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We set the equations for the linear electrohydrodynamic instability of an interface between two
fluids, subjected to a perpendicular field and a unipolar charge injection. One of the fluids is
modeled as being in non-ohmic regime~insulating!, whereas the other is ohmic. A new interfacial
instability mechanism is described, which may account for the Rose-window instability. The
equations are analytically solved in the limit of long wavelength and neglecting the fluid motion. We
show that this limit applies well to the case of an air–ohmic liquid interface. The applicability to a
liquid–liquid interface is also analyzed. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1488146#

I. INTRODUCTION

Electrohydrodynamic~EHD! stability of fluids under a
perpendicular electric field to the interface has been exten-
sively studied in the case of no injection.1–3 But systems
under charge injection, which allow a steady space charge
distribution, show instabilities with some peculiarities that
make their study interesting. The works by Mimaet al.4 and
Giannetta and Ikezi5 studied the dynamics of a helium liquid
interface negatively charged. But they do not consider the
existence of a space charge either in the liquid or in the
vapor. The injection in a plane geometry was theoretically
studied by Atten and Moreau in an insulating liquid layer.6

This study was later extended to double layer systems: air/
insulating liquid and insulating/perfect conducting
liquids.7–10 From this, the initial problem without space
charge distribution in the no injection case turns with injec-
tion into a more complicated problem with“"EÞ0.

In this work we study the EHD interfacial instability for
a two fluid system: a non-ohmic~insulating! fluid layer is
superposed to an ohmic fluid layer with an arbitrary conduc-
tivity. And we show that there is anew interfacial instability
mechanism. Our study was initially motivated by some re-
cent experiments11 in which an instability of a plane liquid
surface is observed. This instability appears when a thin
layer of low conducting liquid~in ohmic or non-ohmic re-
gime! is subjected to a corona discharge in air. The instability
has some peculiarities that distinguish it from previous
known EHD phenomena. It appears in highly insulating liq-
uids where the existence of space charge in the volume of the
liquid is expected~silicon oil, for example!, but also in more
conducting liquids~corn or castor oil!, where the conduction
mechanism is expected to be ohmic and the space charge
must be absent. Another conspicuous characteristic of this
instability is that it gives rise to a pattern of polygonal cells
with a size much greater than the liquid layer thickness. In
other words, it is characterized by a criticallong wavelength.
The beautiful pattern that is obtained when the corona dis-
charge is produced by a tip has led us to refer to this insta-

bility as the Rose-window instability. The experimental
results11,12 have induced us to think that the instability is
essentially static, and due to the destabilizing effect of the
electric pressure onto the liquid surface. This is the reason
why the following analysis is essentially hydrostatics with
the additional electric stresses at the surface.

After a considerable part of the study was accomplished
we realized that, under certain circumstances, our conclu-
sions were also of application to a liquid–liquid interface.
Therefore we have chosen to present the problem in a more
general scenario, involving two fluid layers. Although at the
end we will neglect the fluid velocities, we think it is inter-
esting to present and discuss the whole set of equations. In
doing so, the reader will know what terms are neglected and
the validity of the analysis will be better established. The
applicability to a liquid–gas or a liquid–liquid interface is
discussed throughout the paper.

The instability analysis is carried out in the standard
way. The base stationary solution is perturbed in Fourier
modes and a set of linear differential equations is obtained
for the small perturbations of this base solution. The bound-
ary conditions provide a set of algebraic equations for the
coefficients of the solutions to the linear differential equa-
tions. The determinant corresponding to the coefficients of
this system should be zero for a nontrivial solution to exist.
This gives a functionU(k), whereU is the characteristic
eigenvalue of the system andk the wave number. In Sec. II
we propose a general formulation of the problem of a non-
ohmic/ohmic interface subjected to injection. Section III dis-
cusses the solution for the unperturbed plane interface. Sec-
tion IV is devoted to the formulation of the linear stability
analysis. We formulate the problem in a general setting in
order to show a set of equations whose solution would allow
one to obtain the linear criterion in previous related works on
instabilities in fluids under a perpendicular electric field, with
or without injection. Nevertheless the general problem is not
solved and we restrict to the solution in the limits where new
instabilities are obtained. This is the case of an air–ohmic
liquid interface, in Sec. V, where we make some simplifica-
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tions that allow one to obtain an analytical solution of the
problem in the limit of long wavelength. Section VI is de-
voted to the liquid–liquid interface. And finally, in Sec. VII
we present our conclusions and discuss possible generaliza-
tions of this work. In the appendices the detailed derivation
and solution of the equations is presented. This is done in
order to facilitate the reading and understanding of the phys-
ics involved.

II. STATEMENT OF THE PROBLEM

Let us consider two infinite parallel plane electrodes
with a non-ohmic~insulating!/ohmic fluid interface in be-
tween. The electrodes are perfectly rigid metal plates. The
non-ohmic fluid, which we assume to have a lower mass
density, is over the ohmic fluid. The two fluids, initially at
rest in an equilibrium state, are immiscible and incompress-
ible. The interface is atz50, being the non-ohmic layer at
z,0 and the ohmic layer atz.0. The non-ohmic layer
thickness isL and the ohmic layer thickness isd. Figure 1
shows the geometrical configuration, whereh5L1d is the
total length of the system. An applied voltageV exists be-
tween both electrodes and, eventually, there is unipolar
charge injection6 from the upper electrode. The charge is
injected toward the lower electrode, reaching the ohmic fluid
layer. Takingh, V, « iV/h2, Ki« i V2/h3, KiV/h, and« iV

2/h2

as the units for distance, electric potential, space charge, cur-
rent density, velocity and pressure, the set of differential
equations in nondimensional form for the non-ohmic fluid
layer is

Ei52“f i , ~1!

“"Ei5qi , ~2!

j i5qi~Ei1vi !, ~3!

]qi

]t
1“"j i50, ~4!

“"vi50, ~5!

r ri

M2 S ]vi

]t
1~vi "“ !vi D2

1

T
¹2vi5

r ri

U
ez2“pi1qiEi . ~6!

We assume that the lower fluid layer is in ohmic regime
and that the charge relaxation time is short enough in order
to haveqc50. Then, its governing equations are

Ec52“fc , ~7!

“"Ec50, ~8!

j c5SEc , ~9!

“"vc50, ~10!

r rc

M2 S ]vc

]t
1~vc"“ !vcD2

m

T
¹2vc5

r rc

U
ez2“pc . ~11!

The subscriptsi andc stand for the non-ohmic~insulat-
ing! and ohmic~conducting! fluids, respectively.E is the
electric field,f is the electric potential,j is the current den-
sity, K is the ion mobility,v the fluid velocity. The boundary
conditions for two rigid electrodes are

f i~2L !51, qi~2L !5C, vi~2L !50, ~12!

fc~d!50, vc~d!50. ~13!

The electromechanical boundary conditions at the inter-
face, defined by the equationF(x,y, z,t)50, are13,14

n"^« rE&5ss , nÃ^E&50, ~14!

]ss

]t
1vn~“"n!ss1“s"K s1n"^ j &50, ~15!

]F

]t
1vnn"“F50, n"^v&50, nÃ^v&50, ~16!

sj "K m r

T
~“v1“vT!L "n1sssj "E50, j 51,2, ~17!

n"K m r

T
~“v1“vT!L "n2^p&2 K 1

2
« rE

2L 1^« r~n"E!2&

5
1

U Bo
“"n. ~18!

Equations~17! and~18! are the tangent and normal bal-
ance conditions in the interface, respectively. These are the
nondimensional parameters appearing in Eqs.~6!–~18!:

T5
« iV

Kim i
, M5

A« i /^r&
Ki

, U5
« iV

2

^r&gh3 ,

~19!

Bo5
^r&gh2

g
,

C5
q0h2

« iV
, S5

sch
2

Ki« iV
. ~20!

It will be useful as well to define the numberP:

P5
« igh

Ki
2m i

2 ~21!

and in ~6! and ~11!:

r rc5
rc

^r&
, r ri 5

r i

^r&
, m5

mc

m i
, ~22!

while in the boundary conditions~14!, ~17!, and~18! appear:

FIG. 1. Geometrical configuration of the system. The injecting electrode is
at z52L and the collector electrode is atz5d. The interface is between
both electrodes atz50.
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« r5
« l

« i
, m r5

m l

m i
, ~23!

wherel 5 i ,c for the non-ohmic and the ohmic layer, respec-
tively.

In the equationsn refers to a vector normal to the sur-
face~directed toward the lower fluid!, s to a vector tangent to
the surface,“s is the operator“2n(n"“), ss is the surface
charge density,K s is the surface current density,g is the
surface tension,r the mass density,g the acceleration of
gravity, sc is the ohmic fluid conductivity, and̂A&5A1

2A2 indicates the jump of the magnitudeA at the interface
~A1 is the value of the magnitude inside the lower fluid!. The
parameterT is the ratio of electrical and viscous forces in the
non-ohmic layer and is the control parameter in the stability
of a layer of insulating liquid subject to unipolar injection.6

The parameterU is a relation between the electrical and
gravitational forces acting on the interface and is the control
parameter in the interfacial instability. The Bond number Bo
is the ratio of the gravitational and capillary forces. The non-
dimensional conductivityS plays an essential role in our
study. It is a relation between the ohmic current density
scV/h corresponding to the system with only the ohmic fluid
and the non-ohmic current densityKi« iV

2/h3 corresponding
to the system with only the non-ohmic fluid. Two limit re-
gimes are distinguished, depending on the value ofS: for
example, for two layers of equal thickness, ifS!1 the volt-
age drop occurs mainly in the ohmic fluid, whereas ifS@1
the lower fluid behaves as a deformable electrode. The pa-
rameterS can be considered as well as a relation between the
ohmic and non-ohmic characteristic times« i /sc and
h2/KiV. Finally, the boundary condition for the space charge
densityq(2L)5C is extremely important in unipolar injec-
tion problems and indicates that we have a space charge
source atz52L. The strength of the injection is character-
ized by the injection level parameterC5q0h2/(« iV), where
q0 is the physical space charge density at the injecting elec-
trodez52L. In this work we will suppose that we can vary
the electric potential and the space charge density indepen-
dently ~autonomous injector model6! and then the boundary
conditionsf i(2L)51 andq(2L)5C are independent.

III. ELECTRIC FIELD PERPENDICULAR TO THE
INTERFACE AND SPACE CHARGE INJECTION: BASE
STATE SOLUTION

Both fluids are initially at restv50. In this state,n and
the applied electric field are parallel to the acceleration of
gravity ~n5ez , E5Eez!, which implies that the electric field
is perpendicular to the interface. Taking this into account we
can greatly simplify the set of equations~1!–~18! that reduce
to the system:

j i5qiEi ,
dEi

dz
5qi , ~24!

j c5SEc ,
dEc

dz
50 ~25!

with the electrical boundary conditions from~12! to ~15!:

f i~2L !51, ~26!

qi~2L !5C, ~27!

fc~d!50, ~28!

fc~0!5f i~0!, ~29!

j c~0!5 j i~0!5 j . ~30!

The stationary electric field is

Ei~z!5A2 j ~z1b!, z,0, ~31!

Ec~z!5
j

S
, z.0, ~32!

where we need to find the two constantsj , which is the
current density, andb, which gives usE(02). We can study
the relation betweenj and b through Eqs.~26! and ~27!.
From Eq.~27!:

b5
j

2C2 1L. ~33!

Integrating Eqs.~31! and ~32! from z52L to z5d
~electric potential equation! we have

15A8

9
j F S j

2C2 1L D 3/2

2S j

2C2D 3/2G1
j

S
d. ~34!

Clearly, from Eq.~34!, the current density is a function
of C. The expression for the nondimensional total surface
charge~including the polarization charge! at the interface is

ss5
j

S
2A2 jb. ~35!

If the parameterS is small enough a positive surface
charge tends to accumulate at the interface and in conse-
quence the electric pressure pushes the lower fluid down. At
a certain valueScrit of S the surface charge vanishes (ss

50). If we continue to increaseS, the surface charge be-
comes negative and the electric pressure pulls up the ohmic
fluid.

Figure 2~a! shows the current density and the electric
field at the injector and at the interface plotted as a function
of the injection parameter forS!Scrit. Figure 2~b! is the
corresponding plot forS@Scrit. In both cases there are two
well-defined regions: a first region in the lowC values~weak
injection! where the current density andEi(2L) are, respec-
tively, increasing and decreasing functions ofC, andEi(0)
is decreasing forS!Scrit but increasing forS@Scrit. A sec-
ond region is rapidly reached, in which all magnitudes satu-
rate and become constant. This is the space charge limited
current regime~SCLC, see Ref. 13! and the system is said to
be understrong injection.

In Fig. 3 we have plotted the current densityj in the case
of low S as a function ofC for different values ofd. In this
case, under strong injection, the current density decreases
when the ohmic layer thickness increases. This ‘‘insulating’’
behavior tends to disappear if we switch off the space charge
injection (C→0). The criticalScrit values versusC are plot-
ted in Fig. 4.
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By analyzing the static electric pressure jump^pe&
5^« rE

2/2& we can get some qualitative information on the
interfacial instability mechanism in low and highS regimes.
We have plotted the electric pressure jump as a function of
the layer thicknessd for a low S value and it is always a
decreasing function of the thickness~Fig. 5!. This is a poten-
tially unstable situation: given a perturbation of the surface
there will be a higher electric pressure in the thinner areas
and therefore the perturbation will be reinforced. As the ten-
dency of the pressure keeps the same for alld values there

should not be a limitation in the range ofd for the instability
to occur. This is in contrast to the case of a perfect insulating
lower fluid layer, where below certain value ofd the insta-
bility is no longer possible.7,8

The absolute value of the pressure jump forS@Scrit ~Fig.
6! is an increasing function of the ohmic layer thicknessd.
Again this is a potentially unstable situation, because for
high S regimes the pressure is directed upwards. We can get
still another conclusion: since, under strong injection, lowS
values allow a much higher surface charge accumulation
than highS values, instability should be expected to occur at
lower applied potentials for lowS values. This is clear if it is
compared with the magnitude of electric pressure jump in
Figs. 5 and 6. Not only the sign of the pressure changes at a
certainS, close toScrit, but also the magnitude of the pres-
sure is significantly different forS@Scrit andS!Scrit. In any
case a more precise determination of the critical values of the
electric potential requires a linear instability analysis of the
problem.

IV. LINEAR INSTABILITY EQUATIONS

Let us study the evolution of a small perturbation of the
steady solution. If the surface profile becomes irregular this
will produce a deviation from the initial values of the electric
field and the current density. We suppose that these pertur-
bations are small enough to make possible a linear treatment.
As in the static equations, all the magnitudes introduced here
are nondimensional. The perturbed surface profile can be ex-
pressed:

FIG. 2. ~a! Reduced current densityj , electric field at the injecting electrode
Ei(2L), and electric field at the interfaceEi(0) in a low S regime, S
59.531023!Scrit, plotted vs the injection parameterC. When the system
reaches to the space charge limited current regime~SCLC! all magnitudes
become independent of the injection levelC. All variables are nondimen-
sional, except where indicated, as defined in Sec. III.~b! j , Ei(2L), and
Ei(0) for a highS regime,S@Scrit, plotted vs the injection parameterC.
The weak injection region (C!1) and the SCLC regime are also observable
in high S regimes although with some peculiarities with respect to the lowS
regime.

FIG. 3. Current densityj for S59.531023 as a function of the injection
parameterC for different values of the ohmic layer thicknessd. The SCLC
regime is more rapidly reached in thinner ohmic layers.

FIG. 4. Critical valuesScrit of the nondimensional conductivity~for which
ss50! as a function of the injection levelC for d50.02 andd50.1. C
5103.

FIG. 5. Electric pressure jump̂(1/2)« rE
2&, for S59.531023, as a func-

tion of the ohmic layer thicknessd for different injection levelsC.
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h~x,y,t !5h0evt1 i (kxx1kyy), ~36!

wherev is a complex number,kx andky are real, andh0 is
the deformation amplitude of the interface. The perturbations
of all electric magnitudes can be expressed through the elec-
tric potential perturbationdf that is of the form

df~x,y,z,t !5g~z!evt1 i (kxx1kyy). ~37!

As a consequence of the surface deformation, a velocity
perturbation term will appear. We only keep thez component
as velocity components tangent to the interface are related to
the normal component through“"dv50:

dvz~x,y,z,t !5u~z!evt1 i (kxx1kyy) ~38!

being the normal velocity at the interface:

u~0!5vh0 . ~39!

Using Eqs.~1!–~11! a set of ordinary differential equa-
tions is deduced~see Appendix A!:

S d2

dz2 2k2D FTr ri

M2 v2S d2

dz2 2k2D Gui

5Tk2
A2 j

4
~z1b!23/2Fgi14~z1b!2S d2

dz2 2k2Dgi G ,
~40!

4

A2 j
~z1b!3/2vS d2

dz2 2k2Dgi14~z1b!
d

dz

3F ~z1b!S d2

dz2 2k2Dgi G5
dgi

dz
2ui , ~41!

d2gc

dz2 2k2gc50, ~42!

S d2

dz2 2k2D FTr rc

M2 v2mS d2

dz2 2k2D Guc50. ~43!

The subscriptsi andc refer to the non-ohmic and ohmic
fluids, respectively. The general solution to this set of differ-
ential equations gives the perturbations of potential, velocity,
and surface profile as a function of the wave number
amongst other parameters. The solution to this system of

equations will involve 13 unknown constants. The boundary
conditions that follow from introducing a linear perturbation
in ~12!–~18! are

gi~2L !50, ~44!

gi9~2L !50, ~45!

gc~d!50, ~46!

gi~0!2gc~0!5~A2 jb2 j /S!h0 , ~47!

A2 j @b21/2gi8~0!12~gi9~0!2k2gi~0!!b1/2#

52Sgc8~0!12ssui8~0!22v~gi8~0!2«gc8~0!!. ~48!

These are the electric boundary conditions. The bound-
ary conditions~47! and ~48! come from the continuity of
electric potential and current density, respectively. From now
on, the primes are always used to indicate the normal deriva-
tive (d/dz). The boundary conditions for the velocity are

ui~2L !5ui8~2L !50, ~49!

uc~d!5uc8~d!50, ~50!

ui~0!5uc~0!5vh0 , ~51!

ui8~0!5uc8~0!. ~52!

Equations~49! and~50! refer to the rigid electrode boundary
conditions while~51! and ~52! are the conditions due to the
two fluids immiscibility ~16!. Finally the equilibrium of
stresses tangent and normal to the interface are, respectively
~see Appendix A!,

m

T
uc9~0!2

1

T
ui9~0!1k2ss~Ec~0!h02gc~0!!50, ~53!

1

M2 v~r ri ui8~0!2r rcuc8~0!!1
m

T
~uc-~0!23k2uc8~0!!

2
1

T
~ui-~0!23k2ui8~0!!1k2A j

2b
gi~0!

2k2SA2 jbgi8~0!2
« j

S
gc8~0! D1k2

1

U S k2

Bo
11Dh050.

~54!

Equations~44!–~54! set up a homogeneous system of
equations for the constants of integration of Eqs.~40!–~43!
and the deformation amplitudeh0 . The determinant of the
coefficients in this homogeneous system must be zero in or-
der to have a possible nonzero solution for the perturbations.
The zero determinant results in a dispersion relationv(k),
which is also a function of the nondimensional parameters
that characterize the problem. This dispersion relation would
account for all EHD instabilities in a non-ohmic/ohmic inter-
face, including the cases without injection.1

If we assume that the principle of exchange of instabili-
ties applies~for a definition of the principle of exchange of
instabilities see Ref. 15! v50 marks the point of incipient

FIG. 6. Electric pressure jump in the case of a highS regime plotted against
thicknessd. C5104.
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instability. This assumption can be justified in certain limits
where the equations forv50 are purely hydrostatic. Forv
50 the equations reduce to

S d2

dz2 2k2D 2

ui52Tk2
A2 j

4
~z1b!23/2Fgi14~z1b!2

3S d2

dz2 2k2Dgi G , ~55!

4~z1b!
d

dzF ~z1b!S d2

dz2 2k2Dgi G5
dgi

dz
2ui , ~56!

d2gc

dz2 2k2gc50, ~57!

S d2

dz2 2k2D 2

uc50. ~58!

For v50 all boundary conditions~44!–~53! remain un-
changed except~48!, ~51! and~54!. The condition~51! takes
the following form:

ui~0!5uc~0!50 ~59!

and the condition~54!:

m

T
~uc-~0!23k2uc8~0!!2

1

T
~ui-~0!23k2ui8~0!!

1k2A j

2b
gi~0!2k2SA2 jbgi8~0!2

« j

S
gc8~0! D

1k2
1

U S k2

Bo
11Dh050. ~60!

V. THE CASE OF AN AIR–LIQUID INTERFACE IN THE
LONG WAVELENGTH LIMIT

Let us consider the case of an air–liquid interface. Since
the ionic mobility in the air is high we can neglect the effect
of fluid motion compared to ion transport by the electric field
in the electric current density (Ei@v i).

7 Under this assump-
tion the electrical part of the problem is decoupled from the
velocity perturbations in the non-ohmic layer. The space
charge induces motion of the air, the so-called corona wind,
but this motion does not perturb the space charge distribu-
tion. In addition the motion in the air is not transmitted to the
liquid layer because the dynamic viscosity for the air is or-
ders of magnitude smaller than for the liquid. The differential
equations for the electric potential and the velocity perturba-
tions in the ohmic layer~42! and ~43! are not coupled and
they can be solved separately. Finally fork!1, Eq. ~60!
shows that the liquid velocity in the ohmic liquid becomes
negligible~see also Ref. 10!. It follows immediately that the
stationary instability mode, atv50, in an air–liquid inter-
face is purely hydrostatic. The electrical part of the linear
perturbation equations is

~z1b!2gi-~z!1~z1b!gi9~z!2@k2~z1b!21 1
4#gi8~z!

2k2~z1b!gi~z!50, ~61!

k2gc~z!2gc9~z!50. ~62!

The solution to Eqs.~61! and ~62! are, respectively,

gi~z!5AiF1,2@
1
2 ; 3

2 , 3
4 ; 1

4 k2~z1b!2#

1Bi~z1b!1/2F1,2@
3
4 ; 1

2 , 5
4 ; 1

4 k2~z1b!2#

1Ci~z1b!3/2F1,2@
5
4 ; 3

2 , 7
4 ; 1

4 k2~z1b!2#, ~63!

gc~z!5Ace
kz1Bce

2kz. ~64!

The set of boundary conditions gets reduced to the elec-
tric boundary conditions~44!–~48! and the mechanical
boundary condition in the normal direction to the interface,
that now takes the simplified form

A j

2b
gi~0!2SA2 jbgi8~0!2

« j

S
gc8~0! D

1
1

U S k2

Bo
11Dh050. ~65!

The F functions in ~63! are called hypergeometric
functions.16 In our problem they are of order~1,2!. The so-
lutions of the differential equation~61! are combinations of
the F1,2 functions. They are power series of the following
form:

F1,2~a;b,c;z!5 (
k50

`
~a!k

~b!k~c!k

zk

k!

511
a

bc
z1

a~a11!

b~b11!c~c11!

z2

2
1¯ .

~66!

In the air–ohmic liquid, interfaces other than the inter-
facial instability mechanism are nonpresent or negligible.
EHD instabilities due to volume forces are absent in the
ohmic fluid layer sinceqc50. And also convection in the air
does not induce convection in the liquid due to the huge
differences of the viscosity coefficients. Generally both
mechanisms, convective and interfacial,9,10 are present and
influence each other but from the above-mentioned consid-
erations we may conclude that the instability in the case of
an air/ohmic liquid interface is governed by the electric pres-
sure acting on the surface.

A. Relevant parameters

As from ~34! and ~33! the current densityj and b are
functions ofC, it is clear from Eqs.~63! to ~65! that the only
nondimensional numbers from~19! to ~21! that remain in the
problem are

U5
T2

P Bo
5

«0V2

^r&gh3 , Bo5
^r&gh2

g
~67!

and

C5
q0h2

« iV
, S5

sch
2

Ki« iV
. ~68!
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Solving the determinant~see Appendix B! coming from
the boundary conditions~44!–~48!, and~65! we get the dis-
persion relation for an air/ohmic fluid interface atv50. This
relation yields the following function:

U5U~k, Bo, C,S,«,d!. ~69!

Given a set of values for Bo,C,S,«,d the minimum of
U(k), Uc , gives the instability criterion. ForU.Uc a few
modes, differentk, become unstable. We will denote askc

the value ofk which gives the minimum ofU(k). The Bond
number Bo is the parameter controlling the critical wave
numberkc because in an interfacial instability the character-
istic instability wavelengthkc is given by the equilibrium
between gravitational force and surface tension~see, e.g.,
Refs. 1 and 9!. For Bo→0 this characteristic wavelength
tends to infinity andUc becomes independent of Bo. And
conversely, the lower the surface tension~high Bo values!
the lower the wavelength of the surface profile in the insta-
bility and the greater the influence of Bo in the critical volt-
age. Anyway, even for critical valueskc.0 the influence of
surface tension on the critical voltage in the long wave re-
gion is not very important, remainingUc(kc.0) of the same
order asUc(kc50). In the following sections we show the
critical values for an air/liquid interface analyzing separately
the different ranges of theS parameter.

B. Low nondimensional conductivity „SËScrit
…

For low S values, the interface is charged with the same
sign of the injecting electrode. The electric pressure pushes
down the liquid layer in this case. Figure 7 is a plot of the
functionU(k) for a value ofS smaller than that at which the
interfacial charge changes sign and two different values of
Bo. Above the lineU(k) the plane interface is unstable, be-
low it is stable. Depending on the value of Bo the minimum
is at k50 or at some finite but small valuek.0. However,
below certain value of Bo the minimum is always atk50
and the influence on the value ofUc ~the minimum value of
U at which instability is possible! is small.

Figure 8 shows the great influence that has the injection
parameterC in the weak injection region, as for lowC the
Uc values grow making it necessary to have very high criti-
cal voltagesVc at the upper electrode to make possible the
instability. As soon as we reach the strong injection region,
Uc becomes independent ofC. This is a consequence of the

saturation of all the electric magnitudes in the SCLC regime.
We can see in Fig. 8 the variation ofUc as a function of the
ohmic layer thicknessd in the strong injection regime. It is
clear from the graph that thin ohmic layers become unstable
at very low potentials under strong injection conditions. In
the limit S→0 under strong injection the current density is
j 5S/d and the dispersion relation~69! gives Uc5d3/« if
Bo→0.

C. Near critical nondimensional conductivity
„SÈScrit

…

Figure 9~a! showsUc as a function ofS in the strong
injection limit. As we can see in Fig. 9~a! there is a transition
region whereUc takes negative values, which means that the
system is always stable. This region coincides with the range
of S where the surface density charge changes sign and
marks the separation between the two different instability
mechanisms in the low and highS regimes that we antici-
pated in Sec. III. To the left of the intermediate region we
have the instability mechanism for lowS regimes, which we
think is responsible for the so-called Rose-window instabil-
ity. And to the right we have the instability that corresponds
to the well-known instability of a layer of conducting liquid
subject to an electric field. As we see, the charge injection
allows one to have instabilities at lower electric potentials in
low S regimes than in highS regimes. If a charge injection
was not applied to lowS regimes, the EHD interfacial insta-
bility would only be possible at higher electric potentials.
The transition valuesScrit depend on the injection parameter
C as shown in Figs. 9~b! and 9~c!. When C tends to zero
Scrit50 and there is only the highS regime mechanism. If
we increase charge injection,Scrit grows up to a limit value
given by the saturation of the space charge limited current
regime.

D. High nondimensional conductivity „SÌScrit
…

Except for the values ofS close to the asymptote that
separates the intermediate and theS.Scrit regions, the varia-
tion of the eigenvalues withC for S.Scrit is not as dramatic
as in the lowS regime region@Figs. 9~a!–9~c!#, Uc being of
the same order in the cases of weak and strong injection~see
Fig. 10!. This is expected forS.Scrit since in this case the

FIG. 7. Dispersion relationU(k) with S59.531023, d50.02,C5103. We
observe the small influence of Bond number in the magnitude ofUc , even
for two very different values of Bo.

FIG. 8. A comparison of the typical minima ofU in the weak injection
region C!1 and the strong injection regionC@1. S59.531023,
Bo50.1.

2744 Phys. Fluids, Vol. 14, No. 8, August 2002 F. Vega and A. T. Pérez



interfacial instability mechanism is similar with and without
injection, as in both cases the liquid is pulled toward the
upper electrode by the electric pressure.

Clearly, the limitS→` corresponds to high conducting
liquids. In Fig. 11 we present the typical critical curves for
interfacial instabilities in perfect conducting liquids1,9 that

we have obtained for different Bo values andd50.02. Even
for strong charge injection, they are very similar to those
obtained by other authors in former studies without injection.
This confirms that the instability mechanism, for smalld, in
high conducting liquids is the same with and without charge
injection.

The well-known instability of a layer of a perfect con-
ductor without injection is governed by the relation, in di-
mensional magnitudes,2

2^r&g2gk21«0kE2 coth~kL!50. ~70!

For k50 the instability criterion is

«0E25^r&gL, ~71!

which corresponds toU5L3 in nondimensional magnitudes.
We have correctly obtained this relation from~69! for C
50. The corresponding limit forC→`, Bo→0 givesU1/2

5(2/3)L3/2 and reproduces the result in Ref. 10.
The main peculiarity of the caseC→` with respect to

the caseC50 in the regionS.Scrit comes from the exis-
tence of the asymptotes of the functionUc(S) if there is
injection@see Fig. 9~a!#. This will be clearer in a dimensional
representation, as explained in Sec. V E.

E. Comparison between theoretical and experimental
critical values for low conducting liquids:
Rose-window instability

This work began as an attempt to theoretically describe
long wave instabilities observed in low conducting and per-

FIG. 9. ~a! Critical parameterUc as a function ofS under strong injection
C5104 and with an ohmic layer thicknessd50.02, Bo50.1, kc50. The
difference in the order of magnitude of the critical valuesUc for low and
high S is remarkable, being much higher for highS. The instability is absent
(U,0) in the intermediate region, where the surface charge density is near
zero.~b! The region of transition between lowS and highS regime with an
injection level C51, being d50.02, Bo50.1, kc50. ~c! The transition
between both regimes for weak injectionC50.1. As we see the transition
region tends to zero forC→0. In the limit of no injectionC50 the highS
mechanism type occupies all the range of nondimensional conductivities and
the instability is observable in low apparent conductivities only at very high
potentials.d50.02, Bo50.1, kc50.

FIG. 10. Variation with the injection parameterC of the critical Uc for a
high conducting liquid. Thicknessd50.02,0.5. If we compare these two
curves we see that the behavior ofUc with d is the opposite to that for a low
S regime. Bo50.1, kc50.

FIG. 11. Typical dispersion curves for high conducting liquids. The shape is
similar to that found in no injection problems even for strong injection.P
523103, d50.02, C5104.
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fect insulating liquids.11,8 This type of instability is the so-
called Rose-window instability, and it is characterized by a
much longer wavelength than the well-known classical EHD
convective instability in insulating liquids. In order to predict
the critical values for instability we have plotted in Fig. 12
the dimensional counterpart of Fig. 9~a!. The curves indicate
the critical voltages as a function of the liquid conductivity
for certain values of the other magnitudes~see the caption of
Fig. 12!. Two curves are visible. The one on the left-hand
side corresponds to the interfacial instability in low conduct-
ing liquids under strong injection. This is anew interfacial
instability branch. This critical branch only appears with
charge injection and we think it corresponds to the Rose-
window instability. The area delimited by this curve and the
s50 axis is the low conducting unstable region. To the
right-hand side, for more conducting liquids, there is another
curve with two solutions for each conductivity value. The
lower one marks the point of instability and fors→` tends
to 2/3 of the classical value given by~70!. Above the upper
solution the plane surface is linearly stable. This upper solu-
tion, which is due to the existence of the asymptote in Fig.
9~a!, is againnew and appears only under charge injection.
The area delimited by these two solutions is the high con-
ducting unstable region. The intermediate area between the
two critical curves is the stable region.

Some experimental values were obtained in our labora-
tory for a liquid layer subjected to ion injection from a co-
rona discharge in air. The liquid that we used was castor oil,
with a conductivity sc;10210 (V m)21. We used corona
discharge in a triode configuration. The triode configuration
~Fig. 13! consists in a tip-grid-plane three electrode system
that is intended to correct the nonuniform corona discharge
distribution. The corona discharge is produced on the tip
electrode that is above an intermediate metallic grid. The
grid is parallel to the plane electrode containing the liquid
layer. We apply a voltageVg to the grid that allows one to fix
a perpendicular electric field over the liquid surface and lets
a certain fraction of the ions coming from the tip pass toward
the liquid. The experimental critical values ofVg for the
instability threshold range from 1.1 to 2.0 kV ford values
~liquid layer thickness! from 1.2 to 2 mm~Fig. 14!. These

values are to be compared with the theoretical calculations,
that go from 0.9 to 1.7 kV~Fig. 12!. An agreement is ex-
pected only in the order of magnitude since the systems are
not exactly the same in the experimental and theoretical
cases: in our experimental setup the grid is not a perfect rigid
metal plate and the triode does not have the same correlation
between voltage and current density than in the theoretical
system. Logically, in these conditions complete agreement
between experimental and theoretical values is not expected.
In experimental setups like the tip–plane configuration
~without a grid! the disagreement with the theory should be
more important due to the effects of the nonhomogeneity of
the electric field. We recall that, in such a low conducting
liquid in contact with air, it is not possible to find
perpendicular-field EHD instabilities at so low electric po-
tentials if it is not by applying a charge injection.3

VI. LIQUID–LIQUID INTERFACE

In studies on EHD instabilities limited to problems with-
out space charge,3 the zero shear stress dynamics appears in
two limits: perfect conducting~zero tangent electric field!
and perfect insulating interfaces~zero surface free charge!.

FIG. 12. Interfacial instability criterion vs conductivity. The curve at the left
corresponds to the ‘‘down’’ pressure while the two branches at the right
correspond to the ‘‘up’’ pressure. Nondimensional magnitudes: Bo50.1,
kc50, d50.02, «54.69, C5103. Dimensional magnitudes: h
5;1022 m, Ki;1024 m2/(V s), « i;10211 C2 N21 m22, ^r&g
;104 N m23.

FIG. 13. Experimental setup: Triode configuration~three electrode system:
tip-grid-plane!. The tip is injecting ions that pass through the grid. We apply
an electric potentialVg at the grid while the plane~circular shape with 4 cm
diameter! containing the liquid is grounded.

FIG. 14. Rose-window instability in a low conducting liquid~castor oil!.
Vp512 kV, Vg53.25 kV, I 51.55mA, sc;10210 (V m)21. Tip–plane
distance:D53.1 cm. Grid–plane distance:h51.5 cm. Liquid layer thick-
ness:d51.2 mm. Electrode area:A51.25631023 m2. Liquid mass den-
sity: rc5958 kg/m3. «54.69. Viscosity:mc5631024 m2/s. Ion mobility:
Kc54310211 m2/(V s).
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These two limiting cases are valid as well in the analogous
problems with space charge injection. With or without injec-
tion, in the long wave regionk→0 the shear stress will be
zero whatever the electric properties of the two fluids in-
volved in the problem@see Eqs.~A12! and ~A13!#. In these
cases all the boundary conditions for the linear velocity per-
turbations are then homogeneous atv50. If besides the dif-
ferential equations of the velocity and electric potential lin-
ear perturbations are decoupled the interfacial instability
mechanism will be purely static and then the solution of the
electrical part itself gives the correct criterion atv50. When
are the electric potential and velocity differential equations
decoupled? For sure, inC50 problems.1,3 And as well in an
injection problem (CÞ0) if the ion mobility of the non-
ohmic fluid is high enough. This is the case for an air layer
over an ohmic liquid. However for a two liquid non-ohmic/
ohmic interface there is a strong coupling between the elec-
tric and viscous terms and convective instabilities may first
appear. Atten and Koulova-Nenova have studied the transi-
tion from interfacial to convective instabilities in injection
problems in the particular case of an insulating/perfect con-
ducting interface in Refs. 9 and 10. In those works it is
demonstrated that ifP5T2/(UBo) is low enough the inter-
facial instability will occur before the convective one even
for strong injection~note that the special caseC50 gives the
criterion by Taylor1!. Similar curves should be expected in a
non-ohmic/ohmic interface with an arbitrary conductivity.
We expect that the instability criteria we have obtained in the
present work are applicable in the long wave limit~low Bo!
even for a two liquid interface ifP is small enough.~Never-
theless, for a more precise analogy it should be taken into
account that the unit for distance in Ref. 9 is not the total
lengthh but the insulating liquid layer thicknessL.) In fact
we can easily see that Eqs.~55! and ~58! in the limit k→0
reduce to

d4ui

dz2 50, ~72!

d4uc

dz2 50. ~73!

In the long wave limit the differential equations of the
velocity perturbations are not coupled to the electric part,
that with the boundary conditions forv50 leads to the
trivial solution:

ui~z!5uc~z!50. ~74!

Then it is justified that the solution of the electrical part
of the perturbation equations is the only one that we need to
study the interfacial instability, although it is obvious that
within this limit we are not able to reproduce convective
instabilities,9 unless we solve completely the equations that
we have set: differential equations~40!–~43! with boundary
conditions~44!–~54!.

To simplify, we have just put together the arguments in
Refs. 3, 7, and 10 and we have applied them to a
perpendicular-field non-ohmic/ohmic interface with an arbi-
trary conductivity, under unipolar injection. On the other
hand, if the Bond number is not low enough andk50 does

not give the instability criterion, the values here obtained
should reproduce the orders of magnitude of the instability
thresholds as the capillary forces involved will not have a
strong influence on the magnitude of the critical voltage
value.

VII. DISCUSSION AND CONCLUSION

In this paper we have obtained the linear instability cri-
terion for double fluid layer system under a dc perpendicular
electric field and unipolar injection. In classical studies such
as those by Taylor and McEwan and Melcher,1–3 the sign of
the surface free charge was determined by the ratio between
the conductivities of the two fluids. In nondimensional form,

ss5S su /s l

eu /e l
21DEu , ~75!

where l refers to the lower fluid andu to the upper one.
Depending on the ratio of conductivities the electric pressure
could push down or pull up the liquid surface but, from the
electrostatic point of view, the instability mechanism was
essentially the same.

The unipolar injection from one of the electrodes builds
a surface charge on the interface given, in nondimensional
form, by

ss5
j

S
2A2 jb. ~76!

The sign of the charge depends now, not only on the conduc-
tivity of the ohmic liquid, but also on the level of injection
and the thicknesses of the layers. There is a certain value of
S, the nondimensional conductivity, for which the surface
charge is zero. Below and above this value the surface charge
is of the sign of the injecting electrode or the opposite. On
the contrary to the case without injection, the interfacial in-
stability mechanism is different for each situation. In fact,
the low S value regime is characterized by much lower val-
ues of the critical voltage.

It is interesting to note that in the strong injection case
and forL→0 ~very small non-ohmic layer! the critical non-
dimensional conductivity tends to infinity~please note that
Scrit in Fig. 4 increases withd512L!. This makes possible
the lowS mechanism of instability even for high conducting
liquids ~which is not taken into account in the work by
Taylor1!. Although our study is only linear and does not ap-
ply to a finitely deformed interface, we can envisage, for
these reasons and for those explained in the discussion of
Fig. 12, that the injection from air into a conducting surface
can play a stabilizing role. It is clear that we are describing a
new interfacial instability mechanism that is not taken into
account in previous related works on fluid interfaces under
stationary perpendicular electric fields,1–3 and this is due to
the introduction in the present work of the additional param-
eter C. Experimental techniques to produce electric fields
with space charge distributions are commonly used in labo-
ratories. Then new experimental evidence, unexplained by
previous theoretical works, could appear. We think that an
example of this could be the Rose-window instability.11
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In conclusion we have undertaken a linear instability
analysis of a perpendicular-field non-ohmic/ohmic fluid in-
terface. In the case of an air–liquid interface we have ob-
tained a purely hydrostatic system of equations. We have
seen that the relevant parameter in the interfacial instability
is the ratio between electric and gravitational pressures as the
characteristic eigenvalue isU5« iV

2/(^r&gh3). The Bond
number Bo5^r&gh2/g is the parameter that controls the
change of the criticalk value: for low enough Bo values we
always get the pure interfacial instability atkc50, and in this
limit the criterion is exact. We have obtained in this limit the
criterion for a perfect conducting free surface in agreement
with former works on EHD instabilities without charge in-
jection. From an analysis of the static solution we have seen
the difference between the interfacial instability mechanism
with and without charge injection. From this difference many
particularities of the interfacial instabilities in low conduct-
ing liquids rise: charge injection makes possible the appear-
ance of instabilities in these liquids at much lower critical
voltages than in high conducting liquids. A semiquantitative
comparison with existing experimental data has been made.
We have shown that the analysis can be applied to a liquid/
liquid interface if the numbers Bo andP are low enough.
Finally we recall that all the solutions obtained are analytical
and confirmed by experimental observations.
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APPENDIX A: LINEAR PERTURBATION EQUATIONS

1. Differential equations

Differential equation~40! is deduced by applying twice
the rotational in thez component of the corresponding equa-
tion for the linear perturbation in~6!. Then we have

2S d2

dz2 2k2D F T

M2 v2S d2

dz2 2k2D Gui

5Tk2Ff-gi2f8S d2

dz2 2k2Dgi G . ~A1!

The second differential equation for the non-ohmic liq-
uid comes from the charge conservation equation. The linear
equation for the perturbation is the following:

vS d2

dz2 2k2Dgi1f-ui

5f-gi812f9S d2

dz2 2k2Dgi1f8
d

dzS d2

dz2 2k2Dgi . ~A2!

In Eqs.~A1! and~A2! 2f8 stands for the static electric
field, whose value is given by~31! and ~32!. Knowing that

f9

f-
522~z1b!,

f8

f-
524~z1b!2 ~A3!

we get the equations in~40! and ~41!. The equations corre-
sponding to the ohmic liquid~42! and ~43! are easily de-
duced from the charge and momentum conservation equa-
tions considering thatqc , dqc50.

2. Boundary conditions

The electric potential continuity condition at the inter-
face gives

Fc~h!5F i~h!, ~A4!

where F stands for the electric potential solution for the
perturbed system:

F5f1df, ~A5!

df5g(z)ei (kxx1kyy) being the electric potential perturbation.
If the perturbation is small we can consider only the linear
terms in the perturbation:

fc~0!1
]fc~0!

]z
h1dfc~0!5f i~0!1

]f i~0!

]z
h1df i~0!,

~A6!

which together with the continuity of static potential atz
50 gives

df i2dfc2~Ei~0!2Ec~0!!h50 ~A7!

and withEc(0)5 j /S andEi(0)5A2 jb we have

gi~0!2gc~0!5SA2 jb2
j

SDh0 , ~A8!

which is Eq. ~47!. In a similar way we obtain the normal
current density continuity condition:

j c~h!"~ez1dn!5 j i~h!"~ez1dn!. ~A9!

At first ordern"dn50, then

Ei ,z~0!dq~0!1q~0!dEi ,z~0!5SdEc,z~0!, ~A10!

which leads to Eq.~48!. The rest of boundary conditions are
deduced in a similar way. Special attention may be given to
the tangent and normal stress balances~17! and~18!. Know-
ing that

dn52S ]

]x
ex1

]

]y
eyDh, ds15

]h

]x
ez , ds25

]h

]y
ez ,

~A11!

the two components of the linear perturbation of the shear
stress balance are

K m r

T S ]dvx

]z
1

]dvz

]x D L 1ssS Ec~0!
]h

]x
2

]dfc~0!

]x D50,

~A12!

K m r

T S ]dvy

]z
1

]dvz

]y D L 1ssS Ec~0!
]h

]y
2

]dfc~0!

]y D50,

~A13!

applying]/]x and]/]y, respectively, and adding these two
components:
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K m r

T S Dsdvz2
]2dvz

]z2 D L 1ss~Ec~0!Dsh2Dsdfc~0!!50.

~A14!

The operatorDs5]2/]x21]2/]y2 applied to the linear
perturbations is2k2. In consequence, the condition gets

2
1

T K m r S k2u1
]2u

]z2 D L 2k2ss~Ec~0!h02gc~0!!50.

~A15!

And as^u&50, the equation takes the form in~53!. The
linear perturbation of the normal stress balance is

2K m r

T S ]dvz

]z D L 2
1

U
h2^dp&1^«Edf8&5

1

UB0
“"n,

~A16!

^dp& being the linear perturbation in the total pressure jump
^pt&5^p&1^dp&. We can eliminatê dp& with the x and y
components of the Navier–Stokes equations. These equa-
tions for the non-ohmic layer are

r ri

M2

]dv ix

]t
52

]dp

]x
1

1

T
¹2dv ix2q

]df i

]x
, ~A17!

r ri

M2

]dv iy

]t
52

]dp

]y
1

1

T
¹2dv iy2q

]df i

]y
. ~A18!

Applying ]/]x and ]/]y to ~A17! and ~A18!, respec-
tively, and adding both of them we get

r ri

M2

]dv iz

]z]t
2Dsdp2

1

T S ¹2
]dv iz

]z
1qDsdf i D50 ~A19!

as“"dv50. With this and“n52Dsh the linear perturba-
tion of the normal stress takes the form in~54! if we apply
Ds to Eq. ~A16!.

APPENDIX B: DISPERSION RELATION

With the solutionsgi(z) and gc(z) the six remaining
boundary conditions in the steady statev50 @~44!–~48!,
~65!# have the following structure:

a3Ai1a4Bi1a5Ci50, ~B1!

c3Ai1c4Bi1c5Ci50, ~B2!

d1Ac1d2Bc50, ~B3!

e1Ac1e2Bc1e3Ai1e4Bi1e5Ci2Rh0,50, ~B4!

f 1Ac1 f 2Bc1 f 3Ai1 f 4Bi1 f 5Ci50, ~B5!

h1Ac1h2Bc1h3Ai1h4Bi1h5Ci2lh050. ~B6!

The factors multiplying the unknown coefficients
Ac ,Bc ,Ai ,Bi ,Ci ,h0 are functions ofk, j ,b,d,S, and«. With
these six equations with six unknown coefficients we con-
struct the determinant that has to be zero. This determinant is
expressed in the following, where rows correspond to bound-
ary equations~B1!–~B5!, and ~B6!, respectively, and col-
umns stand for the constants of integration
Ac ,Bc ,Ai ,Bi ,Ci , and the deformation amplitudeh0 . The
elements are the coefficients multiplying each constant of
integration ~and deformation amplitude! in the columns in
each boundary condition~row!:

3
0 0 a3~k,b,d! a4~k,b,d! a5~k,b,d! 0

0 0 c3~k,b,d! c4~k,b,d! c5~k,b,d! 0

d2~k,d! d2~k,d! 0 0 0 0

e1~k! e2~k! e3~k,b! e4~k,b! e5~k,b! 2R~ j ,b,S!

f 1~k,S! f 2~k,S! f 3~k, j ,b! f 4~k, j ,b! f 5~k, j ,b! 0

h1~k, j ,S,«! h2~k, j ,S,«! h3~k, j ,b! h4~k, j ,b! h5~k, j ,b! 2l

4 ,

where the coefficients are

a3~k,b,d!5F1,2~
1
2 ; 1

4 , 3
4 ; 1

4 ~b211d!2k2!, ~B7!

a4~k,b,d!5Ab211dF1,2~
3
4 ; 1

2 , 5
4 ; 1

4 ~b211d!2k2!, ~B8!

a5~k,b,d!5~b211d!3/2F1,2~
5
4 ; 3

2 , 7
4 ; 1

4 ~b211d!2k2!, ~B9!

c3~k,b,d!5 4
3 k2F1,2~

3
2 ; 5

4 , 7
4 ; 1

4 ~b211d!2k2!1 16
35k4~b211d!2F1,2~

5
2 ; 9

4 , 11
4 ; 1

4 ~b211d!2k2!, ~B10!
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c4~k,b,d!52
1

4~b211d!3/2F1,2S 3

4
;
1

2
,
5

4
;
1

4
~b211d!2k2D1

6

5
k2Ab211dF1,2S 7

4
;
3

2
,
9

4
;
1

4
~b211d!2k2D

1
7

45
k4~b211d!5/2F1,2S 11

4
;
5

2
,
13

4
;
1

4
~b211d!2k2D , ~B11!

c5~k,b,d!5
3

4Ab211d
F1,2S 5

4
;
3

2
,
7

4
;
1

4
~b211d!2k2D1

20

21
k2~b211d!3/2F1,2S 9

4
;
5

2
,
11

4
;
1

4
~b211d!2k2D

1
3

77
k4~b211d!7/2F1,2S 13

4
;
7

2
,
15

4
;
1

4
~b211d!2k2D , ~B12!

d1~k,d!5e2kd, ~B13!

d2~k,d!5ekd, ~B14!

e1~k!5e2~k!521, R~ j ,b,S!5A2b j2
j

S
, ~B15!

e3~k,b!5F1,2~
1
2 ; 1

4 , 3
4 ; 1

4 b2k2!, ~B16!

e4~k,b!5b1/2F1,2~
3
4 ; 1

2 , 5
4 ; 1

4 b2k2!, ~B17!

e5~k,b!5b3/2F1,2~
5
4 ; 3

2 , 7
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l5
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U S 11
1
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k2D . ~B28!

One can obtain the instability criterion by calculating the
determinant, with mathematical software, putting this set of
elements here supplied. Most of calculations were operated
with MATHEMATICA 17 where theF1,2 appearing in the set of
functions are referred to asHypergeometricPFQ. An effort is
made in this work to make it easy to follow the mathematical
procedure and to make possible for an eventual interested
reader to make his/her own calculations and developments
based on the mathematical results of this first theoretical ap-
proach to the non-ohmic/ohmic perpendicular field EHD in-
stabilities.
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