
NDT-Driver: A Java Tool to Support QVT

Transformations for NDT

J.A. Garcı́a-Garcı́a, C.R. Cutilla, M.J. Escalona, M. Alba, and J. Torres

1 Introduction

The model-driven engineering paradigm (MDE) came up in order to tackle the 
complexity of platforms and the inability of third-generation languages to relieve 
this complexity and effectively express the domain concepts of the problem. This 
new paradigm, apart from raising the level of abstraction, intends to increase 
automation during the life cycle of software development.

MDE works, as the primary form of expression, with definitions of models and 
transformation rules among these models entailing the production of other models. 
One of the languages to describe the transformation rules is QVT (OMG 2008) or 
query/view/transformation language. QVT standard defines a declarative and 
imperative language proposed by the OMG (Object Management Group) for model 
transformation in the context of MDE.

However, QVT notations are not easy to be applied in practical environments 
because it does not result too friendly for development teams. Concepts such as 
models, metamodels, transformations, or QVT are not common notations in the 
enterprise environment, and they seem too abstract and complex. For this reason, 
this research paper presents how the NDT methodology, acronym for Navigational 
Development Techniques, addresses this challenge with the aim of involving the 
enterprise with the power of the model-driven paradigm.

The chapter is structured as follows. After this introduction, Sect. 2 briefly studies 
how to transform some methodologies that belong to model-driven engi-neering 
paradigm. Section 3 provides an overview of NDT methodology and their tools. 
Section 4 presents NDT-Driver, a tool that implements a set of automated

J.A. Garcı́a-Garcı́a (*) • C.R. Cutilla • M.J. Escalona • M. Alba • J. Torres 
IWT2 Group, University of Seville, Seville, Spain
e-mail: julian.garcia@iwt2.org; carmen.ruiz@iwt2.org; mjescalona@us.es; 
manuel.alba@iwt2.org; jtorres@us.es

mailto:julian.garcia@iwt2.org
mailto:carmen.ruiz@iwt2.org
mailto:mjescalona@us.es
mailto:manuel.alba@iwt2.org
mailto:jtorres@us.es


procedures to generate different models in NDT life cycle. Finally, in Sect. 5, final

conclusions and lessons learned are detailed, and the chapter concludes with future

work in Sect. 6.

2 Related Works

Currently, there is a wide range of Web methodologies that belong to the MDE

paradigm and define its procedure and transformations from one model to other

model. For this reason, only the most referenced ones will be briefly described:

• OOHDM (Rossi and Schwabe 2008) is a highly referenced methodology and one

of the most accepted. It consists of four different design activities: conceptual

model, navigational design, abstract interface design, and implementation. The

conceptual and navigational transformations are completely independent, except

from operation invocations of conceptual PSM objects from the navigational

PSM, where the type of invocation may vary. Thus, the implementation technol-

ogy and platform of the conceptual PSM and the navigational PSM may be

selected and combine quite independently.

• UWE (Koch et al. 2008) is a methodology based on Unified Modeling Language

(UML 2005) for Web application development. It covers the whole development

life cycle of Web systems from the requirements specifications to code genera-

tion, focusing on personalized or adaptive applications. The process of develop-

ment is based on three main phases: the phase of capture of requirements, the

phase of analysis and design, and the phase of implementation.

The transformation rules are defined to map metamodel WebRE to UWE and

UWE to metamodels. The first model transformation step of the UWE process

consists of mapping Web requirements models to UWE functional models. The

design models are content, navigation, process, presentation, and adaptation.

There is a set of dependencies among these functional models themselves that

allow the creation of other models, as well as their amendments.

ArgoUWE and MagicUWE have been developed for the computer-aided design

of Web applications using UWE.

• WebML (Ceri et al. 2000) is a proposed methodology based on formal specifi-

cation graphics into a complete design process. It is used on applications that

highly interact with information.

The model is divided into four phases: the process definition phase, which uses

the notation BPMN; the data model phase, which is defined by different data

tables and their relationships and uses graphs of entity-relation or UML class

diagrams; the hypertext model phase, which consists in the composition model,

representing a hypertext sites where every site has content elements, and the

navigation model, which defines the links among different sites; and finally, the

composition model, which details content items of each site.



WebML is associated with a development tool called WebRatio, which

automatically generates fully functional applications from WebML diagrams.

• OOWS (Fons et al. 2003) is an extension of OO-Method. The process to define a

software system for a Web environment is based on two steps: the conceptual

model and the navigational model. The conceptual model is the specification of

user requirements. The navigation model is based on an object model and

navigation requirements using UML notation. The navigation model is com-

posed of a set of navigation maps (one for each agent) to represent and structure

the global vision system by defining allowable navigation. This is directly

represented by means of a directed graph where nodes are navigational contexts

and arches represent the navigation links.

Once the navigational model is defined, the presentation characteristics are

associated with the system. Presentation requirements will be based on the use

of simple presentation patterns related to the different elements that conform a

navigation node. The generator (compiler) will use this information stored to

create the diverse interfaces for each user within the architecture of Web

application that the OOWS method proposes.

3 An Overview of NDT and NDT-Suite

The proposed methodology NDT (Escalona and Aragón 2008), acronym for Navi-

gational Development Techniques, belongs to the MDE paradigm.

Initially, NDT dealt with the definition of a set of formal metamodels for the

requirements and analysis phases. In addition, NDT defined a set of derivation

rules, stated with the standard QVT, which generated the analysis models from

requirements model.

Nowadays, NDT defines a set of metamodels for every phase of the life cycle of

software development: the feasibility study phase, the requirements phase, the

analysis phase, the design phase, the implementation phase, the testing phase, and

finally, the maintenance phase. Besides, it states new transformation rules to

systematically generate models. Figure 8.1 shows the first part of the NDT life

cycle1.

The main goal of the requirements phase is to build the catalogue of

requirements containing the needs of the system to be developed. It is divided

into a series of activities: capture, definition, and validation of requirements.

NDT classifies project requirements according to their nature: information

storage requirements, functional requirements, actor requirements, interaction

requirements, and nonfunctional requirements. In order to define them, NDT

provides special patterns and UML techniques, such as the use case technique for

functional requirements specification.

1More information about the NDT full life cycle can be found in www.iwt2.org

http://www.iwt2.org


F
ig
.
8
.1

T
ra
n
sf
o
rm

at
io
n
s
fr
o
m

re
q
u
ir
em

en
ts
to

an
al
y
si
s
an
d
fr
o
m

re
q
u
ir
em

en
ts
to

te
st
in
g



Once the requirements specification phase has been completed and the catalogue

of system requirements has been drafted and validated, NDT defines derivation

rules to generate the system test model and the analysis phase models. Figure 8.1

shows all these transformations through the stereotype “QVTTransformation.”

NDT conceives the testing phase as an early phase of the software life cycle and

proposes to carry it out together with the remaining phases. NDT proposes three

models in this phase: the implementation tests model, the system tests model, and

the acceptance tests model. The system tests model is the only one that can be

generated systematically. NDT proposes derivation rules to generate the basic

system tests model from the functional requirements defined in the requirements

phase. The team of analysts can perform transformations in order to enrich and

complete this basic model. Transformations are represented in Fig. 8.1 through the

stereotype “NDTSupport.”

The analysis phase will include the resulting products from the analysis, defini-

tion, and organization of requirements in the previous phase. At this phase, NDT

proposes four models: the conceptual model, which represents the static structure of

the system; the process model, which represents the functional structure of the

system; the navigation model, which shows how users can navigate through the

system; and the abstract interface model, a set of prototypes of the system.

The transition between the requirements and the analysis model is standardized

and automated, and it is based on QVT transformations, which translate the

concepts of requirements metamodels to the first versions of the analysis models.

These models are known in NDT as basic models of analysis. For example, the

basic conceptual model of analysis is obtained from the storage requirements

defined during the requirements phase.

Thereafter, the team of analysts can transform these basic models to enrich and

complete the final model of analysis. As this process is not automatic, the expertise

of an analyst is required. Transformations are represented in Fig. 8.1 through the

stereotype “NDTSupport.” To ensure consistency between requirements and anal-

ysis models, NDT controls these transformations by means of a set of defined rules

and heuristics.

To sum up, NDT offers an environment conducive to the development of Web

systems, completely covering the life cycle of software development. NDT has

been applied in many practical environments and has succeeded due to the applica-

tion of transformations among models, which has reduced development time

(Escalona and Aragón 2008).

3.1 NDT-Suite

The application of MDE and, particularly, the application of transformations among

models may become monotonous and very expensive if there are no software tools

automating the process. To meet this need, NDT has defined a set of supporting



tools called NDT-Suite. Currently, the suite of NDT comprises the following free

Java tools:

• NDT-Profile is a specific profile for NDT developed using Enterprise Architect

(EA 2010). NDT-Profile offers the chance of gathering all the artifacts that

define NDT easily and quickly, as they are integrated within the tool Enterprise

Architect.

• NDT-Quality is a tool that automates most of the methodological review of a

project developed with NDT-Profile. It checks both the quality of NDT method-

ology in each phase of software life cycle and the quality of traceability of the

MDE rules of NDT.

• NDT-Driver is presented in Sect. 4 of this chapter.

• NDT-Prototype is a tool designed to automatically generate a set of XHTML

prototypes from the navigation models of a project, described in the analysis

phase, developed with NDT-Profile.

• NDT-Glossary implements an automated procedure that generates the first

instance of the glossary of terms of a project developed by means of NDT-

Profile tool.

• NDT-Checker is the only tool in NDT-Suite that it is not based on the MDE

paradigm. This tool includes a set of sheets different for each product of NDT.

These sheets give a set of checklists that should be manually reviewed with users

in requirements reviews.

4 NDT-Driver

4.1 Overall View

NDT-Driver is one of the main tools of NDT methodology. It is completely based

on NDT-Profile.

NDT-Driver is developed in Java and implements a set of automatic procedures

for carrying out each of the QVT transformations defined in NDT. It generates the

analysis models from requirements, the design models from the analysis, and the

tests models from requirements. In addition, NDT-Driver allows obtaining the

model requirements from the requirements gathered in the feasibility study phase

of the project.

Furthermore, NDT-Driver can be used in projects using both a sequential life

cycle and an evolutionary life cycle. Once transformations to perform have been

selected, models to generate can be chosen.

To support projects with evolutionary development cycles, NDT-Driver allows

the models previously selected to be rebuilt and updated. For example, if all storage

requirements have already been defined in the requirements phase, the conceptual

model of the analysis phase can be generated. Then, if it is noticed that any storage



requirement is not defined according to the user’s needs, it is not completely

necessary to rebuild the content model because the tool will update it.

NDT-Driver also provides support for projects that develop business systems

with service-oriented architecture (SOA).

4.2 QVT Transformations

QVT Transformations offered by NDT are grouped into three categories:

• Requirements to analysis:

– Requirements2Content: this transformation allows the generation of the basic

content model from storage requirements.

– Requirements2Process: this transformation allows the generation of the basic

model of process classes from the functional requirements.

– Requirements2Navigational: this transformation allows the generation of the

basic navigational model from interaction requirements.

– Requirements2Prototypes: this transformation allows the generation of the

basic abstract interface model from the requirements definition.

– ServicesR2ServicesA: this transformation allows the generation of the basic

service model of analysis phase from the services included in the

requirements phase.

• Analysis to design:

– Content2DataAccess: this transformation allows the generation of the basic

model of data access classes from the content analysis model.

– Content2PhysicalDataModel: this transformation allows the generation of

physical data model from the content model.

– Process2Bussines: this transformation allows the generation of the basic

model of business classes from the model of process classes.

– Navigational2Presentation: this transformation allows the generation of the

basic model classes presentation from the navigation model.

– ServicesA2ServicesD: this transformation allows the generation of the basic

service model of design phase from the services included in the analysis

phase.

• Requirements to tests:

– Requirements2Test: this transformation allows the generation of the basic

model of system tests from functional requirements.



Presenting all these transformations in this chapter is very complex. For this

reason, the first one is only presented (see Table 8.12). It states how each storage

information requirements has to be translated into a content class in the analysis

Table 8.1 Requirements2Content transformation (QVT-Java)

QVT transformation

transformation Requirements2Content

(in msr:StorageRequirementsModel, out cm:ContentModel)

{

main (){

msr.ObjectsOfType (StorageRequirement)- > map SRtoCL ();

msr.ObjectsOfType (NewNature)- > map NNtoCLn ();

}

mapping StorageRequirement::SRtoCL () : CL {

name:¼ ‘CL’ + self.name ();

attributes:¼self. SpecificField- > map SFtoAttr ();

links:¼ self. SpecificField- > map SFtoLinks ();

}

mapping SpecificField sf::SFtoAttr (): Attribute

where {sf.nature- > size () ¼ 0;} {

name:¼self.name ();

//. . .

}

mapping SpecificField sf, CL cl::SFtoLinks () : Association

where {sf.nature ¼ conc:Concept{}}{

name:¼self.name ();

connection ¼ {sf.nature- > map SRtoCL (), cl}; //. . .

} //. . .

}

Java transformation

public void requirements2content (StorageRequirementsModel msr){

Collection Relations col ¼ new ArrayList < Relations > ();

for (StorageRequirements sr : msr.getByStereotype
("StorageRequirement")){

CL cl ¼ this.createCL (sr);

for (Attribute a : sr.getAttribute (sr){

if (a.isBasic ()) this.createAttribute (cl, a);

else col.add (new Relations (cl, a.getType ()));

}

}

for (NewNature nn : msr.getByStereotype ("NewNature")){/* idem */}

this.createAssociationLinks (col);//. . .

}

2 Complete information on NDT, their metamodels and transformations can be found in www.

iwt2.org

http://www.iwt2.org
http://www.iwt2.org


phase. Each storage information system generates a class, and each specific field

generates an attribute.

In the SRtoCL method, each storage requirement is translated into a class (CL) in

the content model. In methods such as SFtoAttr and SFtoLinks, specific fields are

treated. If specific fields have a basic nature, that is, when its relation with content

has cardinality 0, they are translated into attributes. If its nature is content, it is

translated into association.

4.2.1 A Basic Example

This section provides a representative example of the application of the QVT

transformation rule explained in the previous section. The input of this rule is the

requirements model.

Figure 8.2a shows the requirements model of a small Web application that

manages hotel reservations. In this basic example, important concepts are reserve,
client, and type of room. Each concept has its own specific data: name, surname, and

passport number of every hotel guest and name and description of each room type.

Likewise, each reservation requires the name of the client who books the room,

credit card number, date of arrival, number of people per room, and type of room

chosen.

After applying the transformation rule shown in Table 8.1, three content classes

of analysis will be generated, one for every storage requirement. Figure 8.2b shows

a class diagram with the generated content classes, their attributes, and links.

Fig. 8.2 Diagrams of the example (a) Storage requirement diagram and (b) Content model

diagram



4.3 Interface

The graphical interface of NDT-Driver is very simple and intuitive. Figure 8.3a

shows the main interface of the tool. NDT-Driver, as the remaining NDT tools, is

available in both English and Spanish. Before carrying out any transformation,

some information must be given to the tool.

In the section “Name Project,” the name of the project must be entered. This will

be useful for the reports generated by the tool. With the “Browser” button, the

Enterprise Architect file of the project must be selected. “Transformations” button

lets the user select the transformations to be carried out, and “Options” lets the user

choose the way the transformation chosen will be carried out.

The “Configure” button selects the models you want to transform. By default,

all the models are selected. Figure 8.3b shows the modal window associated with

the transformation requirements to analysis. Finally, if clicking on the “Transform”

button, NDT-Driver will begin to carry out the transformations selected. At the

end of the process, a modal window displays the report of the transformations

carried out.

4.4 Practical References

In the last 10 years, NDT and NDT-Suite, and particularly NDT-Driver, were used

in a high number of real projects. In fact, NDT-Driver is currently being used in

several projects by different companies, either public or privates, big or small. A set

of projects developed with NDT was selected, and its tools were used during its

life cycle.

Fig. 8.3 NDT-Driver tool (a) Main interface (b) Configuration interface



4.4.1 AQUA-WS

EMASESA3 is a company dealing with the general management of the urban water

cycle, providing and ensuring water supply to all the citizens in Seville, Spain.

AQUA-WS (AQUA-WebServices) project consists in the development and imple-

mentation of an integrated business system for customer management,

interventions in water distribution and cleaning up, and projects and work manage-

ment. The development time of this project is estimated in 3 years, and it will finish

in 2012. AQUA-WS is very relevant for the use of NDT-Driver in the test phase.

The existing systems are the customer management system (AQUA-SiC), net-

work management system (AQUA-ReD), and the work and projects management

system (AQUA-SigO). AQUA-WS arises from the need of unifying all the existing

systems into a single one, the core AQUA, by means of the same technology

platform.

The project follows an iterative life cycle. Each iteration allows the development

team, composed by more than 20 analysts from two companies, to define

requirements, studying the previous systems, and introduce them into NDT-Profile.

They are checked with NDT-Quality and NDT-Checker and, later, NDT-Driver

generates functional test cases. The systematic generation of test cases from

functional requirements in the project is providing good support by expediting the

validation of their own functional requirements with users. In addition, NDT-Driver

can reduce the time analysts spent on specifying system tests and test plans.

4.4.2 Projects for e-Health Systems

NDT was also widely applied in the e-health environment. An example of this is the

Diraya project, an information system applied in the Andalusian Health Service,

which allows consulting the clinical record of a patient belonging to any hospital

center in Andalusia. Its requirements phase was developed by a group of six

companies and a high number of analysts. Every company was expert in a specific

module of Diraya.

For this project, the development team used the main tools of NDT-Suite. The

use of NDT-Profile and NDT-Glossary was essential to guarantee the unification

criteria in this multidisciplinary development team. NDT-Quality was also impor-

tant to assure quality, and NDT-Driver was crucial to reduce the time spent on the

project development.

3 http://www.aguasdesevilla.com

http://www.aguasdesevilla.com


5 Conclusions and Learned Lesson

In this chapter, we present NDT-Driver: a simple and intuitive tool useful for any

company which develops a project using NDT methodology in order to take

advantage of MDE power, even without knowing this paradigm. Moreover, we

describe how the most referenced methodologies perform their transformations,

and finally, we briefly introduce NDT and its supporting tools.

As a learned lesson of our experience in the use of MDE in Web treatment, we

could conclude that the use of this paradigm in this environment can quantitatively

improve the results of the project.

However, MDE in practical environment does not result too friendly for devel-

opment teams. The concepts of models, metamodels, transformations, and among

others, are not common notations for enterprise environment, and they seem too

abstract and complex. However, we conclude that the use of UML profiles and

UML-based tools offers an interface to deal with instances of metamodels quite

suitable for analysts and designers and even for expert users.

Likewise, since transformations in QVT do not result easy to understand, our

users do not work with it. They prefer an easier and more intuitive interface, as the

NDT-Driver interface presented in Fig. 8.3, in order to benefit from its transforma-

tion power.

6 Future Work

NDT-Driver is a very powerful and useful tool to develop Web-oriented systems.

However, we know that NDT-Driver is not functional enough. In this regard, we

propose several improvements as future research.

Firstly, we suggest doing a research on how to improve test generation from

functional requirements, particularly when functional requirements are described

using activity diagrams. Currently, NDT-Driver generates all possible paths from

the initial and final activities of the activity diagram of the functional requirement.

As far as we know that the method is not suitable enough, we propose a research on

how to enrich the transformation method with new techniques for the selection and

reduction of redundant testing paths.

Secondly, another aspect that we must continue working on is considering other

programming languages since today NDT-Driver is only available for Java.

Finally, we propose to investigate on how to incorporate heuristics in the

generation of some models. For instance, in the generation of the navigation

model of the analysis phase, NDT-Driver should identify aspects as that the

graph is not connected. To achieve this, NDT-Driver could use the Warshall

algorithm.



Acknowledgments This research has been supported by the project QSimTest (TIN2007-67843-

C06_03), by the Tempros project (TIN2010-20057-C03-02), by the National Network Quality

Assurance in Practise, and by the CaSA (TIN2010-12312-E) of the Ministry of Education and

Science, Spain.

References

Ceri S, Fraternali P, Bongio A (2000) Web modelling language (WebML): a modelling language

for designing web sites. Comput Netw 33(1–6):137–157

EA (Enterprise Architect) (2010). http://www.sparxsystems.com

Escalona MJ, Aragón G (2008) NDT: a model-driven approach for web requirements. IEEE Trans

Softw Eng 34(3): 377–394

Escalona MJ, Gutierrez JJ, Villadiego D, León A, Torres AH (2007) Practical experience in web

engineering. In: Magyar G et al (eds) Advances in information system development. New

methods and practice for the networked society. Springer, New York

Fons J, Pelechano V, Albert M, Pastor O (2003) Development of web applications from web

enhanced conceptual schemas. In: Song I-Y, Liddle SW, Ling TW, Scheuermann P (eds)

Conceptual modeling - ER 2003. 22nd international conference on conceptual modeling,

Chicago, IL, USA, 13-16 Oct 2003. Proceedings (LNCS 2813). Springer, Berlin/Heidelberg,

pp 232–245

Koch N, Knapp A, Zhang G, Baumeister H (2008) UML-based web engineering. In: Rossi G,

Pastor O, Schwabe D, Olsina L (eds) Web engineering: modelling and implementing web

applications. Springer, London, pp 157–191

OMG (2008) Documents associated with meta object facility (MOF) 2.0 query/view/transforma-

tion. http://www.omg.org/spec/QVT/1.0/

Rossi G, Schwabe D (2008) Modelling and implementing web applications with OOHDM. Web

engineering: modelling and implementing web applications. In: Rossi G, Pastor O, Schwabe D,

Olsina L (eds) Web engineering: modelling and implementing web applications, Human-

computer interaction series. Springer, London, pp 109–155

UML (2005) Unified modeling language: superstructure. Specification, OMG, 2005. http://www.

omg.org/cgi-bin/doc?formal/05-07

http://www.sparxsystems.com
http://www.omg.org/spec/QVT/1.0/
http://www.omg.org/cgi-bin/doc?formal/05-07
http://www.omg.org/cgi-bin/doc?formal/05-07

	Chapter 8: NDT-Driver: A Java Tool to Support QVT Transformations for NDT
	1 Introduction
	2 Related Works
	3 An Overview of NDT and NDT-Suite
	3.1 NDT-Suite

	4 NDT-Driver
	4.1 Overall View
	4.2 QVT Transformations
	4.2.1 A Basic Example

	4.3 Interface
	4.4 Practical References
	4.4.1 AQUA-WS
	4.4.2 Projects for e-Health Systems


	5 Conclusions and Learned Lesson
	6 Future Work
	References




