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Instability in a non-ohmic /ohmic fluid interface under a perpendicular
electric field and unipolar injection
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We set the equations for the linear electrohydrodynamic instability of an interface between two
fluids, subjected to a perpendicular field and a unipolar charge injection. One of the fluids is
modeled as being in non-ohmic regirtiasulating, whereas the other is ohmic. A new interfacial
instability mechanism is described, which may account for the Rose-window instability. The
equations are analytically solved in the limit of long wavelength and neglecting the fluid motion. We
show that this limit applies well to the case of an air—ohmic liquid interface. The applicability to a
liquid—liquid interface is also analyzed. ®02 American Institute of Physics.
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I. INTRODUCTION bility as the Rose-windowinstability. The experimental
resultd!'2 have induced us to think that the instability is
ElectrohydrodynamidEHD) stability of fluids under a essentially static, and due to the destabilizing effect of the
perpendicular electric field to the interface has been exterelectric pressure onto the liquid surface. This is the reason
sively studied in the case of no injectior® But systems why the following analysis is essentially hydrostatics with
under charge injection, which allow a steady space chargghe additional electric stresses at the surface.
distribution, show instabilities with some peculiarities that  After a considerable part of the study was accomplished
make their study interesting. The works by Mireaal® and  we realized that, under certain circumstances, our conclu-
Giannetta and Ike2istudied the dynamics of a helium liquid sions were also of application to a liquid—liquid interface.
interface negatively charged. But they do not consider théherefore we have chosen to present the problem in a more
existence of a space charge either in the liquid or in theyeneral scenario, involving two fluid layers. Although at the
vapor. The injection in a plane geometry was theoreticallyend we will neglect the fluid velocities, we think it is inter-
studied by Atten and Moreau in an insulating liquid laSer. esting to present and discuss the whole set of equations. In
This study was later extended to double layer systems: aidoing so, the reader will know what terms are neglected and
insulating liquid and insulating/perfect conducting the validity of the analysis will be better established. The
liquids.”~° From this, the initial problem without space applicability to a liquid—gas or a liquid—liquid interface is
charge distribution in the no injection case turns with injec-discussed throughout the paper.
tion into a more complicated problem wi¥-E+# 0. The instability analysis is carried out in the standard
In this work we study the EHD interfacial instability for way. The base stationary solution is perturbed in Fourier
a two fluid system: a non-ohmi@nsulating fluid layer is modes and a set of linear differential equations is obtained
superposed to an ohmic fluid layer with an arbitrary conducfor the small perturbations of this base solution. The bound-
tivity. And we show that there is mewinterfacial instability — ary conditions provide a set of algebraic equations for the
mechanism. Our study was initially motivated by some re-coefficients of the solutions to the linear differential equa-
cent experiments in which an instability of a plane liquid tions. The determinant corresponding to the coefficients of
surface is observed. This instability appears when a thithis system should be zero for a nontrivial solution to exist.
layer of low conducting liquidin ohmic or non-ohmic re- This gives a functiorlU(k), whereU is the characteristic
gime) is subjected to a corona discharge in air. The instabilityeigenvalue of the system arkdthe wave number. In Sec. I
has some peculiarities that distinguish it from previouswe propose a general formulation of the problem of a non-
known EHD phenomena. It appears in highly insulating lig-ohmic/ohmic interface subjected to injection. Section Il dis-
uids where the existence of space charge in the volume of theusses the solution for the unperturbed plane interface. Sec-
liquid is expectedsilicon oil, for examplg, but also in more tion IV is devoted to the formulation of the linear stability
conducting liquidgcorn or castor ojl where the conduction analysis. We formulate the problem in a general setting in
mechanism is expected to be ohmic and the space chargeder to show a set of equations whose solution would allow
must be absent. Another conspicuous characteristic of thisne to obtain the linear criterion in previous related works on
instability is that it gives rise to a pattern of polygonal cells instabilities in fluids under a perpendicular electric field, with
with a size much greater than the liquid layer thickness. Iror without injection. Nevertheless the general problem is not
other words, it is characterized by a critidahg wavelength.  solved and we restrict to the solution in the limits where new
The beautiful pattern that is obtained when the corona disinstabilities are obtained. This is the case of an air—ohmic
charge is produced by a tip has led us to refer to this instaliquid interface, in Sec. V, where we make some simplifica-
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FIG. 1. Geometrical configuration of the system. The injecting electrode is
atz=—L and the collector electrode is at=d. The interface is between
both electrodes at=0.

The subscripts andc stand for the non-ohmi@nsulat-
ing) and ohmic(conducting fluids, respectivelyE is the
electric field, ¢ is the electric potential, is the current den-
sity, K is the ion mobility,v the fluid velocity. The boundary

tions that allow one to obtain an analytical solution of theconditions for two rigid electrodes are

problem in the limit of long wavelength. Section VI is de- (—L)=1 (—L)=C (—1L)=0 12
voted to the liquid—liquid interface. And finally, in Sec. VII H-L=1 al-L)=C, w(=L)=0, 12
we present our conclusions and discuss possible generaliza- ¢.(d)=0, v(d)=0. (13

tions of this work. In the appendices the detailed derivation he el hanical . he i
and solution of the equations is presented. This is done in The electromechanical boundary conditions at the inter-

1 H _ 3,14
order to facilitate the reading and understanding of the phys@ce defined by the equatidf(x,y,z,t)=0, are

ics involved. n-(e,E)=0g, nNX(E)=0, (14)
Il. STATEMENT OF THE PROBLEM %Hn(v.n)gﬁ VoKo+n(j)=0, (15)
Let us consider two infinite parallel plane electrodes
. i I . : L . =
with a non-ohmi@nsulating/ohmic fluid interface in be o VE=0, n-(Wy=0, nX(v)=0, (16)

tween. The electrodes are perfectly rigid metal plates. Thest
non-ohmic fluid, which we assume to have a lower mass
density, is over the ohmic fluid. The two fluids, initially at My T .

. L . .. . o — + n+ E = -
rest in an equilibrium state, are immiscible and mcompress§ < T (Vv+VV) ) n+osE=0, j=12, (7
ible. The interface is at=0, being the non-ohmic layer at 1
z<_0 and _the ohmic Iayer_ ar>0. T_he non-_ohm_|c layer n-<ﬂ(Vv+VvT)>-n—(p)—<—s,E2>+<s,(n-E)2)
thickness isL and the ohmic layer thickness @ Figure 1 T 2
shows the geometrical configuration, whére L +d is the 1
total length of the system. An applied voltayeexists be- =
tween both electrodes and, eventually, there is unipolar UBo

charge injectiof from the upper electrode. The charge is  Equations(17) and (18) are the tangent and normal bal-
injected toward the lower electrode, reaching the ohmic fluidynce conditions in the interface, respectively. These are the

layer. Takingh, V, eiVIh?, Kie; \_/2/h3’ KiV/h, ande;V?/h?>  pondimensional parameters appearing in E§s-(18):
as the units for distance, electric potential, space charge, cur-

v-n. (18

rent density, velocity and pressure, the set of differential &V _Neil{p) B giV?
equations in nondimensional form for the non-ohmic fluid K M= Ki ~ {p)gh®’
layer is 1
(p)gh? 9
Ei=—-V¢, 1) Bo= y
V.E- = . y 2
T @ doh? ooh?
Ji:qi(Ei+Vi)v (3) C= SiV ! - KiSiV. (20)
Jq; i i
%Jrv-ji:o, 4) It will be useful as well to define the number:
8i‘}/h
V-v,=0, (5) P= K24 (21
I I
Pri ﬁ"‘(V-'V)V- _Evzv__ﬂ _Vp+qE. (6 @andin(6)and(1l):
M2 ot 1 I T (. U € PiT ik .
p pi M
We assume that the lower fluid layer is in ohmic regime p,f@, Pri =<7', m= ;C (22)
I

and that the charge relaxation time is short enough in order
to haveq.=0. Then, its governing equations are while in the boundary conditiond4), (17), and(18) appear:
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e i(—L)=1, 26
SrZﬁy Mr:ﬂr (23 il ) (26
' Hi qi(-L)=C, 27
wherel =i,c for the non-ohmic and the ohmic layer, respec-
tively. ¢c(d)=0, (28
In the equations refers to a vector normal to the sur- $(0)=¢;(0), (29)
face(directed toward the lower flujds to a vector tangent to
the surfaceY, is the operatoW —n(n-V), o is the surface 1c(0)=];(0)=]. (30

charge densityK; is the surface current density, is the

. . i The stationary electric field is
surface tensionp the mass densityg the acceleration of

gravity, o is the ohmic fluid conductivity, andA)=A" Ei(2)=+2j(z+b), z<O0, (31
— A" indicates the jump of the magnitudeat the interface ,
(A' is the vz_;llue of th_e magnituc_zle inside Fhe Iowerf)uﬂihe E(2)= J_’ 7>0, (32)
parameteil is the ratio of electrical and viscous forces in the S

non-ohmic layer and is the control parameter in the stability

fal f insulating liquid subiect t iolar iniectié where we need to find the two constarjtswhich is the
o a fayer of insulating fiquid subject to unipotar INjection. o, rent density, and, which gives u€(07). We can study
The parametet) is a relation between the electrical and

h lati j h h Egs.(2 27).
gravitational forces acting on the interface and is the contro rzn:eéglc()gnt?etweel] andb through Eqs.(26) and (27)

parameter in the interfacial instability. The Bond number Bo

is the ratio of the gravitational and capillary forces. The non- J

dimensional conductivityS plays an essential role in our b:ﬁﬂ" (33

study. It is a relation between the ohmic current density .

o Vih corresponding to the system with only the ohmic fluid ~ ntegrating Eqs.(31) and (32) from z=-L to z=d

and the non-ohmic current denskys;V2/h® corresponding  (€lectric potential equatiorwe have

to the system with only the non-ohmic fluid. Two limit re- )

gimes are distinguished, depending on the values.ofor 1= \Q + §d. (34

example, for two layers of equal thicknessSi 1 the volt-

age drop occurs mainly in the ohmic fluid, whereaSsf 1 Clearly, from Eq.(34), the current density is a function

the lower fluid behaves as a deformable electrode. The paf C. The expression for the nondimensional total surface

rameterS can be considered as well as a relation between theharge(including the polarization chargat the interface is

ohmic and non-ohmic characteristic times/o. and .

h?/K;V. Finally, the boundary condition for the space charge Us:J_ —\2jb. (35)

densityg(—L)=C is extremely important in unipolar injec- S

tion problems and indicates that we have a space charge i the parameterS is small enough a positive surface

source az=—L. The strength of the injection is character- charge tends to accumulate at the interface and in conse-

ized by the injection level paramet€r=qoh?/(e;V), where g ence the electric pressure pushes the lower fluid down. At

qo is the physical space charge density at the injecting elecy certain values®™ of S the surface charge vanishes(

trodez=—L. In this work we will suppose that we can vary —g)_ |f we continue to increass, the surface charge be-

the electric potential and the space charge density indepegpmes negative and the electric pressure pulls up the ohmic

dently (autonomous injector mod@land then the boundary fid.

conditions¢;(—L)=1 andq(—L)=C are independent. Figure 2a) shows the current density and the electric

field at the injector and at the interface plotted as a function

of the injection parameter foB<S™. Figure 2b) is the

corresponding plot foS=>S™, In both cases there are two

well-defined regions: a first region in the ldvvalues(weak

injection) where the current density agj(—L) are, respec-
Both fluids are initially at rest=0. In this staten and tively, increasing and decreasing functions@f andE;(0)

the applied electric field are parallel to the acceleration ofs decreasing fo6<S™™ but increasing foiS>S"". A sec-

gravity (n=e,, E=Eeg,), which implies that the electric field ond region is rapidly reached, in which all magnitudes satu-

is perpendicular to the interface. Taking this into account werate and become constant. This is the space charge limited

can greatly simplify the set of equatiofl§—(18) that reduce current regimgSCLC, see Ref. 1)3and the system is said to

32]
J

3/2 j
|z

j

lll. ELECTRIC FIELD PERPENDICULAR TO THE
INTERFACE AND SPACE CHARGE INJECTION: BASE
STATE SOLUTION

to the system: be understrong injection
dE In Fig. 3 we have plotted the current dengitin the case
ii=qE, —=q, (24)  of low Sas a function ofC for different values ofi. In this
dz case, under strong injection, the current density decreases
dE, when the ohmic layer thickness increases. This “insulating”
ic=SE, e =0 (250 behavior tends to disappear if we switch off the space charge

injection (C—0). The criticalS®™ values versu€ are plot-
with the electrical boundary conditions froth2) to (15): ted in Fig. 4.
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FIG. 4. Critical valuesS®™ of the nondimensional conductivitifor which
1.8 os=0) as a function of the injection level for d=0.02 andd=0.1. C
16 =10
S
12 r”” . . . . . oy
K should not be a limitation in the range @ffor the instability
08 \ — to occur. This is in contrast to the case of a perfect insulating
05 | < Ef(OL’ lower fluid layer, where below certain value dfthe insta-
oa N ™ pility is no longer possiblé? A
02l /T — e The absolute value of the pressure jump$sr S (Fig.
0 , ‘ 6) is an increasing function of the ohmic layer thickness
0 1 2 3 4 5 6 Again this is a potentially unstable situation, because for
(b) c high S regimes the pressure is directed upwards. We can get

' o o still another conclusion: since, under strong injection, Bw
FIG. 2. (a) Reduced current densify electric field at the injecting electrode values allow a much higher surface charge accumulation

Ei(—L), and electric field at the interfacg;(0) in a low S regime, S . . el
=|§(3.5X)1073<Scrit plotted vs the injection péfra)met@r. When thg system than highS values, instability should be expected to occur at

reaches to the space charge limited current rei@@LC) all magnitudes  lower applied potentials for [ovg values. This is clear if it is
become independent of the injection lew&! All variables are nondimen- compared with the magnitude of electric pressure jump in
sional, except where indicated, as defined in Sec.(b).j, E;(—L), and Figs. 5 and 6. Not only the sign of the pressure changes ata

. i i )= it ni i . T .
E;(0) for a highS regime,S>S™, plotted vs the injection parametér. certainS, close toS™ but also the magnitude of the pres-

The weak injection regionG<1) and the SCLC regime are also observable T . crit crit
in high S regimes although with some peculiarities with respect to theow SUre is significantly different fog>S"" andS<S*". In any

regime. case a more precise determination of the critical values of the
electric potential requires a linear instability analysis of the
problem.

By analyzing the static electric pressure junipe)

.=<er2_/2).we can get some que_llitative infor_matiorj on the |y |INEAR INSTABILITY EQUATIONS

interfacial instability mechanism in low and highregimes.

We have plotted the electric pressure jump as a function of ~ Let us study the evolution of a small perturbation of the

the layer thicknessl for a low S value and it is always a steady solution. If the surface profile becomes irregular this

decreasing function of the thickne@gg. 5). This is a poten-  Will produce a deviation from the initial values of the electric

tially unstable situation: given a perturbation of the surfacefield and the current density. We suppose that these pertur-

there will be a higher electric pressure in the thinner areafations are small enough to make possible a linear treatment.

and therefore the perturbation will be reinforced. As the tenAs in the static equations, all the magnitudes introduced here

dency of the pressure keeps the same fodalalues there —are nondimensional. The perturbed surface profile can be ex-

pressed:
0.3
5.0E+02
——d=0.02 4.0E+02
—-—-d=0.04 i
j 3.0E+02 H
..... d=0.1 <pe> ------C=Inf.
2.0E+02 ~———C=01
— —d=05
_ L 1.0E+02
0 : . .
0 2 4 6 8 10 12 0.0E+00
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d
FIG. 3. Current density for S=9.5x 102 as a function of the injection
parametelC for different values of the ohmic layer thicknedsThe SCLC FIG. 5. Electric pressure jumf(1/2)s,E?), for S=9.5xX 103, as a func-
regime is more rapidly reached in thinner ohmic layers. tion of the ohmic layer thickness for different injection levelsC.
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0 0.1 02 03 04 05 086 equations will involve 13 unknown constants. The boundary
T T T g T -0.5 " . . . .
) conditions that follow from introducing a linear perturbation
e 1 ] in (12)—(18) are
M2 gi(—L)=0, (44)
- -2.5
s e gr(—L)=0, (45
-3.5
-4 g.(d)=0, (46)
F-4.5
5 9i(0) = 9c(0)=(V2jb—/S) no, (47)

d

: —1/2~7 " _ 12n. 1/
FI_G. 6. Electric pressure jump in the case of a hgylegime plotted against \/Z[b Yi (0)+ 2(gi (0)—k g,(O))b 2]
thicknessi. ¢ =10 =25¢(0)+ 20U/ (0)~ 2w(g{ (0)—£gl(0)).  (48)

These are the electric boundary conditions. The bound-
: ary conditions(47) and (48) come from the continuity of
— wt+i(kyx+kyy) ) . . .

7(X.y,t)=10€ < (36) electric potential and current density, respectively. From now
wherew is a complex numbek, andk, are real, andy, is on, the primes are always used to indicate the normal deriva-
the deformation amplitude of the interface. The perturbationgive (d/dz). The boundary conditions for the velocity are
of all electric magnitudes can be expressed through the elec-

tric potential perturbatiod¢ that is of the form ui(—L)=ui(~L)=0, (49)
Sd(X,y,z,t)=g(z)e 1tk (37 Uc(d)=ul(d)=0, (50)
As a consequence of the surface deformation, a velocity u;(0)=uc(0)= w7y, (51)

perturbation term will appear. We only keep theomponent

as velocity components tangent to the interface are related to  u/(0)=u’(0). (52)

the normal component throudi-sv=0:
Equationg49) and(50) refer to the rigid electrode boundary

Sv(X,y,z,t) =u(z)e "1 tktiyy) (38 conditions while(51) and (52) are the conditions due to the
being the normal velocity at the interface: two fluids immiscibility (16). Finally the equilibrium of
stresses tangent and normal to the interface are, respectively
u(0)=wmnq. (39 (see Appendix A
Using Egs.(1)—(11) a set of ordinary differential equa- 1
tions is deducedsee Appendix A ?u’c’(O) - ?ui”(O) +Kk?0§(Ec(0) 75— 9.(0))=0, (53

d2 TPri d2
2

=Tk2—2j(z+ b)s’{g<+4(z+ b)z(d—z—k2> }
4 ' dz* G

! /(0) = prott’(0)) + = (u”(0)— 3k2u’(0
Ww(Priui( )= PrcUc( ))+?(Uc( ) u.(0))

— 2 (u(0)- 3K (0 +k2\/L 0
7 (ui"(0)=3k%u; (0)) 5p91(0)

(40)
; 2
2 k2 iha! _ ﬂ ! 4 Zi(k_+ —
\/i__(z—l- b)3’2w(dd—z_5—k2 gi+4(z+ b)diz k| V2jbgi(0)— 5 9¢(0) |+ g5 T1) m0=0.
2] (54)
2 .
x| (z+ b)(d?—kz)gi}:%—ui, (41) Equations(44)—(54) set up a homogeneous system of
d dz equations for the constants of integration of E@)—(43)
d%g and the deformation amplitudg,. The determinant of the
dzzc —k?g.=0, (42 coefficients in this homogeneous system must be zero in or-
der to have a possible nonzero solution for the perturbations.
g2 Torc g2 The zero determinant results in a dispersion relatidk),
(d?—kz) Ww—,u(d?—kz) u.=0. (43 which is also a function of the nondimensional parameters

that characterize the problem. This dispersion relation would
The subscripts andc refer to the non-ohmic and ohmic account for all EHD instabilities in a non-ohmic/ohmic inter-

fluids, respectively. The general solution to this set of differ-face, including the cases without injectibn.

ential equations gives the perturbations of potential, velocity, If we assume that the principle of exchange of instabili-

and surface profile as a function of the wave numbeties applies(for a definition of the principle of exchange of

amongst other parameters. The solution to this system ahstabilities see Ref. 15w =0 marks the point of incipient
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instability. This assumption can be justified in certain limitsk2g (z)—g/(z)=0. (62
where the equations fan=0 are purely hydrostatic. Fao
=0 the equations reduce to The solution to Eqs(61) and (62) are, respectively,
d? 2 2j (2)=AF 43: % 2. Kk%(z+Db)?
(d—zf"‘2 ui=—Tkzg(z+b)‘3’z[gi+4(z+b)2 0i(2)=AF143: 3. 3 ik3(z+Db)?]
) +Bi(z D) A 515, 5 ik (24 D))
d
X d_zz_kz)g‘}’ ®9 +Ci(z+b)3F 453 1 iKA(z+D)%], (63
d d? dg; 9c(2) =A%+ B (64)
4z+b) | (z+D) d—zz—kz)gi}zd—g'—ui, (56) T e
z z The set of boundary conditions gets reduced to the elec-
d%g tric boundary conditions(44)—(48) and the mechanical
dzzc —k?g.=0, (57)  boundary condition in the normal direction to the interface,

that now takes the simplified form

d2 2 .
k2 =
(dz2 k) o= 8 500

&j

V2jbg/ (0)~ 5 9:(0)

For =0 all boundary condition$44)—(53) remain un-

2
changed excep#8), (51) and(54). The condition(51) takes + i k— +1|5,=0. (65)
the following form: UlBo
U;(0)=ug(0)=0 (59) T_he |1=6 functions in (63) are called hypergeometric
functions.® In our problem they are of ord€d,2). The so-
and the conditior{54): lutions of the differential equatiof61) are combinations of
the F, , functions. They are power series of the following
M " 2.1 1 m 2.1 f -
T(uC(O)—Bk uc(O))—?(ui (0)—3k“u; (0)) orm:
. _ (a), Z¢
J — g] F,Aa;b,c;2)= —
ke 5001 \21B10)~ D10 143002 2, T (o,
1/ K2 4. a_. a(a+1) 22+

(66)

In the air—ohmic liquid, interfaces other than the inter-
facial instability mechanism are nonpresent or negligible.

Let us consider the case of an air—liquid interface. Sincé=HP instabilities due to volume forces are absent in the
the ionic mobility in the air is high we can neglect the effect ©mic fluid layer sincej.=0. And also convection in the air
of fluid motion compared to ion transport by the electric field90€S not induce convection in the liquid due to the huge
in the electric current densitys(>v,).” Under this assump- dlfferen(?es of the viscosity F:oefﬁments. Generally both
tion the electrical part of the problem is decoupled from theMechanisms, convective and interfacia, are present and
velocity perturbations in the non-ohmic layer. The Space|nflu'ence each other but from the a.bove—.men'tloned consid-
charge induces motion of the air, the so-called corona wing€rations we may conclude that the instability in the case of
but this motion does not perturb the space charge distribl®" alr/ohmlc liquid interface is governed by the electric pres-
tion. In addition the motion in the air is not transmitted to the SUre acting on the surface.
liquid layer because the dynamic viscosity for the air is or-
ders of magnitude smaller than for the liquid. The differential™ Relevant parameters
equations for the electric potential and the velocity perturba-  As from (34) and (33) the current density andb are
tions in the ohmic layerf42) and (43) are not coupled and functions ofC, it is clear from Eqs(63) to (65) that the only
they can be solved separately. Finally for<1, Eq. (600  nondimensional numbers fro(@9) to (21) that remain in the
shows that the liquid velocity in the ohmic liquid becomes problem are
negligible (see also Ref. 101t follows immediately that the 5 5 5
stationary instability mode, ab=0, in an air-liquid inter- _ T_: oV o= {p)gh 67)
face is purely hydrostatic. The electrical part of the linear PBo (p)gh®’ vy
perturbation equations is

V. THE CASE OF AN AIR—-LIQUID INTERFACE IN THE
LONG WAVELENGTH LIMIT

and

(2+b)?g]"(2) + (2+b)g}(2) - [KA(z+b)?+ g (2) o

—k*(z+b)gi(2)=0, (61) a5V T KigVvo

(68)
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FIG. 7. Dispersion relatiot (k) with S=9.5x 103, d=0.02,C=1C. We

observe the small influence of Bond number in the magnitudé ofeven

g FIG. 8. A comparison of the typical minima & in the weak injection
for two very different values of Bo.

region C<1 and the strong injection regiolC>1. S=9.5x10 3,
Bo=0.1.

Solving the determinar(see Appendix Bcoming from
the boundary condition&t4)—(48), and(65) we get the dis- . . . . .
persion relation for an air/ohmic fluid interface@t= 0. This saturation of all the electric magnitudes in the SCLC regime.

relation yields the following function: we can see in_Fig. 8 th_e variation Ufc. as a_functio_n of th_e
ohmic layer thicknessl in the strong injection regime. It is
U=U(k, Bo, C,S&,d). (69 clear from the graph that thin ohmic layers become unstable

Given a set of values for B6, S,e.d the minimum of at very low potentials under. §troqg injection condition_s. _In
U(K), U,, gives the instability criterion. Foo>U, a few 'Fhe limit S—0 unt_der str_ong |nje§:t|on thg current d?,ens.|ty is
modes, differenk, become unstable. We will denote ks ) =5/d and the dispersion relatio(69) gives U.=d"/e if

the value ofk which gives the minimum o) (k). The Bond Bo—0.

number Bo is the parameter controlling the critical wave . ) , .

numberk, because in an interfacial instability the character-C: N€&' critical nondimensional conductivity

istic instability wavelengthk. is given by the equilibrium (5~S")

between gravitational force and surface tensieee, e.g., Figure 9a) showsU_. as a function ofS in the strong
Refs. 1 and 8 For Bo—0 this characteristic wavelength injection limit. As we can see in Fig.(8) there is a transition
tends to infinity andU. becomes independent of Bo. And region wherdJ. takes negative values, which means that the
conversely, the lower the surface tensigngh Bo valuey  system is always stable. This region coincides with the range
the lower the wavelength of the surface profile in the insta-of S where the surface density charge changes sign and
bility and the greater the influence of Bo in the critical volt- marks the separation between the two different instability
age. Anyway, even for critical valuds>0 the influence of mechanisms in the low and high regimes that we antici-
surface tension on the critical voltage in the long wave repated in Sec. Ill. To the left of the intermediate region we
gion is not very important, remainind.(k.>0) of the same have the instability mechanism for lo@/regimes, which we
order asU.(k.=0). In the following sections we show the think is responsible for the so-called Rose-window instabil-
critical values for an air/liquid interface analyzing separatelyity. And to the right we have the instability that corresponds

the different ranges of th8 parameter. to the well-known instability of a layer of conducting liquid
_ subject to an electric field. As we see, the charge injection
B. Low nondimensional conductivity (S<som) allows one to have instabilities at lower electric potentials in

For low S values, the interface is charged with the sameIOW S regime; than in hig@ regimes. If a c;harge !njeption
sign of the injecting electrode. The electric pressure pushe\é’."’.‘S not applied to lové regimes, thg EHD |nter'faC|aI mslta-
down the liquid layer in this case. Figure 7 is a plot of thebIIIty wou!ql only be p?ss'b'e at hlgher' e.|ECFI’IC potentials.
functionU(K) for a value ofS smaller than that at which the The transition val_ue§c” depend on the injection parameter
interfacial charge changes sign and two different values ogcri‘?f (:);hov;nﬂl]n Figs. (@i atr;]d Srllp).BWhe_nC tendﬁ o zer<|)f
Bo. Above the lineU (k) the plane interface is unstable, be- ~ and there 1s only he m'g regime mechanism.
low it is stable. Depending on the value of Bo the minimum /€ Increase charge injectioB,™ grows up to a limit value

is atk=0 or at some finite but small value>0. However, 91VeN by the saturation of the space charge limited current
below certain value of Bo the minimum is alwayskat 0 regime.
Sngttcvi;g:t:ﬁ;;iiﬁg tir;ep\g;ig; (Strtjnzmnlmum value of D. High nondimensional conductivity ~ (S>S°™")

Figure 8 shows the great influence that has the injection Except for the values o$ close to the asymptote that
parameterC in the weak injection region, as for lo@ the  separates the intermediate and 81eS° regions, the varia-
U, values grow making it necessary to have very high criti-tion of the eigenvalues witl for S>S° is not as dramatic
cal voltagesV, at the upper electrode to make possible theas in the lowS regime regiorFigs. 9a)—-9(c)], U. being of
instability. As soon as we reach the strong injection regionthe same order in the cases of weak and strong injecsiea
U, becomes independent 6f This is a consequence of the Fig. 10. This is expected fo6> S since in this case the
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0.8

u2 08 = = —d=0.02
_ /) 044 e d=0.5
< 0
o

0.2

-2 0.0 05 10 1.5 20
c
-1 FIG. 10. Variation with the injection paramet€r of the critical U, for a
high conducting liquid. Thicknesd=0.02,0.5. If we compare these two
0 1 2 3 4 5 curves we see that the behaviorldf with d is the opposite to that for a low

(a)

15}

S regime. Be=0.1, k.=0.

we have obtained for different Bo values athet 0.02. Even
for strong charge injection, they are very similar to those

2 obtained by other authors in former studies without injection.
This confirms that the instability mechanism, for sntllin
g, high conducting liquids is the same with and without charge
® injection.
- The well-known instability of a layer of a perfect con-
ductor without injection is governed by the relation, in di-
) mensional magnitudés,
—(p)g— yk?+ gk E? coth kL) =0. (70)
0 0.5 1 1.5 2 2.5 3 . . . . .
(®) s For k=0 the instability criterion is
eoE?=(p)gL, (71)

which corresponds tt =L2 in nondimensional magnitudes.
We have correctly obtained this relation fro(@9) for C

2 =0. The corresponding limit foE—o, Bo—0 givesU?
=(2/3)L%”? and reproduces the result in Ref. 10.

The main peculiarity of the cagé— o> with respect to
the caseC=0 in the regionS>S"" comes from the exis-
tence of the asymptotes of the functidh.(S) if there is
injection[see Fig. @a)]. This will be clearer in a dimensional
representation, as explained in Sec. VE.

u(s)
<

-2

p 0.1 0.2 0.3 0.4 E. Comparison between theoretical and experimental
(©) s critical values for low conducting liquids:
Rose-window instability
FIG. 9. (a) Critical parametelt) . as a function ofS under strong injection . . .
C=10" and with an ohmic layer thicknest=0.02, Bo=0.1, k,=0. The This work began as an attempt to theoretically describe
difference in the order of magnitude of the critical valugsfor low and ~ long wave instabilities observed in low conducting and per-
high Sis remarkable, being much higher for highThe instability is absent
(U<0) in the intermediate region, where the surface charge density is near
zero.(b) The region of transition between lo#and highS regime with an T
injection level C=1, beingd=0.02, Bo=0.1, k,=0. (c) The transition
between both regimes for weak injecti@=0.1. As we see the transition 100
region tends to zero fo€E— 0. In the limit of no injectionC=0 the highS
mechanism type occupies all the range of nondimensional conductivities anc 89
the instability is observable in low apparent conductivities only at very high
potentials.d=0.02, Bo=0.1, k.=0.

40

interfacial instability mechanism is similar with and without 2o
injection, as in both cases the liquid is pulled toward the
upper electrode by the electric pressure. 1 2 3 4 5

Clearly’ the limitS— o corresponds to hlgh conductlng FIG. 11. Typical dispersion curves for high conducting liquids. The shape is

!iqUidS- _m '_:ig- 1:!-_\{Ve present the typical _Critic_al curves for gimilar to that found in no injection problems even for strong injecti@n.
interfacial instabilities in perfect conducting liquidsthat  =2x16%, d=0.02,c=10".
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FIG. 12. Interfacial instability criterion vs conductivity. The curve at the left

corresponds to the “down” pressure while the two branches at the rightEIG' ,13' Experimer)ta_l ;et_up:_Trk_)de configuratidhree electrod_e system:
correspond to the “up” pressure. Nondimensional magnitudes=@a, tip-grid-plang. The tip is injecting ions that pass through the grid. We apply
k,=0, d=0.02, s=4.69, C=10°. Dimensional magnitudes:h an electric potentiaV/y at the grid while the plangircular shape with 4 cm

—~102m, Ki~10"% m2/(V's), £i~10 M C2N"Im 2, ()9 diamete) containing the liquid is grounded.
~10* Nm™3.

values are to be compared with the theoretical calculations,
) 1o ) o that go from 0.9 to 1.7 kMFig. 12. An agreement is ex-

fect insulating _Ilqwdé_. " This type of instability is the so-  hacteqd only in the order of magnitude since the systems are
called Rose-window instability, and it is characten_zed by a ot exactly the same in the experimental and theoretical
much longer wavelength than the well-known classical EHDgages: in our experimental setup the grid is not a perfect rigid
convective instability in insulating liquids. In order to predict o5 plate and the triode does not have the same correlation
the critical values for instability we have plotted in Fig. 12 heqyeen voltage and current density than in the theoretical
the dimensional counterpart of Figi&. The curves indicate system. Logically, in these conditions complete agreement

the critical voltages as a function of the liquid conductivity peyeen experimental and theoretical values is not expected.
fqr certain values of the oth.e.r magnitudese the caption of |, experimental setups like the tip—plane configuration
Fig. 12). Two curves are visible. The one on the left-hand yithoyt a grig the disagreement with the theory should be
side corresponds to the interfacial instability in low conduct-,qa important due to the effects of the nonhomogeneity of

ing liquids under strong injection. This isrewinterfacial  he electric field. We recall that, in such a low conducting
instabilit_y_brgnch. This criti_cal _branch only appears with liquid in contact with air, it is not possible to find
charge injection and we think it corresponds to the RoSeperpengicular-field EHD instabilities at so low electric po-
window instability. The area delimited by this curve and theigntials if it is not by applying a charge injectidn.

o=0 axis is the low conducting unstable region. To the

right-hand side, for more conducting liquids, there is another

curve with two solutions for each conductivity value. The VI. LIQUID-LIQUID INTERFACE

lower one marks the point of instability and for—c tends In studies on EHD instabilities limited to problems with-
to 2/3 of the classical value given §y0). Above the upper out space chargéthe zero shear stress dynamics appears in
solution the plane surface is linearly stable. This upper solutwo limits: perfect conductingzero tangent electric field

tion, which is due to the existence of the asymptote in Figand perfect insulating interfacésero surface free charge
9(a), is againnew and appears only under charge injection.
The area delimited by these two solutions is the high con-
ducting unstable region. The intermediate area between the
two critical curves is the stable region.

Some experimental values were obtained in our labora-
tory for a liquid layer subjected to ion injection from a co-
rona discharge in air. The liquid that we used was castor oil,
with a conductivity o.~10"1° (A m)~. We used corona
discharge in a triode configuration. The triode configuration
(Fig. 13 consists in a tip-grid-plane three electrode system
that is intended to correct the nonuniform corona discharge
distribution. The corona discharge is produced on the tip
electrode that is above an intermediate metallic grid. The
grid is parallel to the plane electrode containing the liquid
layer. We apply a voltag¥, to the grid that allows one to fix
a perpendicular electric field over the liquid surface and let$IG. 14. Rose-window instability in a low conducting liquidastor oi.
a certain fraction of the ions coming from the tip pass toward:j/_lO= 12 '%/’_\3/91: 3~25Gk_\(/j, '=|1-55df_LA, Ué:llo;o (QLm)f;- |Tip_pr|16'm|f
the liquid. The experimental criical values o, for the SoareeD 3161, G olne et L5, Litud yer e
instability threshold range from 1.1 to 2.0 kV fdrvalues ity , =958 kg/nf. £ =4.69. Viscosity:u,=6x 104 m%s. lon mobility:
(liquid layer thicknesgfrom 1.2 to 2 mm(Fig. 14. These K,=4x10 " m?/(Vs).
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These two limiting cases are valid as well in the analogousot give the instability criterion, the values here obtained
problems with space charge injection. With or without injec-should reproduce the orders of magnitude of the instability
tion, in the long wave regiok— 0 the shear stress will be thresholds as the capillary forces involved will not have a
zero whatever the electric properties of the two fluids in-strong influence on the magnitude of the critical voltage
volved in the problenjsee Eqs(A12) and (A13)]. In these  value.

cases all the boundary conditions for the linear velocity per-

turbations are then homogeneousvat 0. If besides the dif-

ferential equations of the velocity and electric potential lin-v||. DISCUSSION AND CONCLUSION

ear perturbations are decoupled the interfacial instability

mechanism will be purely static and then the solution of the  In this paper we have obtained the linear instability cri-
electrical part itself gives the correct criterionaat= 0. When  terion for double fluid layer system under a dc perpendicular
are the electric potential and velocity differential equationselectric field and unipolar injection. In classical studies such
decoupled? For sure, =0 problems:3And as well in an  as those by Taylor and McEwan and Melchietthe sign of
injection problem C#0) if the ion mobility of the non- the surface free charge was determined by the ratio between
ohmic fluid is high enough. This is the case for an air |ayerthe conductivities of the two fluids. In nondimensional form,

over an ohmic liquid. However for a two liquid non-ohmic/ oulo
ohmic interface there is a strong coupling between the elec- 0'S=<

tric and viscous terms and convective instabilities may first
appear. Atten and Koulova-Nenova have studied the transivherel refers to the lower fluid andi to the upper one.
tion from interfacial to convective instabilities in injection Depending on the ratio of conductivities the electric pressure
problems in the particular case of an insulating/perfect coneould push down or pull up the liquid surface but, from the
ducting interface in Refs. 9 and 10. In those works it iselectrostatic point of view, the instability mechanism was
demonstrated that i=T?/(UBo) is low enough the inter- essentially the same.

facial instability will occur before the convective one even The unipolar injection from one of the electrodes builds
for strong injectionnote that the special caée=0 gives the a surface charge on the interface given, in nondimensional
criterion by Taylot). Similar curves should be expected in a form, by

non-ohmic/ohmic interface with an arbitrary conductivity. ;

We expect that the instability criteria we have obtained in the gszj— —\2jb. (76)
present work are applicable in the long wave litthitw Bo) S

even for a two liquid interface iP is small enough(Never-  The sign of the charge depends now, not only on the conduc-
theless, for a more precise analogy it should be taken intavity of the ohmic liquid, but also on the level of injection
account that the unit for distance in Ref. 9 is not the totaland the thicknesses of the layers. There is a certain value of
lengthh but the insulating liquid layer thickneds) In fact S, the nondimensional conductivity, for which the surface
we can easily see that Eg&5) and (58) in the limit k—0  charge is zero. Below and above this value the surface charge

T —1)Eu, (75)

reduce to is of the sign of the injecting electrode or the opposite. On
d*u: the contrary to the case without injection, the interfacial in-
_22':0, (720  stability mechanism is different for each situation. In fact,
d the low S value regime is characterized by much lower val-
d*u, ues of the critical voltage.
F:O' (73 It is interesting to note that in the strong injection case

and forL—0 (very small non-ohmic layerthe critical non-

In the long wave limit the differential equations of the dimensional conductivity tends to infinitjplease note that
velocity perturbations are not coupled to the electric partS™ in Fig. 4 increases witll=1—L). This makes possible
that with the boundary conditions fab=0 leads to the the lowS mechanism of instability even for high conducting
trivial solution: liquids (which is not taken into account in the work by

Ui(2)=uy(z)=0 (74) Taylorb). Although our study is only linear and doe; not ap-

! ¢ ' ply to a finitely deformed interface, we can envisage, for

Then it is justified that the solution of the electrical part these reasons and for those explained in the discussion of
of the perturbation equations is the only one that we need t&ig. 12, that the injection from air into a conducting surface
study the interfacial instability, although it is obvious that can play a stabilizing role. It is clear that we are describing a
within this limit we are not able to reproduce convective new interfacial instability mechanism that is not taken into
instabilities® unless we solve completely the equations thataccount in previous related works on fluid interfaces under
we have set: differential equatiori40)—(43) with boundary  stationary perpendicular electric fielti$ and this is due to
conditions(44)—(54). the introduction in the present work of the additional param-

To simplify, we have just put together the arguments ineter C. Experimental techniques to produce electric fields
Refs. 3, 7, and 10 and we have applied them to awith space charge distributions are commonly used in labo-
perpendicular-field non-ohmic/ohmic interface with an arbi-ratories. Then new experimental evidence, unexplained by
trary conductivity, under unipolar injection. On the other previous theoretical works, could appear. We think that an
hand, if the Bond number is not low enough dad0 does  example of this could be the Rose-window instabitity.
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In conclusion we have undertaken a linear instabilitywe get the equations i40) and (41). The equations corre-
analysis of a perpendicular-field non-ohmic/ohmic fluid in- sponding to the ohmic liquid42) and (43) are easily de-
terface. In the case of an air-liquid interface we have obduced from the charge and momentum conservation equa-
tained a purely hydrostatic system of equations. We havéons considering that., 6g.=0.
seen that the relevant parameter in the interfacial instability
is the ratio between electric and gravitational pressures as th Boundary conditions
characteristic eigenvalue i =¢;V?/({p)gh®). The Bond
number Be={p)gh?/y is the parameter that controls the fac
change of the criticak value: for low enough Bo values we
always get the pure interfacial instabilitylat= 0, and in this O (n)=Di(n), (A4)
limit the criterion is exact. We have obtained in this limit the . . .
criterion for a perfect conducting free surface in agreementvhere @ stands for the electric potential solution for the
with former works on EHD instabilities without charge in- Perturbed system:
jection. From an analysis of the static solution we have seen g — b+ 60, (A5)
the difference between the interfacial instability mechanism
with and without charge injection. From this difference manyd¢=g(z)e'®**k¥) peing the electric potential perturbation.
particularities of the interfacial instabilities in low conduct- If the perturbation is small we can consider only the linear
ing liquids rise: charge injection makes possible the appeaterms in the perturbation:
ance of instabilities in these liquids at much lower critical
voltages than in high conducting liquids. A semiquantitative 4 (o) + ¢:(0) 7+ 8bo(0)= ;(0) + 9¢i(0) 7+ 8¢,(0),
comparison with existing experimental data has been made. Jz Jz
We have shown that the analysis can be applied to a liquid/ (A6)
liquid interface if the numbers Bo anél are low enough. \yhich together with the continuity of static potential at
Finally we recall that all the solutions obtained are analytical_ g gjves
and confirmed by experimental observations.

The electric potential continuity condition at the inter-
e gives

0¢i— 6.~ (Ei(0)—E(0))»=0 (AT)

and withE;(0)=j/S andE;(0)= y2jb we have
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7o, (A8)

which is Eq.(47). In a similar way we obtain the normal
current density continuity condition:

APPENDIX A: LINEAR PERTURBATION EQUATIONS ic(7)-(e,+ 8n)=ji(n)-(e,+ on). (A9)
1. Differential equations At first 0rdern.5n:0, then

Differential equation(40) is deduced by applying twice . n ' _
the rotational in the component of the corresponding equa- Ei 2(0)69(0) +q(0) JE; (0) = SIE. A0), (A10)
tion for the linear perturbation i6). Then we have which leads to Eq(48). The rest of boundary conditions are

d2 T d2 deduced in a similar way. Special attention may be given to
—| == K| 50— | == —K?| |y the tangent and normal stress balandg$ and(18). Know-

dz M dz in

g that
d2
=Tk ¢"gi— ¢’ ——kz)gi : (A1) I A _9n _9n
The second differential equation for the non-ohmic lig- (A11)

uid comes from the charge conservation equation. The line

h f the li ion of the sh
equation for the perturbation is the following: % e two components of the linear perturbatlon of the shear

stress balance are

d2
| =—=—Kk?|gi+ ¢"u; wr[ddvy,  ddv an  98¢p(0)
(dzz | | <?r azx+ axz 75| B0 55~ 0>C< =0,
"”e! " d2 2 ’ d dz 2 (AlZ)
= "9 +2¢"| Z K9t | gz K9 (A2)
e (980,  26v, gy 38¢(0)
In Egs.(A1) and(A2) — ¢’ stands for the static electric T\ oz Ty ) TS| BelO 0 = =5 —)=0
field, whose value is given b{81) and(32). Knowing that (A13)
¢ —2(2+4b) ¢ —4(z+b)2 (a3)  @pplyingd/ox andaldy, respeciively, and adding these two
" P components:
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2

My d*ov, asV-6v=0. With this andVn= —A4» the linear perturba-
T\ AT

> +0os(Ec(0)Asn—As0¢(0))=0. tion of the normal stress takes the form(B¥) if we apply
(A14) A to Eq. (A16).
The operatorA (= 9%/ 9x*>+ 9%/ 9y? applied to the linear
perturbations is— k2. In consequence, the condition gets ~ APPENDIX B: DISPERSION RELATION
K2 _ _
> ko(Ec(0)70~9¢(0)) =0 boundary conditions in the steady state=0 [(44)—(48),

1 2
- ?< Mr
(A15)  (65)] have the following structure:

K2u+ o
UT 5z

And as(u)=0, the equation takes the form {B3). The azA;+ayB;+asC;=0, (B1)

linear perturbation of the normal stress balance is

With the solutionsg;(z) and g.(z) the six remaining

C3Ai+C4Bi+C5Ci:0, (BZ)
My [ 9OV, 1 N1
ATz ]) g (9P +{eBodT)=Gg Von, diAc+dyB.=0, (B3)
(A16) 1A+ €,Bo+ €A +e,4B; +e5Ci— R7p =0, (B4)
op) being the linear perturbation in the total pressure jum
< p> g p p J p flAC+fZBC+f3Ai+f4Bi+f5Ci=01 (BS)

(pYY=(p)+(3Sp). We can eliminate sp) with the x andy
components of the Navier—Stokes equations. These equa- h A +h,B.+hsA+h,B;+hsC,—\ 7,=0. (B6)

tions for the non-ohmic layer are o .
The factors multiplying the unknown coefficients

pii dOvix _ dop 1 6 Ac,B¢,A,B;,Ci, o are functions ok, j,b,d,S, ande. With

MZ gt X fvzévix_qW’ (AL ihese six equations with six unknown coefficients we con-
struct the determinant that has to be zero. This determinant is

Pri ddviy _ @+ Evzav- —q% (A18) expressed in the following, where rows correspond to bound-

M* gt ay T voT gy ary equations(B1)—(B5), and (B6), respectively, and col-

Applying d/9x and d/dy to (A17) and (A18), respec- umns stand for the const_ants o_f integration
tively, and adding both of them we get A:,B¢ A ,B;,C;, and the_ deformat_lon_amplltudeo. The
elements are the coefficients multiplying each constant of

e~ 7 T e <0 ate) [ISELennd delmaon ampituden the columns
J
[ 0 0 ag(k,b,d) ayk,b,d) as(k,b,d) 0 ]
0 0 ca(k,b,d) cyu(k,b,d) cs(k,b,d) 0
d,(k,d) d,(k,d) 0 0 0 0
ey (k) (k) es(k,b)  ey(kb)  es(kb) —R(j,bS) |’
f1(k,S) fa(k,S)  fa(k,j,b)  fa(k,j,b) fs(k,j,b) 0
| hai(k,j,Sie)  ha(k,j,Se) ha(k,j,b) hy(kj,b) hs(k,j,b) -\

where the coefficients are

ag(k,b,d)=F13; %, & #(b—1+d)%?3), (B7)
a,(k,b,d)=b—1+dF1(7; 7, 3; 5(b—1+d)%k?), (B8)
as(k,b,d)=(b—1+d)¥F 1 A3; 3, §; 3(b—1+d)%k?), (B9)

ca(k,b,d)=3KF1A3; 3, 5; 3(b—1+d)%k?) + Zk* b—1+d)?F1 A3; 3, & 3(b—1+d)%k?), (B10)



2750 Phys. Fluids, Vol. 14, No. 8, August 2002 F. Vega and A. T. Pérez
1 3151 7391
— —._ .= 21,2 2 e . 21,2
c4(k,b,d)= 4(b_1+d)32F1,2(4 517701+ 2 k Vb—1+dF, <4 51770~ 1+0) k)
11 5 13 1
4 5/2 It 21,2
k(b 1+d)%%F, (4 5 7ig(b- 1+d)k) (B11)
k,b,d)= 3 =5 5371b1d2k2 k2b1d3’2|= (95111b1d2k2
Cs(,,)—4—m dgi5 7 7(P71+d) ( T)TF 1 75 7 +d)
3 137 151
LA 712 . .= 21,2
+ ==k#(b—1+d) F1'2(4 5 7 iz(b—-1+0) k) (B12)
[
difk.d)=e"% (B13 hs(k,j,b)= J_ —F E E E Ebzkz
LB)= N e T332 47
dy(k,d)=e"q, (B14)
8 3571
. +—b2k2F12{—;—,—;—b2k2D, (B25)
. - 3 22'4°4° 4
ei(k)=ey(k)=—-1, R(j,b,S)=\/2b]—§, (B15)
_ k2\2jb* (7391
hy(k.j.b)= ——F—Fia7i5.7:70°%*|.  (B29)
es(k,b)=F1A3; 7, §: 7b%K?), (B16)
5371
hs(k,j,b)=2jb - = —;—bzkz}
eq(k,b)=b"F, A3 3, 5; 5b%?), (B17) sil] Vi ( 2{4 2'4°4
s (95111,
es(k,b)=b¥%F1 43 3, 7; 7b%K?), (B18) b KF1a7:5. 720K (B27)
- - 1 1
f1(k,S)=—f,(k,S)=2kS, (B19) oL 1+_k2>. (828
U Bo
fa(k,j,b)=V2bjk*(=2F 4 3; 7, 3; 3b%k?]

1

+4F 4% %, % 1b%3))

+2bjkA(Eb%KF1 43 7, 75 7b%K7D),

(B20)
fa(kj.b)=2]bKA(—2F 1 43: 3, §: 1077
+3F1 453, 5§07 +\2]bk?
X (7=b%K2F o[ % 5, 25 5b%K%]),  (B2D)

V2j

f5(k7j vb): W
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4 )

1
1?1

.

7151
2'4'4

6b4k4F1,2< bzkz)

—77(—3+2b%k?)

F 537
1208

11
"4

Bl © -MH
NI G

1
+165%k?F 2( szkz) ) (B22)

hy(j.k,Se)=ejkl/S, (B23)

hz(jlleIS):_sjk/S, (824)

One can obtain the instability criterion by calculating the
determinant, with mathematical software, putting this set of
elements here supplied. Most of calculations were operated
with MATHEMATICA 1" where theF, , appearing in the set of
functions are referred to asypergeometricPFQAN effort is
made in this work to make it easy to follow the mathematical
procedure and to make possible for an eventual interested
reader to make his/her own calculations and developments
based on the mathematical results of this first theoretical ap-
proach to the non-ohmic/ohmic perpendicular field EHD in-
stabilities.
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