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Summary. The literature on membrane computing describes several variants of P sys-
tems whose complexity classes C are “closed under exponentiation”, that is, they satisfy
the inclusion PC ⊆ C, where PC is the class of problems solved by polynomial-time
Turing machines with oracles for problems in C. This closure automatically implies clo-
sure under many other operations, such as regular operations (union, concatenation,
Kleene star), intersection, complement, and polynomial-time mappings, which are inher-
ited from P. Such results are typically proved by showing how elements of a family of
P systems Π can be embedded into P systems simulating Turing machines, which exploit
the elements of Π as subroutines. Here we focus on the latter construction, abstracting
from the technical details which depend on the specific variant of P system, in order to
describe a general strategy for proving closure under exponentiation.

1 Introduction

Complexity classes of the form PC , characterised by polynomial-time Turing ma-
chines with oracles for languages in C [19], automatically inherit from P many
closure properties. For instance, the determinism of Turing machines characteris-
ing P implies closure under complement, simply by switching the accepting and
rejecting states of the machine. Under certain assumptions on C, further closure
properties are satisfied.

Let us say that a “reasonable” k-ary operation on languages is a func-

tion f :
(
2Σ

?)k → 2Σ
?

such that f(L1, . . . , Lk) ∈ PL1,...,Lk , that is, it can be
computed efficiently with oracles for the k languages. A class C is closed under
reasonable operations if f(L1, . . . , Lk) ∈ C for each reasonable operation f and
for each L1, . . . , Lk ∈ C. The reasonable operations include all usual set theoretic
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ones (complement, union, intersection and all derived operations) and common
language theoretic operations, such as the regular ones (concatenation, union, and
Kleene star) [9].

For instance, a class C of the form PD is closed under reasonable operations
wheneverD is an upward directed set, that is, for each L1, L2 ∈D there exists L ∈D
such that L1 ≤ L and L2 ≤ L, where ≤ denotes polynomial-time reducibility; an
oracle for L can thus answer queries for both L1 and L2 after a polynomial-
time reduction. Any class D with a complete problem L is directed, since all
languages in D can be reduced to L. This shows that classes such as PNP = PcoNP

and PPP (which coincides with P#P) are closed under reasonable operations.
Furthermore, it clearly suffices to find a subset E ⊆ D with PE = PD and prove
PE closed under reasonable operations to obtain the same result for PD. This is
the case for D = NP∪coNP (and E = NP), a class that frequently appears in the
membrane computing literature [8, 21, 23, 31, 30] and is not known to be itself
directed. In fact this would imply NP = coNP, since there would be a language
L ∈ NP∪coNP such that L1 ≤ L for an NP-complete language L1 and L2 ≤ L for
a coNP-complete language L2. Other classes C trivially closed under reasonable
operations are those satisfying PC = C, such as PH, the polynomial hierarchy [29],
and CH, the counting hierarchy [33].

Several variants of P systems have been proved able to simulate polynomial-
time Turing machines with oracles, exploiting a family Π of P systems deciding
a language L as “subroutines”, by embedding them into the membrane structure
of larger P systems providing the input and processing the output of the ele-
ments of Π [24, 12, 13, 16, 14]. This implies the closure under exponentiation
of the corresponding complexity classes, in symbols PPMCD ⊆ PMCD, for some
kind of P system D. In this paper we describe this subroutine construction in
a manner as independent from the specific variant of P systems as possible. In
particular, we consider the cases of cell-like P systems (Section 2), tissue P sys-
tems (Section 2.1), and introduce a new construction for monodirectional cell-like
P systems (Section 3).

Many computational complexity results in membrane computing have the
form NP ∪ coNP ⊆ PMCD, that is, some class D of P systems (e.g., active
membranes without charges and dissolution using minimal cooperative rules [30,
Corollary 6.6]) can solve in polynomial time all NP and coNP problems. We argue
that this is unlikely to ever be an exact characterisation, since the features that
allow us to solve NP-complete problems efficiently are the same that allow the
subroutine construction, and this would imply NP = coNP.

2 Subroutines in Cell-like P Systems

Several Turing machine simulations by means of polynomial-time uniform fam-
ilies of P systems have been proposed in the literature; some of these ap-
ply to unrestricted Turing machines [26, 2], while others are limited to ma-
chines working in logarithmic space [25], polynomial time [7, 6], polynomial
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space [32, 24, 17, 10, 12, 13, 15, 16, 14], or exponential space [1]. Most of these
solutions [32, 24, 1, 2, 7, 17, 10, 12, 13, 15, 6, 16, 14] are able to simulate Turing
machines working in polynomial time with a polynomial slowdown.

The current configuration of the simulated Turing machine can be encoded
in several equivalent ways by the simulating P system. A simple, common en-
coding [12, 13, 15, 16, 14] for a configuration of a polynomial-space Turing ma-
chine in state q, having the tape head in position i, and the tape containing the
string x = x1 · · ·xm is given by the multiset qix1,1 · · ·xm,m, where the object qi
encodes state and head position, and the symbol xj contained in tape cell j is
encoded by the object xj,j of the multiset (i.e., it is subscripted with its position
on the tape). The simplest mechanism to simulate a step of the Turing machine
is using cooperative rewriting rules; suppose that δ(q, a) = (r, b,+1) describes
the transition of the machine reading symbol a in state q to state r, symbol b and
movement to the right. This can be trivially simulated by the cooperative rewriting
rule [qi ai → ri+1 bi]M , which is repeated for each cell position i up to the maxi-
mum length of the tape. Notice that minimal cooperation, with only two objects
on the left-hand side of the rules, suffices for this purpose [31, 30]. All published
solutions known to the authors [12, 13, 15, 16, 14] use alternative mechanisms
(such as membrane charges, antimatter annihilation, antiport communication) to
perform essentially the same operation.

Irrespective of the actual encoding of the configuration of the Turing machine
and the mechanism employed to simulate a computation step, we will use the
following symbol

M

0 1 1 0

q

to denote a membrane structure with root M inside which the simulation is carried
over.

Let us now consider the case of a Turing machine M with an oracle for lan-
guage L ⊆ Σ?. Suppose that M writes on its tape the query string x ∈ Σ?

and enters its query state. Suppose that language L is decided by a family
Π = {Πx : x ∈ Σ?} of recogniser P systems [22, 18]. By embedding the (empty)
membrane structure of the P system Πx inside the membrane structure of the
P system simulating M (Fig. 1) and initialising the configuration of Πx when the
simulation reaches the query state, we can simulate the oracle and read the result
of the query as the output of Πx [24]. It is possible to send-in the initial multisets
contained in Πx, which typically requires some synchronisation using timers, so
that all initial objects appear simultaneously (Fig. 2).

Since the query string x is, in general, unknown before the beginning of the
simulation, several P systems must be embedded in order to be able to process
query strings of different length. Suppose that language L is decided by a uniform
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Fig. 1. The (empty) membrane structure of a P system is embedded into another P sys-
tem simulating a Turing machine M .

family Π = {Πx : x ∈ Σ?} of P systems, where input strings of the same length n
are associated to P systems sharing the same membrane structure and rules Π(n),
which only differ with respect to the initial multisets they contain. Then, multiple
empty membrane structures Π(0), Π(1), . . . ,Π(m) can be embedded, up to the
maximum possible query string length (an upper bound is given, for instance, by
the length of the tape of M), and the correct one is selected at runtime by the
P system simulating M (Fig. 3).

When the simulated Turing machine performs multiple queries with query
strings of the same length during its computation, it is possible to embed mul-
tiple copies of each P system Π(n) [24]. Each of these copies can then be used
for a single query (Fig. 4). A possible alternative is to reset the configuration of
P system Π(n) after the query simulation has been performed [12].

2.1 Subroutines in Tissue P Systems

The oracle query construction for cell-like P systems embeds elements of a family
of P systems into a membrane where a Turing machine is simulated. This construc-
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Fig. 2. The query string x on the tape of the simulated Turing machine is encoded
as the initial configuration of the embedded P system Πx. Each object is subscripted
by the label of its target membrane, which it reaches by using send-in rules. When all
objects have reached their destination, they simultaneously lose the subscripts, and the
computation of Πx begins. The output of Πx is then read and incorporated into the state
of the simulated Turing machine, as in the configuration following the query.
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Fig. 3. Query strings of different lengths can be processed by distinct embedded P sys-
tems, selected when the oracle query is simulated.
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Fig. 4. Multiple query strings of the same length can be processed by replicating the
P systems simulating the oracle and using each of them only once.

tion can be adapted to tissue P systems by having the Turing machine simulation
take place in a cell, and placing the elements of the family of tissue P systems de-
ciding the oracle language on the side [16]. The communication needed in order to
simulate the oracle queries in this variant is not hierarchical, but between adjacent
cells (Fig. 5).
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Fig. 5. Simulating oracle queries in tissue P systems.

3 Subroutines in Monodirectional Cell-like P Systems

In monodirectional cell-like P systems [13, 14], where send-in rules are disallowed,
the construction of Section 2 does not apply. However, we can turn the construction
of Fig. 1 inside out, by having the Turing machine simulation embedded into the
input membrane of the P system Π simulating the oracle (Fig. 6). Instead of
sending in the encoding of the query string, it is the encoding of the configuration
of the Turing machine that is sent out, through the whole membrane structure
of Π, where it waits for the oracle query result (Fig. 7) [13, 14]. This is needed
because the P system simulating the oracle can only send its result outwards and,
since the system is monodirectional, the only way to intercept it is to move out
the entire simulation of the Turing machine.

Unlike the bidirectional case, the objects of the initial configuration ofΠ cannot
be arranged during the query simulation, as that requires send-in if the membrane
structure of Π is not linear or if the input membrane is not elementary. A solution
is to have them already in their correct position in the initial configuration of the
combined P system but with a timer subscript, which is deleted at a predefined
time step t, when a query may take place. If the simulated Turing machine does
not perform a query at time t, it can be adapted so that it makes a “dummy”
query at that time, ignoring its result.

As in the bidirectional case, the oracle strings are usually only available at
runtime, and thus multiple P systems simulating oracles must be arranged in
advance, in order to accommodate any possible query string. Given the restriction
on the direction of communication, a natural solution is to nest these auxiliary
P systems, placing each one inside the input membrane of the next one. When
a query takes place, the Turing machine configuration is first moved to the first
P system suitable for the query string, where the multiset encoding it is left;
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Fig. 6. In the monodirectional case, the P system simulating the Turing machine is
embedded into the input membrane of the P system Π simulating the oracle; the other
objects in the initial configuration of Π have an associated timer for synchronisation
purposes.

then, the Turing machine configuration is moved outside the whole set of auxiliary
P systems, where it waits for the result of the query (Fig. 7).

If multiple queries are carried out, it suffices to repeatedly nest the array of
auxiliary P systems, always using the input membranes as junction points, and
repeating the query procedure as many times as necessary (Fig. 8) [13, 14].

4 Discussion and Open Problems

Many complexity theory results for P systems have the form NP ⊆ PMCD
for some class D of P systems, and by closure under complementation this im-
plies NP ∪ coNP ⊆ PMCD [22]. Solving NP-complete problems usually requires
some form of “context-sensitivity”, such as cooperative evolution rules (even min-
imal cooperation), membranes charges, membrane dissolution, or antimatter an-
nihilation [31, 30, 20, 4, 5]. However, these same features typically suffice to carry
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Fig. 7. Query simulation procedure for monodirectional cell-like P systems.
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out the oracle simulation constructions described in Section 2 or 3, which imply
that PMCD has the form PC for some class C. This means that it is quite unlikely
that NP ∪ coNP is an exact characterisation of PMCD.

Indeed, if NP∪coNP were of the form PC , then PNP∪coNP = PPC

. But PPC

=

PC : if L1 ∈ PPC

, there exists a Turing machine M1 with oracle for L2 ∈ PC such
that L(M1) = L1, and a Turing machine M2 with an oracle for L3 ∈ C such
that L2 = L(M2). Let M be a Turing machine with oracle for L3. This machine
simulates M1 until it enters its query state, then it simulates M2 until it enters its
own query state; since M and M2 have the same oracle, the queries of M2 can be
answered directly. Then L(M) = L(M1) = L1, and we can conclude that PPC

=

PC . But then PNP∪coNP = PC = NP∪ coNP. Since PNP∪coNP = PNP, this class
has complete problems, for instance the standard complete problem H of deciding
if a Turing machine M with NP oracle accepts a string x within t steps (where t
is given in unary notation). Then either H ∈ NP or H ∈ coNP, and it is hard
for both NP and coNP; this means that either there exists a NP-hard problem
in coNP, or a coNP-hard problem in NP: in both cases, this implies NP = coNP.

Furthermore, it is often the case [24, 12, 14, 16] that the amount of context-
sensitivity that allows us to simulate Turing machines with oracles also suffices, at
least in the bidirectional case, to simulate not only oracles for decision problems,
but their counting version, which is usually more powerful. For instance, several
variants of P systems without non-elementary membrane division rules characterise
the complexity class PPP (which coincides with P#P) [19, 11, 14, 16].

Finally, notice that the above remarks apply even to variants of P systems
powerful enough to characterise PSPACE in polynomial time [27, 3, 28, 4], even
if the algorithms developed in order to prove these results do not usually em-
ploy an oracle simulation construction. Indeed, the class PSPACE is closed under
exponentiation: PPSPACE = PSPACE.

The property investigated in this paper, closure under exponentiation, that
is, satisfying PC = C, seems to apply to a wide range of variants of P systems.
A natural follow-up question is whether the more common closure under oracles
(or under subroutines), where C = CC , does also apply for some of these variants.
This also requires establishing a notion of “P system with oracle”; a first definition
has been already given in [12], albeit for purely technical reasons.

An interesting open problem, although a presumably challenging one from a
technical standpoint, is to formally characterise the membrane computing features
(such as combination of rules or properties of the membrane structures) that enable
the oracle simulation construction.
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