

n + m spikes from r2. In this way, the computation continues, unless the second rule is

used.

If the second rule is used, then k spikes are produced, all spikes are consumed, and n + m
spikes are received in neuron r3. Then, in the next time step, neuron r3 receives n + m
spikes, but no rule can be used, so no spike is produced. At the same time, neuron r4 fires

using spikes received from neuron r3 in the previous step, and then the computation halts.

In this way, all the strings in {b0}L can be generated. h

Corollary 6.1 Every language L 2 REG; L � V�; can be written in the form L = qb_0
l (L0)

for some L0 [ Lres SNeP4(rule*,cons*,prod*).

Fig. 6 The SN P system from the proof of Theorem 6.2



One neuron in the previous representation can be saved, by adding the extra symbol in

the right hand end of the string.

Theorem 6.3 If L � V�; L 2 REG; then L{b0}[Lres SNeP3(rule*,cons*,prod*).

Proof The proof is based on a construction similar to the one from the proof of Theorem

6.2. Specifically, starting from a regular grammar G as above, we construct a system P as

in Fig. 7, for which we have Lres(P) = L{b0}. We leave the task to check this assertion to

the reader. h

Corollary 6.2 Every language L 2 REG; L � V�; can be written in the form L ¼ @r
b0
ðL0Þ

for some L0 [ Lres SNeP3(rule*,cons*,prod*).

6.3 Going beyond REG

We do not know whether the additional symbol b0 can be avoided in the previous theorems

(hence whether the regular languages can be directly generated by SN P systems in the

restricted way), but such a result is not valid for the family of minimal linear languages

(generated by linear grammars with only one non-terminal symbol).

Lemma 6.3 The number of configurations reachable after n steps by an extended SN P
system of degree m is bounded by a polynomial g(n) of degree m.

Proof Let us consider an extended SN P system P = (O,r1,...,rm,syn,i0) of degree m, let

n0 be the total number of spikes present in the initial configuration of P, and denote

a ¼ maxfp j E=ac ! ap 2 Ri; 1 � i � mg (the maximal number of spikes produced by any

of the rules of P). In each step of a computation, each neuron ri consumes some c spikes

and produces p� c spikes; these spikes are sent to all neurons rj such that (i,j)[syn. There

are at most m�1 synapses (i,j)[syn, hence the p spikes produced by neuron ri are replicated

in at most p(m�1) spikes. We have p(m�1) � a(m�1). Each neuron can do the same,

Fig. 7 The SN P system for the proof of Theorem 6.3 



hence the maximal number of spikes produced in one step is at most a(m�1)m. In n
consecutive steps, this means at most a(m�1)mn spikes. Adding the initial n0 spikes, this

means that after any computation of n steps we have at most n0 + a(m�1)mn spikes in P.

These spikes can be distributed in the m neurons in less that (n0 + a(m�1)mn)m different

ways. This is a polynomial of degree m in n (a is a constant) which bounds from above the

number of possible configurations obtained after computations of length n in P. h

Theorem 6.4 If f:V+? V+ is an injective function, card(V) � 2, then there is no extended
SN P system P such that Lf ðVÞ ¼ fxf ðxÞ j x 2 Vþg ¼ LresðPÞ:

Proof Assume that there is an extended SN P system P of degree m such that Lres(P) = Lf(V)

for some f and V as in the statement of the theorem. According to the previous lemma, there are

only polynomially many configurations of P which can be reached after n steps. However,

there are card(V)n� 2n strings of length n in V+. Therefore, for large enough n there are two

strings w1,w2 [ V+, w1 = w2, such that after n steps the system P reaches the same config-

uration when generating the strings w1 f(w1) and w2 f(w2), hence after step n the system can

continue any of the two computations. This means that also the strings w1 f(w2) and w2 f(w1)

are in Lres(P). Due to the injectivity of f and the definition of Lf(V) such strings are not in Lf(V),

hence the equality Lf(V) = Lres(P) is contradictory. h

Corollary 6.3 The following languages are not in LresSNeP*(rule*,cons*,prod*) (in all
cases, card(V) = k � 2):

L1 ¼ fx miðxÞ j x 2 Vþg;
L2 ¼ fxx j x 2 Vþg;
L3 ¼ fx cvalkðxÞ j x 2 Vþg; c 62 V:

Note that language L1 above is a non-regular minimal linear one, L2 is context-sensitive

non-context-free, and L3 is non-semilinear. In all cases, we can also add a fixed tail of any

length (e.g., considering L01 ¼ fx miðxÞz j x 2 Vþg; where z[V+ is a given string), and the

conclusion is the same—hence a result like that in Theorem 6.3 cannot be extended to

minimal linear languages.

7 Languages in the non-restricted case

As expected, the possibility of having intermediate steps when no output is produced is

helpful, because this provides intervals for internal computations. In this way, we can get

rid of the operations used in Chen et al. (2006) and in the previous sections when dealing

with regular and with recursively enumerable languages.

7.1 Relationships with REG

Lemma 7.1 LkSNeP2ðrule�; cons�; prod�Þ � REG:

Proof In a system with two neurons, the number of spikes from the system can

remain the same after a step, but it cannot increase: the neurons can consume the same



number of spikes as they produce, and they can send to each other the produced spikes.

Therefore, the number of spikes in the system is bounded by the number of spikes

present at the beginning. This means that the system can pass through a finite number

of configurations and these configurations can control the evolution of the system like

states in a finite automaton. Consequently, the generated language is regular [see

similar reasonings, with more technical details, in Ionescu et al. (2006), Chen et al.

(2006)]. h

Lemma 7.2 REG � LkSNeP3ðrule�; cons�; prod�Þ:

Proof For the SN P system P constructed in the proof of Theorem 6.3 (Fig. 7) we have

Lk(P) = L(G). h

This last inclusion is proper:

Proposition 7.1 Lk SNeP3(rule4,cons4,prod2)�REG = ; .

Proof The SN P system P from Fig. 8 generates the language LkðPÞ ¼ fbn
2bnþ1

1 j n � 1g:
Indeed, for a number n � 0 of steps, neuron r2 consumes two spikes by using the rule

(a2)+/a2? a2 and receives four from the other two neurons. After changing the parity of the

number of spikes (by using the rule (a2)+/a3? a2), neuron r2 will continue by consuming

four spikes (using the rule a(a2)+/a4? a) and receiving only two. When only three spikes

remain, the computation stops (the two further spikes received by r2 from r1 and r3 cannot

fire again neuron r2). h

Corollary 7.1 LkSNeP1ðrule�; cons�; prod�Þ 	 LkSNeP2ðrule�; cons�; prod�Þ 	 LkSNeP3

ðrule�; cons�; prod�Þ; strict inclusions.

7.2 Going beyond CF

Actually, much more complex languages can be generated by extended SN P systems with

three neurons.

Theorem 7.1 The family Lk SNeP3(rule3,cons6,prod4) contains non-semilinear
languages.

Proof The system P from Fig. 9 generates the language.

LkðPÞ ¼ fb2
4b2b22

4 b2 . . . b2n

4 b2 j n � 1:g

Fig. 8 An SN P system generating a non-regular language 



We start with 2 + 4�20 spikes in neuron r1. When moved from neuron r1 to neuron r3,

the number of spikes is doubled, because they pass both directly from r1 to r3, and through

r2. When all spikes are moved to r3, the rule a2? a of r1 should be used. With a number

of spikes of the form 4m + 1, neuron r3 cannot fire, but in the next step one further spike

comes from r2, hence the first rule of r3 can now be applied. Using this rule, all spikes of

r3 are moved back to r1—in the last step we use the rule a2? a2, which makes again the

first rule of r1 applicable.

This process can be repeated any number of times. In each moment, after

moving all but the last six spikes from neuron r1 to r3, we can also use the rule

a6? a3 of r1, and this ends the computation: there is no spike in r1, neuron r2

cannot work when having three spikes inside, and the same with r3 when having

4m + 3 spikes.

Now, one sees that r3 is also the output neuron and that the number of times of using the

first rule of r3 is doubled after each move of the contents of r3 to r1. h

In this proof we made use of the fact that no spike of the output neuron means no

symbol introduced in the generated string. If we work in the restricted case, then

symbols b0 are shuffled in the string, hence the non-semilinearity of the generated

language is preserved, that is, the result also holds for the restricted case.

7.3 A characterization of RE

If we do not bound the number of neurons, then a characterization of recursively enu-

merable languages is obtained.

Let us write s in front of a language family notation in order to denote the subfamily of

languages over an alphabet with at most s symbols (e.g., 2RE denotes the family of

recursively enumerable languages over alphabets with one or two symbols).

Lemma 7.3 sRE � sLkSNeP�ðrules0 ; conss; prodsÞ; where s0 = max(s,6) and s � 1.

Proof We follow here the same idea as in the proof of Theorem 5.9 from Chen et al.

(2006), adapted to the case of extended rules.

Fig. 9 An SN P system generating a non-semilinear language



Take an arbitrary language L � V�; L 2 RE; cardðVÞ ¼ s: Obviously, L [ RE if and

only if vals(L)[NRE. In turn, a set of numbers is recursively enumerable if and only if it can

be accepted by a deterministic register machine. Let M1 be such a register machine, i.e.,

N(M1) = vals(L).

We construct an SN P system P performing the following operations (rc0
and rc1

are

two distinguished neurons of P, which are empty in the initial configuration):

1. Output i spikes, for some 1 � i � s, and at the same time introduce the number i in

neuron rc0
; in the construction below, a number n is represented in a neuron by storing

there 3n spikes, hence the previous task means introducing 3i spikes in neuron rc0
:

2. Multiply the number stored in neuron rc1
(initially, we have here number 0) by s + 1,

then add the number from neuron rc0
; specifically, if neuron rc0

holds 3i spikes and

neuron rc1
holds 3n spikes, n � 0; then we end this step with 3(n(s + 1) + i) spikes in

neuron rc1
and no spike in neuron rc0

: In the meantime, the system outputs no spike.

3. Repeat from step 2, or, non-deterministically, stop the increase of spikes from neuron

rc1
and pass to the next step.

4. After the last increase of the number of spikes from neuron rc1
we have here vals(x) for

a string x[V+. Start now to simulate the work of the register machine M1 in recognizing

the number vals(x). The computation halts only if this number is accepted by M1,

hence the string x produced by the system is introduced in the generated language only

if valsðxÞ 2 NðM1Þ:

In constructing the system P we use the fact that a register machine can be simulated by 
an SN P system. Then, the multiplication by s + 1 of the contents of neuron rc1 followed by 
adding a number between 1 and s is done by a computing register machine (with the 
numbers stored in neurons rc0 ; rc1 introduced in two specified registers); we denote by M0 
this machine. Thus, in our construction, also for this operation we can rely on the general 
way of simulating a register machine by an SN P system. All other modules of the 
construction (introducing a number of spikes in neuron rc0 ; sending out spikes, choosing 
non-deterministically to end the string to generate and switching to the checking phase, 
etc.) are explicitly presented below.

The overall appearance of P is given in Fig. 10, where M0 indicates the subsystem 
corresponding to the simulation of the register machine M0 ¼ ðm0; H0; l0;0; lh;0; I0Þ and M1 
indicates the subsystem which simulates the register machine M1 ¼ ðm1; H1; l0;1; lh;1; I1Þ: 
Of course, we assume H0 \ H1 ¼ ;:

We start with spikes only in neuron rd9 : We spike in the first step, non-deterministically 
choosing the number i of spikes to produce, hence the first letter bi of the generated string. 
Simultaneously, i spikes are sent out by the output neuron, 3i spikes are sent to neuron rc0 ; 
and three spikes are sent to neuron rl0;0 ; thus triggering the start of a computation in M0. 
The subsystem corresponding to the register machine M0 starts to work, multiplying the 
value of rc1 with s + 1 and adding i. When this process halts, neuron rlh;0 is activated, and 
in this way two spikes are sent to neuron rd6 :

This is the neuron which non-deterministically chooses whether the string should be 
continued or we pass to the second phase of the computation, checking whether the 
produced string is accepted. In the first case, neuron rd6 uses the rule a2 ! a; which makes 
neurons re1 ; . . . ; rem spike; these neurons send m spikes to neuron rd9 ; like in the beginning 
of the computation. In the latter case, one uses the rule a2 ! a2; which activates the neuron 
rl0;1 by sending three spikes to it, thus starting the simulation of the register machine M1. 
The computation stops if and only if vals(x) is accepted by M1.



In order to complete the proof we need to show how the two register machines are

simulated, using the common neuron rc1
but without mixing the computations. To this

aim, we consider the modules ADD and SUB from Figs. 11–13. Like in Sect. ‘‘Ex-

tended SN P systems as number generators’’, neurons are associated with each label of

the machine (they fire if they have three spikes inside) and with each register (with 3t
spikes representing the number t from the register); there also are additional neurons

with labels cil—it is important to note that all these additional neurons have distinct

labels.

The simulation of an ADD instruction is easy, we just add three spikes to the respective

neuron; no rule is needed in the neuron—Fig. 11. The SUB instructions of machines M0,M1

are simulated by modules as in Figs. 12 and 13, respectively. Note that the rules for M0 fire

for a content of the neuron rr described by the regular expression (a3)+a and the rules for

M1 fire for a content of the neuron rr described by the regular expression (a3)+a2. To this

aim we use the rule a3 ! a2 in rli instead of a3 ! a , while in rr we use the rule

ða3Þþa2=a5 ! a4 instead of ða3Þþa=a4 ! a3: This ensures the fact that the rules of M0 are

not used instead of those of M1 or vice versa. In neurons associated with different labels of

M0,M1 we have to use different rules, depending on the type of instruction simulated, that

is why in Figs. 11–13 we have written again some rules in the form a3 ! adðlÞ; as in Figs. 1

and 2. Specifically, d(l) = 3 if l labels an ADD instruction, d(l) = 1 or d(l) = 2 if l labels a

SUB instruction of M0 or of M1, respectively, and, as one sees in Fig. 10, we also take

dðlh;0Þ ¼ 2:

Fig. 10 The structure of the SN P system from the proof of Lemma 7.3



With these explanations, the reader an check that the system P works as requested,

hence LkðPÞ ¼ L (in Figs. 12, 13 we have neurons with six rules, that is why

s0 ¼ maxðs; 6Þ). h

Theorem 7.2 RE ¼ LkSNeP�ðrule�; cons�; prod�Þ:
In the proof of Lemma 7.3, if the moments when the output neuron emits no spike are

associated with the symbol b0, then the generated strings will be shuffled with occurrences

of b0. Therefore, L is a projection of the generated language.

Corollary 7.2 Every language L 2 RE; L � V�; can be written in the form L = h(L0) for
some L0 2 LresSNeP�ðrule�; cons�; prod�Þ; where h is a projection on V [ fb0g which re-
moves the symbol b0.

Fig. 11 Module ADD (simulating li : ðADDðrÞ; ljÞ)

Fig. 12 Module SUB (simulating li : ðSUBðrÞ; lj; lkÞÞ for machine M0



8 Final remarks

We have investigated here the power of SN P systems with extended rules (rules allowing

to introduce several spikes at the same time) both as number generators and as language

generators. In the first case we have provided a simpler proof of a known universality

result, in the latter case we have proved characterizations of finite and recursively enu-

merable languages, and representations of regular languages. Results concerning the size of

universal SN P systems with standard rules or with extended rules are also recalled.

Finding characterizations (or at least representations) of other families of languages

from Chomsky hierarchy and Lindenmayer area remains as a research topic. It is also of

interest to investigate the possible hierarchy on the number of neurons, extending the result

from Corollary 7.1, as well as to decrease the number of neurons from universal SN P

systems.
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