
Coping with Web Knowledge

J.L. Arjona, R. Corchuelo, J. Peña, and D. Ruiz

The Distributed Group
Avda. de la Reina Mercedes, s/n, Sevilla (Spain)

{arjona,corchuelo,joaquinp, druiz}@lsi.us.es

Abstract. The web seems to be the biggest existing information reposi-
tory. The extraction of information from this repository has attracted the 
interest of many researchers, who have developed intelligent algorithms 
(wrappers) able to extract structured syntactic information automati-
cally.
In this article, we formalise a new solution in order to extract knowledge 
from today’s non-semantic web. It is novel in that it associates semantics 
with the information extracted, which improves agent interoperability; 
furthermore, it achieves to delegate the knowledge extraction procedure 
to specialist agents, easing software development and promoting software 
reuse and maintainability.

Keywords: knowledge extraction, wrappers, web agents and on-
tologies

1 Introduction

In recent years, the web has consolidated as one of the most important knowl-
edge repositories. Furthermore, the technology has evolved to a point in which
sophisticated new generation web agents proliferate. A major challenge for them
has become sifting through an unwieldy amount of data to extract meaning-
ful information. This process is difficult because the information on the web is
mostly available in human-readable forms that lack formalised semantics that
would help agents use it.

The Semantic Web is “an extension to the current web in which information
is given well–defined meaning, better enabling computers and people to work in
cooperation” [3], which implies a transition from today’s web to a web in which
machine reasoning will be ubiquitous and devastatingly powerful. This transition
is achieved by annotating web pages with meta–data that describe the concepts
that define the semantics associated with the information in which we are in-
terested. Ontologies play an important role in this task, and there are many
ontological languages that aim at solving this problem, e.g., DAML+OIL [13],
SHOE [17] or RDF-Schema [5]. The Semantic Web shall simplify and improve
� The work reported in this article was supported by the Spanish Interministerial

Commission on Science and Technology under grants TIC2000-1106-C02-01 and
FIT-150100-2001-78.



the accuracy of current information extraction techniques tremendously. Nev-
ertheless, this extension requires a great deal of effort to annotate current web
pages with semantics, which suggests that it is not likely to be adopted in the
immediate future [9].

Several authors have worked on techniques for extracting information from
today’s non-semantic web, and inductive wrappers are amongst the most pop-
ular ones [6,14,15,16,19]. They are components that use automated learning
techniques to extract information from similar pages automatically. Although
induction wrappers are suited to extract information from the web, they do not
associate semantics with the data extracted, this being their major drawback.
Furthermore, adding these algorithms to logic that a web agent encapsulates,
can produce tangled code and does not achieve a clear separation of concerns.

In this article, we present a new solution in order to extract semantically-
meaningful information from today’s non-semantic web. It is novel in that it
associates semantics with the information extracted, which improves agent in-
teroperability, and it delegates the knowledge extraction procedure to specialist
agents, easing software development and promoting software reuse and main-
tainability.

We address these issues by developing knowledge channels, or KCs for short.
They are agents [21] that allow to separate the extraction of knowledge from the
logic of an agent, and they are able to react to knowledge inquiries (reactivity)
from other agents (social ability), and act in the background (autonomy) to
maintain a local knowledge base (KB) with knowledge extracted from a web site
(proactivity). In order to allow for semantic interoperability, the knowledge they
manage references a number of concepts in a given application domain that are
described by means of ontologies. KCs extract knowledge from the web using
semantic wrappers, which are a natural extension to current inductive wrappers
to deal with knowledge on the web. Thus, we take advantage of the work made
by researchers in the syntactic wrappers arena.

The rest of the paper is organised as follows: Next section glances at other
proposals and motivates the need for solutions to solve the problems behind
knowledge extraction; Section 3 presents the case study used to illustrate our
proposal and some initial concepts related to knowledge representation; Section
4 gives the reader an insight into our proposal; finally, Section 5 summarises our
main conclusions.

2 Related Work

Wrappers [8] are one of the the most popular mechanisms for extracting infor-
mation from the web. Generally, a wrapper is an algorithm that translates the
information represented in model M1 to model M2. In information extraction,
they are able to translate the information in a web page to a data structure that
can be used by software applications.

In the beginning, these algorithms were codified manually, using some prop-
erties of a web page, normally looking for strings that delimit the data that we



need to extract. But hand-coded wrappers are error–prone, tedious, costly and
time–consuming to build and maintain. An important contribution to this field
was provided by Kushmerick [15]. He introduced induction techniques to define
a new class of wrappers called inductive wrappers. These inductive algorithms
are components that use a number of extraction rules generated by means of
automated learning techniques such as inductive logic programming, statistical
methods, and inductive grammars. These rules set up a generic algorithm to
extract information from similar pages automatically. Boosted techniques [10]
are proposed to improve the performance of the machine learning algorithm by
repeatedly applying it to a training set with different example weightings.

Although induction wrappers are suited to extract information from the web,
they do not associate semantics with the data extracted, this being their major
drawback [2]. Thus, we call current inductive wrappers syntactic because they
extract syntactic information devoid of semantic formalisation that expresses its
meaning.

Our solution builds on the best of current inductive wrappers, and extends
them with techniques that allow us to deal with web knowledge. Using inductive
wrappers allows us take advantage of all the work developed in this arena, as
boosted techniques or verification algorithms [15,19] that detect if there are
changes in the layout of a web page that invalidate the wrapper.

3 Preliminaries

3.1 A Case Study

We illustrate the problem to solve by means of a simple, real example in which
we are interested in extracting information about the score of golfers in a PGA
Championship. This information was given at http://www.golfweb.com. Figure 1
shows a web page from this site.

Note that the implied meaning of the terms that appear in this page can be
easily interpreted by humans, but there is not a reference to the concepts that
describe them precisely, which complicates communication and interoperability
amongst software applications [3,4].

3.2 Dealing with Knowledge

There are many formalisms to dealt with knowledge, namely: semantic networks
[20], frames systems [18], logic, decision trees, and so on. Their aim is to represent
ontologies, which are specifications of concepts and relationships amongst them
in a concrete domain. Ontologies [7] allows us to specify the meaning of the
concepts about which we are extracting information. Some authors [11,12] have
specified a formal model for ontologies; our formalisation builds on the work by
Heflin in his PhD dissertation [12].

Definition 1. Let L be a logical language; an ontology is a tuple (P ,A), where
P is a subset of the vocabulary of predicate symbols of L and A is a subset of



Fig. 1. A web page with information about scores in a golf championship.

well–formed formula in L (axioms). Thus, an ontology is a subset of L in which
concepts are specified by predicates and relationships amongst then are specified
as a set of axioms.

First–order languages (FOL) offer us the power and flexibility needed to
describe knowledge. Many knowledge representation languages and structures
can be formulated in first–order logic [12]. Then, we are able to use a wide range
of knowledge representation formalisms; we only need to define a mechanism to
translate from some formalism to FOL and vice versa.

In Appendix A, we specify1 some concepts related to logical languages that
establish the basis of our model. In our proposal, a logical language (L) is charac-
terized by a vocabulary of constant identifiers (Identc), a vocabulary of variable
identifiers (Identv ), a vocabulary of function identifiers (Identf ), a vocabulary of
predicate identifiers (Identp) and a (in)finite set of well–formed formulae (Wff ),
which is a subset of the formulae derived from L. For the sake of simplicity, we
assume that Identf = ∅.

Next schema specifies an ontology. Three constrains are imposed: the former
states that P and A are non–empty subsets of the set of predicate symbols
and well–formed formulae of L, respectively; the second, asserts that axioms
are defined using the predicate symbols in P2; the latter asserts that the set of
axioms is consistent. Predicate � references a theorem prover; let be F : P Wff ,
and f : Wff then F � f is satisfied if f is formally provable or derivable from F ,

1 In this paper we use notation Z as a formal specification language because it is an
ISO standard [1], and an extremely expressive language.

2 Function PredSyms is specified in Appendix A. It returns the set of predicate symbols
in a formula.



thus f belongs to the set of all well–formed formulae that we can obtain from F
(theory of F ).

Ontology
P : P Identp
A : P Wff

P �= ∅ ∧ A �= ∅

∀ f : A • PredSyms(f ) ⊆ P
¬∃ g : Wff • A � g ∧ A � ¬ g

Definition 2. An instance of a concept, specified in an ontology, is an in-
terpretation of this concept over some domain. In information extraction, this
domain is established by the information to be extracted.

We model instances as ground predicate atoms. Thus, they are well–formed
formula. We specify the set of all instances that we can derive from an ontology
by the function GroundPredicateAtoms:

GroundPredicateAtoms : Ontology → P Wff

∀ o : Ontology • GroundPredicateAtoms(o) =
{f : Wff ; ip : Identp ; sc : seq1 Term; ic : Identc |

(f = atom(pred(ip, sc)) ∧
∀ c : Term | c ∈ sc • c = const(ic) ∧
PredSyms(f ) ⊆ o.P) • f }

Definition 3. A Knowledge Base (KB) is a tuple (O ,K ), where O is an
ontology and K a set of instances of concepts specified in O.

A KB is specified as follows:

KB
O : Ontology
K : P Wff

∀ f : K • PredSyms(f ) ⊆ O .P
K ∈ GroundPredicateAtoms(O)

The constrains imposed assert that the instances are formed with predicates
defined in the ontology and they are ground predicate atoms.

Example 1. The following object defines a KB in the domain of a golf champi-
onship in which we were interested in modelling knowledge about the position
and score of golfers in a PGA championship (for the sake of readability, we do
not use the abstract syntax in Appendix A. The mapping between this syntax
and the usual logic symbols is straightforward):



KB0 = 〈| O � 〈| P � {Person,Golfer ,Score,Position},

A� {∀ x • Golfer(x ) ⇒ Person(x ),
∀ x • ∃ y • Golfer(x ) ⇒ Score(x , y),
∀ x • ∃ y • Golfer(x ) ⇒ Position(x , y)} |〉,

K � {Golfer(Rich Beem),Score(Rich Beem, 278),
Position(Rich Beem, 1)} |〉

The ontology has four predicate symbols called Person, Golfer , Score and
Position; the first axiom asserts that every Golfer is a Person; the second one
states that every Golfer has a Score, where y represents the total number of
points obtained; the last one asserts that every Golfer has a Position y in the
championship. The instances in KB0 can be interpreted using the ontology, and
they asserts that Rich Beem is a golfer, and he is the first in the ranking with
278 points.

4 Our Proposal

Our proposal is a framework agent developers can use to extract information
with semantics from non–annotated web pages, so that this procedure can be
clearly separated from the rest in an attempt to reduce development costs and
improve maintainability. This frameworks gives the mechanisms to develop core
web agents called knowledge channels. Figure 2 illustrate this idea.

KB

KC

WEB
Agent Society

Fig. 2. Knowledge Channels.

A KC is responsible for managing a local knowledge base (KB). This knowl-
edge is extracted from a web site using semantic wrappers. KCs answer also
inquiries from other agents that need some knowledge to accomplish their goals.

4.1 Knowledge Extraction

A semantic wrapper is an extension to current syntactic wrappers, as shown in
Figure 3. Thus, we first need to define such wrappers formally.

Definition 4. A syntactic wrapper is a function that takes a web page as
input, and returns structured information.



Web
page

Syntactic
Wrapper Extracted

Information

Semantic
Translator

Knowledge

Semantic Wrapper

K

Fig. 3. A semantic wrapper.

Next schema specifies a syntactic wrapper:

[String ,WebPage]
Datum == P String
Data == seqDatum
Information == P Data

Wrapper : WebPage 
→ Information

domWrapper �= ∅

A syntactic wrapper is modelled as a partial function because its domain is a
subset of web pages. This subset defines the scope of the wrapper, and it refer-
ences the web pages in which the wrapper can be used. The output is modelled
as data type Information, which is a set of data type Data. Data is sequence of
Datum, it allows us to have a structured vision of the data to be extracted and
to set a location for each datum. Data type Datum represents facts, and it is
specified as a set of strings; this allows us to deal with multi–valuated attributes
(attributes that can have 0 or more values).

Example 2. If we were interested in extracting information about the position
and score of golfers in a PGA championship, a syntactic wrapper would output
the following Information from the web page in Figure 1:

{〈{Rich Beem}, {278}, {1}〉, 〈{Tiger Woods}, {279}, {2}〉,
〈{Chris Riley}, {283}, {3}〉, . . .}

Definition 5. A semantic wrapper is a function that takes a web page as
input, and returns a set of instances of concepts defined in an ontology that
represents the information of interest.

A semantic wrapper is composed of a syntactic wrapper and a semantic
translator. In order to extract knowledge from the web, it is necessary to feed
the semantic wrapper with the web page that contains the information. The
syntactic wrapper extracts the structured information from that web page, and
the semantic translator assigns then meaning to it by means of an ontology.

SemanticWrapper : WebPage 
→ P Wff

∀ p : WebPage | p ∈ domWrapper • SemanticWrapper(p) =
SemanticTranslator(Wrapper(p))

The semantic translator needs the user to specify a semantic description that re-
lates the information to be extracted with the predicates defined in the ontology
to perform this task.



Definition 6. A semantic description (SD) is a representation of the rela-
tionships that hold amongst the symbols of predicates from an ontology and the
positions that their arguments occupy in an Information structure. Thus, each
predicate P is associated with n natural numbers, where n is the arity of P.

An SD is modelled using the following schema, which is composed of three
elements: an ontology (O), a set of predicate symbols (Sp

3) and a function (Pos)
that maps predicate symbols onto the location of Datum in Data belonging to
the Information structure. This scheme also asserts that Sp is a subset of the set
of predicates symbols in O , and the domain of Pos is a subset of the symbols in
Sp .

SemanticDescription
O : Ontology
Sp : P Identp
Pos : Identp 
→ seq1 N

Sp ⊆ O .P ∧ domPos = Sp

Example 3. In our study case, we can define the following semantic description:

〈| O � o0,Sp � {Golfer ,Score,Position},

Pos � {Golfer 
→ 〈1〉,Score 
→ 〈1, 2〉,Position 
→ 〈1, 3〉} |〉

In this SD, predicate Golfer takes constant values from location Pos(Golfer) of
each Data (sequence) in an Information structure, In this case, the first position
of the sequence. Predicate Score takes its values from Pos(Score) = 〈1, 2〉4,
and so on. Thus, it is posible to generate automatically well-formed formula
that express the meaning of the information for all the Data elements in an
Information structure extracted.

Definition 7. A semantic translator is a function that receives the Informa-
tion structure obtained using a syntactic wrapper as input and uses a semantic
description specified by the user, and outputs a set of instances.

SemanticTranslator : Information 
→ P Wff
sd : SemanticDescription

∀ i : Information | i ∈ ranWrapper •
SemanticTranslator(i) = ∪{d : Data | d ∈ i • buildWffs(d)}

3 We might not need to use all the predicate defined in the ontology to give meaning
to the information extracted.

4 The arguments in a predicate follows a strict order. Using a sequence allows us to
get arguments orderly. For instance, If Pos(Score) were 〈2, 1〉, the result would be
erroneous: Score(278, Tiger Woods) states that the score of 278 is Tiger Woods.



Function buildWffs returns the set of well formed formula for each data in an
Information structure. It is defined as follows5:

buildWffs : Data 
→ P Wff

∀ e : Data; t : P (Identp × Data) | e ∈ ∪ ranWrapper ∧
t = {x : sd .Sp • (x , e � {n : ranPos(x ) • e(n)})} •

buildWffs(e) = ∪{k : t • BuildPredicates(k)}

The function BuildPredicates is specified as follows:

BuildPredicates : Identp × seq P Identc → P Wff

∀ ip : Identp ; ssc : seq P Identc •
BuildPredicates(ip, ssc) = {si : seq Identc ; n : N |

n ∈ 1..#ssc ∧ si(n) ∈ ssc(n) • atom(pred(ip, si))}

It takes a pair composed of an identifier of predicate and a sequence of strings sets
from an Information structure, and returns a set of predicates. The predicates
are composed using the identifier of predicate and each element of the sequence.

Example 4. The following instances represent the knowledge extracted by a se-
mantic wrapper from the web page in Figure 1:

{atom(pred(Golfer , 〈const(Rich Beem)〉)),
atom(pred(Score, 〈const(Rich Beem), const(278)〉)),
atom(pred(Position, 〈const(Rich Beem), const(1)〉)),
atom(pred(Golfer , 〈const(Tiger Woods)〉)),
atom(pred(Score, 〈const(Tiger Woods), const(279)〉)),
atom(pred(Position, 〈const(Tiger Woods), const(2)〉)),
atom(pred(Golfer , 〈const(Chris Riley)〉)),
atom(pred(Score, 〈const(Chris Riley), const(283)〉)),
atom(pred(Position, 〈const(Chris Riley), const(3)〉)), . . .}

4.2 A Model for KCs

The schema bellow formalises a KC. It has a declarative part containing two
variables; the former (SW ) references the semantic wrapper to be used, and the
latter (SV ) the semantic verifier.

KnowledgeChannel
SW : SemanticWrapper
SV : SemanticVerificator

5 The filtering operator (�) takes from a sequence the elements in a set. For instance:

〈jun,nov , feb, jul〉 � {sep, oct ,nov , dec, jan, feb,mar , apr} = 〈nov , feb〉



Next schema defines the overall state of our system. It is composed of a knowledge
channel, a local KB and its environment. The environment (the perceivable
features of the KC agent) is specified as set of web pages, and we constraint that
the semantic wrapper must be defined for these web pages.

KnowledgeChannelState
KC : KnowledgeChannel
KB : KnowledgeBase
Environment : P WebPage

Environment ⊆ domKC .SW

The motivation of the knowledge channel is to synchronize the knowledge that
resides in web documents with the one in the knowledge base (KB). This moti-
vation allows us define a KC as an autonomous piece of software. Next schema
specifies an agent’s motivation. ∆ means that the system’s state can change and
the imposed constrains indicates that all knowledge on environment must be on
local KB, and vice versa.

KnowledgeChannelMotivation
∆KnowledgeChannelState

∀ p : Environment • KB .K ⊆ KC .SW (p)
∀ f : Wff | f ∈ KB .K • ∃ p : Environment • f ∈ SW (p)

The KC server requests from agents, thus they show social ability. Delegating
the task of knowledge extraction to KCs allows agent developers to achieve a
complete separation between the knowledge extraction procedure and the logic
or base functionality an agent encapsulates. Any agent can send messages to a
KC in order to extract knowledge. Knowledge requests are expressed as predicate
symbols. The reply from the KC are ground predicate atoms that satisfies the
predicates in query.

KnowledgeChannelQuery
ΞKnowledgeChannelState
Q? : P Identp
R! : P Wff

Q �= ∅

R = {f : KB .K ; ip : Identp ; sc : seq1 Term; | f = atom(pred(ip, sc) • f }

Example 5. If we launch the query Q = {Golfer} the KC would reply
with R = {Golfer(Rich Beem),Golfer(Tiger Woods),Golfer(Chris Riley), . . .}. This
knowledge can be used to infer new knowledge. It also makes it possible to
reuse knowledge. For instance, an agent using the golfer ontology can infer
that the golfers Rich Beem and Tiger Woods are people, according to the ax-
iom ∀ x • Golfer(x) ⇒ Person(x ), these knowledge can be shared by applications
in order to collaborate to accomplish a task.



5 Conclusions

The current web is mostly user–oriented. The semantic web shall help extract
information with well–defined semantics, regardless of the way it is rendered,
but it does not seem it is going to be adopted in the immediate future, which
argues for another solution to the problem in the meanwhile.

In this article, we have presented a new approach to knowledge extraction
from web sites based on semantic wrappers. In this article, we have presented a
framework that is based on specialised knowledge channels agents that extract
information from the web. It improves on other proposals in that it associates
semantics with the extracted information. Furthermore, our proposal achieves a
separation of the knowledge extraction procedure from the base logic that web
agents encapsulate, thus easing both development and maintenance.

References

1. ISO/IEC 13568:2002. Information technology—Z formal specification notation—
syntax, type system and semantics. International Standard.

2. J. L. Arjona, R. Corchuelo, A. Ruiz, and M. Toro. A practical agent-based method
to extract semantic information from the web. In Advanced Information Systems
Engineering, 14th International Conference, CAiSE 2002, volume 2348 of Lecture
Notes in Computer Science, pages 697–700. Springer, 2002.

3. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic Web. Scientific American,
284(5):34–43, May 2001.

4. T.J. Berners-Lee, R. Cailliau, and J.-F. Groff. The World-Wide Web. Computer
Networks and ISDN Systems, 25(4–5):454–459, November 1992.

5. D. Brickley and R.V. Guha. Resource description framework schema specification
1.0. Technical Report http://www.w3.org/TR/2000/CR-rdf-schema-20000327,
W3C Consortium, March 2000.

6. W.W. Cohen and L.S. Jensen. A structured wrapper induction system for extract-
ing information from semi-structured documents. In Proceedings of the Workshop
on Adaptive Text Extraction and Mining (IJCAI’01), 2001.

7. O. Corcho and A. Gómez-Pérez. A road map on ontology specification languages.
In Proceedings of the Workshop on Applications of Ontologies and Problem Solving
Methods. 14th European Conference on Artificial Intelligence (ECAI’00), pages
80–96, 2000.

8. L. Eikvil. Information extraction from world wide web - a survey. Technical Report
945, Norweigan Computing Center, 1999.

9. D. Fensel, editor. Spinning the Semantic Web: Bringing the World Wide Web to
Its Full Potential. The MIT Press, 2002.

10. Dayne Freitag and Nicholas Kushmerick. Boosted wrapper induction. In
AAAI/IAAI, pages 577–583, 2000.

11. N. Guarino. Formal ontology and information systems. In N. Guarino, editor, Pro-
ceedings of the 1st International Conference on Formal Ontologies in Information
Systems, FOIS’98, Trento, Italy, pages 3–15. IOS Press, June 1998.

12. J. Heflin. Towards the Semantic Web: Knowledge Representation in a Dynamic,
Distributed Environment. PhD thesis, University of Maryland, College Park, 2001.



13. I. Horrocks, P.F. Patel-Schneider, and F. van Harmelen. Reviewing the design
of DAML+OIL: An ontology language for the semantic web. Technical Report
http://www.daml.org, Defense Advanced Research Projects Agency, 2002.

14. C.A. Knoblock, K. Lerman, S. Minton, and I. Muslea. Accurately and reliably ex-
tracting data from the web: A machine learning approach. IEEE Data Engineering
Bulletin, 23(4):33–41, 2000.

15. N. Kushmerick. Wrapper verification. World Wide Web Journal, 3(2):79–94, 2000.
16. Ling Liu, Calton Pu, and Wei Han. XWRAP: An XML-enabled wrapper construc-

tion system for web information sources. In ICDE, pages 611–621, 2000.
17. S. Luke, L. Spector, D. Rager, and J. Hendler. Ontology-based web agents. In

W.L. Johnson and B. Hayes-Roth, editors, Proceedings of the First International
Conference on Autonomous Agents (Agents’97), pages 59–68, Marina del Rey, CA,
USA, 1997. ACM Press.

18. M. Minsky. A framework for representing knowledge. McGraw-Hill, New York,
1975.

19. I. Muslea, S. Minton, and C. Knoblock. STALKER: Learning extraction rules for
semistructured, web–based information sources. In Proceedings of the AAAI-98
Workshop on AI and Information Integration, 1998.

20. M. R. Quillian. Word concepts: A theory and simulation of some basic semantic
capabilities. Behavioral Science, 12:410–430, 1967.

21. M.J. Wooldridge and M.R. Jennings. Intelligent agents: Theory and practice. The
Knowledge Engineering Review, 10(2):115–152, 1995.



A Well-Formed Formula

Let Identc , Identv , Identf , Identp be the sets of identifiers of constants, variables,
functions and predicates, respectively, in a first–order logical language. Then the
complete language can be specified as the Z free type Formula in the following
way:

[Identc , Identv , Identf , Identp ]
Term ::= const〈〈Identc〉〉

| var〈〈Identv 〉〉
| func〈〈Identf × seq1 Term〉〉

Atom ::= pred〈〈Identp × seq1 Term〉〉
| not〈〈Atom〉〉
| and〈〈Atom × Atom〉〉
| or〈〈Atom × Atom〉〉
| implies〈〈Atom × Atom〉〉
| iff 〈〈Atom × Atom〉〉

Formula ::= atom〈〈Atom〉〉
| forall〈〈Identv × Formula〉〉
| exists〈〈Identv × Formula〉〉

This states that a Formula is either an atom or an universal quantifier over
a formula or an existencial quantifier over a formula. An atom is either an n-
ary predicate or the negation of an atom or the conjunction of two atoms or
the disjunction of two atoms or the implication formed from two atoms or the
bi–implication formed from two atoms. A term is an identifier of constant or an
identifier of variable or a n-ary function. To illustrate the use of this free type,
formula ∀P(x ) ⇒ Q(x ) is represented by the following term:

forall(x , atom(implies(pred(P , 〈var(x )〉), pred(Q , 〈var(x )〉))))
A well–formed formula (Wff) is a formula that does not contain any free

variables, that is, its variables are bounded by universal or existencial quantifiers.
In order to define the set of the well–formed formula in a logical language, we
need to specify axiomatically a recursive function called FreeVars. It obtains the
free variables in a formula or atom or term.



FormulaAtomTerm ::= Formula | Atom | Term

FreeVars : FormulaAtomTerm → P Identv

∀ f : Formula; a, a1, a2 : Atom; iv : Identv ; ip : Identp ; if : Identf •
FreeVars(atom(a)) = FreeVars(a) ∧
FreeVars(forall(iv , f )) = FreeVars(f ) \ {iv} ∧
FreeVars(exists(iv , f )) = FreeVars(f ) \ {iv} ∧
FreeVars(not(a)) = FreeVars(a) ∧
FreeVars(and(a1, a2)) = FreeVars(a1) ∪ FreeVars(a2) ∧
FreeVars(or(a1, a2)) = FreeVars(a1) ∪ FreeVars(a2) ∧
FreeVars(implies(a1, a2)) = FreeVars(a1) ∪ FreeVars(a2) ∧
FreeVars(iff (a1, a2)) = FreeVars(a1) ∪ FreeVars(a2) ∧
FreeVars(pred(ip, st)) = ∪{t : Term | t ∈ st • FreeVars(t)} ∧
FreeVars(var(iv)) = {iv} ∧
FreeVars(const(c)) = ∅ ∧
FreeVars(func(if , st)) = ∪{t : Term | t ∈ st • FreeVars(t)}

Set Wff is specified as the set of logical formula that does not have any free
variables.

Wff : P Formula

∀ f : Formula • f ∈ Wff ⇔ Freevar(f ) = ∅

We can also obtain the set of predicate symbols in a formula:

FormulaAtom ::= Formula | Atom

PredSyms : FormulaAtom → P Identp

∀ f : Formula; a, a1, a2 : Atom; iv : Identv ; ip : Identp •
PredSyms(formula(a)) = PredSyms(a) ∧
PredSyms(forall(iv , f )) = PredSyms(f ) ∧
PredSyms(exists(iv , f )) = PredSyms(f ) ∧
PredSyms(not(a)) = PredSyms(a) ∧
PredSyms(and(a1, a2)) = PredSyms(a1) ∪ PredSyms(a2) ∧
PredSyms(or(a1, a2)) = PredSyms(a1) ∪ PredSyms(a2) ∧
PredSyms(implies(a1, a2)) = PredSyms(a1) ∪ PredSyms(a2) ∧
PredSyms(iff (a1, a2)) = PredSyms(a1) ∪ PredSyms(a2) ∧
PredSyms(pred(ip, st)) = {ip}


	Introduction
	Related Work
	Preliminaries
	A Case Study
	Dealing with Knowledge

	Our Proposal
	Knowledge Extraction
	A Model for KCs

	Conclusions

