LINEABILITY IN SEQUENCE SPACES

Pablo José Gerlach Mena

Dpto. Análisis Matemático

10 de marzo de 2017
1. Lineability

2. Some Known Results

3. New Results
Let X be a topological vector space (t.v.s.) and $A \subset X$.

Definition

Let X be a topological vector space (t.v.s.) and $A \subset X$.

- **Lineability**: A is lineable if $\exists M \subset A \cup \{0\}$, where M is a vector subspace of infinite dimension.
- **Spaceability**: A is spaceable if $\exists M \subset A \cup \{0\}$, where M is a closed vector subspace of infinite dimension.
- **Dense-Lineability**: A is dense-lineable if M can be chosen dense in X.
- **Maximal-Dense-Lineability**: A is maximal-(dense)-lineable if $\dim(M) = \dim(X)$.

Pablo José Gerlach Mena

Lineability in sequence spaces
Let X be a topological vector space (t.v.s.) and $A \subset X$. We say that

- A is lineable if $\exists M \subset A \cup \{0\}$ v.s. of infinite dimension.

- A is spaceable if $\exists M \subset A \cup \{0\}$ closed v.s. of infinite dimension.

- A is dense-lineable if M can be chosen dense in X.

- A is maximal-(dense)-lineable if $\dim(M) = \dim(X)$.
Definition

Let X be a topological vector space (t.v.s.) and $A \subset X$. We say that

- A is lineable if $\exists M \subset A \cup \{0\}$ v.s. of infinite dimension.
- A is spaceable if $\exists M \subset A \cup \{0\}$ closed v.s. of infinite dimension.
Definition

Let X be a topological vector space (t.v.s.) and $A \subset X$. We say that

- **A is lineable if** $\exists M \subset A \cup \{0\}$ v.s. of infinite dimension.
- **A is spaceable if** $\exists M \subset A \cup \{0\}$ closed v.s. of infinite dimension.
- **A is dense-lineable if** M can be chosen dense in X.

Pablo José Gerlach Mena

Lineability in sequence spaces
Definition

Let X be a topological vector space (t.v.s.) and $A \subset X$. We say that

- **A is lineable** if $\exists M \subset A \cup \{0\}$ v.s. of infinite dimension.
- **A is spaceable** if $\exists M \subset A \cup \{0\}$ closed v.s. of infinite dimension.
- **A is dense-lineable** if M can be chosen dense in X.
- **A is maximal-(dense)-lineable** if $\dim(M) = \dim(X)$.
Recall that \(f : \mathbb{R} \rightarrow \mathbb{R} \) is an everywhere surjective function if \(f(I) = \mathbb{R} \) for all interval \(I \subset \mathbb{R} \).
Recall that $f : \mathbb{R} \rightarrow \mathbb{R}$ is an everywhere surjective function if $f(I) = \mathbb{R}$ for all interval $I \subset \mathbb{R}$.

Example

- Let $\{l_n\}_{n \in \mathbb{N}} = \{(a_n, b_n)\}_{n \in \mathbb{N}}$ where $a_n, b_n \in \mathbb{Q}$ $\forall n \in \mathbb{N}$.
Recall that $f : \mathbb{R} \rightarrow \mathbb{R}$ is an everywhere surjective function if $f(I) = \mathbb{R}$ for all interval $I \subset \mathbb{R}$.

Example

- Let $\{I_n\}_{n \in \mathbb{N}} = \{(a_n, b_n)\}_{n \in \mathbb{N}}$ where $a_n, b_n \in \mathbb{Q} \forall n \in \mathbb{N}$.
- I_1 contents a Cantor type subset, denote it C_1.

\[f(x) := \begin{cases} \Phi_n(x) & \text{if } x \in C_n, \\ 0 & \text{in other case} \end{cases} \]
Recall that $f : \mathbb{R} \rightarrow \mathbb{R}$ is an everywhere surjective function if $f(I) = \mathbb{R}$ for all interval $I \subset \mathbb{R}$.

Example

- Let $\{I_n\}_{n \in \mathbb{N}} = \{(a_n, b_n)\}_{n \in \mathbb{N}}$ where $a_n, b_n \in \mathbb{Q} \ \forall n \in \mathbb{N}$.
- I_1 contents a Cantor type subset, denote it C_1.
- We construct $\{C_n\}_{n \in \mathbb{N}}$ such that $C_n \subset I_n \setminus \left(\bigcup_{k=1}^{n-1} C_k \right)$.
Recall that $f : \mathbb{R} \rightarrow \mathbb{R}$ is an everywhere surjective function if $f(I) = \mathbb{R}$ for all interval $I \subset \mathbb{R}$.

Example

- Let $\{l_n\}_{n \in \mathbb{N}} = \{(a_n, b_n)\}_{n \in \mathbb{N}}$ where $a_n, b_n \in \mathbb{Q} \ \forall n \in \mathbb{N}$.
- l_1 contains a Cantor type subset, denote it C_1.
- We construct $\{C_n\}_{n \in \mathbb{N}}$ such that $C_n \subset l_n \backslash \left(\bigcup_{k=1}^{n-1} C_k \right)$.
- Take any bijection $\Phi_n : C_n \rightarrow \mathbb{R}$.
Recall that $f : \mathbb{R} \rightarrow \mathbb{R}$ is an everywhere surjective function if $f(I) = \mathbb{R}$ for all interval $I \subset \mathbb{R}$.

Example

- Let $\{I_n\}_{n \in \mathbb{N}} = \{(a_n, b_n)\}_{n \in \mathbb{N}}$ where $a_n, b_n \in \mathbb{Q}$ $\forall n \in \mathbb{N}$.
- I_1 contains a Cantor type subset, denote it C_1.
- We construct $\{C_n\}_{n \in \mathbb{N}}$ such that $C_n \subset I_n \setminus \left(\bigcup_{k=1}^{n-1} C_k \right)$.
- Take any bijection $\Phi_n : C_n \rightarrow \mathbb{R}$.
- Define $f : \mathbb{R} \rightarrow \mathbb{R}$ by
 $$f(x) := \begin{cases}
\Phi_n(x) & \text{if } x \in C_n, \\
0 & \text{in other case.}
\end{cases}$$
Theorem (Araújo, Bernal, Muñoz, Prado and Seoane, 2017)

The set of measureable everywhere surjective functions \mathcal{MES} is c-lineable.
Everywhere Surjective Functions

Theorem (Araújo, Bernal, Muñoz, Prado and Seoane, 2017)

The set of measureable everywhere surjective functions \mathcal{MES} is \mathfrak{c}-lineable.

Theorem (A, B, M, P and S, 2017)

The family of sequences $(f_n)_{n \in \mathbb{N}}$ of Lebesgue measurable functions such that $f_n \rightarrow 0$ pointwise and $f_n \in \mathcal{MES}$ is \mathfrak{c}-lineable.
Recall that $f_n \rightarrow f$ in measure if $\forall \, \varepsilon > 0$ we have

$$
\mu \left(\{ x \in X : |f_n(x) - f(x)| \geq \varepsilon \} \right) \rightarrow 0, \quad (n \rightarrow \infty).
$$

Theorem (Riesz)

$f_n \rightarrow f$ in measure $\Rightarrow \exists$ $(f_n^k) \subset (f_n)$ such that $f_n^k \rightarrow f$ pointwise a.e.

Theorem (A, B, M, P and S, 2017)

The family of sequences of functions $(f_n) \subset L^0[0,1]$ such that $f_n \rightarrow 0$ in measure $f_n \not\rightarrow 0$ pointwise almost everywhere is maximal-dense-lineable.
Recall that $f_n \longrightarrow f$ in measure if $\forall \, \varepsilon > 0$ we have
$$\mu \left(\{ x \in X : |f_n(x) - f(x)| \geq \varepsilon \} \right) \longrightarrow 0, \quad (n \to \infty).$$

Theorem (Riesz)

$f_n \longrightarrow f$ in measure $\implies \exists (f_{n_k}) \subset (f_n)$ such that $f_{n_k} \longrightarrow f$ pointwise a.e.
Measure versus Almost Convergence

Recall that $f_n \to f$ in measure if $\forall \varepsilon > 0$ we have

$$\mu \left(\{ x \in X : |f_n(x) - f(x)| \geq \varepsilon \} \right) \to 0, \quad (n \to \infty).$$

Theorem (Riesz)

$f_n \to f$ in measure $\iff \exists (f_{n_k}) \subset (f_n)$ such that $f_{n_k} \to f$ pointwise a.e.

Theorem (A, B, M, P and S, 2017)

The family of sequences of functions $(f_n) \subset L_0[0, 1]$ such that
Recall that $f_n \rightarrow f$ in measure if $\forall \varepsilon > 0$ we have

$$\mu \left(\{ x \in X : |f_n(x) - f(x)| \geq \varepsilon \} \right) \rightarrow 0, \quad (n \rightarrow \infty).$$

Theorem (Riesz)

$f_n \rightarrow f$ in measure $\implies \exists (f_{n_k}) \subset (f_n)$ such that $f_{n_k} \rightarrow f$ pointwise a.e.

Theorem (A, B, M, P and S, 2017)

The family of sequences of functions $(f_n) \subset L_0[0, 1]$ such that $f_n \rightarrow 0$ in measure
Recall that $f_n \to f$ in measure if $\forall \varepsilon > 0$ we have

$$
\mu \left(\{ x \in X : |f_n(x) - f(x)| \geq \varepsilon \} \right) \to 0, \quad (n \to \infty).
$$

Theorem (Riesz)

$f_n \to f$ in measure $\implies \exists (f_{n_k}) \subset (f_n)$ such that $f_{n_k} \to f$ pointwise a.e.

Theorem (A, B, M, P and S, 2017)

The family of sequences of functions $(f_n) \subset L_0[0, 1]$ such that

- $f_n \to 0$ in measure
- $f_n \not\to 0$ pointwise almost everywhere
Measure versus Almost Convergence

Recall that \(f_n \xrightarrow{} f \) in measure if \(\forall \varepsilon > 0 \) we have

\[
\mu \left(\{ x \in X : |f_n(x) - f(x)| \geq \varepsilon \} \right) \xrightarrow{} 0, \quad (n \to \infty).
\]

Theorem (Riesz)

\(f_n \xrightarrow{} f \) in measure \(\iff \exists (f_{n_k}) \subset (f_n) \) such that \(f_{n_k} \xrightarrow{} f \) pointwise a.e.

Theorem (A, B, M, P and S, 2017)

The family of sequences of functions \((f_n) \subset L_0[0, 1] \) such that

- \(f_n \xrightarrow{} 0 \) in measure
- \(f_n \not\xrightarrow{} 0 \) pointwise almost everywhere

is maximal-dense-lineable.
The family of sequences of functions \((f_n) \subset L^0[0,1]\) such that \(f_n \to 0\) pointwise \(f_n \not\to 0\) uniformly is maximal-dense-lineable.
Theorem (Calderón, G.M. and Prado)

The family of sequences of functions \((f_n) \subset L_0[0, 1]\) such that
The family of sequences of functions \((f_n) \subset L_0[0,1]\) such that \(f_n \to 0\) pointwise

\[\text{Theorem (Calderón, G.M. and Prado)} \]

\(f_n \to 0\) pointwise
Theorem (Calderón, G.M. and Prado)

The family of sequences of functions \((f_n) \subset L_0[0, 1]\) such that

\[f_n \rightarrow 0 \text{ pointwise} \]

\[f_n \not\rightarrow 0 \text{ uniformly} \]
Theorem (Calderón, G.M. and Prado)

The family of sequences of functions \((f_n) \subset L_0[0, 1]\) such that

\[f_n \longrightarrow 0 \text{ pointwise} \]
\[f_n \not\longrightarrow 0 \text{ uniformly} \]

is maximal-dense-lineable.
Let \(f_n(x) = \chi_{\left[1/n+1,1/n\right]}(x) \).

Consider now \(f_n,t(x) = \chi_{\left[1/n+1,1/n\right]}(1/2(x-t)) = \chi_{\left[2/n+1+t,2/n+t\right]}(x), \quad t \in (-1,0) \).

Let \(M := \text{span}\{ (f_n,t) : t \in (-1,0) \} \).

Then \(\dim(M) = c \), so \(A \) is maximal-lineable.

Take \(X = L^N_0, B = \tilde{L}^N : = \{ \Phi = (f_n) \in L^N_0 : \exists N = N(\Phi) \in \mathbb{N} | f_n = 0 \forall n \geq N \} \) and \(A \) the family of sequences.

Thus, \(A \) is maximal-dense-lineable.
Sketch of the Proof

- Let $f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.

Pointwise versus Uniformly Convergence

Sketch of the Proof

- Let $f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.

- Consider now
 \[f_{n,t}(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]} \left(\frac{1}{2}(x - t) \right) = \chi_{\left[\frac{2}{n+1}+t, \frac{2}{n}+t\right]}(x), \quad t \in (-1, 0). \]
Sketch of the Proof

- Let $f_n(x) = \chi_{[\frac{1}{n+1}, \frac{1}{n}]}(x)$.
- Consider now

$$f_{n,t}(x) = \chi_{[\frac{1}{n+1}, \frac{1}{n}]} \left(\frac{1}{2} (x - t) \right) = \chi_{[\frac{2}{n+1} + t, \frac{2}{n} + t]}(x), \quad t \in (-1, 0).$$

- Let $M := \operatorname{span}\{ (f_{n,t}) : t \in (-1, 0) \}$.
Sketch of the Proof

- Let $f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.
- Consider now

 $$f_{n,t}(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]} \left(\frac{1}{2}(x - t)\right) = \chi_{\left[\frac{2}{n+1}+t, \frac{2}{n}+t\right]}(x), \ t \in (-1, 0).$$

- Let $M := \text{span}\{(f_{n,t}) : \ t \in (-1, 0)\}$. Then $\dim(M) = c$.
Pointwise versus Uniformly Convergence

Sketch of the Proof

- Let \(f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x) \).
- Consider now
 \[
 f_{n,t}(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]} \left(\frac{1}{2} (x - t) \right) = \chi_{\left[\frac{2}{n+1} + t, \frac{2}{n} + t\right]}(x), \quad t \in (-1, 0).
 \]

- Let \(M := \text{span}\{(f_{n,t}) : t \in (-1, 0)\} \). Then \(\dim(M) = c \), so \(A \) is maximal-lineable.
Pointwise versus Uniformly Convergence

Sketch of the Proof

- Let $f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.
- Consider now
 $$f_{n,t}(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}\left(\frac{1}{2}(x - t)\right) = \chi_{\left[\frac{2}{n+1} + t, \frac{2}{n} + t\right]}(x), \ t \in (-1, 0).$$

- Let $M := \text{span}\{(f_{n,t}) : t \in (-1, 0)\}$. Then $\dim(M) = \mathfrak{c}$, so A is maximal-lineable.
- Take $X = L_0^\mathbb{N}$,
Pointwise versus Uniformly Convergence

Sketch of the Proof

- Let $f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x)$.

- Consider now
 \[
 f_{n,t}(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]} \left(\frac{1}{2} (x - t) \right) = \chi_{\left[\frac{2}{n+1} + t, \frac{2}{n} + t\right]}(x), \quad t \in (-1, 0).
 \]

- Let $M := \text{span}\{(f_{n,t}) : t \in (-1, 0)\}$. Then $\dim(M) = \mathfrak{c}$, so A is maximal-lineable.

- Take $X = L_0^\mathbb{N}$, $B = \tilde{L} := \{ \Phi = (f_n) \in L_0^\mathbb{N} : \exists N = N(\Phi) \in \mathbb{N} \mid f_n = 0 \ \forall n \geq N \}$.
Pointwise versus Uniformly Convergence

Sketch of the Proof

- Let $f_n(x) = \chi_{[\frac{1}{n+1}, \frac{1}{n}]}(x)$.
- Consider now

 $$f_{n,t}(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]} \left(\frac{1}{2}(x - t)\right) = \chi_{\left[\frac{2}{n+1} + t, \frac{2}{n} + t\right]}(x), \quad t \in (-1, 0).$$

- Let $M := \text{span}\{(f_{n,t}) : t \in (-1, 0)\}$. Then $\dim(M) = c$, so A is maximal-lineable.
- Take $X = L_0^N$, $B = \widetilde{L} := \{\Phi = (f_n) \in L_0^\mathbb{N} : \exists N = N(\Phi) \in \mathbb{N} \mid f_n = 0 \ \forall n \geq N\}$ and A the family of sequences.
Sketch of the Proof

Let \(f_n(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]}(x) \).

Consider now

\[
 f_{n,t}(x) = \chi_{\left[\frac{1}{n+1}, \frac{1}{n}\right]} \left(\frac{1}{2} (x - t) \right) = \chi_{\left[\frac{2}{n+1} + t, \frac{2}{n} + t\right]}(x), \quad t \in (-1,0).
\]

Let \(M := \text{span}\{(f_{n,t}) : t \in (-1,0)\} \). Then \(\dim(M) = \aleph_0 \), so \(A \) is maximal-lineable.

Take \(X = L_0^\mathbb{N} \), \(B = \tilde{L} := \{ \Phi = (f_n) \in L_0^\mathbb{N} : \exists N = N(\Phi) \in \mathbb{N} \mid f_n = 0 \ \forall n \geq N \} \) and \(A \) the family of sequences.

Thus, \(A \) is maximal-dense-lineable.
The family of sequences of functions $(f_n) \subset L^0[0, +\infty)$ such that $f_n \to 0$ uniformly $f_n \not\to 0$ in $\|\cdot\|_{L^1}$ norm is c-lineable.
Theorem (Calderón, G.M. and Prado)

The family of sequences of functions \((f_n) \subset L_0[0, +\infty)\) such that
Theorem (Calderón, G.M. and Prado)

The family of sequences of functions \((f_n) \subset L_0[0, +\infty)\) such that

\[f_n \longrightarrow 0 \text{ uniformly}\]
Theorem (Calderón, G.M. and Prado)

The family of sequences of functions \((f_n) \subset L_0[0, +\infty)\) such that

\[
\begin{align*}
 f_n &\to 0 \text{ uniformly} \\
 f_n &\not\to 0 \text{ in } \| \cdot \|_{L^1} \text{ norm}
\end{align*}
\]
Theorem (Calderón, G.M. and Prado)

The family of sequences of functions \((f_n) \subset L_0[0, +\infty)\) such that

\[
\begin{align*}
f_n & \to 0 \text{ uniformly} \\
\|f_n\|_{L^1} & \not\to 0
\end{align*}
\]

is \(c\)-lineable.
Some Known Results

New Results

Uniformly versus L^1 Norm Convergence

Sketch of the Proof

Let $f_n = \frac{1}{n} \chi_{[n,2n]}$. Consider now $f_n(x - nt) = \frac{1}{n} \chi_{[n(t+1),n(t+2)]}(x)$, $t \in [0,1)$.

Let $M := \text{span} \{ (f_n, t) : t \in [0,1) \}$. Then $\dim(M) = c$, so A is c-lineable.
Let $f_n = \frac{1}{n} \chi_{[n,2n]}$.
Uniformly versus L^1 Norm Convergence

Sketch of the Proof

- Let $f_n = \frac{1}{n} \chi_{[n,2n]}$.
- Consider now

$$f_n(x-nt) = \frac{1}{n} \chi_{[n,2n]}(x-nt) = \frac{1}{n} \chi_{[n(t+1),n(t+2)]}(x), \quad t \in [0,1).$$
Uniformly versus L^1 Norm Convergence

Sketch of the Proof

- Let $f_n = \frac{1}{n} \chi_{[n,2n]}$.
- Consider now
 \[f_n(x-nt) = \frac{1}{n} \chi_{[n,2n]}(x-nt) = \frac{1}{n} \chi_{[n(t+1),n(t+2)]}(x), \ t \in [0,1). \]

- Let $M := \text{span}\{(f_n,t) : t \in [0,1)\}$.
Sketch of the Proof

- Let \(f_n = \frac{1}{n} \chi_{[n,2n]} \).
- Consider now
 \[
 f_n(x - nt) = \frac{1}{n} \chi_{[n,2n]}(x - nt) = \frac{1}{n} \chi_{[n(t+1),n(t+2)]}(x), \quad t \in [0,1).
 \]
- Let \(M := \text{span}\{(f_n,t) : t \in [0,1]\} \). Then \(\dim(M) = c \).
Uniformly versus L^1 Norm Convergence

Sketch of the Proof

- Let $f_n = \frac{1}{n} \chi_{[n,2n]}$.
- Consider now

 $$f_n(x - nt) = \frac{1}{n} \chi_{[n,2n]}(x - nt) = \frac{1}{n} \chi_{[n(t+1),n(t+2)]}(x), \quad t \in [0,1).$$

- Let $M := \text{span}\{(f_n,t) : t \in [0,1]\}$. Then $\dim(M) = c$, so A is c-lineable.
Thank you very much for your attention