CHAPTER 9
STANDARDISATION:
THE KEY TO ARCHAEOLOGICAL DATA QUALITY

RONALD WIEMER
Dutch State Service for Archaeological Investigations

1. INTRODUCTION

Since 1992 the Dutch State Service for the archaeological heritage (ROB) is maintaining an archaeological sites and monuments records. This system, called Archis, has been developed in co-operation with three university archaeology institutes (Amsterdam, Groningen and Leiden). Archis was based on the GRASS GIS and an Informix database and was entirely designed and developed by own staff. The database design was to a large extent based on the system that was used previously, a paper form which was filled-in following specific syntax rules. This paper form was then entered into a freetext database system ("STAIRS") and thus information on archaeological finds and findspots could be retrieved.

Initially, this was the only information that was registered in Archis. These so called archaeological observations originated from several very different sources. In fact, an observation can be the description of a single artefact or a summary of a complete excavation and everything in between (Roorda, 1992). Since 1994 however, data concerning archaeological monuments are also managed through Archis. In the design of the database much attention has been paid to quality. In fact the database structure was highly normalised, and therefore many attributes were to be filled in by means of lookup lists. Nevertheless we have received a lot of complaints, especially about the quality of the data concerning the archaeological observations. Obviously something has not worked out as it should be. What went wrong?

2. WHAT IS QUALITY?

Quality can be described as "the complex of properties of a product or service that make the product or service fulfil expectations or demands" (de Heer & Ahaus, 1991).

This means that quality is not an objective property of a product, but that it is something that is related to the view of the user of the product, the client. Thus in terms of the data it means that the data itself do not have to be "correct", as long as the user of the data has the appropriate expectations to this data, which means he knows the data have to be used with certain precautions.

Quality in this sense is related to individual items in a dataset but of course is also connected to datasets, which are another type of product. In general, quality aspects for individual items also refer to datasets, although the way these aspects are expressed may differ. So how can quality be measured either to items or datasets?

<table>
<thead>
<tr>
<th>Quality aspect</th>
<th>Individual item</th>
<th>Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>All attributes completed</td>
<td>All (expected) items present</td>
</tr>
<tr>
<td>Correct</td>
<td>No errors in attributes</td>
<td>No errors in attributes</td>
</tr>
<tr>
<td>Accurate</td>
<td>Highest possible accuracy in attributes</td>
<td>Individual items are comparable</td>
</tr>
<tr>
<td>Consistent</td>
<td>-</td>
<td>Items are properly structured</td>
</tr>
<tr>
<td>Structured</td>
<td>Item is properly structured</td>
<td>-</td>
</tr>
</tbody>
</table>

As can be seen from Table 9.1, some quality aspects refer to both individuals and datasets while others only relate to one of them. Usually it is not difficult to measure quality in terms of completeness, consistency and so on, but to manage quality is another issue. Standardisation is the main instrument for managing quality (Simons, 1994), which means not only standardisation of database structures, but also of definitions, thesauri, processes and procedures. Implementation of such a quality system also requires quality control and if necessary, adjustment of standards. What may complicate quality management in the case of data, is the ease of re-utilisation, especially of digital data. Often conversions and transformations of datasets apparently create new information. However, due to loss of documentation and metadata this newly created “information” is easily abused, a process that may be likened to reusing a table fan as screw propeller.

3. QUALITY AND ARCHIS

As mentioned above, the base dataset of Archis consists of the structured registration of archaeological observations. Currently some 60,000 observations are registered. Many of these observations have been derived from either the paper archive of the RGB or the STAIRS freetext database. The origins of these observations are diverse, the oldest observation dates from 1590 while the most recent one has been recorded yesterday. Figure 9.1 shows the number of observations per decade is given. It is obvious that the number of recorded observations doubles every 10 years between 1930 and 1990. This reflects the growing interest about archaeology on the one hand, and the intensity of urbanisation, growth of infrastructure and the development of agricultural techniques on the other.

The large number of observations in the 1980s is the result of the starting activities of contract archaeologists. Initially, each and every artefact that was found was registered as a separate observation. A big problem, particularly with older observations, is the accuracy of the location. Since accuracy is registered in the database, it is possible to relate this attribute to the age of the observation. Figure 9.2 clearly shows increasing accuracy in more recent observations. In our paper archives, we even have location descriptions like “112 hours walk in south-east direction starting at the church of…” and it is clearly difficult to attach accurate co-ordinates to these kinds of descriptions. Marketing research has shown that accurate location information is considered of major importance. Marketing research has shown that accurate location information is considered of major importance. (Mefjeld et alii, 1999).

Equally diverse is the way these observations were made. Many of them were found by accident (e.g. some kind of construction work was going on) while others are a result of field surveys or excavations. In Figure 9.3, the relationship between the origin of the observation ("acquisition") and the number of observations is given.

Finally, the person who has described the find can be used as a "quality index". Generally speaking, a professional archaeologist should be a better guarantee for quality than an amateur archaeologist. Unfortunately it is not possible to derive information on this subject out of the Archis database.

What is discussed so far is metadata and, in the above examples, I have used this kind of information to illustrate the diversity of our data. However, there is also a need to discuss the actual archaeological information. Eventually, each observation is meant to describe what has been found. To describe the artefacts and features, the Archaeological Base Register has been developed. In this “register” of each possible artefact or feature, the material type is given in combination with a general and a more specific description. For each individual find can be registered using a combination of these three attributes. For individual finds, the database can be used as a reference data source and as a starting point for interpretation and synthesis.

4. THE ARCHAEOLOGICAL MONUMENT

The archaeological monument is defined to delimit the management zone around one or more archaeological objects. The monument is not described in archaeological terms but instead presents the history of an area in terms of events. The first event in terms of the lifecycle of a monument is its evaluation. At this point, the archaeological value is initially determined. Complete destruction of the archaeological features leads to a re-evaluation, which by definition ends the life of a monument. The value of a monument evaluation, which by definition ends the life of a monument. The value of a monument can either be:

- very high archaeological value; areas of national archaeological importance, either legally protected or qualified for legal protection;
- high archaeological value; areas of regional archaeological importance;
-
* basic archaeological value: areas of archaeological importance but affected by erosion or degradation either by natural or anthropogenic activities.

The evaluation is based on several criteria, e.g. information value, visibility, relation with research agenda, rarity and representativity. The latter two however require a quantitative framework, since both relate to the number of existing and comparable objects either within the archaeological region or within the whole country.

Although currently the process of evaluation is more or less standardised, in the recent past this was obviously not the case. The areas that together comprise the archaeological monuments map are the result of 30 years of surveying and research by different people, with different backgrounds and varying knowledge. Since 1994 the map of archaeological monuments has been updated in co-operation with provincial authorities (Zoetbrood et alii, 1997). However, each province has its own archaeological policy and so the demands on the archaeological maps also vary according to province. In many provinces, even areas with expected archaeological value are part of the monuments data set. Additionally, the boundaries of archaeological monuments can be influenced by political forces, which means that the extent of a monument is often the maximum feasible. This makes the monuments dataset of limited use for many analytical purposes. The dataset apparently does not represent the content of the soil archive as it is called.

At present new monuments are evaluated according to guidelines in the Standard archaeological monuments map. The main issues in these guidelines are that:

- all monuments are connected to at least one observation recorded in Archis;
- for each area of high archaeological value at least a sample auger survey has been done, in order to determine physical quality and extent of the monument;
- for each area of very high archaeological value at least a systematic auger survey or a trial excavation has been done.

In this new standard there is no room for areas with expected archaeological value present or have completely disappeared. In the first case the area will be designated an archaeological value, in the latter case the monument will be dropped from the monuments list.

As has been stated earlier, the monument is a management zone. But what is being managed? Earlier in this paragraph the term object has been mentioned. This object however is not defined. Although there is of course a relation between an observation and a monument, this is a nm relation, which means on the one hand that one observation belongs to one or more monuments and on the other that a monument can have one or more observations. This type of relation often indicates that a concept or entity between the two related entities is missing. In our case we have defined this missing link as the archaeological complex.

5. THE ARCHAEOLOGICAL COMPLEX

As has been illustrated, in itself the archaeological observation is of limited use for spatial or quantitative analysis, either for scientific research, derives management pur-
complex type. Besides, each complex type is assigned to a functional class. Here we distinguish burials, economic activities, settlements and defensive structures, infrastructure and religion.

The decision model has been worked-out in a series of questions. By answering these questions, either with "yes", "no" or even "not sure", an eventual complex type, as well as a quality index is generated. The quality index is an indicator for the rate of certainty, a value of one being very uncertain and a value of 4 being certain. Currently the decision model is in a phase of testing. When definitive, it will be incorporated in Archis.

6. CONCLUSIONS

As stated above, both observations and monuments have quality issues, many of which have arisen due to improper use of the data. Although the quality of the observation data itself also plays an important role, it is impossible to improve quality of individual items when the original data sources no longer exist. We have to accept the diversity of base archaeological data. In this sense the data reflect archaeological reality, many sites being hardly surveyed and few being completely excavated. We will have to take this into account when using this raw data.

As has been illustrated, the sources of these archaeological observations are diverse. This makes it very difficult to enforce certain quality measurements. Nevertheless, new Dutch legislation requires that professional organisations that work within the framework of this legislation are obliged to provide archaeological information in conformity with ROB-specifications. However, observations resulting from activities outside the framework of Malta, can be registered as in the early days, on the back of a cigar box.

Concerning complexes and monuments, quality regarding content is guaranteed by introducing standard procedures and guidelines. Since the information on both complexes and monuments is managed by ROB staff, it is easy to implement these procedures and guidelines in the administrative organisation. What remains is a quality check of previously evaluated monuments and complexes. In particular, the evaluation of areas of potential archaeological value requires an enormous financial injection.

7. REFERENCES