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CAPÍTULO 1 
 
 
 

INTRODUCCIÓN 
 
 
 
 
De acuerdo con los requisitos del doctorado europeo se presenta una introducción, 
resumen y conclusiones en español, estado el cuerpo de la tesis presentado en inglés. Se 
incluye primeramente una brevísima introducción en inglés. 
 
 
 
 
Summary of the introduction 

 

In this work I address what can be called conceptual-mathematical anomalies in 
quantum electrodynamics. By this I mean conceptual and mathematical problems of the 
theory that do not affect ‘saving the phenomena’. A well-known example is the 
divergent expressions that appear in the applications of the theory, which can be 
renormalized without implying any kind of problem in what regards the predictions of 
the theory.  
This work can be seen as following the line of philosophy of physics studies of 

quantum field theory that started to emerge in a systematic way in the early eighties of 
last century. One example is Teller’s (1995) work on standard quantum 
electrodynamics.1 More recently the field has become dominated by scholars that tend 
to prefer more formal approaches, relying not on the set of theories of the so-called 
standard model but on tentative formal approaches that promise to give to quantum field 
theory the solid mathematical foundations that it does not have (see e.g. Fraser 2009). 
The particular characteristic of these approaches is that they do not deliver testable 
predictions. 
In this work, by following a historical approach, I will return to the standard version 

of quantum electrodynamics (which is the only one available when we want to get 
numbers out to compare with experimental results). In this way I will be considering the 
contributions and discussions by physicists like Einstein, Bohr, Jordan, Pauli, 
Heisenberg, Fermi, Dirac, Feynman, and others. This does not mean that I will not take 
into account ‘formal’ results. That is not the case. Simply, I consider more interesting 
understanding the physical theories we really have and trying to see how they work so 
well in the middle of a sea of anomalies. A historical approach enables us to return to 
the original moments when the concepts were being developed and the problems faced 
for the first time; it also enables to take advantage of the insights of the physicists that 
created the theory. However I must call attention to the fact that I am not doing history. 

                                                 
1 What makes Teeler’s work to be not simply a work on foundations of physics but a philosophical 
account of quantum field theory is, in particular, his exploration of an interpretation of quantum fields in 
terms of propensity (instead of substance). This has implicit worries of an ontological nature; in simple 
terms it relates to the philosophical question of what is the ontological implication of a physical 
description in terms of quantum fields. 
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What I am doing is using history as a guide to a tentative clarification of some unclear 
aspects of the theory. 
Since I am not taking into account more recent contributions, a work that goes back 

to the early fifties of last century and before might seem dated. Here I must distinguish 
between the above mentioned ‘formal’ approaches and technical developments made in 
quantum electrodynamics. Two good examples of these are the use of renormalization 
group technics and lattice regularization. To the best of my knowledge these more 
recent developments do not affect the views being presented here. They might 
complement them, but it was never my intention to present a full study of all the facets 
of quantum electrodynamics. My objective is less ambitious; it is to show that a 
historical approach can deliver interesting and ‘new’ insights regarding current 
philosophical issues related to quantum field theory in general and quantum 
electrodynamics in particular.  
This work spins around two main vectors. One is the divergence of the S-matrix 

series expansion; the other is the spatio-temporal description of physical processes in 
the theory. Regarding the first vector, I will be presenting an interpretation that for some 
will seem a bit strange (my interpretation resembles views by Bohr from the early 
thirties of last century); also (independently of my particular interpretation) I will 
explore the consequences of having just an asymptotic series to describe the interaction 
of radiation and matter. In a nutshell I defend that having an asymptotic series implies 
that the theory is intrinsically approximate, i.e. it can only describe the interaction of 
radiation and matter in an approximate way with just a few terms of a series expansion 
and not give an exact solution corresponding to treating radiation and matter as one 
closed system.2 Here I am not simply accepting pragmatically a fact. The use of only a 
few terms of an infinite series expansion must be philosophically made acceptable by 
clarifying the concepts of radiation and matter and their interaction as implemented in 
the mathematical structure of the theory; that is, I want to provide a ‘philosophical’ 
justification for disregarding the large-order terms of the series expansion (by 
addressing ‘gently’ the question of the relation of the mathematical structure to the 
physical concepts this structure gives ‘flesh’ to).  
Philosophically the typical justification of saying that the computational time would 

make impossible, in practice, to calculate large-order terms is not enough; neither 
saying that the possible contribution of these terms is irrelevant since at a high-energy 
new physics is coming in. This is the usual position of the believers in string theory or 
whatever theory of everything that might be ‘underneath’ the standard model. For these, 
quantum electrodynamics is just an effective field theory that works well in a particular 
energy range, being only a ‘valid’ approximation (even if just delivering asymptotic 
results) to an underlining level of description of reality. On this view the divergence of 
the S-matrix series expansion is considered unproblematic. I have no reason to believe 
in this traditional Nagel type of intertheoretical reduction. In fact the second vector of 
my work leads me to consider that quantum electrodynamics cannot be seen as more 
fundamental than classical electrodynamics, i.e. the relation of classical and quantum 
electrodynamics is not one of theory reduction but more complex. 

                                                 
2 The readers even if not agreeing with my view that quantum electrodynamics consists in an intrinsically 
perturbative approach  should at least not too easily rely on so-called non-perturbative ‘results’ and take 
the time for a critical analysis of these. For example it is usually considered that the lattice regularization 
is non-perturbative because from the start the space-time lattice implies an energy-momentum cutoff to 
all orders of the perturbative calculation. However in lattice quantum electrodynamics we still have a 
divergent S-matrix, and it is this that makes the theory intrinsically approximate. 
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The study of the spatio-temporal description of physical processes in quantum 
electrodynamics is the other main vector of my work. Again I present a controversial 
view. Quantum electrodynamics is not able to describe physical processes in time in a 
way similar to classical theory. In fact it relies on the classical temporality (as time goes 
by…) to construct an asymptotic temporal description, in the sense of going from –∞ to 
+∞, of physical processes (we will see for example that it is this characteristic that 
enables the charge renormalization procedure). This, in Feynman’s words, global space-
time approach has severe limitations in what regards the possibility of describing such a 
simple thing as a delayed interaction between charged particles, and I do not see how 
we can from the quantum electrodynamical level of description arrive at the temporal 
description of classical electrodynamics. 
Here is how I delelop my views. To warm up for the discussion of the Dirac 

equation and its interpretation being given in chapter 3, I will consider in chapter 2 the 
simpler case of the Schrödinger equation and (part of) its interpretations. In chapter 3, 
by trying to fit together the different interpretations of the Dirac equation, analyzing in 
particular the two-body problem, I will arrive at the well-known description of 
interactions in terms of quanta exchange. In chapter 4 I will consider the other 
cornerstone of quantum electrodynamics, the quantized electromagnetic field, and try a 
clarification of the concept (or better, notion) of quantum vacuum. The description of 
interactions in quantum electrodynamics is addressed in chapter 5. Here I will consider 
the problem of the divergence of the series expansion of the S-matrix and the relevance 
or not of the Haag theorem to the consistency of the theory. Chapter 6 is dedicated to an 
excursion into the history of renormalization and to recover views by Bohr and Dirac 
that I consider to present renormalization in a ‘new’ light. In chapter 7 I analyze the 
spatio-temporal description of physical processes in quantum electrodynamics and the 
status of the so-called virtual quanta (that are a crucial element in the description of 
interactions in terms of quanta exchange). Finally the results of chapter 7 are used in 
chapter 8 to defend the idea that quantum electrodynamics is an upgrade of classical 
electrodynamics and the theory of relativity (i.e. that classical electrodynamics does not 
reduces to quantum electrodynamics). In the appendix I make a digression and present 
an analysis of Bohr’s views on space and time in quantum mechanics in relation to his 
quantum postulate (this will enable to address the Bohrian interpretation of the wave 
function followed in this work). 
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Comentarios iniciales 

 
Un interés sistemático desde una perspectiva más filosófica respecto a la teoría cuántica 
de campos es algo reciente, de la década de los 80. Esto no significa que temas que se 
han tornado tópicos del debate filosófico no se hayan mencionado antes. Un ejemplo es 
el tratamiento por M. Bunge del estatus de las llamadas partículas virtuales en la 
electrodinámica cuántica (Bunge, 1970). Pero un tratamiento sistemático - una especie 
de programa de investigación filosófica de la teoría cuántica de campos – ganó 
‘momentum’ en los 80 en particular con los trabajos de M. Redhead y P. Telller. 
Centrándome en la aportación de Teller y en particular en su libro “An interpretive 

introduction to quantum field theory” del 95, Teller, enfocando la electrodinámica 
cuántica, analiza una serie de aspectos de la teoría: trata de interpretar la teoría. ¿Qué es  
según Teller, en la práctica, interpretar la teoría? Por lo menos en parte es claramente un 
análisis conceptual de la teoría.  Teller propone interpretar el concepto de partícula, 
específicamente de cuanto, que se tiene en la teoría tratando de distinguirlo de la 
concepción clásica; también el concepto de campo cuántico; la descripción de 
interacciones, y la cuestión de la renormalización. ¿Qué hace que este análisis 
conceptual sea algo filosófico y no simplemente algo hecho por un físico? Simplemente 
que el enfoque parta de una actitud filosófica. Así en este caso particular, asistimos, por 
ejemplo, a la propuesta por Teller  de sustitución de la idea de sustancia por la de 
propensión (propensity) para hablar de los campos cuánticos (pues un campo cuántico 
se tiene que ver como ‘estando’ en un determinado estado cuántico al cual se pueden 
asociar distintas probabilidades para observar un número distinto de cuantos). En 
términos sencillos lo que hace el análisis conceptual-filosófico y no simplemente físico 
es la presencia implícita o explícita de preocupaciones filosóficas en particular de 
carácter ontológico (o ‘anti-ontológico’) y algunas veces de carácter epistemológico. 
La línea de trabajo desarrollada por Teller (y otros) se basa como antes he 

mencionado en el estudio de una teoría física: la electrodinámica cuántica. Este no es el 
único enfoque que encontramos en la filosofía de la física respecto a las teorías 
cuánticas de campo. A finales de los 90 empezó a ganar ‘momentum’ otro enfoque 
basado en versiones axiomáticas de teorías cuánticas de campo, en particular la teoría 
cuántica de campos algebraica (algebraic quantum field theory). En años recientes 
incluso empezó un debate respecto a que formulación de la teoría cuántica de campos es 
más meritoria para servir de base para la discusión filosófica. Un ejemplo reciente es un 
artículo de D. Fraser (2009), defendiendo que el trabajo filosófico de interpretación de 
las teorías de campos se debe basar en exclusiva en la versión algebráica. Me resulta 
extraña esta visión; el que se tenga que optar por un determinado enfoque, más aun 
cuando la opción es por las versiones axiomáticas que no tienen en palabras de Fraser 
ningún modelo físico realista (i.e. son versiones matemáticas sin aplicación empírica). 
Me resulta paradójico que en la filosofía de una ciencia empírica como la física se 
quiera utilizar como punto de partida del estudio filosófico no las teorías físicas que de 
hecho tenemos (como la electrodinámica cuántica) y sí formulaciones matemáticas que 
aún no han dado prueba de que puedan ser realmente teorías físicas (aunque 
eventualmente fallidas), pues estas versiones axiomáticas no están al nivel de presentar 
previsiones que se puedan contrastar con resultados experimentales. 
Aquí voy a tratar de la electrodinámica cuántica centrándome por lo tanto en una 

teoría física, pero tendré también en cuenta resultados formales que pueden ayudar a la 
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interpretación de la teoría. No se trata entonces de escoger una entre dos opciones 
excluyentes. 
Este trabajo se debe ver entonces dentro de la línea ‘iniciada’ por Redhead y Teller. 

Pero hay un aspecto en que se diferencia claramente de la filosofía de la física 
especializada en la teoría cuántica de campos que se ha desarrollado hasta la actualidad. 
Es en la opción, que se puede ver como metodológica, de usar la historia de la física 
como elemento esencial en el desarrollo del trabajo. Es por lo tanto un trabajo histórico-
filosófico. Aquí también existe un debate, en este caso respecto al papel de la historia en 
la filosofía de la ciencia (ver por ejemplo Schickore, 2009). No voy entrar en ello. 
Considero que se puede hacer un buen (o mal) trabajo en filosofía de la física con o sin 
aportación explícita de la historia de la física. Como referí, mi opción por la historia es 
metodológica, o sea, no tiene por qué conllevar una particular visión filosófica del papel 
de la historia en la filosofía de la ciencia. La opción por desarrollar un análisis 
conceptual de la electrodinámica cuántica desde una perspectiva histórica resulta del 
hecho personal e ‘intransmisible’ de que sólo a través del estudio histórico me es 
posible intentar comprender las teorías físicas. Es más bien una necesidad que una 
elección. Lo que resulta importante es que por lo menos parte de las ideas que voy a 
defender surgen precisamente de haber seguido un enfoque histórico. Así en este caso 
particular el enfoque histórico resultó ‘productivo’. No trato de sacar conclusiones más 
generales respecto al papel de la historia en la filosofía de la física. 
 
 
El papel de la historia en el trabajo 

 
Es importante referir que este no es un trabajo de historia y si un trabajo que parte de la 
historia interna de la electrodinámica cuántica3 para hacer un análisis conceptual de la 
teoría, enfocando en particular lo que se pueden llamar anomalías conceptuales-
matemáticas (i.e. anomalías que no conllevan problemas en lo que respecta a ‘salvar los 
fenómenos’).  
Debido al tema elegido, es posible reducir el ámbito del enfoque histórico a una 

historia conceptual. En particular considero solamente la evolución teórica sin tratar con 
detalle aspectos de la historia de la experimentación y su relevancia en el desarrollo 
conceptual de la teoría cuántica. Así no considero aspectos de historia cultural o 
material entre otras.4   
El objetivo aquí es hacer una presentación sintética y coherente del desarrollo 

conceptual de la electrodinámica cuántica centrándome en aspectos esenciales de la 
teoría y enfocando en particular aquellos relacionados con los problemas tratados en 
este trabajo. De este modo evito repeticiones y el tratamiento de líneas ‘secundarias’ 
que incluso han influido en el desarrollo conceptual. Por ejemplo en lo que respecta al 
cambio conceptual que llevó a la dualidad onda-partícula me centro solamente en la 
contribución teórico-conceptual de Einstein y no trato la importante contribución de los 
físicos experimentales (que influirán directamente en las ideas de de Broglie).5 Eso 
porqué para tratar los desarrollos técnicos y conceptuales de la electrodinámica cuántica 
resulta más directa la conexión teórica entre el trabajo de Einstein y Jordan que el 

                                                 
3 Algunas de las principales referencias usadas en este trabajo son las siguientes: Jammer (1966), Mehra 
& Rechenberg (1982, 1987, 2000, 2001), Kuhn (1978), Kragh (1984, 1990, 1992), Darrigol (1984, 1986, 
1992), Schweber (1994), Sánchez Ron (2001), Roqué (1992). 
4 Algunos ejemplos en que se enfocan algunos aspectos que se pueden considerar de historia cultural o 
material de la teoría cuántica son, e.g., Kragh (1999), McCormmach y Jungnickel (1986), Galison (1987). 
5 Una historia detallada de este tema se puede encontrar en Wheaton (1983). 
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origen de las ideas de de Broglie (ver capítulo 4). Tampoco considero la relevancia de 
este tema respecto a la interpretación de la teoría cuántica por ejemplo en la idea de 
complementariedad de Bohr. Hago siempre una presentación de los temas siguiendo 
solamente la ‘línea’ histórica que conecta el trabajo de los principales físicos teóricos 
que han hecho trabajos de primera importancia para el desarrollo de la teoría y en la 
medida que resulta necesario para la comprensión de aspectos conceptuales de la teoría 
tratados en este trabajo. Con este fin sigo una línea similar a la de Darrigol (2009).  
En su trabajo Darrigol busca presentar una historia coherente y simplificada de la 

teoría cuántica que por ejemplo sea útil a los filósofos: 
 
The present paper is an attempt at simplifying this history so as to make it more helpful to physicists and 
philosophers. (Darrigol, 2009, p. 151) 
 
Este objetivo lleva a la adopción de una metodología específica: 
 
The simplification I have in mind implies the selection of significant events and processes, as well as the 
occasional substitution of more direct reasoning for unnecessarily complicated reasoning. It does not 
imply any arbitrary invention, and it avoids common misconceptions 
 
I have selected a few important steps, in such a manner that any given step can be seen as a consequence 
of the anterior steps in a given situation. (Darrigol, 2009, p. 151) 
 
En este trabajo también busco una simplificación de la historia conceptual de la 
electrodinámica cuántica, en particular en la elección de etapas secuenciadas de forma 
lineal y presentadas de forma simplificada. Teniendo en cuenta el desarrollo simultáneo 
de dos de los elementos básicos de la teoría – la cuantización de la materia y del campo 
electromagnético –  que comparten en gran parte la misma historia conceptual, busqué 
evitar, en los distintos capítulos, presentaciones históricas que fueran redundantes. Así 
hay elementos históricos que se mencionan de manera general  en distintos capítulos por 
una cuestión de claridad y ‘secuencia histórica’ pero que solo se tratan en detalle cada 
uno una vez en distintas capítulos del trabajo.6   
Este enfoque histórico limitado cumple el objetivo específico de este trabajo, y es 

relativo a este que se debe analizar. Esto no significa que si el objetivo fuera por 
ejemplo el estudio de la interacción entre aspectos teóricos y experimentales en el 
cambio conceptual este enfoque sea suficiente. En este caso sería necesaria otro tipo de 
historia en que aspectos de instrumentación y experimentación (y más en general de 
historia material) sean considerados. Otro ejemplo sería un tratamiento simultáneo de 
los cambios conceptuales y la ‘retórica’ de la comunidad científica que les acompaña. 
En este caso sería esencial un enfoque teniendo en cuenta la historia cultural. 
 
 
El trabajo 

 
El trabajo se encuentra por supuesto dividido en capítulos perfectamente acotados que 
podrían dar la sensación de una progresión lineal en que exista una problemática central 
y algunos desarrollos derivados. No es así aunque lo presente así. De este modo, se 
podría ver el segundo capitulo (la ecuación de Schrödinger y su interpretación) y el 
tercero (la ecuación de Dirac y su interpretación) como la presentación de uno de los 
pilares de la electrodinámica cuántica, siendo el otro pilar la cuantización del campo 

                                                 
6 Por ejemplos en los capítulos 2 y 3 se hace referencia a trabajos de Einstein y Dirac publicados 
respectivamente en 1909 y 1927 que se analizan con más detalle en el capítulo 4.  
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electromagnético presentada en el capítulo 4 (donde también se trata la cuestión del 
concepto de vacío). Ya el capitulo 5 se podría ver como el central donde se trata la 
interacción del campo cuántico de Dirac (definido por la ecuación de Dirac) y del 
campo cuántico electromagnético. Aquí se tratan cuestiones claves para entender la 
teoría: la divergencia de la serie de expansión de la matriz-S y las posibles 
consecuencias del teorema de Haag en lo que respecta a la consistencia de todas las 
aplicaciones de la teoría. Partiendo de este punto central se explorarían algunas 
implicaciones y temas relacionados. En el capitulo 6 se trata la cuestión de la 
interpretación de la renormalización (en que se sigue una línea Bohriana también 
presente en el capítulo anterior) y, como preparación para el 7, aspectos de la 
renormalización de la carga eléctrica relacionadas con la descripción en el ámbito 
temporal de procesos físicos, tema tratado de forma más amplia en el capitulo 7. Aquí 
los resultados del capitulo central, el 5, serán útiles para el análisis de la descripción que 
la teoría nos da a nivel  espacio-temporal de procesos físicos (resultados estos que 
también están presentes en parte en el tratamiento del vacío en el capitulo 4). En 
particular propongo una lectura del concepto de partícula virtual contra-corriente 
respecto a lo que es la comúnmente aceptada. Finalmente en el capitulo 8 desarrollo las 
consecuencias del anterior para la cuestión filosóficamente importante de la relación de 
la electrodinámica clásica y la cuántica. 
Al contrario de lo que esta presentación lineal y progresiva de la teoría  (en la que la 

descripción de interacciones tiene un papel central) pueda dar que pensar, lo que me 
llevó a este trabajo es la comprensión de los conceptos de espacio y tiempo al nivel de 
la teoría cuántica de campos (así en realidad lo central sería el capítulo 7 y una serie de 
cosas que no elaboro aquí). Escogí la electrodinámica cuántica por ser la más sencilla de 
las teorías pertenecientes al llamado modelo standard, y por ser la versión cuántica de la 
mejor teoría clásica de que disponemos: la electrodinámica clásica. Con esto no quiero 
quitarle importancia a otras teorías clásicas, pero la electrodinámica es probablemente la 
teoría que tenemos mejor testada y mejor testable (tanto a nivel clásico como cuántico), 
o por lo menos así lo veo. Este estudio (‘in progress’) de los conceptos de espacio y 
tiempo va más allá de lo que presento aquí. En este trabajo analizaré solamente algunos 
aspectos de la descripción de procesos físicos en la electrodinámica cuántica.  
Esta parte más especifica del programa más general me llevó al estudio del concepto 

de intercambio de cuantos (quanta exchange) que aparece en la descripción perturbativa 
de la interacción de la radiación con la materia. Esto me obligó a considerar una serie de 
cuestiones: la cuestión del estatus de los llamados cuantos virtuales; la divergencia de la 
matriz-S (que me resultó ‘útil’ para las ideas que defiendo); un modelo, que resulta ser 
semi-clásico de interacción entre electrones de átomos (bounded electrons); el teorema 
de Haag que aparentemente hacía peligrar todo el edificio de la electrodinámica 
cuántica; la reinterpretación de la descripción hecha por la ecuación de Dirac del átomo 
de hidrógeno en términos de intercambio de cuantos entre el núcleo y el electrón; e 
incluso aspectos ‘no-temporales’ en el procedimiento de renormalización.  
Todo esto ha sido reelaborado y ‘linealizado’ en la presentación que sigue según el 

esquema presentado antes. En este proceso incorporé algunos temas relacionados como 
un estudio más detallado del vacío en la teoría y la relación entre la teoría cuántica y la 
clásica.  Otro tema incluido es el de la interpretación de las funciones de onda en la 
teoría cuántica, que es un aspecto básico de cualquier análisis conceptual que se quiera 
hacer en la electrodinámica cuántica. Siguiendo a B. Falkenburg (2007) creo que la 
interpretación como colectividades (ensemble interpretation) es la que de modo más 
inmediato ‘conecta’ con el tipo de experimentos que se hacen en la física de altas 
energías. Esto me llevó a N. Bohr (al cual ya había llegado por el enfoque histórico 
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encontrando su crítica a la electrodinámica cuántica) y debido al programa más general 
que me interesa pronto llegué a la conclusión que los conceptos (clásicos) de espacio y 
tiempo que Bohr maneja en su interpretación de la cuántica son un marco fundamental 
para comprender esa interpretación. No exploro aquí las posibles conexiones que esa 
concepción del espacio y tiempo pueda tener con el caso de la electrodinámica cuántica 
ya que eso implicaría un tratamiento del espacio y tiempo en la teoría de la relatividad 
(especial). Eso pertenece al programa más ‘general’ de estudio de los conceptos de 
espacio y tiempo. Aquí me limito a algunos aspectos conceptuales de la electrodinámica 
cuántica. 
Paso ahora a un resumen ‘alargado’ en español de la versión linealizada y ordenada 

del trabajo en los aspectos que conciernen a la electrodinámica cuántica (habiendo 
dejado el tema de la interpretación Bohriana de la cuántica para un apéndice, que me 
permite especificar de forma más precisa la interpretación de la función de onda 
adoptada en este trabajo). 
 
 
El capítulo 2  

 
Este capítulo es una preparación del siguiente. En el capítulo 3 enfocaré la cuestión de 
la interpretación de la ecuación de Dirac. Hay aspectos de esa historia que se pueden ver 
también en el caso ‘más sencillo’ de la mecánica cuántica no-relativista en la ecuación 
de Schrödinger. Así el capítulo 2 está dedicado a una presentación histórica del 
surgimiento de la ecuación de Schrödinger y de las tentativas iniciales para su 
interpretación. 
En 1926 apareció un artículo en Annalen der Physik en el cual su autor E. 

Schrödinger presentaba una nueva teoría atómica siguiendo las ideas de L. de Broglie en 
que este asociaba un fenómeno ondulatorio al electrón (la onda de de Broglie).  
Schrödinger obtuvo una ecuación de onda (no relativista) que permitía obtener los 
niveles de energía para el átomo de hidrógeno tal como Bohr había hecho en la llamada 
vieja teoría atómica (old quantum theory), pero desde un enfoque más fundamental.  
 Se puede obtener una solución analítica de la ecuación en el caso del átomo de 

hidrógeno tratado como un electrón en un potencial central tipo coulombiano. 
Aprovechando la simetría del problema y usando coordenadas esféricas la función de 
onda (solución de la ecuación) tiene la forma ψ= ψθψφψr. La parte radial de la ecuación 
tiene la forma  
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donde n tiene que ser un entero. La imposición de que n sea un entero resulta de que la 
parte de la función de onda ψφ  cuando φ aumenta de un múltiplo 2π permanece igual. 
Esto implica que ψφ  es dado por 2π

−1/2eimφ, donde m es un entero positivo, negativo, o 
cero.  Para que la ecuación de la función  ψθ tenga soluciones es necesario que n sea un 
entero positivo de modo que  nm ≤ .  

Un aspecto importante de la ecuación radial es que tiene puntos singulares en r = 0 y 
r = ∞. Teniendo en cuenta estos dos puntos singulares y las condiciones de frontera 
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(boundary conditions) que imponen a la ecuación de onda, esta sólo tiene solución 
cuando tenemos: 
 

            1nn'l
2mEK

me2 2

++==
−

. 

 
De aquí sigue que la energía de un electrón ‘dentro’ del átomo de hidrogeno sólo puede 
tener valores discontinuos:  
 

22

42

lh

me2π
=Ελ , donde l es el llamado número cuántico principal 

. 
Esta solución corresponde al típico problema de valor propio en el cual tenemos una 
ecuación dependiente de un parámetro, en este caso la energía E, y las soluciones tienen 
que satisfacer condiciones de frontera particulares (en este caso la función de  onda 
tiene que ser finita en r = 0 y aproximarse a cero para r → ∞). Encontramos un 
problema similar en el caso clásico de una cuerda en vibración. Las extremidades están 
fijas y esto implica que la cuerda sólo puede tener una determinada frecuencia y sus 
harmónicos.  
Schrödinger consideró que de este modo la ecuación tenía en sí misma implícitas las 

condiciones cuánticas, que no resultarían de ninguna discontinuidad cuántica en la física 
y sí de tratarse de un fenómeno ondulatorio. Sea como sea, en sus primeros artículos 
Schrödinger no desarrolló demasiado la interpretación de la función de onda; se limitó a 
unos pocos comentarios, asociando la función de onda a algún tipo de proceso 
ondulatorio en el interior del átomo.  
Una limitación importante con la que Schrödinger se debatió en esta fase del 

desarrollo de su mecánica ondulatoria fue la imposibilidad de describir la intensidad y 
polarización de la radiación emitida por un átomo. En particular Schrödinger sólo pudo 
obtener la expresión hν = E´ – E´´ (donde ν es la frecuencia de la radiación emitida 
cuando un electrón pasa de un estado estacionario con energía E´ a otro con energía  
E´´) del modelo atómico de Bohr de forma aproximada. 
En un artículo posterior Schrödinger relacionó la función de onda que llamó de 

campo mecánico escalar  (mechanical field scalar) con una distribución de electricidad 
en el espacio, que se podría ver como el término de ‘fuente’ (source) en las ecuaciones 
de Maxwell-Lorentz. Con este fin Schrödinger consideró que la densidad de electricidad 
ρel sería dada por la parte real de  
 

                     
t∂

ψ∂
ψ , 

 
en que ψ es el conjugado complejo de la función de onda ψ. Usando esta hipótesis en el 
tratamiento del efecto Stark,  Schrödinger pudo obtener la ‘regla de frecuencias’ de 
Bohr de forma exacta, además de poder calcular la intensidad y polarización de la 
radiación emitida. Desarrollando más esta interpretación electromagnética de la función 
de onda Schrödinger extendió su formalismo para el caso de sistemas con un estado 
variable en el tiempo (time-dependent systems). Esto llevó a Schrödinger a adoptar una 
función de onda compleja y por lo tanto a redefinir su anterior expresión para la 
densidad de carga ahora dada por ψψe , donde e es la carga eléctrica del electrón. 
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Schrödinger pronto reconoció las limitaciones de esta interpretación de la función de 
onda (describiendo una distribución de electricidad en el espacio) ya que incluso en el 
caso más sencillo de un único electrón es también necesario tener en cuenta la evolución 
espacio-temporal de la función de onda. Por una parte, la interpretación 
electromagnética permitía calcular intensidades y polarizaciones, pero por otra parte la 
interpretación como una onda propagándose en el espacio era necesaria para determinar 
sucesivas densidades de carga (y por lo tanto mediciones de intensidades), o sea, para 
conectar sucesivas observaciones. Así, en realidad la interpretación de la función de 
onda por Schrödinger tenía un aspecto doble.  
Pronto las tentativas iniciales de Schrödinger dieron paso a la interpretación 

probabilística (statistical interpretation), pero esto no lo voy a considerar. Aquí lo que 
me interesa es la ambigüedad que encontramos en la interpretación de Schrödinger que 
por lo menos en parte usa su ecuación de onda como una ecuación clásica describiendo 
la propagación de un campo mecánico escalar en el espacio. Es un punto interesante ya 
que en el caso de la ecuación de Dirac se va encontrar también una ambigüedad en lo 
que respecta a la interpretación de la ecuación, siendo incluso posible ‘escoger’ (como 
ha hecho P. Jordan) ver la ecuación como una ecuación de un campo clásico 
posteriormente cuantizado.  
Podemos imaginar una situación hipotética en la que no teniendo aún el concepto de 

electrón como partícula, un experimento como el de C. J. Davisson y L. H. Germen nos 
lleva a aceptar la idea de que existen unas ondas de materia que resultan tener las 
características propuestas por de Broglie (esto es doblemente imaginario ya que de 
Broglie claramente manejaba expresiones que implicaban al mismo tiempo una 
característica ondulatoria y corpuscular). ¿Podemos ver la ecuación de Schrödinger 
como la ecuación de una onda de materia ‘clásica’? Y en caso afirmativo ¿cómo se 
obtienen los aspectos corpusculares? 
Mirando el caso más sencillo de un átomo de hidrógeno queda claro hasta qué punto 

se puede usar la ecuación de Schrödinger como una ecuación describiendo un campo 
material ‘clásico’. Volviendo al enfoque inicial de Schrödinger, considerando una onda 
de de Broglie en un potencial central tenemos  
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De aquí resulta, en un tratamiento totalmente clásico, que las frecuencias posibles de la 
onda de de Broglie son dadas por 
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Por analogía con el caso del cuanto de luz, consideramos que la energía de una onda de 
de Broglie (en el interior de átomo) con una frecuencia ν es dada por E = hν. De esta  
‘regla cuántica’ resulta que los niveles de energía en el átomo son dados por   
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un resultado de acuerdo con la derivación de la teoría atómica de Bohr. La diferencia 
con la derivación original de Schrödinger es que en ésta Schrödinger usó desde el inicio 
la relación entre energía y frecuencia adoptada en este caso al final. Así Schrödinger 
presentó realmente una ecuación ‘cuántica’ que se asemeja (en el caso de sistemas con 
un solo electrón) a una ecuación de onda clásica. 
Aquí tenemos un resultado que vamos a volver a encontrar en el capitulo 3. Cuando 

adoptamos como punto de partida una ecuación que interpretamos como clásica 
necesitamos una regla de cuantización de las variables físicas de la onda de manera que 
se pueda también describir el aspecto corpuscular asociado a los electrones. 
 

 

El capítulo 3  

 
La primera tentativa de Schrödinger de obtener una ecuación de onda fue una ecuación 
relativista  y no su conocida ecuación no-relativista. No resultó. La ecuación obtenida 
dio una descripción equivocada de los niveles de energía. Eso llevó Schrödinger a optar 
por un proyecto menos ambicioso pero que resultó más exitoso.  
La derivación de una ecuación de onda relativista para el electrón siguió desafiando 

a los físicos. Después del descubrimiento de que se podía asociar un momento angular 
interno al electrón – al cual se asoció un número cuántico específico, el spin – W. Pauli 
intentó incorporar el spin a la mecánica ondulatoria. Para eso consideró una función de 
onda de  Schrödinger dependiente también del spin que resulta tener sólo los valores ± 
ћ/2. Así Pauli definió una función de onda con dos componentes, una correspondiendo a 
un electrón con el spin hacia arriba (spin up) ψ(x, +1/2) y otra a un electrón con el spin 
hacia abajo (spin down) ψ( x, –1/2). Esta función de onda de dos componentes será 
solución de dos ecuaciones acopladas (coupled equations) con la forma 
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La cuestión es ahora cómo definir en la ecuación de onda los operadores de spin s. Pauli 
los definió como sx = 1/2 σx, sy = 1/2 σy, sz = 1/2 σz, donde σx, σy, σz son las llamadas 
matrices de Pauli: 
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Pauli tuvo que incorporar elementos en su ecuación de forma ad hoc para obtener un 
acuerdo con los resultados disponibles, pero sólo ha podido hacer correcciones 
relativistas de primer orden, o sea, no pudo llegar a una ecuación realmente relativista.  
A finales de 1927 P. A. M. Dirac llegó a una ecuación de onda relativista del 

electrón. Su primera tentativa de formular una ecuación relativista fue lo que se  conoce 
como la ecuación de Klein-Gordon (obtenida por distintos físicos y que coincide con la 
ecuación relativista que Schrödinger exploró). En términos de un hamiltoniano 
relativista podemos ver la ecuación como una sustitución directa del momento y energía 
por los operadores cuánticos correspondientes: 
 
                         0}ψcmcpp{p 222222
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P. Ehrenfest hizo a Dirac interrogarse por la opción adoptada para el hamiltoniano, 
preguntándole si había diferencia entre el que Dirac había escogido y el siguiente: 

                     

          Ec)/mpp(p1mc 222
3

2
2

2
1

2 =++−  

 
Dirac consideraba que ninguna de las dos opciones servía como base para el desarrollo 
de una ecuación relativista. Necesitaba una ecuación  lineal en la derivada temporal y 
que, para estar de acuerdo con la relatividad, las derivadas respecto a las variables 
espaciales fueran también lineales.  
Parece que lo que permitió a Dirac salir del bloqueo provocado por la expresión 

matemática del hamiltoniano fue constatar la siguiente identidad: 
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r
, 

 
donde σ1, σ2, σ3 son las matrices de Pauli. Eso llevó a Dirac a buscar una expresión 
relativista análoga en que apareciera el término correspondiente a la masa de electrón:  
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Dirac consideró que de la  ecuación obtenida usando la expresión anterior {p0 – (m

2c2 + 
p1

2 + p2
2 + p3

2)½}ψ = 0   debería ser posible obtener la expresión relativista {p0
2 – m2c2 

– p1
2 – p2

2 – p3
2}ψ = 0. Esto implica un conjunto de relaciones matemáticas entre los 

coeficientes aún por determinar:  
 

         αµαν + αναµ = 0 (µ ≠ ν); µ, ν = 1, 2, 3, 4, 
 

         αµ
2 = 1.  

 
No hay ningún conjunto de matrices 2 ä 2 que satisfagan las condiciones anteriores. 
Esto llevó a Dirac a considerar la siguiente posibilidad más simple, la de matrices 4 ä 4. 
De este modo los coeficientes propuestos por Dirac son:  
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con α1 = ρ1σ1, α2 = ρ1σ2, α3 = ρ1σ3, α4 =σ3.  Así tenemos de inmediato la ecuación de 
Dirac:  
 

       0mc]ψρ)p,σ(ρ[p 310 =−− , 

 
donde p0 = iħ ∂/(c∂t) y p = (p1, p2, p3), con pr = –iħ ∂/(c∂xr) y r = 1, 2, 3; 
σσσσ = (σ1, σ2, σ3) es un vector formado por las anteriormente indicadas matrices 4 ä 4. 
Dirac generalizó su resultado para el caso de un electrón en un campo externo. 
Siguiendo una prescripción de la electrodinámica clásica Dirac hizo la sustitución p0 → 
p0 +e/c.A0 y p →  p + e/c.A, donde A0 y A son el potencial escalar y vector. Esto resulta 
en la ecuación 
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Dirac desarrolló su ecuación partiendo del hamiltoniano para una partícula puntual 

sin tener en cuenta el spin. Pero resulta que el spin del electrón aparecía naturalmente en 
la descripción hecha usando esta ecuación. Dirac trató de explorar la relación entre su 
ecuación y la ecuación de Klein-Gordon que es la ‘esperada’ de acuerdo con el 
hamiltoniano clásico relativista. Tomando el cuadrado de su ecuación Dirac obtuvo una 
que incluye los términos de la ecuación de Klein-Gordon y dos adicionales 
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Dirac concluyo que el electrón en un campo externo se comportaba como teniendo un 
momento magnético  eh/4πmc · σσσσ que es lo esperado para un electrón con un momento 
angular interno (spin). Así su ecuación implicaba que el electrón tenía un momento 
angular interno dado por ћ/2 · σσσσ.  
Como Dirac usó matrices 4 ä 4 en su ecuación, la función de onda tenia 4 

componentes. Inicialmente Dirac pensó que podía retener sólo dos de los componentes 
que corresponderían a un electrón con carga negativa, energía positiva y dos posibles 
estados para el spin, siendo posible descartar los componentes correspondientes a 
energías negativas.  Pronto Dirac reconoció que en el caso de un campo 
electromagnético externo intenso no era posible hacer una separación  clara de 
soluciones correspondientes a energías positivas y negativas. En particular, O. Klein 
demostró que para el caso sencillo de una onda con energía positiva incidente en una 
barrera de potencial, podía además de una onda reflectada (correspondiente a una 
energía positiva) haber también una onda transmitida a través de la barrera (con energía 
negativa). Este resultado conocido como la paradoja de Klein será importante como 
analogía en la comprensión de dificultades matemáticas con las que se enfrenta la 
electrodinámica cuántica. 
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A finales de 1929 partiendo de una idea de H. Weyl, Dirac propuso una solución 
para la dificultad de las energías negativas. La idea era tomar los dos componentes 
extras de la función de onda como describiendo el protón y no el electrón. Con ese fin 
Dirac propuso una nueva interpretación de su ecuación.  Supuso que casi todos los 
estados con energía negativa estaban ocupados y que los agujeros (holes) en ese mar 
(sea) de electrones de energía negativa eran los protones.  Dirac expuso estas ideas en 
una carta a Bohr. En la respuesta Bohr comentó que no comprendía como se podría 
evitar en ese caso una energía eléctrica infinita (debido al número infinito de electrones 
con energía negativa). Bohr se mostro inclinado a ver en la dificultad con las soluciones 
de energía negativa una límitación en la aplicación de los conceptos fundamentales 
sobre los cuales se basa la teoría atómica (“In the difficulties of your old theory I still 
feel inclined to see a limit of the fundamental concepts on which atomic theory hitherto 
rests”). Así Bohr se propuso reinterpretar el significado de la paradoja de Klein 
considerando que uno se enfrentaba por una parte con dificultades que resultan de un 
uso (en el ámbito matemático) ilimitado del concepto de potencial (“difficulties 
involved in an unlimited use of the concept of potentials”) y por otra parte con un 
ejemplo de un límite en la aplicación del concepto de potencial cuando se tienen en 
cuenta posibles situaciones experimentales concretas (“an example of the actual limit of 
applying the idea of potentials in connection with possible experimental 
arrangements”). Bohr llamó la atención al hecho de que en la teoría se está 
considerando electrones con una carga elemental. Esto impide la construcción de una 
barrera de potencial ‘real’ comparable a lo que matemáticamente se puede considerar. 
La paradoja de Klein surge para barreras de potencial definidas matemáticamente que 
no se consiguen realizar en la práctica experimental debido a la existencia de una carga 
eléctrica elemental. Dicha carga es un parámetro básico de la teoría (“due to the 
existence of an elementary unit of electrical charge we cannot build up a potential 
barrier of any height and steepness desired without facing a definite atomic problem”). 
Así Bohr consideraba que dentro del límite real de aplicación de la teoría esta era 
consistente. En este caso la paradoja resultaba de ir más allá de lo permitido realmente 
por la teoría. Bohr esperaba que los problemas de una posible transición desde estados 
con energía positiva a estados con energía negativa no ocurrirían en aplicaciones 
consistentes, y así no sería necesaria la ‘hole theory’ (teoría de los agujeros) de Dirac. 
Dirac no aceptó la visión de Bohr y dio un ejemplo donde era necesario tener en 

cuenta estados con energía negativa sin que ello conllevara ningún tipo de dificultadas. 
En el caso de un proceso de dispersión (scattering) de radiación por un electrón, este 
puede pasar por un estado intermedio con energía negativa. Dirac mostró que teniendo 
en cuenta su ‘hole theory’ se podía, sin permitir esa transición, tener otra en que un 
electrón (en un estado negativo) ‘salta’ primero para el estado positivo final (y el 
electrón inicial ocupa ese estado negativo) de modo que el resultado final es el mismo 
que el anterior y permite obtener las formulas de dispersión correctas. Dirac también 
consideró que no había ningún problema de energía eléctrica infinita debido al ‘mar’ de 
electrones negativos. Eso es así porque lo que se observa no es el valor absoluto de la 
energía y sí variaciones en relación al estado ‘normal’ de un mar ‘lleno’ de electrones 
con energía negativa. Es evidente por la descripción que Dirac hace de los procesos de 
dispersión en su teoría que ésta ya no consiste en la descripción de un solo electrón y sí 
de un sistema con muchos electrones (en realidad con un número infinito de ellos). 
Las ideas de Dirac no fueron bien recibidas. Más importante que todas las demás 

críticas fue tal vez el cálculo de J. R. Oppenheimer en 1930 que demostró que la 
probabilidad de un electrón de aniquilarse con un protón (correspondiendo esto a que el 
electrón ocupe un ‘agujero’ del ‘mar’) era absurdamente elevada y totalmente 
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incompatible con la estabilidad de la materia. Esto echó por tierra la ’hole theory’ de 
Dirac en este formato.  Oppenheimer propuso volver a considerar el electrón y el protón 
como dos partículas independientes cada una con su propio mar de partículas con 
energía negativa. De este modo no habría ningún problema de una posible aniquilación 
entre electrones y protones. Dirac pronto adoptó esta idea y propuso que el ‘agujero’ 
fuera una nueva partícula, un anti-electrón aún no ‘descubierto’. 
En 1932 se observó un fenómeno que se ha podido encuadrar en la teoría de Dirac 

como el anti-electrón que él propuso. Pero esto no significó que los físicos aceptaran su 
‘hole theory’. En realidad un enfoque distinto del de Dirac era posible sin que fuera 
necesario un ‘mar’ con un número infinito de partículas con energía negativa.  Se puede 
ver el origen de este nuevo enfoque, basado en el concepto de campo, en un trabajo de 
Dirac de 1927 presentando un tratamiento no relativista de la interacción de radiación 
electromagnética con un átomo. Dirac presentó en este artículo dos maneras de 
considerar un campo electromagnético cuántico. En uno, Dirac consideró un conjunto 
de cuantos de luz descrito por una ecuación de Schrödinger. En este caso se tienen que 
retener solamente las soluciones simétricas de la función de onda describiendo los 
cuantos de luz para que ésta esté de acuerdo con la llamada estadística de Bose-Einstein. 
Dirac optó por un método enrevesado que físicamente correspondía a imponer la 
simetría de la función de onda, que posteriormente se denominó de segunda 
cuantización. La otra manera adoptada por Dirac para llegar a una descripción cuántica 
del campo electromagnético consistió en hacer la expansión en serie de Fourier del 
campo y tratar los coeficientes de expansión no como números y sí como operadores 
satisfaciendo relaciones de conmutación. Dirac encontró que los dos procedimientos 
permitían llegar a la misma descripción al nivel cuántico del campo electromagnético. 
Contrariamente a la lectura de Dirac que veía la ‘segunda cuantización’ como un 

procedimiento para imponer la estadística de Bose-Einstein a la función de onda del 
campo electromagnético, Jordan interpretó el esquema de la ‘segunda cuantización’ de 
una manera bien distinta. Para él consistía en la cuantización de una onda clásica 
descrita por una ecuación clásica, que podían ser las ecuaciones de Maxwell-Lorentz en 
el caso del campo electromagnético o la ecuación de Schrödinger (como si fuera una 
ecuación de un campo clásico) en el caso de electrones tratados no como partículas y sí 
como ondas de de Broglie ‘clásicas’. Este enfoque de Jordan tenía la ventaja de permitir 
tratar las ondas cuantizadas en el espacio físico y no en un espacio de configuración 
abstracto (que es lo que ocurre cuando se considera un sistema con varias partículas 
usando la ecuación Schrödinger como una ‘ecuación cuántica’). Aplicando este enfoque 
en el caso de electrones, Jordan debido a que a estos se aplica el principio de exclusión 
de Pauli tuvo que usar unas relaciones de conmutación distintas de las adoptadas para el 
caso del campo electromagnético. Después de algunas dificultades de orden técnico en 
la implementación de las llamadas relaciones de anti-conmutación, Jordan pudo 
demostrar que partiendo de una descripción de los electrones como un campo clásico 
(descrito por una ‘ecuación clásica’ de Schrödinger) se podía por un procedimiento de 
cuantización llegar a una descripción cuántica de los electrones equivalente a la que se 
tiene considerando de partida los electrones como partículas cuánticas (descriptas por 
una ‘ecuación cuántica’ de Schrödinger). Aquí encontramos de nuevo la posibilidad de 
jugar con la ambigüedad de interpretar la ecuación de Schrödinger a la que hago 
referencia en el capitulo anterior. Con este resultado Jordan concluyó que sería posible 
una formulación de la teoría cuántica en que la materia y la radiación se puedan 
concebir como ondas (cuantizadas) en interacción en el espacio-tiempo. 
Esta visión fue adoptada por W. Heisenberg y Pauli en el desarrollo de una teoría 

cuántica de campos describiendo la interacción entre radiación y materia. En su caso 
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usaron como punto de partida la ecuación de Dirac como una ecuación de onda clásica. 
La solución de de Broglie de la ecuación es cuantizada de acuerdo con el procedimiento 
de Jordan. En el desarrollo de este enfoque se llegó a una formulación en que se trataba 
de forma totalmente simétrica los electrones y los positrones (anti-electrones). Así, 
partiendo de la ecuación de Dirac y su ecuación adjunta (adjoint equation) como 
ecuaciones clásicas derivadas de un lagrangiano clásico, un campo arbitrario se puede 
escribir en términos de soluciones correspondientes a partículas libres: 
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La cuantización consiste en sustituir los coeficientes de expansión por operadores que 
satisfacen las relaciones de anti-conmutación [bn, bm]+ = [bn*, bm*]+ = 0 y [bn, bm*]+ = 
δnm. Con este procedimiento ψ(x) y el campo adjunto (adjoint spinor field) ψ*(x) se 
convierten en operadores que actúan en vectores de estado (state vectors) de un espacio 
de Fock; y br(p) y br*(p) se interpretan como operadores de aniquilación (annihilation 
operators) y creación (creation operators) de un electrón en el estado (p, r). Haciendo la 
redefinición de los operadores para estados con energía negativa como br+2(-p) = dr*(p) 
y br+2*(-p) = dr(p) con r = 1, 2, estos operadores se pueden interpretar como los 
operadores de creación y aniquilación de un positrón con energía positiva. Después de 
este cambio, la expansión del operador  ψ(x) es ahora  
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Con esta formulación no hay estados con energía negativa que son ahora interpretados 
como positrones con energía positiva. Así ya no es necesario suponer un ‘mar’ con un 
número infinito de electrones con energía negativa.  También en los operadores de 
campo ψ(x) y ψ*(x) tenemos en simultaneo componentes relacionados con los 
electrones y con los positrones.   
Consideremos ahora el operador de energía y momento (energy-momentum 

operator)  
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y el operador de carga (total charge operator) 
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donde n-(p) es el número de electrones y n+(p) es el número de positrones. Como Jordan 
había propuesto, se puede ver que el hecho de que la carga eléctrica tenga valores 
discretos resulta de la cuantización de un campo clásico. 
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El capítulo 4 

 
Como es bien sabido en 1905 A. Einstein propuso que determinados aspectos de la 
radiación electromagnética se podían explicar mejor haciendo referencia a una 
concepción corpuscular de la luz. Esto no significaba volver a una especie de teoría 
Newtoniana de la luz. Einstein sólo propuso que en el límite de frecuencias elevadas en 
que la ley de Wien es válida, la luz debe, desde un punto de vista termodinámico, 
comportarse como si fuera constituida por partículas independientes de energía (light 
quanta). En 1909 Einstein presentó más resultados en esta línea, estudiando las 
fluctuaciones energéticas de radiación en equilibrio termodinámico en el interior de una 
cavidad. Einstein obtuvo una expresión con dos términos, uno que se explica haciendo 
referencia a propiedades ondulatorias de la radiación y el otro a propiedades 
corpusculares. Einstein consideró que el desarrollo futuro de la física pasaría por una 
teoría en la que existiera una especie de fusión de estos dos aspectos: una teoría que 
explicara el aspecto dual de la luz. 
Después del desarrollo de la mecánica de matrices por Heisenberg y de su 

reformulación matemática por M. Born (con Jordan y Heisenberg) en lo que ahora 
llamamos de mecánica cuántica, ha sido posible tratar la cuestión de la cuantización de 
la radiación. Esto empezó ya en los momentos iniciales del desarrollo del formalismo 
matemático de la mecánica cuántica. Un momento importante fue el estudio por Jordan 
de un campo electromagnético libre dentro de una cavidad. De una manera no muy 
rigurosa Jordan pudo deducir los resultados de Einstein de 1909 respecto a la dualidad 
onda-partícula en la radiación. Jordan trató la radiación electromagnética libre como un 
conjunto infinito de osciladores harmónicos, cuantizando de forma independiente cada 
oscilador. El aspecto más importante de este procedimiento directo es la interpretación 
que Jordan le dio. Jordan vio que podía relacionar los cuantos de luz con las 
oscilaciones cuantizadas del campo. Así la discontinuidad de energía surge como una 
propiedad del campo cuántico. Considerando que a cada oscilador k con energía νk está 

asociado un número cuántico nk, la energía del campo es dada por ∑ν=Ε
k

kkn nh . 

Según Jordan  se tiene que ver también nk como el número de cuantos de luz con 
frecuencia νk existentes en el interior de la cavidad. 
Nuevos e importantes desarrollos ocurrieron con Dirac. Como ya referí, en un 

artículo de 1927, Dirac presentó un tratamiento de la interacción del campo 
electromagnético con un átomo desde dos perspectivas iniciales distintas. En uno de los 
enfoques basado en la cuantización del campo electromagnético clásico Dirac siguiendo 
a Jordan hizo una expansión de Fourier del campo en términos de sus modos normales 
(matemáticamente equivalentes a osciladores harmónicos) tratando los coeficientes 
como operadores. Otra aportación importante fue, en 1928, el desarrollo conjunto por  
Jordan y Pauli de un procedimiento de cuantización relativista del campo 
electromagnético libre. Por esas fechas, como mencioné en el capitulo 2,  Pauli y 
Heisenberg empezaron a intentar desarrollar una electrodinámica cuántica relativista 
partiendo de la idea de Jordan de tratar la radiación y la materia como campos 
cuánticos. Después de diversos problemas de orden técnico, Pauli y Heisenberg 
pudieron desarrollar un método de cuantización del campo electromagnético partiendo 
del lagrangiano clásico del campo (que resultaba equivalente al método anterior de 
Jordan y Pauli en el caso de un campo libre). Su (primer) trabajo publicado en 1929 
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presentaba una falta clara de aplicaciones y no trataba la cuestión de la energía (self-
energy) infinita de las partículas cargadas. 
De forma independiente de Pauli y Heisenberg, E. Fermi desarrolló un método más 

directo en el cual, al contrario del trabajo de Dirac de 1927, no sólo el campo de 
radiación era cuantizado sino todo el campo electromagnético descrito por el potencial 
vector y el potencial escalar. Con ese fin Fermi usó la ecuación de d’Alembert para el 
potencial vector y el potencial escalar: �Aµ = jµ. Para hacer esta ecuación equivalente  a 

las de Maxwell, Fermi tenía que tener en cuenta la llamada condición de Lorentz  ∂µA
µ 

= 0, que él vio como una condición que tienen que satisfacer los operadores de campo 
(definidos haciendo la expansión de Fourier del potencial vector y potencial escalar). 
En los meses siguientes a la publicación de su primer artículo sobre la 

electrodinámica cuántica, Pauli y Heisenberg mejoraron su método evitando trucos 
formales que habían usado. La clave para esto fue la invariancia de gauge. En este 
trabajo implementaron el esquema de Fermi desde el suyo basado en el formalismo 
lagrangiano. Al hacerlo notaron que la manera en que Fermi aplicaba la condición de 
Lorentz no era correcta y que sólo se podía aplicar como una condición suplementaria 
sobre los vectores de estado: (∂µA

µ)Ψ = 0.  
Fermi clarificó en parte el significado físico de la condición subsidiaria en una nota 

posterior. Al contrario del trabajo de Dirac de 1927, en su primer artículo Pauli y 
Heisenberg no consideraron solamente el campo de radiación (descrito por un potencial 
vector transversal con dos grados de libertad, correspondiendo a dos polarizaciones 
perpendiculares a la dirección de propagación de la onda), y si tal como Fermi 
consideraron los cuatro grados de libertad asociados al potencial vector y potencial 
escalar más generales. Pero no llegaron a discutir la relación existente entre los 
potenciales más generales y el potencial vector transversal del campo de radiación.    
Alguna clarificación de este punto lo dio L. Rosenfeld también en 1929 mostrando 

(en un sistema de referencia particular) que las cuatro polarizaciones de un modo 
normal del campo se relacionan de una forma sencilla con el vector de campo (wave 
vector): dos componentes correspondiendo a la luz transversalmente polarizada, uno a 
una polarización longitudinal, y otro a una polarización de tipo escalar o temporal (time-
like polarization). 
 Adoptando la idea de Pauli y Heisenberg respecto a la condición subsidiaria, Fermi 

mostró que los componentes longitudinales y escalares del campo – que por la 
condición subsidiaria no se pueden ver como grados de libertad independientes del 
campo – correspondían a la interacción de Coulomb entre partículas cargadas. 
En este momento el desarrollo de la cuantización del campo electromagnético en 

interacción con cargas quedó básicamente concluido. En términos más generales la 
electrodinámica cuántica era aún muy imperfecta; por ejemplo, el problema de la 
energía propia infinita (self-energy) de las partículas cargadas aún estaba por resolver. 
En la practica sólo se podían hacer unos cuantos cálculos de segundo orden en teoría de 
perturbaciones sin que los resultados fueran divergentes. 
La cuantización del campo electromagnético de forma totalmente relativista 

implementada por Fermi, Pauli y Heisenberg, usando la condición de  Lorentz, resultó 
no llevar a ninguna incongruencia en la práctica. Pero al estudiar con detenimiento las 
consecuencias de la condición subsidiaria este método no es consistente. Una solución 
para este problema surgió a inicios de los 50 con el desarrollo de un formalismo basado 
en una métrica indefinida del espacio de Hilbert (el método de Gupta-Bleuler). Pero en 
la manera en que normalmente se hacen los cálculos el operador de métrica no aparece. 
Esto da una justificación a posteriori para la manera en que se venían haciendo los 
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cálculos. Ahora, hasta el final de este capítulo me concentraré en lo que debería ser el 
más sencillo de los estados del campo electromagnético cuántico: el vacío. 
El estado fundamental (el vacío) del campo electromagnético es el estado en que 

este tiene la menor energía posible. Esto corresponde a no haber ningún fotón (cuanto 
de luz) transversal presente. Lo que corresponde en el ámbito clásico a esta situación es 
que haya una región del espacio sin campo electromagnético. Contrariamente a la 
situación clásica, al estado fundamental del campo electromagnético cuantizado se 
asocian efecto físicos, los llamados efectos del vacío (vacuum effects), siendo el efecto 
Casimir tomado como un ejemplo claro de esto. 
En el efecto Casimir se supone que al colocarse dos placas metálicas frente a frente 

en el espacio vacío, el estado fundamental del campo electromagnético cuantizado 
provoca una fuerza entre las placas (eso se explica teniendo en cuenta que las placas van 
a influir en las condiciones de frontera que definen el número de modos del campo 
incluso en su estado fundamental). 
En realidad, como H. Zinkernagel señalo, una interpretación física es posible sin que 

sea necesario considerar el campo electromagnético cuántico en su estado fundamental. 
Por ejemplo en el  caso del efecto Casimir eso se consigue teniendo en cuenta que las 
placas metálicas no son condiciones matemáticas de frontera y si son constituidas por 
materia cargada. 
Que los llamados efectos del vacío se expliquen de otro modo no significa que el 

estado fundamental sea equivalente a la situación clásica de un vacío espacial. En 
realidad considerando el caso sencillo de un oscilador dipolar en el espacio vacío, se 
verifica que es necesario tenerse en cuenta el estado fundamental del campo 
electromagnético para que las relaciones de conmutación de los operadores de posición 
y momento del oscilador estén de acuerdo con lo esperado en el formalismo cuántico. 
Pero aquí se trata solamente de un aspecto formal sin conllevar aspectos que se puedan 
observar. Donde podemos encontrar resultados experimentales relacionados con el 
vacío del campo electromagnético es en las llamadas fluctuaciones del campo.   
Así en el estado fundamental del campo electromagnético cuantizado el valor medio 

(expectation value) de los campos eléctricos y magnéticos es nulo:   
00000 == ΒΕ . Pero lo mismo no ocurre con la variancia (variance). Esto es 

porque  00 2
Ε y 00 2

Β son distintos de cero incluso para el estado fundamental. De 

acuerdo con la interpretación del formalismo cuántico adoptada aquí, tenemos que 
considerar un contexto experimental particular en el que se hacen mediciones del campo 
electromagnético, y hacer mediciones repetidas en las mismas condiciones. Así se 
obtiene una distribución de resultados de estas mediciones independientes de acuerdo 

con una desviación estándar (standard deviation) 00 2Ε  de una medición 

correspondiendo a un campo nulo. Así se espera que midamos algunas veces un campo 
eléctrico distinto de cero incluso para un campo en su estado fundamental. 
En experimentos hechos usando una técnica llamada de ‘balanced homodyne 

detection’ es posible obtener lo que se pueden interpretar como fluctuaciones de 
cuadratura (quadrature fluctuations) del vacío que corresponden a la desviación estándar 
que predice la teoría. Así parece que siempre se pueden obtener ‘efectos del vacío’ en 
experimentos pero solamente al nivel de las llamadas fluctuaciones cuánticas presentes 
también en cualquier estado con un número definido de fotones. 
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El capítulo 5 

 
Los elementos más básicos de la electrodinámica cuántica ya están presentes en el 
artículo de Dirac de 1927. En este trabajo el campo electromagnético y la materia son 
descritos por hamiltonianos clásicos. Un tercer término describe la interacción entre el 
campo y la materia: H = Hmat + Helect + Hint. A través del procedimiento de cuantización 
el hamiltoniano total se convierte en un operador. Pero es importante notar que la 
radiación y la materia son cuantizados por separado. Por razones (aparentemente) 
prácticas Dirac usa un método perturbativo para desarrollar las aplicaciones de la teoría. 
Como ya comenté el enfoque de Dirac fue desarrollado, en particular, por Jordan, 

Pauli, Heisenberg, y Fermi. Mirando ahora a la electrodinámica cuántica desde el 
método lagrangiano establecido, tenemos dos campos clásicos descritos, uno por las 
ecuaciones de Maxwell-Lorentz y otro por la ecuación de Dirac. Como ya mencioné la 
ecuación de Dirac se puede ver como una ecuación describiendo un campo clásico. 
Usando el esquema habitual de la expansión en serie de Fourier de la función de onda, 
el campo se puede ver como un conjunto infinito de modos propios en que después de la 
cuantización los coeficientes se convierten en operadores. En el caso del campo 
electromagnético se usa un procedimiento equivalente. Hasta este momento se está 
considerando dos campos cuantizados independientes. La electrodinámica cuántica es 
una teoría que nos describe la interacción entre la radiación y materia representados por 
estos campos cuánticos.  
El lagrangiano de la electrodinámica cuántica se puede definir partiendo de los 

lagrangianos para el campo de Dirac libre, el campo electromagnético libre, y un 
término describiendo la interacción entre ellos:  
 
                µ

µ ⋅γ++= ψAψeLLL emm . 

 
De partida la cuantización se hace para los campos libres, no para el caso (que resulta 
imposible de tratar) de un sistema cerrado de campos en interacción. Se tiene en cuenta 
el término de interacción µ

µ ⋅γ ψAψe por un procedimiento perturbativo que parte de los 

campos libres para describir procesos físicos.  
En las aplicaciones de la teoría se considera (siempre) un estado inicial (en t = −∞) 

correspondiendo a campos libres y un estado final (en t = +∞) que también corresponde 
a campos libres. La amplitud de transición desde el estado inicial φA al estado final φB es 
dada por SAB = (φ

*
BSφA), donde S es la llamada matriz-S.  La matriz-S  es dada por 
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Vemos que la matriz-S que depende solamente del término de interacción se escribe 
como una serie de potencias de e, donde e es la carga eléctrica: S = 1 + eS(1) + e2S(2) + 
… . Un elemento esencial de este método es el llamado ‘switching on’ y ‘switching off’ 
(conexión y desconexión) adiabática de la interacción entre los campos para poder 
calcular integrales que van de  −∞ a +∞. 
Consideremos por ejemplo la aplicación de la electrodinámica cuántica a la 

descripción de la aniquilación en dos fotones de un par electrón-positrón: e+ + e– → 2γ. 
El estado inicial corresponde a un campo de Dirac con dos cuantos, uno correspondiente 
al electrón y otro al positrón (el campo electromagnético se supone en el estado 
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fundamental). Después de la aniquilación entre el electrón y el positrón, el campo de 
Dirac se encuentra en su estado fundamental (i.e., sin que haya ningún cuanto) y el 
campo electromagnético se queda ahora en un estado con dos fotones. En segundo 
orden la amplitud de transición es dada por 
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No entraré en los detalles de esta expresión, sólo comentaré algunos aspectos más 
relevantes. En está expresión encontramos términos que corresponden a la 
‘propagación’ de un cuanto (virtual) entre los puntos del espacio-tiempo x1 y x2, y 
componentes relacionadas con los estados libres de cada campo (estados de Fock): +ee- , 

γ2 , y los estados de vacío de cada campo 0 . Así, sólo entran en el cálculo de 

interacciones estados pertenecientes al espacio de Fock de cada campo. Parece entonces 
que se tiene un procedimiento sencillo, basado en la matriz-S, para describir cualquier 
proceso físico que corresponda a una interacción entre el campo de Dirac y el campo 
electromagnético. 
El problema es que la conexión adiabática de la interacción (adiabatic switching) se 

supone que permite pasar de la situación descrita por los hamiltonianos (o lagrangianos) 
de los campos libres H a la situación de interacción descrita por el hamiltoniano (o 
lagrangiano) de los campos en interacción HI. Ahora, de acuerdo con el llamado 
teorema de Haag, en términos informales, los vectores de estado para los campos libres 
y los vectores de estado de los campos en interacción están en espacios distintos y no se 
pueden ‘conectar’. Por el teorema de Haag se puede concluir que si partimos de un 
campo libre en t = –∞ tendremos siempre un campo libre para todo t. Así resulta 
necesario desde el inicio considerar vectores de estado de campos en interacción. Ahora 
bien, como hemos visto, esto no es lo que se hace en la electrodinámica cuántica. Dicho 
en pocas palabras, el teorema de Haag implica que el método perturbativo usado en la 
teoría para describir la interacción entre la radiación y la materia es desde un punto de 
vista matemático inconsistente. Así tenemos el problema de comprender cómo es 
posible que un método matemáticamente inconsistente permita la obtención de 
resultados excelentes cuando los comparamos con datos experimentales. Trataré de 
mostrar que los buenos resultados de la teoría pese al teorema de Haag se pueden 
explicar si se tiene en cuenta la base física de la teoría y no solamente su estructura 
matemática. 
Como ya referí antes, la teoría se desarrolla partiendo de la cuantización 

independiente de dos campos clásicos. Describimos siempre su interacción como una 
pequeña perturbación a sus estados libres. En realidad no tratamos los campos como un 
sistema único cerrado. Pero desde un punto de vista matemático si consideramos todos 
los términos de la serie de expansión de la matriz-S, eso corresponde a describir un 
sistema cerrado. La cuestión es que la serie de expansión de la matriz-S es divergente. 
¿Qué implicaciones tiene esto? Parece entonces que la situación es aún peor que la 
amenaza de inconsistencia matemática debido al teorema de Haag. Si la serie es 
divergente eso significa que si no calculamos sólo unos cuantos términos y tratamos de 
hacer un cálculo lo más exacto posible, a partir de un determinado orden, en vez de 
tenerse resultados cada vez más ajustados a los datos experimentales tendremos 
resultados  cada vez peores. Así parece que la teoría sólo ‘funciona bien’ porque 
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hacemos unos cálculos limitados. Tal no es el caso. Si es cierto que desde un punto de 
vista matemático el que se tenga en cuenta sólo unos cuantos términos de la serie no 
tiene aparente justificación, cuando tenemos en cuenta la base física de la teoría sí se 
puede justificar el no considerar los términos de orden elevado que ‘estropean’ los 
cálculos. 
Como referí la teoría ha sido estructurada alrededor de la idea de que la interacción 

entre radiación y materia es débil (weak). Esto está relacionado con lo siguiente: (1) el 
término de interacción en el Lagrangiano es pequeño; (2) debido a esto cuantizamos los 
campos en separado como campos libres; (3) tomamos el término de interacción como 
un término perturbativo. Ahora, como ya mencioné, si intentamos calcular toda la 
matriz-S, correspondiendo a tratar la radiación y materia como un sistema cerrado, se 
obtiene un resultado  divergente. Se puede concluir así que, en la práctica, la noción de 
que la interacción es débil implica que es imposible pasar de la descripción de campos 
libres (y su interacción) a la situación de campos (totalmente) en interacción. 
Desde una perspectiva formal se puede mostrar que un posible sistema de campos 

en interacción no se puede describir usando la representación de Fock para campos 
libres. Esto significa que desde un punto de vista formal para un sistema cerrado de 
campos en interacción no se puede usar la base física constitutiva de la electrodinámica 
cuántica que es la idea de interacción débil y su implementación en la teoría. Así, 
podemos ver que no se consideran los términos de orden elevado de la serie de 
expansión de la matriz-S debido a que su inclusión correspondería  a un uso impropio 
de la estructura matemática más allá de la base física que se supone que ésta representa. 
Por tanto en la electrodinámica cuántica tenemos los conceptos de radiación y materia, y 
de una interacción débil entre ellos, pero no de campos en interacción (que corresponde 
a un sistema cerrado de radiación y materia). Así, hago una correspondencia entre la 
obtención de resultados matemáticos con significado (no divergentes) y la manera como 
se implementa la base física de la teoría. En este caso tenemos cálculos intrínsecamente 
aproximados de la interacción débil entre dos sistemas físicos distintos (radiación y 
materia). 
Creo que esta situación tiene semejanzas con las ideas de Bohr respecto a la 

paradoja de Klein. Como ya referí antes, para Bohr la paradoja de Klein resultaba de 
considerarse potenciales ‘matemáticos’ sin  tenerse en cuenta la estructura atómica de la 
materia (parte constituyente de la base física de la teoría). La paradoja resultaba de 
usarse la matemática más allá de lo que los conceptos físicos de la teoría realmente 
permitían. Como en el caso de la paradoja de Klein la divergencia de la serie de 
expansión de la matriz-S resulta  de aplicarse la estructura matemática de la teoría más 
allá de su contenido físico provocando un colapso de los cálculos  
Volviendo a la cuestión del teorema de Haag, resulta que en la electrodinámica 

cuántica evitamos las consecuencias del teorema porque ni siquiera intentamos describir 
un sistema cerrado de campos en interacción, solamente la interacción entre radiación y 
materia como sistemas distintos. Así no hay ningún conflicto de la teoría con el teorema 
de Haag. 
 
 
El capítulo 6 

 
Cuando en 1929-30, Heisenberg y Pauli presentaron en dos artículos una teoría de 
campos relativista de la interacción entre un campo electromagnético cuantizado y un 
campo de Dirac cuantizado, cambiaron de una primera opinión en que la energía propia 
infinita del electrón no constituía un problema mayor a una postura más circunspecta en 
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que reconocían que este problema podía incluso hacer inaplicable la teoría. La situación 
de la electrodinámica cuántica en los años treinta no mejoró.  
Como hemos visto, para tratar de resolver inconsistencias en su teoría del electrón 

relacionadas con la existencia de soluciones con energía negativa, Dirac propuso su 
teoría de los agujeros (hole theory). De aquí surgió un nuevo problema con infinitos. En 
esta teoría/interpretación de la ecuación de Dirac se considera que todos los estados 
correspondientes a energías negativas están en su mayoría ocupados por electrones. Esto 
llevó a Dirac a considerar que el campo electromagnético es generado por la diferencia 
entre la densidad eléctrica actual y la que corresponde a tener todos los estados de 
energía negativa ocupados (el estado normal). Así la ecuación para el campo eléctrico es 
dada por Div E = – 4π (ρ – <ρ>vacío). Explorando las consecuencias de esta definición 
Dirac estudió cómo un campo externo podría influir en la definición del estado normal, 
esto es, trató de calcular cúal era la distribución de electrones con energías negativas 
que se puede considerar como la normal en el caso en que estén sujetos a un campo 
externo. Considerando el caso sencillo de un campo eléctrico externo estático, Dirac 
concluyó que este cambiaba la distribución de electrones con energía negativa de una 
manera que correspondía a una neutralización parcial de la carga que producía el campo 
estático. Si se asumía que su ecuación era exacta eso llevaba a una cancelación total de 
la carga externa – un resultado sin sentido. Eso llevó a Dirac a suponer que la ecuación 
no se puede aplicar para energías ultra-relativistas del orden de 137mc2. Así no teniendo 
en cuenta el efecto del campo en electrones con energía más negativa  que –137mc2, 
tenemos que la neutralización de la carga (que origina el campo externo) debido a los 
restantes electrones es pequeña, del orden de 1/137. Así Dirac concluye que todas las 
partículas cargadas tienen una carga efectiva menor que su carga real (del orden 
136/137).  
Esta definición de un valor máximo de energía resulta fundamental para obtener un 

resultado finito. Así en un calculo posterior usando la llamada aproximación de Hartree-
Fock Dirac obtiene un resultado infinito que sólo puede reducir a uno finito imponiendo 
una energía de corte (cut-off energy). Esto no es simplemente un truco matemático. 
Dirac presenta una justificación física para usarse este procedimiento. De acuerdo con 
Dirac (siguiendo ideas de Bohr) la teoría cuántica sólo se aplica a fenómenos en que las 
distancias son mayores que el diámetro clásico del electrón, esto es del orden de e2/mc2. 
Esto corresponde a energías del orden (ћc/e2)(mc2) @ 137mc2, que es el valor adoptado 
por Dirac como límite para la energía. Esta aplicación está de acuerdo con la idea de 
Bohr de que no se pueden hacer integraciones tomando la energía con cualquier valor 
debido a que la teoría trata el electrón como una partícula puntual (point-charge). Así 
sería inconsistente en las aplicaciones de la teoría considerar energías que 
corresponderían a distancias menores que el ‘diámetro’ del electrón. Esta importante 
idea se va a quedar soterrada en el posterior desarrollo de técnicas para enfrentar los 
problemas de infinitos en la teoría. No voy a entrar aquí en los detalles de esta técnica 
provisoria aplicada por Dirac a la que se le dio el nombre un poco despectivo de física 
de substracción (subtraction physics); sólo refiero que durante los años treinta no ha 
sido posible resolver los distintos problemas de energía-propia que tenía la teoría. El 
único ‘desarrollo’ importante ha sido la comprobación por V. F. Weisskopf de que la 
energía-propia del electrón divergía ‘sólo’ de forma logarítmica. En la práctica sólo se 
podían hacer unas cuantas aplicaciones de la teoría en el orden más bajo de 
perturbaciones y nada más. 
En 1947 los resultados experimentales de W. Lamb respecto a un desvío del nivel de 

energía del estado 22S1/2 respecto al 2
2P1/2  en el átomo de hidrogeno llevó a una serie de 

físicos (incluyendo los más brillantes de una nueva generación) a enfrentar de nuevo la 
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cuestión de los infinitos en la teoría (la guerra había dejado estas cuestiones teóricas en 
segundo plano). El primer momento de esta nueva fase en la historia de la 
electrodinámica cuántica lo encontramos en un cálculo no-relativista realizado por H. A. 
Bethe que le permitió obtener de forma aproximada el desvío observado 
experimentalmente. Para eso Bethe hizo uso del método de ‘substracción’ de Dirac en el 
sentido en que impuso un limite de energía en las integrales (un ‘cut-off’ de energía). El 
otro aspecto fue tomar la parte que sería infinita como una corrección de la masa del 
electrón y considerar que la masa observable está constituida por una masa ‘mecánica’ y 
el efecto de la interacción del electrón con su propio campo (la parte que resulta 
infinita). Adoptó básicamente un procedimiento ya necesario en la electrodinámica 
clásica debido al mismo tipo de problema (una energía-propia infinita) que se denomina 
renormalización. Es importante notar que, al contrario de Dirac, Bethe no dio ninguna 
motivación física para el ‘cut-off’. 
Unos pocos meses después del cálculo de Bethe, un físico de la nueva generación J. 

Schwinger desarrolló un método relativista pero no-covariante para calcular el desvío de 
Lamb (Lamb shift), usando para ello la renormalización de la masa y de la carga. La 
visión de Schwinger respecto a la renormalización es que ésta indicaba que la teoría 
necesitaba cambios para energías ultra-relativistas. Schwinger esperaba que una futura 
teoría mejorada debería imponer límites a la energía que permitiera la existencia de un 
‘cut-off’ natural. Pero, al contrario de Dirac, Schwinger pensaba en términos de una 
mejora más bien matemática y no vio el problema como una incompatibilidad entre los 
conceptos físicos de la teoría (e.g. el concepto de electrón puntual) y la inexistencia de 
un límite natural asociado en las aplicaciones matemáticas de la teoría. Otro aspecto del 
trabajo de Schwinger  es que, como los cálculos fueron realizados de forma no-
covariante, había muchas ambigüedades en el procedimiento adoptado para identificar 
los términos divergentes. 
Otro físico de la nueva generación que dio una contribución fundamental a la teoría 

fue R. P. Feynman. Partiendo de la propuesta de Bethe  de buscar una modificación para 
frecuencias elevadas de forma claramente relativista (que permitiera evitar los infinitos 
por un procedimiento sin ambigüedades), Feynman buscó una modificación consistente 
de la electrodinámica. Feynman empezó con el caso de la electrodinámica clásica 
desarrollando un método llamado regularización, en que el uso de un término extra en 
las expresiones matemáticas permitía que todos los resultados fueran finitos. Feynman 
aplicó después este procedimiento para el caso en que los electrones (y positrones) se 
describen con la ecuación de Dirac. 
El método de regularización de  Feynman resulta ser inconsistente desde el punto de 

vista de la interpretación física de la teoría. Eso significaba que en la práctica después 
de hacer la regularización de los términos que en otro caso serían infinitos, estos se 
tenían que ‘absorber’ en la masa y carga del electrón correspondiendo a hacerse una 
renormalización. Para que los resultados no dependieran del término de regularización, 
se tenía que considerar el límite en que este dejaba de aparecer en las expresiones. 
Como ya se había hecho la renormalización de los términos infinitos esto ya no causaba 
problemas. El método de Feynman era entonces un procedimiento equivalente al de 
Schwinger, su ventaja era ser un método covariante y por lo tanto sin ambigüedades en 
la manera como se manejaban los términos infinitos. Así el procedimiento de Feynman 
no fue una nueva teoría mejorada y fue solamente un procedimiento para manejar de 
forma clara integrales que resultan ser divergentes. 
Resulta claro que la nueva generación de físicos tenía una actitud mucho más 

pragmática que la anterior, tratando de poner la teoría en funcionamiento sin detenerse 
demasiado en los posibles problemas conceptuales asociados a la regularización y 
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renormalización. Una excepción es la visón de F. Dyson respecto a este tema. La 
concepción de Dyson resulta tener alguna semejanza con la de Dirac y Bohr, entonces 
ya olvidada. Dyson imagina dos tipos de observadores, el ‘ideal’ y el ‘real’. En el caso 
del observador ‘ideal’ este tendría instrumentos de medición sin estructura atómica 
pudiendo ‘medir’ la interacción puntual de los campos cuánticos (y así obtendría 
resultados infinitos); el observador ‘real’ tiene instrumentos de medida constituidos por 
átomos y por lo tanto se tiene que tener en cuenta la estructura atómica de la materia. 
Así las mediciones del observador ‘real’ están limitadas y eso le impide hacer 
observaciones submicroscopicas. De este modo solo obtiene resultados finitos. 
 
 
El capítulo 7 

 
La descripción en orden más bajo de teoría de perturbaciones de los procesos físicos en 
la electrodinámica cuántica está libre del problema de infinitos. Esto puede permitir un 
análisis más claro de la descripción espacio-temporal de los procesos físicos que se 
tiene en la teoría. Me concentraré en la descripción de la dispersión entre electrones 
(electron-electron scattering). 
En 1948 Dyson demostró la equivalencia entre los métodos de Schwinger (y 

Tomonaga) y Feynman. Lo hizo usando la llamada matriz-S. Como ya mencioné la 
matriz-S se aplica por un procedimiento perturbativo y es divergente. Los términos de 
orden superior de la matriz-S no cambian la descripción espacio-temporal (cualquiera 
que sea) que se puede tener con este método, por eso consideraré sólo la expansión de la 
matriz-S hasta segundo orden. En este caso la interacción entre los electrones resulta de 
un intercambio (exchange) de fotones virtuales (ver figura 1). 
En la descripción espacio-temporal global (overall space-time approach)7 de 

Feynman consideramos la propagación de un fotón virtual entre todos los puntos del 
espacio-tiempo de Minkowski. El propagador de Feynman es dado por 
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Esta expresión significa que estamos  considerando un fotón ‘creado’ en un  punto del 
espacio-tiempo y ‘aniquilado’ en otro punto. El uso de T{ } significa que en esta 
expresión covariante incluimos, dependiendo del orden temporal, la propagación de un 
electrón a otro y viceversa, pues T{Aµ(x)Aν(x’)}= Aµ(x)Aν(x’) si t > t’, y 
T{Aµ(x)Aν(x’)}= Aν(x’)Aµ(x) si t’ > t. La amplitud de transición en segundo orden 
resulta de la contribución de todas las posibles interacciones entre los campos de Dirac 
y Maxwell ‘conectados’ por un propagador de fotónes: 
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Los fotones se denomina virtuales por dos motivos. Uno es que la relación de 

energía y momento (energy-momentum relation) para el fotón virtual no es k2 = (k0)2 – 

                                                 
7 En este trabajo se va usar esta terminología pese a que teniendo en cuenta sus implicaciones respecto a 
la descripción temporal de los fenómenos físicos no parece la más adecuada.  
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k
2 = 0. Esto se debe a que en la expresión del propagador k y k0 son independientes el 
uno del otro; también resulta que el propagador no es nulo para separaciones del tipo 
espacial (space-like separations) lo que corresponde a una ‘propagación’ con una 
velocidad superior a la de la luz. El segundo punto es que este fotón virtual no se puede 
en principio observar. 
 

                                        
 
 
Figura 1: La interacción entre electrones en segundo orden, que resulta del intercambio de un fotón virtual 
(Este es un ejemplo de un diagrama de Feynman).  
 
Una cuestión bastante debatida en la filosofía de la física es el estatus de las 

partículas virtuales. Por lo general la idea es que las partículas virtuales se tienen que 
ver como un artefacto de la expansión perturbativa sin aportar ninguna ‘imagen’ física 
de las interacciones. El argumento principal usado en la defensa de esta visión es el 
llamado argumento de la superposición. De acuerdo con este argumento la descripción 
por la matriz-S de las interacciones resulta en una serie infinita de términos de orden 
cada vez mayor, lo que corresponde a tener un número infinito de combinaciones de 
cuantos virtuales. Así los cuantos virtuales se tendrán que ver como descripciones 
pictóricas de términos matemáticos (pues se pueden asociar a distintos diagramas de 
Feynman). 
El problema es que este argumento no es válido en la electrodinámica cuántica. 

Como ya mencioné la serie de expansión de la matriz-S es divergente y tenemos 
argumentos físicos para sólo considerar los primeros términos. Así no tenemos un 
número infinito de cuantos virtuales en la descripción de las interacciones. En este caso 
el intercambio de fotónes virtuales es más que algo meramente matemático, es la 
manera en que la teoría nos describe (a nivel físico) las interacciones. Pero hay que 
tratar de comprender lo que es realmente la descripción global de las interacciones. El 
aspecto crucial es que la teoría no nos da una descripción en el tiempo de las 
interacciones. En el método de la matriz-S consideramos siempre límites de integración 
entre t = –∞ y t = +∞; no hay manera de evitarlo. Esto es consistente con las 
posibilidades experimentales. El caso es que no hay acceso experimental al 
‘mecanismo’ de la interacción. Lo que sí se puede hacer es determinar (en el ámbito 
teórico y experimental) la llamada sección transversal (cross-section) que permite 
calcular/verificar la probabilidad de observar un determinado resultado final de la 
interacción. 
Se presenta la cuestión inmediata de saber si esta es una limitación de un método en 

particular o una característica de la teoría. En cuanto al método, la matriz-S es bastante 
general y otros métodos también perturbativos tienen el mismo tipo de problema. Lo 
que tal vez fuera posible es considerar otro tipo de situaciones que aún se puedan ver 
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como descritas por la teoría en las cuales se tenga una descripción temporal más en 
acuerdo con lo que se espera desde la física clásica: una interacción retardada debido a 
la velocidad finita de la luz. Dejaré esta cuestión para el siguiente capítulo. 
 

 

El capítulo 8 

 
Aquí trataré la cuestión de la relación entre la electrodinámica clásica y la cuántica. Del 
capítulo anterior quedó por analizar una cuestión que trae implícita la que acabo de 
mencionar. En la electrodinámica clásica tenemos la posibilidad de considerar que la 
interacción electromagnética (dependiente del tiempo) resulta de la emisión y absorción 
de ondas electromagnéticas que se propagan a la velocidad de la luz. En el caso de la 
electrodinámica cuántica hasta el momento sólo se  ha podido describir las interacciones 
a nivel temporal de forma global (entre t = –∞ y t = +∞). La cuestión está en saber si 
hay un término medio entre estos dos extremos y qué implicaciones tiene para nuestra 
visión de la relación entre las dos teorías.  
En un primer momento podría parecer que un modelo sencillo de la interacción 

entre dos electrones atómicos podría darnos este término medio que se busca. 
Aparentemente este modelo se desarrolla dentro de la electrodinámica cuántica. Así 
cuando un átomo inicialmente en un estado excitado emite un fotón, éste solo será 
absorbido por otro átomo después aproximadamente de un intervalo de tiempo r/c,  
donde r es la distancia entre los átomos y c la velocidad de la luz. Un aspecto 
fundamental de este modelo es la forma específica dada a la densidad bilineal (bilinear 
density)  ψγψ µ  que aparece en el término de segundo orden de la matriz-S usado en 
este modelo:  
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con ψγψ µ ~ a1a2

*ρµ(x) exp [iω0t – t
2/T2] , donde ω0 > 0. Sin entrar en detalles se puede 

verificar que la expresión adoptada es la misma que se obtiene por consideraciones 
clásicas. Esto es importante pues significa que el modelo se está aplicando no en un 
‘régimen cuántico’ sino en el límite de correspondencia entre las dos teorías donde por 
construcción la teoría cuántica tiene que dar resultados equivalentes a la teoría clásica. 
Así se trata más bien de un modelo semi-clásico.  
Vemos que no se consigue dentro de la electrodinámica cuántica tener una 

descripción en el tiempo de las interacciones. Si suponemos la electrodinámica cuántica 
como una teoría más fundamental a la cual se reduce la teoría clásica tenemos un 
problema. La teoría clásica nos permite asociar intervalos de tiempo (duraciones) a los 
procesos físicos. Se supone que ‘por debajo’ existe un mundo cuántico descrito por una 
teoría cuántica. Estos procesos cuánticos deberían estar en el ‘interior’ de los procesos 
macroscópicos a los cuales se asocian duraciones claras. El problema es que según la 
electrodinámica cuántica no podemos asociar ningún intervalo de tiempo, por más 
cualitativo que sea, a los procesos cuánticos. Tenemos así el problema de justificar la 
emergencia de los intervalos de tiempo asociados a procesos descritos por la física 
clásica desde una descripción cuántica. Así un elemento clave de la emergencia de lo 
clásico (classicality) se nos escapa. 
Por este motivo me resulta difícil aceptar la visión tradicional de la teoría cuántica 

como más fundamental y a la cual se reduce la teoría clásica. Teniendo en cuenta que la 
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electrodinámica cuántica se construye, en parte, por un proceso de cuantización de la 
electrodinámica clásica, resulta más aceptable la idea de que la electrodinámica cuántica 
depende de la clásica y no se puede considerar por separado de la versión clásica. Son 
las dos en conjunto lo que nos permite describir los fenómenos que ‘catalogamos’ como 
de interacción electromagnética entre radiación y materia.  
Esta visión está de acuerdo con la idea de O. Darrigol de una estructura modular de 

las teorías físicas. De acuerdo con Darrigol  la práctica y la historia de la física revelan 
que las teorías no son un todo homogéneo y separado; por el contrario las teorías se 
aplican en conjunción unas con otras. Así una teoría se debe ver más bien como 
constituida por componentes o módulos que pueden ser ellos mismos teorías con 
distintos dominios de aplicación. 
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CHAPTER 2 
 
 
 

THE SCHRÖDINGER EQUATION AND ITS INTERPRETATION 
 
 

 
 

 
 
 
1 Introduction 

 
To set the ‘stage’ for the study of quantum electrodynamics, in particular of Dirac’s 
relativistic quantum-mechanical equation and its different interpretations, I will consider 
in this chapter the non-relativistic and quantum-mechanical Schrödinger equation. In 
section 2 I will consider some of the historical developments of the quantum theory 
previous to Schrödinger’s contribution. I will focus in particular on Albert Einstein’s 
work on light quanta (which as we will see in chapter 4 is a fundamental aspect of the 
quantized electromagnetic field) and Louis de Broglie’s work on wave aspects of 
electrons (which is an immediate precursor of Schrödinger’s approach). In section 3 I 
consider the early ‘stages’ of the development of the Schrödinger equation not 
addressing the interpretation problem, i.e. the physical meaning of the equation. Section 
4 will be dedicated to this problem. I will focus on Schrödinger’s ‘electrodynamic’ 
interpretation. We will see that this interpretation has a two-fold aspect. On one side 
Schrödinger uses his electrodynamic interpretation of the wave function as giving rise 
to a charge density distribution in space. But on the other side Schrödinger also takes 
the wave function as a ‘real’ wave propagating in space. In fact, that there can be an 
ambiguity in the interpretation of the Schrödinger equation can be made clear by 
considering the simple case of the hydrogen atom. We will see that it is possible to 
consider the Schrödinger equation as the equation of a ‘classical’ de Broglie wave that 
is afterwards quantized. We will encounter similar ambiguities in the next chapter when 
looking into the details of the Dirac equation. 
 
 
2 The ‘pre-history’ of the Schrödinger equation  
 
In 1900 Max Planck presented a derivation of the energy distribution law of the normal 
spectrum, which he had previously proposed with no rigorous theoretical justification 
but with a good agreement with observational data. In his derivation Planck considered 
a system of resonators (Hertzian oscillating dipoles) in thermodynamic equilibrium with 
electromagnetic radiation at a constant temperature (Klein, 1975, pp. 461-462). There 
are two main separate parts in Planck’s derivation. One consists in deriving the relation 
between the average energy of a resonator (having frequency ν) and the density of the 
(blackbody) electromagnetic energy at the same frequency. This Planck achieved by 
thermodynamics and classical electrodynamics. The other part of Planck’s derivation 
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consisted in using Ludwig Boltzmann’s combinatorics in the determination of how the 
total energy of resonators with a particular frequency is distributed at a particular instant 
over the resonators, taken to be independent of one another (Jammer, 1966, pp. 10-22; 
Kuhn, 1978, pp. 97-110).  
 Boltzmann had developed his combinatorics as a procedure (without physical 

meaning in itself) to determine the most probable distribution of molecular velocities in 
a perfect gas. For that he considered a fiction wherein molecules can take only discrete 
energy values. Each particular microstate of the gas corresponds to a particular 
distribution of discrete elements of energy by the molecules (what Boltzmann called a 
complexion). Then, by determining the maximum number of complexions (under 
particular constraints) the equilibrium distribution was obtained. That is, the equilibrium 
macrostate of the gas (with N molecules and a total energy E) is the one for which there 
are more microstates available. In the end of the calculation the continuous limit was 
taken. Boltzmann then obtained the Maxwell distribution law of molecular velocities in 
a perfect gas (Darrigol, 1992, pp. 62-63). 
Planck had already obtained, in part by ad hoc means, an energy distribution law 

that was in excellent agreement with experimental data. In the search for theoretical 
foundations to his law Planck found it necessary to make use of Boltzmann’s ideas. 
Planck, when applying Boltzmann’s combinatorics to the case of resonators in 
thermodynamic equilibrium with electromagnetic radiation at a constant temperature, 
considered that the total energy of N resonators consisted in an integer number P of 
energy elements distributed over the resonators. However, to arrive at his law Planck 
had to keep the energy elements to the end of the calculation. He could not take the 
continuous limit (Darrigol, 1992, pp. 67-73). In this way, the essential point that enables 
the derivation of Planck’s distribution law is to consider that the total energy E of N 
resonators with frequency ν is composed of an integer number of energy elements ε. 
This has been seen as “Planck’s introduction of the quantum of action” (Jammer, 1966, 
p. 19), or the moment “at which discontinuity entered physics” (Klein & Shimony & 
Pinch, 1979, p. 431).  
This view was challenged in 1978 when Thomas S. Kuhn put forward the idea that 

Planck did not consider the quantization of the energy of each individual resonator in 
his derivation (Kuhn, 1978). This apparently heterodox view has been corroborated 
(Darrigol, 1992), and without going into the complexities of Planck’s approach to 
statistical mechanics, we find evidence of this in Planck’s own writing in his 1900 
article: 
 

We consider, however – this is the most essential point of the whole calculation – E to be composed of a 
very definite number of equal parts and use thereto the constant of nature h= 6.55 x 10-27 erg sec. This 
constant multiplied by the common frequency ν of the resonators gives us the energy element ε in erg, 
and dividing E by ε we get the number P of energy elements which must be divided over the N 
resonators. If the ratio is not an integer, we take for P an integer in the neighborhood. (Planck, 1900, p. 
84) 
 

The last sentence clearly indicates by itself that “the energy of N independent 
resonators, and a fortiori the energy of a single resonator, was not thought to be 
restricted to multiples of [ε]” (Darrigol, 1992, p. 74), as would be the case if each 
individual resonator had its energy quantized. 
According to Kuhn the discontinuity in the energy of the resonators entered physics 

in Albert Einstein’s 1906 article about Planck’s theory. Einstein considered that: 
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We must, therefore, recognize the following position as fundamental to the Planck theory of radiation: 
The energy of an elementary resonator can take only values which are integral multiples of (R/N)βν 
[where R is the gas constant, N Avogadro’s number, and β a constant]. During absorption and emission 
the energy of a resonator changes discontinuously by an integral multiple of (R/N) βν. (Quoted in Kuhn, 
1978, p. 170) 
 

Already in his previous article of 1905, about creation and conversion of light, Einstein 
mentioned the ‘elementary quanta’ (associating it with Planck’s theory), but in this 
work what Einstein was considering was an atomistic view of light in analogy with the 
atomic theory of matter. Like in the case of matter, where we have to consider a 
quantity of energy associated with the atoms or electrons that “can not be split into 
arbitrarily many, arbitrarily small parts” (Einstein, 1905, p. 91) – in contrast to the 
continuous distribution of energy of the electromagnetic field –, in the case of light (in 
the limit of short wavelengths) we can consider, at least from a thermodynamical point 
of view, that its energy is discontinuously (atomistically) distributed in space.  
In the 1905 work Einstein considered the thermodynamical properties of light. In 

particular it was found that the volume dependence of the entropy of monochromatic 
radiation with energy E and frequency ν, in the limit where Wien’s law is valid, is the 
same as the volume dependence of the entropy of a gas of mutually independent 
particles with energy hν. Einstein considered that “when a light ray starting from a point 
is propagated, the energy is not continuously distributed over an increasing volume, but 
it consists of a finite number of energy quanta localized in space, which move without 
being divided and which can be absorbed or emitted as a whole” (Einstein, 1905, p. 92). 
Einstein proposed his heuristic argument on the nature of light considering not Planck’s 
distribution law, but what can be seen as the limit of Planck’s law for short 
wavelengths: Wien’s law. In this way, Einstein’s argument about the atomicity of light 
was not applicable to radiation of all wavelengths, as he remarked: “Monochromatic 
radiation of low density behaves – as long as Wien’s radiation formula is valid – in a 
thermodynamic sense, as if it consisted of mutually independent energy quanta” 
(Einstein 1905, p. 102; for details on Einstein’s derivation of his result see e.g. Sánchez 
Ron, 2001, pp. 170-172). 
What might have led Einstein to this work is certainly a combination of factors. One 

factor seams to be the “profound formal difference between the theoretical ideas that 
physicists have formed concerning gases, and other ponderable bodies, and Maxwell’s 
theory of electromagnetic processes in so-called empty space” (quoted in Klein, 1963, 
p. 62). At a conference in September 1909, Einstein gave a further argument along these 
lines, based on general characteristics of the theories, for the light-quanta hypothesis 
(Klein, 1964, p. 7). Concerning the emission and absorption of light, Einstein 
considered more appealing a corpuscular theory due to the symmetrical treatment of the 
two processes. In the case of the classical theory there is not an elementary process that 
is the opposite to the process of emission of an outwardly propagated spherical wave 
(Einstein, 1909b, p. 387). But possibly the most important motivation for the work (at 
least according to Einstein’s autobiographical notes; see Einstein, 1979) was Einstein’s 
intention of applying his own statistical methods in deriving Planck’s distribution. It 
turns out that Einstein found a problem in the theoretical foundations he was using. He 
did not arrive at Planck’s distribution law but to what would become known as the 
Rayleigh-Jeans distribution law, noticing for the first time what would be called the 
ultraviolet divergence: the infinite energy of the radiation field due to the high 
frequencies of the field. In trying to understand the origin of the problem Einstein took 
Planck’s distribution law as an empirically confirmed law and set to study its low and 
high frequency behavior. In this way Einstein explored the frequency range in which his 



 32

classical derivation was problematic. Einstein studied the thermodynamical behavior of 
radiation of high frequency (low wavelength), in which Wien’s law can be seen as a 
limiting case of Planck’s law, arriving at his breakthrough idea of light quanta.  
At this stage it was clear to Einstein that classical electrodynamics was at stake 

(remember also the other probable motivations for this work concerning the structure of 
radiation). In the introduction of the article Einstein stated his view on the theory: 
 
The wave theory of light, which operates with continuous spatial functions, has proved itself splendidly in 
describing purely optical phenomena and will probably never be replaced by another theory. One should 
keep in mind, however, that optical observations apply to time averages and not to momentary values, and 
it is conceivable that despite the complete confirmation of the theories of diffraction, reflection, 
refraction, dispersion, etc., by experiment, the theory of light, which operates with continuous spatial 
functions, may lead to contradictions with experiment when it is applied to the phenomena of production 
and transformation of light. (Einstein 1905, p. 86) 
 
Einstein did not developed in this work an analysis of the detailed theoretical motives 
that made his classical derivation different from Planck’s, i.e. the failure of classical 
electrodynamics, and neither did he conduct a critical study of Planck’s own derivation. 
He was content to indicate where the problem might be and to explore more of the 
experimental evidence for his light quanta hypothesis. Besides the ‘blackbody’ radiation 
described by Planck’s distribution law and whose study in the limit of high frequencies 
led Einstein to the light quanta hypothesis, Einstein focused on situations where 
radiation was created or transformed and where he expected the corpuscular structure of 
light to show up: the phenomenon of fluorescence, the photoelectric effect, and the 
ionization of gases by ultraviolet radiation. All these three cases were easily explained 
by taking into account the light quanta hypothesis. 
Einstein took a closer look on Planck’s distribution law in the article from 1906 

mentioned previously, where he presented his view on Planck’s theory taking into 
account his idea of the light quanta (ter Haar, 1967, pp. 17-18). Einstein concluded that 
“Planck’s theory makes implicit use of the … light-quantum hypothesis” (quoted in 
Pais, 1979, p. 875). This is due, according to Einstein, to the fact that to deduce 
Planck’s distribution law the resonators can not have any arbitrary value of energy but 
only integer multiples of hν (Einstein, 1906, p 195). Einstein gave a general deduction 
in which depending on the assumption made on the energy range of a resonator the 
Rayleigh-Jeans law or Planck’s law was obtained. In the second case Einstein took the 
energy of a resonator to have a discrete energy spectrum.  
A pause is needed at this point. It is important to remember (as mentioned above) 

that Planck did not consider in his derivation that the energy of each resonator could 
take only discrete values. This is where Kuhn’s interpretation is coming in. Also 
Einstein did not stop here. He made a connection between the discontinuous energy 
spectrum of the resonators and the light quanta hypothesis. The (implicit) connection in 
Einstein’s argumentation to the light quanta idea can be made recalling that in his 1905 
article Einstein considered that “a light quantum transfers all of its energy to a single 
electron” (Einstein, 1905, p 104). With this ‘simplest picture’ of the absorption (or 
emission) of light by matter, Einstein considered that “by emission and absorption, the 
energy of a resonator changes by jumps of integral multiples of [hν]” (Einstein, 1906, p. 
195). This makes a connection between the existence of discontinuous energy levels in 
the resonators (that for Einstein is necessary to make a proper derivation of Planck’s 
distribution law) and the existence of light quanta. But there is still the problem that in 
the derivation of Planck’s distribution law by Einstein (as it was the case also with 
Planck), use is being made of results from classical electrodynamics whose foundation 
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is at stake due to the light quanta hypothesis. We must recall Einstein’s doubts about 
classical electrodynamics. In particular, as we have seen, he explicitly mentions the 
possibility of the theory to have meaning only when considering time averages. In this 
way it turned out that the necessary adoption (at this point) of results from classical 
electrodynamics was paradoxical as Einstein recognizes: 
 

Although Maxwell’s theory is not applicable to elementary resonators, nevertheless the mean energy of 
an elementary resonator in a radiation space is equal to the energy calculated by means of Maxwell’s 
theory of electricity. This proposition would be immediately plausible if, in all those parts of the spectrum 

that are relevant for observation, ε = (R/N)βν were small compared with the mean energy υΕ  of a 

resonator; however, this is not at all the case, for within the range of validity of Wein’s radiation formula, 
βυ/Te is large compared with 1. It is easy to prove that according to Planck’s theory of radiation, within 

the range of validity of Wien’s radiation formula, ε/Ευ  has the value /T-e βυ , thus, υΕ  is much smaller 

than ε. Therefore only a few resonators have energies different from zero. (Einstein, 1906, p. 196) 
 
Einstein’s view relating the discontinuous change in the number of energy elements 

of a resonator to the emission or absorption of light quanta was later critically analyzed 
by Paul Ehrenfest and others. The reason was that Einstein was identifying the quanta of 
energy (energy elements) that an oscillator may take, which, being indistinguishable, are 
not particles (in the classical sense), with light-quanta taken (implicitly) to be classical 
distinguishable particles (Jammer, 1966, pp. 51-52). To be rigorous Planck’s law cannot 
be ‘deduced’ from the light quanta hypothesis within Einstein’s procedure without a 
further hypothesis (regarding the statistics of light quanta), as is implicit in Einstein’s 
deduction of Planck’s distribution law in a 1907 paper (ter Harr, 1967, p. 18). But this 
was only clarified after the work of Satyendra Nath Bose (see below). 
Toward the end of 1908 there was a further development in the light-quanta 

hypothesis. Einstein made a calculation of the energy fluctuations in blackbody 
radiation and obtained an expression with two terms. One term results from the 
interference of waves as expected from Maxwell-Lorentz electrodynamics, and, 
according to Einstein, the other term is expected by taking the radiation to be 
“independent moving point quanta of energy hν” (quoted in Hermann, 1971, p. 58).  
Einstein extended his approach and considered also the fluctuations of the radiation 

pressure. For that he took the radiation to be in a cavity in which one of the walls is a 
mirror that can move freely in the direction perpendicular to its normal. Again an 
expression with two terms was obtained with the same physical explanation as in the 
energy fluctuation case. According to Einstein “if the first term alone were present, the 
fluctuation of the radiation pressure could be completely explained by the assumption 
that the radiation consists of independently moving, not too extended complexes of 
energy hν” (Einstein, 1909a, p. 369).  
This result, published in 1909, at the same time that it confirmed the significance of 

the light quanta hypothesis, gave to Einstein further evidence on the limitations of 
considering radiation as composed by independent particles  (already in his 1905 work, 
Einstein knew that this hypothesis was only applicable to electromagnetic waves of high 
frequency):  
 

I am not at all of the opinion that one should think of light as being composed of mutually independent 
quanta. This would be the most convenient explanation of the Wien end of the radiation formula. But 
already the division of a light ray at the surface of refractive media absolutely prohibits this view. A light 
ray divides, but a light quantum indeed cannot divide without change of frequency. (Letter from Einstein 
to Lorentz, 23 May 1909, quoted in Howard, 2005, p. 6) 
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Until 1916 after the completion of his gravitation theory Einstein did little further 
work on the quantum theory. But in that year a breakthrough occurred regarding the 
light quanta hypothesis (Klein, 1964, p. 16). In September of that year Einstein wrote in 
a letter to Michele Besso that “in each energy transfer from radiation to matter the 
momentum hν/c is also transferred to the molecule. Hence we conclude that every such 
elementary process is a completely directed event. With that the light-quanta must be 
considered as good as being substantiated” (quoted in Mehra & Rechenberg, 1982, p. 
515). This view came about due to Einstein’s development of a simple statistical 
approach to the emission and absorption of radiation by matter. Einstein developed his 
approach by taking into consideration very simple assumptions. He took into account 
the general result from quantum theory that the molecules in interaction with radiation 
can only have a discrete set of energy states (an idea first proposed by him in 1906). As 
in the classical case where there is emission of radiation by a dipole oscillator 
independently of any external field, Einstein proposed that a molecule would emit 
radiation when by spontaneous emission, that is, without any external influence, a 
transition between a state Zm and a state Zn occurred. By analogy with the probabilistic 
description of the radiative decay, Einstein assigned a constant coefficient to this 
transition: Anm = dW / dt, where dW is the probability of the spontaneous process taking 
place in the time interval dt. Also, there would be, as in the classical case, an induced 
emission or absorption of energy due to the presence of electromagnetic radiation 
(Einstein, 1917, pp. 170-171).  
According to classical theory a radiation beam will transfer energy and momentum 

to a molecule in accordance with the law of conservation of energy and momentum. But 
in what regards the emission of radiation, “according to classical theory the emission is 
in the form of a spherical wave” (Einstein, 1917, p. 172). In this case there would be no 
transfer of momentum to the molecule. To make compatible his derivation of Planck’s 
law with general results regarding the thermal equilibrium between molecules and 
radiation, Einstein found it necessary to consider that the emission or absorption of 
radiation results from an elementary process in which there is a transfer of energy hν 
and momentum hν/c, in such a way that “the momentum is directed along the direction 
of propagation of the ray [of light] if the energy is absorbed, and directed in the opposite 
direction, if the energy is emitted” (Einstein, 1917, p. 182). In the case where the 
transition in the molecule is induced by an external field the change in the momentum 
of the molecule will be in the direction of the radiation beam. In the case where there is 
no external field present and the emission of radiation is spontaneous, Einstein 
considered that 
 
If a molecule undergoes a loss of energy of magnitude hν without external influence, by emitting this 
energy in the form of radiation (spontaneous emission), this process is also a directed one. There is no 
emission of spherical waves. The molecule suffers in the spontaneous elementary process a recoil of 
magnitude hν/c in a direction which is in the present state of the theory determined by ‘chance’. (Einstein, 
1917, p. 182) 
 
In this way Einstein found it necessary, for the consistency of his approach regarding 
the elementary interaction of radiation and matter, to associate with the light-quanta 
with energy hν also a momentum hν/c, which according to relativity theory corresponds 
to a particle with zero rest mass (Pais, 1979, pp. 886-887).  
In the derivation of his results concerning the momentum of the light-quanta, 

Einstein considered the motion of molecules under the influence of the radiation. As we 
have seen, already in 1909 Einstein had made a similar calculation, in this case to 
determine the (perpendicular) motion of a movable flat plate that closes a vessel 
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containing an ideal gas and radiation in thermodynamical equilibrium. The expression 
obtained for the radiation pressure contained two terms, exactly like the corresponding 
expression for the energy fluctuations, which could be given the same interpretation. 
The first term of the formula is related to a corpuscular feature and the other to a wave 
feature. Einstein did not make any strong claims relating the radiation pressure and a 
possible momentum of the light-quanta even if he remarked that “if the radiation were 
to consist of very few extended complexes with energy hν which move independently 
… then as a consequence of fluctuations in the radiation pressure such momenta would 
act on our plate as are represented by the first term only of our formula” (quoted in Pais, 
1979, p. 887).  Contrary to his 1916 work, in this work Einstein was not considering the 
elementary interaction of radiation and matter and making a derivation of Planck’s 
formula by taking into account this interaction, only making more general statistical 
calculations that did not provide any insight into the ‘mechanism’ of an elementary 
interaction. 
This development of the light-quanta hypothesis still did not deal with the limitation 

of considering the light-quanta as independent, which according to Einstein was “a 
picture which represents the roughest visualization of the light-quantum hypothesis” 
(quoted in Pais, 1979, p. 887). Also, in his derivation Einstein had to take into account 
results from Maxwell-Lorentz electrodynamics. A derivation of Planck’s law taking into 
account the light-quanta hypothesis and without any reference to classical 
electrodynamics arrived in Einstein’s hands in 1924 in a letter from a physicist from 
India. Bose found a way to derive Planck’s law without using classical electrodynamics 
and by making an explicit use of the concept of light-quanta with an energy hν and a 
momentum hν/c (Bose, 1924). In his derivation, Bose used for the particles the same 
counting method applied (in his book) by Planck to the distribution of energy elements 
over the oscillators (Darrigol, 1986, p. 212).  
Einstein applied Bose’s methods to the development of a quantum theory of a 

monoatomic ideal gas. In his third paper on the theory of an ideal gas Einstein 
mentioned what seems to be his initial motivation for this work: “this theory appears to 
be justified in case one starts from the conviction that a light-quantum is distinguished 
(apart from its polarization property) from a monoatomic molecule basically by the fact 
that its rest mass is arbitrary small” (quoted in Mehra & Rechenberg, 1982, p. 573). The 
basic difference in Einstein’s approach is that he uses the energy-momentum relation for 
nonrelativistic particles with mass m, and that he imposes the constraint of a fixed 
number of molecules in the gas. 
Following criticism by Ehrenfest, in his second paper on gas theory Einstein 

recognized that Bose’s counting method implied that “the quanta or molecules are not 
treated as being independent of one another” (quoted in Howard, 2005, p. 9). This is the 
crucial point that had prevented Einstein to approach a full derivation of Planck’s law 
using his light-quanta hypothesis. In his 1905 work Einstein took the light-quanta to be 
independent classical-like particles, thus being able only to justify Wien’s law. In this 
paper Einstein stressed that the difference between the Boltzmann counting procedure 
(applied to classical particles) and the Bose counting was that the gas molecules (or the 
light quanta) could not be taken to be statistically independent. According to Einstein 
the entropy formula for an ideal monoatomic gas derived using Bose statistics 
“expresses indirectly a certain hypothesis of a mutual influence between molecules” 
(quoted in Darrigol, 1986, p. 211). Besides his important conclusions regarding the 
behavior of the gas at a low temperature (the condensation effect), Einstein derived an 
expression for the energy fluctuation of an ideal monoatomic gas that was analogous to 
the formula for the radiation fluctuation he had obtained in 1909. Again he had an 
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expression with two terms. According to Einstein “only the first of these would be 
present if the molecules were independent of each other” (quoted Mehra & Rechenberg, 
1982, p. 618). Regarding the second term Einstein wrote that “one can interpret it, also 
in the case of gases, by associating with the gas a radiation phenomenon in a suitable 
manner and computing its interference fluctuations” (quoted in Mehra & Rechenberg, 
1982, p. 618). That is, like in the case of blackbody radiation Einstein interpreted the 
second term as resulting from an undulatory behavior, now associated with the 
monoatomic gas molecules. Following Louis de Broglie’s ideas (as presented in his 
1924 thesis) Einstein associated a scalar wave field with the monoatomic gas and took 
the second term of the fluctuation formula as resulting from the “square fluctuation of 
this wave field” (quoted in Mehra & Rechenberg, 1987, p. 413). 
From his Brother, the experimental physicist Maurice de Broglie, it was clear to de 

Broglie, around 1920, that there is a need “of always connecting together the points of 
view of waves and corpuscles” (quoted in Mehra & Rechenberg, 1982, p. 584) in the 
interpretation of experimental results regarding different forms of radiation.8 In a series 
of notes published between 1922 and 1923, de Broglie developed his undulatory 
mechanics, where he tried to explain the dual character of radiation, extending also this 
duality to the description of matter. It seems that the first step in de Broglie’s theoretical 
work came when he took the mass of the light-quanta to be very small but different 
from zero. This move made it possible to relate Einstein’s formulas E = m0c

2 and E = 
hν, where m0 is the light quanta rest mass. The expression m0c

2 = hν0, suggested to de 
Broglie the existence of an internal periodic phenomenon with a frequency ν0 associated 
with any massive particle not only the light quanta. An apparent paradox occurred when 
considering a particle moving with a uniform velocity v with regard to a stationary 
observer. The observer would take the energy of the moving particle to be E = m0c

2 (1– 
β)–1/2, and the internal frequency to be ν1 =  ν0(1– β)

1/2. In this way for a moving particle 
the internal frequency would not be related with the frequency given by E = hν. This 
‘second’ wave appeared to be unrelated to the particle because it had a wave velocity 
superior to c. However, de Broglie noticed that this fictitious wave would remain in 
phase with the internal periodic phenomenon and took this ‘phase wave’ as guiding the 
motion of the particles. He considered that  “any moving body may be accompanied by 
a wave and that it is impossible to disjoin motion of body and propagation of wave” 
(quoted in Jammer, 1966, p. 244). In the case of ‘matter waves’ (the phase waves 
associated with matter) de Broglie found an important result in the case of orbiting 
electrons. de Broglie considered that “the rays of the phase waves coincide with the 
trajectories [of the particles]” (quoted in Mehra & Rechenberg, 1982, p. 593). In simple 
terms we can say that a particle and its associated wave follow the same trajectory. In 
the case of an electron in a close circular trajectory, by taking the electron and the 
(fastest) wave to start motion at a particular point of the trajectory at an initial time t = 
0, they will meet on the orbit again at a later time τ = Tβ2 / (1– β2), where T is the 
period of revolution of the electron. At this moment the internal phase of the electron is 
2πν1τ = m0c

2 Tβ2 / h(1– β2) ½. By requiring the phases of the phase wave and the 
internal periodic motion to be equal at this point, de Broglie obtained the expression 
m0ν

2(1– β)–1/2T = nh, where n is an integer. This expression corresponds to the Bohr-
Sommerfeld quantum condition. In this way the quantization could be seen as a 
resonance condition on the phase wave associated with the electron when considering 
closed trajectories. 

                                                 
8 See Wheaton (1991) for an account of the importance of experimental work in conceptual developments 
in the quantum theory and in particular on de Broglie’s ideas. 
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3 The coming to be of the Schrödinger equation 

 
After reading Einstein’s remarks on de Broglie’s ideas, Erwin Schrödinger got hold of a 
copy of de Broglie’s thesis (where his ideas were developed in detail) and set to work 
on what would become known as wave mechanics. In a first moment Schrödinger tried 
to “visualize the phase wave of an electron on Kepler orbits. The ‘rays’ certainly 
correspond to neighbouring Kepler ellipses having the same energy. This, however, 
leads to horrible ‘caustics’ or the like, for the wave front” (quoted in Mehra & 
Rechenberg, 1987, p. 416). Having difficulties in exploring a ‘direct’ geometrical 
picture of the phase wave, Schrödinger turned to finding a wave equation that described 
the phase wave associated with the electron. The first attempt was the derivation of a 
relativistic wave equation that later would become known as the Klein-Gordon 
equation. Schrödinger used the equation to determine the eigenvibrations of the 
hydrogen atom, but got the wrong results (when compared with Arnold Sommerfeld’s 
1924 results on the hydrogen atom obtained within the so-called old quantum theory). 
Only in the non-relativistic limit was Bohr’s original result recovered. This put in 
danger the whole program of a wave-theoretical approach since de Broglie’s phase 
wave was developed taking into account relativistic considerations. Schrödinger finally 
settled for the development of a non-relativistic wave equation as we can see from a 
letter to Wilhelm Wien in late December 1925:  
 

At the moment I am plagued by a new atomic theory … I believe that I can write down a vibrating system 
– constructed in a comparatively natural manner and not by ad hoc assumptions – which has as its 
eigenfrequencies the term frequencies of the hydrogen atom … at the moment I still have to learn the 
mathematics to handle the vibration problem fully – a linear differential equation, similar to Bessel’s, 
however less known and exhibiting strange boundary conditions; these are connected with it and not 
imposed from outside. (Quoted in Mehra & Rechenberg, 1987, 460 & 461) 
 
Within a few weeks the results of his ongoing research started to appear in Annalen 

der Physik. In his notebooks, besides the derivation of his relativistic equation, 
Schrödinger made a derivation of a non-relativistic wave equation by considering de 
Broglie’s results. Schrödinger considered a generalized de Broglie’s phase wave 
frequency relation, for an electron with mass m, charge e, and velocity υ, in a Coulomb 
potential (i.e. the electron of the hydrogen atom):  
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Using this result, Schrödinger took the non-relativistic momentum of the electron (mυ2) 
into de Broglie’s relation for the phase velocity (in the non-relativistic limit) 
 

              
υ
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Inserting the non-relativistic result for u into the relativistic equation for the phase wave 
he had previously put forward, Schrödinger obtained a non-relativistic wave equation 
for the hydrogen atom:  
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as it appears in the first Annalen paper, where Schrödinger presented the wave equation 
as resulting from a variational approach without giving much insight into the physical 
considerations that led him to the wave equation (Schrödinger, 1926a). Schrödinger 
presented some considerations regarding the adoption of a second-order differential 
equation as the basis for the development of his wave mechanics in his second paper on 
the subject (Schrödinger, 1926b). This type of equation had traditionally been used to 
describe wave phenomena. By ‘striving for simplicity’ Schrödinger settled for a second-
order differential equation: 
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Then by assuming the wave to have a simple time dependency (i.e. a periodic behavior 
in time with frequency ν): ψ~ exp (2πiντ), Schrödinger obtained a time-independent 
relativistic wave equation: 
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This was the equation that by taking into account de Broglie’s results led him to his 
wave equation for the hydrogen atom, as we have seen above. 
In the ‘derivation’ of the wave equation, Schrödinger considered, as we have just 

seen, the time-independent case corresponding to a situation where the parameter E 
(which in the case of a bound electron is the energy of the hydrogen atom) has a time-
independent value, i.e. E does not change in time.  
In the application of this wave equation to the hydrogen atom, an analytic solution 

can be found, by taking into account the spherical symmetry of the Coulomb potential, 
and making a separation of the wave equation in spherical coordinates: ψ= ψθψφψr. It is 
in the radial equation that interesting things happen: 
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where n takes up only integer values. The limitation of n to integers comes about 
because in the solution of the angular equations the part of the wave function ψφ  
dependent on the azimuthal angle φ must be single-valued (i.e. when φ is increased by 
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2π or a multiple of 2π, ψφ  must be unchanged). This implies that ψφ  is given by 
2π−1/2eimφ, where m is a positive or negative integer or zero. Also to have finite solutions 
in the equation for ψθ it is necessary that n be a positive integer or zero so that nm ≤ . 

An important aspect of the radial equation is that it has singular points at r = 0 and r = 
∞.  
We will consider here the case of bound states for which E takes negative values. 

Taking into account that the Coulomb potential goes to zero more strongly than 1/r as r 
→ ∞ the asymptotic solution of the radial equation can be obtained by disregarding the 
Coulomb potential in the radial equation, and by taking into account that the wave 
function must approach zero as r → ∞. This boundary condition implies that, in the 
asymptotic limit, ψr ~ e

–r. The other singular point r = 0 is taken care of by considering 
ψr ~ Ure

–r, where Ur can be expressed as a power series. By considering the two 
boundary conditions it turns out that the power series must terminate, and, being n’ the 
highest power of Ur in the finite order power series, there is a solution to the radial 
equation only when we have: 
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From this it follows that the energy for the bound states of the hydrogen atom can take 
only discrete values: 
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This type of solution to a wave equation can be seen as a proper value problem, i.e. 
there is a differential equation with a numerical parameter (in this case the energy E), 
and the solutions must satisfy particular boundary conditions (in this case the wave 
function has to be finite at r = 0 and approach zero as r → ∞). The values of the 
parameter (E) for which there are non-trivial solutions are called proper values 
(eigenvalues), and the corresponding solutions of the equation are called proper 
functions (eigenfunctions). In the case of Schrödinger’s wave equation further 
‘physical’ conditions are imposed on the wave function to obtain the non-trivial or 
physical solutions (one example of such a condition is the assumption of the single-
valuedness of the wave function). We have a similar situation in the classical case of a 
vibrating string. The end points of the string are held fixed, and this entails that the 
string can only take a discrete set of wavelengths (Mandl, 1957, pp. 5-8).  
In a work previous to the publications on wave mechanics, Schrödinger addressed 

Einstein’s work on a quantum gas theory by applying an idea inspired on, but different 
from, de Broglie’s phase wave. Contrary to de Broglie who considered phase waves 
propagating   in the field-free space, Schrödinger considered standing waves enclosed in 
a cavity (which provides natural boundary conditions exactly like in the classical case of 
a vibrating spring). In his first paper on wave mechanics Schrödinger called attention to 
this difference:  
 

I was led to these deliberations in the first place by the suggestive papers of M. Louis de Broglie, and by 
reflecting over the space distribution of those ‘phase waves’, of which he has shown that there is always a 
whole number, measured along the path, present on each period or quasi-period of the electron. The main 
difference is that de Broglie thinks of progressive waves, while we are led to stationary proper vibrations 
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if we interpret our formulae as representing vibrations. I have lately shown that the Einstein gas theory 
can be based on the consideration of such stationary proper vibrations, to which the dispersion law of de 
Broglie’s phase waves has been applied. (Schrödinger, 1926a, p. 9) 
 
Another essential difference with de Broglie is that, while de Broglie had a dualistic 

perspective associating a phase wave with a material particle, Schrödinger simply 
replaced the molecules by phase waves. According to Schrödinger “a molecule of rest-
mass m, moving with velocity v = βc, constitutes nothing but a ‘signal’ – one might say, 
‘the wave crest’ – of a wave system” (quoted in Mehra & Rechenberg, 1987, p. 439). 
Schrödinger’s interpretation based solely on wave characteristics is something that was 
new in Schrödinger’s work on wave mechanics (as can be seen in another earlier work 
on Einstein’s gas theory, where Schrödinger only makes some considerations related to 
the statistics of the molecules), it emerged with the developments of the work. We have 
then already at the early stages of the development of wave mechanics a turn towards an 
(apparently) more classical approach to the description of quantum systems using some 
sort of a yet very provisional wave interpretation. This is clear from the fact that also in 
the case of the energy levels of the hydrogen atom, Schrödinger sees it as a proper value 
problem. That is, in this case we consider also standing waves where the natural 
boundary conditions (due to the singular points) can be seen as resulting from the fact 
that the equation “carries within itself the quantum conditions” (quoted Mehra & 
Rechenberg, 1987, p. 575). We would be in a situation no different from that of a 
vibrating spring. This is for Schrödinger the most important aspect of his work. 
Schrödinger was able to “show that the customary quantum conditions can be replaced 
by another postulate, in which the notion of ‘whole numbers’, merely as such, is not 
introduced. Rather when integralness does appear, it arises in the same natural way as it 
does in the case of the node-numbers of a vibrating string” (Schrödinger, 1926a, p. 1). 
In this way the discrete energy levels of the hydrogen atom has its origin “in the 
finiteness and single-valuedness of a certain space function” (Schrödinger, 1926a, p.  9). 
 
 

4 The interpretation and later developments of the Schrödinger equation 

 
In his first articles on wave mechanics Schrödinger did not develop much a physical 
interpretation of the wave function. Schrödinger had the idea that “the waves in the 
phase space are something real in a sense” (quoted in Mehra & Rechenberg, 1987, p.  
536), but to make this ‘sense’ precise turned out to be a difficult task. Schrödinger’s 
initial idea was to “connect the [wave] function ψ with some vibration process in the 
atom” (Schrödinger, 1926a, p. 9), but he recognized that “it is only in the one electron 
problem that the interpretation [of the wave function] as a vibration in the real three-
dimensional space is immediately suggested” (Schrödinger, 1926b, p. 28). This 
situation had come out in Schrödinger’s correspondence with several physicists. In a 
letter to Sommerfeld, Schrödinger recognized this point: “since ψ in general depends on 
many more than three variables, the immediate interpretation as vibrations in the three-
dimensional space is made difficult in any desirable manner” (quoted in Mehra & 
Rechenberg, 1987, p. 542). Also his simple view of particles as ‘wave crests’ brought 
the sharp criticism of Hendrik Lorentz who called Schrödinger’s attention to the fact 
that a wave packet, which might according to Schrödinger represent a particle, “can 
never stay together and remain confined to a small volume in the long run … because of 
this unavoidable blurring a wave packet does not seem … to be very suitable for 
representing things to which we want to ascribe a rather permanent individual 
existence” (quoted in Jammer, 1966, p. 31; see also Bohm, 1951, pp. 60-66).  
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An even greater problem was that at this point Schrödinger was unable to account 
for the intensities and polarizations of the emitted radiation in an atomic transition. To 
be exact not even a clear relation between the emission frequency and the energies of 
the atomic levels involved in the emission process was available. Bohr had developed in 
1912-1913 a model of the atom based on the idea of stationary states – not submitted to 
the consequences of the classical theory of radiation –, where the electron can jump 
from one stationary state to another by emission or absorption of radiation with a 
frequency ν given by the relation hν = E´ – E´´, where E´ and E´´ are the energies of 
each stationary state (Bohr, 1913). A first attempt to address this line of problems was 
presented in the first paper on wave mechanics. In here Schrödinger tried to obtain 
Bohr’s frequency relation within his wave mechanics approach. For this Schrödinger 
considered a constant parameter C that would appear in an expression relating the 
proper frequency with the proper energy of a stationary proper vibration (representing in 
Schrödinger’s approach Bohr’s stationary states). By considering C “very great 
compared with all the admissible negative E-values” (Schrödinger, 1926a, p.  10), an 
expansion in terms of E of the expression was possible: 
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According to Schrödinger this expression “permits an understanding of the Bohr 
frequency condition. According to the latter the emission frequencies are proportional to 
the E-differences, and therefore from [the previous expression] also to the differences of 
the proper frequencies ν of those hypothetical vibration processes” (Schrödinger, 1926a, 
p.  10). In this way Schrödinger considered that “the emission frequencies appear 
therefore as deep ‘difference tones’ of the proper vibrations themselves. It is quite 
conceivable that on the transition of energy from one to another of the normal 
vibrations, something – I mean the light wave – with a frequency allied to each 
frequency difference, should make its appearance” (Schrödinger, 1926a, p.  10). 
Schrödinger recognized that in this way he could only obtain Bohr’s relation in an 

approximate form, but expected that the development of a relativistic wave theory 
would solve this problem. An improvement over this situation was published in a 
subsequent paper where Schrödinger again addressed the problem of the coupling 
between the dynamic processes in the atom and the electromagnetic field. According to 
a letter to Sommerfeld, Schrödinger expected that a relation might be obtained between 
the matter wave functions and the Maxwell-Lorentz electromagnetic current: “The ψ-
vibrations must then correspond to the four-current, i.e., the [Maxwell-Lorentz] four-
current must be replaced by something derived from the function ψ, say the four-
dimensional gradient of ψ. But this is all pure fantasy; in reality I have still not thought 
about it at all” (quoted in Mehra & Rechenberg, 1987, p.  779). In the paper, a first 
approach to this idea was presented. According to Schrödinger “the mechanical field 
scalar (which I denote by ψ) is perfectly capable of entering into the unchanged 
Maxwell-Lorentz equations between the electromagnetic field vectors as the ‘source’ of 
the latter; just as, conversely, the electromagnetic potentials enter into the coefficients of 
the wave function, which defines the scalar field” (Schrödinger, 1926c, p.  60). In this 
work Schrödinger considered the case of an electron in a central field (the hydrogen 
atom) and made the fundamental assumption that the space density of electricity ρel is 
given by the real part of 
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where ψ is the complex conjugate of the wave function ψ. This implies that “the charge 
of the electron is not concentrated in a point, but is spread out through the whole space” 
(Schrödinger, 1926e, p.  1066). The fluctuation of the charge is given by the previous 
expression. From this it was simple to determine “the radiation, that by ordinary 
electrodynamics will originate from these fluctuating charges” (Schrödinger, 1926a, p.  
1066). This was done by calculating the electrical dipole moment, using the above 
expression for ρel. For example the dipole moment in the Cartesian z direction is given 
by  
 

dxdydz
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Despite Schrödinger’s recognition that this approach “is far from completely 
satisfactory and is in no way final” (Schrödinger, 1926c, p. 61), it was clear that a 
progress had been made as can be seen by his treatment of an atom in a constant electric 
field (the Stark effect). By applying the above mentioned hypothesis to the physical 
meaning of ψ, Schrödinger was able not only to obtain, exactly and not as an 
approximation, Bohr’s ‘frequency-rule’ that gives the frequency of the electromagnetic 
radiation as the difference between the (term) frequencies of two stationary wave 
functions, but also to calculate the intensities and polarizations of the emitted radiation, 
which were in agreement with experiments. 
A further development of this electrodynamic interpretation occurred due to 

Schrödinger’s extension of his wave mechanics to the case of time-dependent systems, 
which was necessary for example to treat the case of dispersion of radiation by atoms. 
The development of a general time-dependent wave equation (which Schrödinger 
referred to as the real wave equation) made it necessary to consider the wave function 
complex. This led Schrödinger to re-work his expression for the space density of 
electricity ρel, which now was written as ψψe , where e is the total electric charge of the 
electron and ψψ can be seen as a weight function. With this new expression 
Schrödinger was able to give a more clear ‘electromagnetic meaning’ to the ‘mechanical 
field scalar’: when integrating the space density of electrical charge ρel over the whole 
of space Schrödinger obtained a time-independent finite value (while the previous 
expression yields zero). This implied the conservation of charge. 
Schrödinger extended this interpretation to the case of a system with several 

electrons: 
 

ψψ  is a kind of weight-function in the system’s configuration space. The wave-mechanics configuration 

of the system is a superposition of many, strictly speaking of all, point-mechanical configurations 
kinematically possible. Thus, each point-mechanical configuration contributes to the true wave-
mechanics configuration with a certain weight, which is given precisely by ψψ . (Schrödinger, 1926d, p. 

120) 
 
 Schrödinger recognized the loose character of this provisory interpretation, as we can 
read in the final part of a set of lectures delivered in March 1928: 
 

We have hitherto avoided putting forward any definite assumption as to the physical interpretation of the 
function ψ(q1, q2, … , qn, t) relating to a system whose configuration in terms of ordinary mechanics is 
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described by the generalized co-ordinates q1, q2, … , qn. This interpretation is a very delicate question. As 
an obvious generalization of the procedure of spreading out the electronic charge according to a relative 
density function ψψ  (which furnished satisfactory results in the one-electron problem; see section 5), 

the following view would present itself in the case of a general mechanical system: the real natural system 
does not behave like the picture which ordinary mechanics forms of it (e.g. a system of point-charges in a 
definite configuration), but rather behaves like what would be the result of spreading out the system, 
described by q1, q2, … , qn, throughout its configuration-space in accordance with a relative density 
function ψψ . This would mean that, if the ordinary mechanical picture is to be made use of at all, the 

actual system behaves like the ordinary mechanical picture, present in all its possible configurations at the 
same time, though “stronger” in some of them than in others. 

I maintained this view for some time. The fact that it proves very useful can be seen from the one-
electron problem (see section 5). No other interpretation of the ψ-function is capable of making us 
understand the large amount of information which the constants akl [(related to the electric moment)] 
furnish about the intensity and polarization of the radiation. Yet this way of putting the matter is surely 
not quite satisfactory. For what does the expression “to behave like” mean in the preceding sentences? 
The “behaviour ” of the ψ-function, i.e. its development in time, is governed by nothing like the laws of 
classical mechanics; it is governed by the wave-equation. (Schrödinger, 1928, p. 205-206) 
 

We see that Schrödinger recognizes his view as not quite satisfactory.9 This came about 
from his recognition that even in the case of one electron it is not enough to see the 
wave function as meaning a continuous distribution of electricity in actual space. As 
Schrödinger mentions, it is necessary also to take into account the space-time behavior 
of the wave function as described by the wave equation. Michel Bitbol has stressed this 
point: 
 

Schrödinger became fully aware that [the electrodynamic interpretation] could not work alone, that 
somehow it had to be combined with the original wave interpretation. Whereas the electrodynamic 
interpretation enables one to make sense of the line intensities and polarizations, the wave representation 
was still needed to calculate the relevant charge distributions as well as the evolution between two 
measurements of line intensities. The problem Schrödinger had to face was the following: we need not 
one but two representations of the atomic phenomena. One of them, namely the electrodynamic 
representation, is directly related with the ‘observed facts’, but it does not provide the link between 
subsequent observed facts; in a word, it is ‘factual’ but not ‘effective’. The second one, namely, the wave 
representation, is perfectly able to provide a link between the observed facts, but not to account for all the 
aspects of the facts themselves; it is ‘effective’ but not ‘factual’. As long as Schrödinger wanted to merge 
the ‘effective’ and the ‘factual’ into a single representation, according to the classical ideal, the persistent 
duality of the models had to be considered as a symptom of failure. (Bitbol in Schrödinger, 1995, p. 3) 
 
The two-fold aspect of Schrödinger’s tentative interpretation is clearly present in 
Schrödinger’s article on the Compton effect10 published in 1927. In this work 
Schrödinger explained the Compton effect as resulting from the scattering of a light 
wave and a matter wave (a de Broglie wave). Even if Schrödinger uses his interpretation 
of the wave function as giving rise to a charge density distribution in space, the crucial 
aspect of his calculations is to consider a wave function as a ‘real’ wave propagating in 
space (Schrödinger even makes the analogy to a sound wave). A very interesting aspect 

                                                 
9 Following these statements showing the difficulty Schrödinger was having in giving a solid and clear 
meaning to his interpretation, Schrödinger mentioned that  “an obvious statistical interpretation of the ψ-
function has been put forward, viz. that it does not relate to a single system at all but to an assemblage of 
systems, ψψ determining the fraction of the systems which happen to be in a definite configuration” 

(Schrödinger, 1926c, p. 206). I will not look into Born’s well-known statistical interpretation or 
Schrödinger’s criticism of this interpretation (which like his own reformulation of his interpretation 
extended for several decades. For details on early interpretation issues see e.g. Jammer (1974).  For an 
account of the adoption of Born’s statistical interpretation see e.g. Mehra & Rechenberg (2000), Mara 
Beller (1990), Pais (1982). For details on Schrödinger‘s views see Bitbol (1996). 
10 Regarding the Compton effect see e.g. Sánchez Ron (2001, pp. 382-392). 
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of this two-fold use of the wave function is that, the de Broglie or matter wave 
(associated with an electron with rest mass m0) is described by Schrödinger’s 
(relativisitc) wave equation, which in the context of its use, is, in practice, taken to be an 
equation for a ‘classical’ wave function of a matter wave (Schrödinger, 1927). 
Later workers on quantum mechanics have explored and clarified this possibility of 

giving very different meanings to the wave equation, i.e. as an equation describing a 
probability wave in a configurational space or an equation describing a matter wave in 
actual space. In the next chapter we will look in particular into Pascual Jordan’s 
approach, fundamental in the development of a quantum theory of fields. In this chapter 
I shall follow Schrödinger’s tentative interpretation and see how much can we stretch 
out a reading of the equation as the equation for a classical matter wave. It will be 
enough to consider the simple case of a one-electron system. We will see that 
Schrödinger’s difficulties with the two-fold aspect of his tentative interpretation can be 
traced back to an ‘ambiguity’ in the physical interpretation (in terms of a particle 
equation or a matter wave equation) of the one-electron Schrödinger equation (Becker, 
1964, Vol 2., pp. 92-107;Tomonaga, 1962, Vol 2., pp. 14-115). 
In 1927 Clinton J. Davisson and Lester H. Germen presented clear experimental 

evidence for matter waves propagating in space. The experiment consisted in the 
bombardment of a metal plate by an electron beam. Davisson expected that by 
analyzing the angular distribution of the electrons scattered by a metal plate it would be 
possible to obtain information regarding the shell structure of the electrons inside the 
atoms of the metal plate. In the early stages of the sequence of experiments (from 1921 
to around 1925) there was no evidence of any wave properties of the electron beams. 
The first view on the results was that  
 

all the main features of the distribution curves so far observed for the scattering from nickel seem 
reasonably accounted for on the supposition that a small fraction of the bombarding electrons actually do 
penetrate one or more of the shells of electrons which are supposed to constitute the outer structure of the 
nickel atom and, after executing simple orbits in a discontinuous field, emerge without appreciable loss of 
energy. (Quoted in Jammer, 1966, pp. 249-250) 
 
The experimental finding of the diffraction of the electron beams by a metal plate 

resulted from an accident in Davisson’s laboratory in 1925. In their paper Davisson and 
Germen tell the story of the discovery of the diffraction of electrons: 
 

The investigation reported in this paper was begun as the result of an accident, which occurred in this 
laboratory in April 1925. At that time we were continuing an investigation, first reported in 1921, on the 
distribution-in-angle of electrons scattered by a target of ordinary (polycrystalline) nickel. During the 
course of this work a liquid-air bottle exploded at a time when the target was at a high temperature; the 
experimental tube was broken, and the target heavily oxidized by inrushing air. The oxide was eventually 
reduced and a layer of the target removed by vaporization, but only after prolonged heating at various 
high temperatures in hydrogen and in vacuum. 

When the experiments were continued it was found that the distribution-in-angle of the scattered 
electrons had been completely changed … This marked alteration in the scattering pattern was traced to a 
re-crystallization of the target that occurred during the prolonged heating. Before the accident and in 
previous experiments we had been bombarding many small crystals, but in the tests subsequent to the 
accident we were bombarding only a few large ones … It seemed probable from these results that the 
intensity of scattering from a single crystal would exhibit a marked dependence on crystal direction, and 
we set about at once preparing experiments for an investigation of this dependence.  (Davisson & 
Germen, 1927, p. 706) 
 

The ‘marked alteration in the scattering pattern’ made Davisson and Germen change 
their research towards an investigation of a possible dependency of the scattered beams 
on the crystal direction. It was clear that, in this case of a single nickel crystal, the 
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intensity variation of the angular distribution was not simply related with the internal 
structure of the atoms of the plates, since in the older experiments they also used plates 
of nickel, which in that case consisted in ordinary (polycrystalline) nickel. An 
explanation for these results must be found elsewhere. Here is how Davisson and 
Germen addressed the new experimental findings: 
 

We must admit that the results obtained in these experiments have proved to be quite at variance with our 
expectations. It seemed to us likely that strong beams would be found issuing from the crystal along what 
may be termed its transparent directions − the directions in which the atoms in the lattice are arranged 
along the smallest number of lines per unit area. Strong beams are indeed found issuing from the crystal, 
but only when the speed of bombardment lies near one or another of a series of critical values, and then in 
directions quite unrelated to crystal transparency. 

The most striking characteristic of these beams is a one to one correspondence, presently to be 
described, which the strongest of them bear to the Laue beams that would be found issuing from the same 
crystal if the incident beam were a beam of x-rays. Certain others appear to be analogues, not to Laue 
beams, but of optical diffraction beams from plane reflection gratings − the lines of these gratings being 
lines or rows of atoms in the surface of the crystal. Because of these similarities between the scattering of 
electrons by a crystal and the scattering of waves by three- and two- dimensional gratings a description of 
the occurrence and behavior of the electron diffraction beams in terms of the scattering of an equivalent 
wave radiation by the atoms of the crystal, and its subsequent interference, is not only possible, but most 
simple and natural. This involves the association of a wave-length with the incident electron beam, and 
this wave-length turns out to be in acceptable agreement with the value h/mυ of the undulatory 
mechanics, Planck’s action constant divided by the momentum of the electron. (Davisson & Germen, 
1927, pp. 706-707) 
 

In this way Davisson and Germen found that they could make sense of the experimental 
results by resorting to the idea of de Broglie waves, finding that the de Broglie 
expression λ = h/p relating the wavelength λ and the momentum p of the electron was 
verified. 
We can choose to see Schrödinger’s equation as the equation for this matter wave, 

as we in part have in Schrödinger’s two-fold interpretation. In this way Schrödinger’s 
equation can describe the wave properties of the electrons as revealed for example in 
Davisson and Germen experiments or in Schrödinger’s account from a wave perspective 
of the Compton effect. But as we have seen this approach does not gives us a 
description of the electron’s corpuscular aspects as revealed in several other 
experiments, since Schrödinger was unable to provide an account of the electron’s 
particle-like characteristics as simplyj a wave-crest (more exactly a wave packet), and 
Schrödinger was forced to associate a charge (or mass) density to the wave function, 
which in the case of several electrons results in a highly abstract entity: a weight 
function. 
Looking at the simple case of the hydrogen atom it is clear to what point we can 

take this use of Schrödinger’s equation as an equation for a matter wave (Becker, 1964, 
Vol 2., pp. 92-107;Tomonaga, 1962, Vol 2., pp. 14-115). Returning to Schrödinger’s 
initial treatment of the hydrogen atom, considering the Schrödinger wave equation for 
the proper oscillation of a de Broglie wave in a central potential, now writing it in terms 
of the de Broglie wave frequency: 
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we obtain, in a totally classical treatment, for the proper frequencies of the de Broglie 
wave 
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By analogy to the case of light quanta we can consider that the proper frequencies of the 
de Broglie wave inside the atom have an energy given by E = hν. From this ‘quantum 
rule’ it follows that the energy levels of the hydrogen atom are given by  
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a result that agrees with that derived previously in Bohr’s theory. The difference with 
Schrödinger’s original derivation is that Schrödinger took from the start the energy-
frequency relation for granted, providing in reality a quantum wave mechanics equation 
that resembles (in the case of one-electron systems) a classical wave equation. Here we 
see that if we start from a classical wave perspective we need to take into account a 
quantization rule applied to the wave so that we can reach agreement with some 
experimental results for which a wave description is not enough. We will see briefly in 
the next chapter that an appropriate quantum formalism can be obtained by considering 
Schrödinger’s equation as a classical wave equation, but only when submitted to a 
quantization procedure which is valid also in the case of many-electron systems. I will 
look at this in detail for the case of the Dirac equation. 
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CHAPTER 3 
 
 
 

THE DIRAC EQUATION AND ITS INTERPRETATION 
 
 
 
 
 
 
 

1 Introduction 

 
Once upon a time, Richard P. Feynman wrote that “we know so very much and then 
subsume it into so very few equations that we can say we know very little (except these 
equations – Eg. Dirac, Maxwell, Schrod.). Then we think we have the physical picture 
with which to interpret the equations. But these are so very few equations that I have 
found that many physical pictures can give the same equations” (quoted in Schweber, 
1994, p. 407). He wrote this having in mind, in particular, the Dirac equation: 

ψ=ψ∇/ mi  (Feynman, 1961, p. 57).  
In this chapter, the Dirac equation will be used as a guideline to reveal the 

importance of the concept of quanta in the description of interactions in quantum 
electrodynamics. To this end the historical evolution and interpretation of the Dirac 
equation is considered. In sections 2, 3, 4, and 5, I present the evolution of the Dirac 
equation from its first formulation as a relativistic wave equation for an electron, to a 
classical field equation from which an electron-positron quantum field is obtained. In 
this transition, the Dirac equation went from being a relativistic ‘update’ of the 
Schrödinger equation in the calculation of energy levels in atoms (basically of 
hydrogen) to becoming one of the cornerstones of the most successful quantum field 
theory: quantum electrodynamics. In section 6, I will try to clarify the relation between 
the different interpretations of the Dirac equation. In this way the results provided by 
Dirac’s equation as a relativistic one-electron equation are reinterpreted from the 
perspective of the quantized Dirac field. Doing this, the importance of the concept of 
quanta in the description of bound states becomes clear. By contrast, bound states are 
usually only described at the level of the one-electron interpretation of the Dirac 
equation, which gives a distorted idea of the physical description of bound states that 
should be described from the perspective of quantum fields. In particular, an analysis of 
a two-body description of the hydrogen atom reveals a distinctive feature of quantum 
electrodynamics: the interaction between fermions described as an exchange of photons.  
 
 
2 Before the Dirac equation: some historical remarks  

 
Schrödinger’s first attempt at a wave equation was the development of a relativistic 
wave equation for the hydrogen atom. As in the case of the non-relativistic wave 
equation, Schrödinger considered the problem of determining the eigenvibrations of the 
hydrogen atom. As we have seen in the previous chapter, Schrödinger took the de 
Broglie relations generalizing them to the case of an electron in a central Coulomb 
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potential and by inserting them in a second-order differential equation obtained the 
relativistic wave equation 
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Using this wave equation Schrödinger determined the energy levels for the hydrogen 
atom, and arrived at a result that was not in agreement with Sommerfeld’s result for the 
hydrogen spectrum obtained, within the so-called old quantum theory, through the 
quantization of the relativistic Bohr atom. Sommerfeld’s result was 
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where α is the fine structure constant, n the principal quantum number, and k the 
azimuthal quantum number. Schrödinger obtained an expression that did not depend on 
n – k and k but on n – k + 1/2 and k – 1/2 (Kragh, 1981, p. 33). This meant the failure of 
Schrödinger’s relativistic wave mechanics. Schrödinger set aside his attempt at a 
relativistic wavefunction and developed a non-relativistic wave equation (Schrödinger 
1926a). The relativistic wave equation, later known by the name of Klein-Gordon 
equation, was presented by several physicists during 1926, but since it did not give the 
fine structure of the hydrogen spectrum it was not accepted as the correct relativistic 
equation for an electron (Kragh, 1984).  
Another factor that would complicate matters in what regards the wave mechanics 

description of the electrons was the discovery of spin. In Bohr’s theory each spectral 
term of the hydrogen atom is labeled by three quantum numbers n, k, and m. Due to an 
external magnetic field a spectral term labeled by n and k splits into 2k + 1 levels, the 
new sub-levels being distinguished by the quantum number m. This is called the 
Zeeman effect (Tomonaga, 1997, pp. 1-2; Sánchez Ron, 2001, pp. 336-341). Before 
1900 it was already known that the spectral lines, latter described by n and k, where not 
unique and in reality, when an external magnetic field was applied, consisted in closely 
spaced lines: they showed a multiplet structure. This was called the anomalous Zeeman 
effect (Jammer, 1966, p. 122). In 1920 Sommerfeld introduced a new quantum number j 
that enabled the classification of the different energy levels within one multiplet term 
(characterized by n and k). Under this new classification m is still related to the 
specification of sublevels but now of a level specified by n, k and j. Also m must satisfy 
the inequality  – j ≤  m ≤ j. To explain the spectroscopic evidence available Alfred 
Landé (and also Sommerfeld) set forward a tentative model in which it was assumed 
that the core of the atom had an angular momentum. There would then be a magnetic 
moment µK related to the orbital angular momentum K of the electron in the outermost 
orbit (the valence electron), given by µK = –K (in units of the Bohr magneton). Also 
there would be a magnetic moment µR associated to the core angular momentum R 

(corresponding to a quantum number related not to the electron but to the core). The 
relation between µR and R is given by µR = –g0R, where g0 has to be determined by 
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fitting the model to experimental results. F. Pachen and E. Back’s study of the Zeeman 
effect in the case of a strong magnetic field, enabled to set the value of g0 as 2. The 
interaction between the two magnetic moments µK and µR of the atom leads to a slight 
energy change in the atomic energy levels, which results in the multiplet structure of the 
spectral lines (Tomonaga, 1997, pp. 11-20).  
In 1924 Wolfgang Pauli showed that the association of µR with the atom’s core was 

inconsistent, and considered it to be associated with the valence electron. In this way the 
four quantum numbers are all related to the electrons. Upon reading Pauli’s ideas G. E. 
Uhlenbeck and S. Goudsmit proposed in 1925 to reinterpret the core angular momentum 
R as an intrinsic angular momentum of the electron. Uhlenbeck and Goudsmit had the 
idea that to each quantum number should correspond a degree of freedom of the 
electron. This led them to the idea of an intrinsic rotation of the electron, the spin, as a 
fourth degree of freedom to which a quantum number would be associated. As in the 
case of Landé’s model, Uhlenbeck and Goudsmit got a discrepancy, by a factor of 2, 
between the theoretical and the experimental results in the case of doublet levels of 
alkali atoms. In 1926 L. H. Thomas presented a relativistic calculation where the 
missing 1/2 factor, later called the Thomas factor, was obtained (Jammer, 1966, pp. 
149-152). So by 1926 there was no relativistic wave equation for the electron and there 
was the further complication of having to account also for the electron’s spin. 
In 1927 Pauli attempted to incorporate spin into wave mechanics by considering a 

Schrödinger wave function depending also on a degree of freedom related to spin 
(Kragh, 1981, pp. 45-46). The intrinsic (spin) angular momentum in any direction takes 
only the two values ± ћ/2. This made Pauli consider a two-component wave function, 
with one component corresponding to an electron’s spin up ψ(x, +1/2) and another to an 
electron’s spin down ψ( x, –1/2). This two-component wave function must be solution 
of two coupled equations with the form 
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The question was how to define in the wave equation the spin operators s. Pauli defined 
the spin operators as sx = 1/2 σx, sy = 1/2 σy, sz = 1/2 σz, where σx, σy, σz are the so-
called Pauli matrices: 
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In the Hamiltonian for his equation Pauli considered two new terms, besides the term 
corresponding to an electron (without spin) in a central potential, which was already 
present in Schrödinger’s equation. One of these terms resulted from the interaction of an 
external magnetic field and the valence electron, which, as we have seen, possesses 
besides an orbital angular momentum an intrinsic spin momentum. The other resulted 
from the interaction between the spin magnetic moment and the central potential due to 
the orbital motion of the electron: the spin-orbit coupling. In this approach Pauli 
considered only first-order relativistic corrections, and the way the spin operators (and 
g0 and the Thomas factor) where put in the Hamiltonian was arbitrary. Most importantly 
Pauli was unable to extend this approach into a fully relativistic form.  
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3 The Dirac equation as a one-electron equation 
 
Things changed by the end of 1927, when Paul Dirac was able to formulate a relativistic 
wave equation. In his first attempts towards a relativistic theory, Dirac consider a Klein-
Gordon type equation written in terms of a relativistic Hamiltonian (Dirac, 1926): 
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Upon reading Dirac’s articles using this equation, Ehrenfest asked Dirac in a letter on 
the motive for using a particular form for the Hamiltonian: 
 
Why do you write the Hamilton equation in the form: 
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Does it make a difference? (quoted in Kragh, 1990, p. 53) 
 
By that time also Pauli was proposing to adopt instead of a second order equation a first 
order equation involving a square-root (Mehra & Rechenberg, 2000, p. 293). 
Dirac felt that neither form of the relativistic Hamiltonian was appropriate for the 

development of a relativistic wave equation. Dirac considered that this equation should 
maintain the formal structure of the Schrödinger equation (Kragh, 1990, p. 54).  On one 
side Dirac knew he needed an equation that was linear in the time derivative so that he 
could maintain in the relativistic case the statistical interpretation of the wave function 
adopted in the non-relativistic case (Mehra & Rechenberg, 2000, p 294, Kragh, 1990, p. 
64). On the other side, this meant, due to relativistic considerations, that the equation 
should be linear also in the spatial derivatives. According to Dirac “an appropriate 
formulation of quantum mechanics will only be possible when we succeed in treating 
space and time as equal to one another” (quoted in Kragh, 1990, p. 54). This means that 
space and time must appear in the equation as the coordinates of a Minkowski space-
time.  
It seems that what resulted fundamental to Dirac’s development of his relativistic 

equation was Dirac’s realization of the identity: 
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where σ1, σ2, σ3 are the Pauli matrices. According to Dirac: 
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I was playing around with the three components σ1, σ2, σ3, which I had used to describe the spin of an 
electron, and I noticed that if you formed the expression σ1p1 + σ2p2  + σ3p3  and squared it, p1, p2 and p3 
being the three components of momentum, you got p1

2 + p2
2 + p3

2, the square of the momentum. This was 
a pretty mathematical result. I was quite excited over it. It seemed that it must be of some importance. 
(Quoted in Mehra & Rechenberg , 2000, p. 295) 
 

This mathematical identity was the insight that made Dirac search for a relativistic 
counterpart involving a term corresponding to the electron’s rest mass. The problem 
facing Dirac was that with the Pauli matrices it was not possible to write down an 
expression with four squares:  
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Dirac considered that from the wave equation developed using the previous expression 
{p0 – (m

2c2 + p1
2 + p2

2 + p3
2)½}ψ = 0  one should be able to recover the equation {p0

2 – 
m2c2 – p1

2 – p2
2 – p3

2}ψ = 0, “which is of a relativistically invariant form” (Dirac, 1958, 
p. 255). That is, Dirac expected his relativistic equation to contain the Klein-Gordon 
equation as its square, since this equation involves the relativistic Hamiltonian in its 
normal invariant form.  This implied a set of relations for the unknown coefficients: 
 

                  αµαν + αναµ = 0 (µ ≠ ν); µ, ν = 1, 2, 3, 4, 
 

      αµ
2 = 1.  

 
There is no set of four 2 × 2 matrices that satisfies the previous conditions. According to 
his recollections, at some point Dirac “realized that there was no need to stick to 
quantities, which can be represented by matrices with just two rows and columns. Why 
not go to four rows and columns? Mathematically there was no objection to this at all. 
Replacing the σ-matrices by four-row and column matrices, one could easily take the 
square root of the sum of four squares, or even five squares if one wanted to” (quoted in 
Mehra & Rechenberg, 2000, p. 295). With this insight Dirac arrived at his relativistic 
wave equation. Dirac choose a representation where the coefficients are given by: 
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and α1 = ρ1σ1, α2 = ρ1σ2, α3 = ρ1σ3, α4 =σ3. 
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In this way, Dirac had immediately the relativistic wave equation for a free electron: 
 

       0mc]ψρ),(ρ[p 310 =−− pσ , 

 
where p0 = iħ ∂/(c∂t) and p = (p1, p2, p3), where pr = –iħ ∂/(c∂xr) with r = 1, 2, 3; 
σσσσ = (σ1, σ2, σ3) is a vector formed with the above 4 × 4 matrices.  
Dirac generalized his equation to the case of an electron in an external 

electromagnetic field. Dirac followed the rule of replacing p0 by p0 +e/c.A0 and p by p + 
e/c.A (where A0 and A are the scalar and vector potentials). This gives us the equation 
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which is the “fundamental wave equation of the relativistic theory of the electron” 
(Dirac, 1958, p. 257). 
Dirac had developed his equation by considering the relativistic Hamiltonian of a 

free point particle, that is, Dirac did not take into account in his Hamiltonian (as for 
example Pauli did in the derivation of his equation) any term related to the spin of the 
electron. It was a surprise to Dirac that “the simplest possible case did involve the spin” 
(quoted in Kragh, 1981, p. 55). 
Dirac set out to explore the relation between his wave equation with external 

potentials and the Klein-Gordon equation (based on a classical relativistic Hamiltonian), 
which was according to Dirac “the wave equation to be expected from analogy with the 
classical theory” (Dirac, 1958, p. 264): 
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By squaring his equation, Dirac obtained a differential equation that included the 
operator of the Klein-Gordon equation and two additional terms: 
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Dirac concluded that 
 

the electron will therefore behave as though it has a magnetic moment eh/4πmc · σσσσ and an electric 
moment ieh/4πmc · ρ1σσσσ. This magnetic moment is just that assumed by the spinning electron model. The 
electric moment, being a pure imaginary, we should not expect to appear in the model. It is doubtful 
whether the electric moment has any physical meaning, since the Hamiltonian … that we started from is 
real, and the imaginary part only appeared when we multiplied it up in an artificial way to make it 
resemble the Hamiltonian of previous theories. (Dirac, 1928, p. 619) 
 

Dirac showed how this internal magnetic moment resulted from the electron having a 
spin angular momentum. According to Dirac  
 
the spin angular momentum does not give rise to any potential energy and therefore does not appear in 
the result of the preceding calculation. The simplest way of showing the existence of the spin angular 
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momentum is to take the case of the motion of a free electron or an electron in a central field of force and 
determine the angular momentum integrals [of the motion]. (Dirac, 1958, p. 266) 
 
By setting A = 0 and A0 a function of the radius r, the Hamiltonian in Dirac’s equation 
takes the form  H = –  eA0(r) + cρ1(σσσσ, p) + ρ3mc

2. Considering, for example, the 
equation of motion of the x1-component of the orbital angular momentum m1 = x2p3 – 
x3p2, we have iћ 1m& = iћcρ1{σ2p3 – σ3p2}. We see that m1 is not a constant of the motion. 

By considering also the equation iћ 1σ& = 2icρ1{σ3p2 – σ2p3}, Dirac found that 1m& + ћ/2 

· 1σ& = 0. This means that the vector m + ћ/2 · σσσσ is a constant of the motion. According to 
Dirac “we can interpret this result by saying that the electron has a spin angular 
momentum of ћ/2 · σσσσ, which, added to the orbital angular momentum m, gives the total 
angular momentum M, which is a constant of the motion” (Dirac, 1928, p. 620). In this 
way Dirac found that his relativistic wave equation described an electron with a spin 
angular momentum (and corresponding magnetic moment). 
Dirac did not provide an exact solution of his equation for an electron in a central 

potential. He only made a first order calculation. In this treatment of the hydrogen atom, 
Dirac was able to obtain Pauli’s results on the energy levels, but without using any 
arbitrary assumptions: the spin angular momentum, gyromagnetic ratio (g0) and Thomas 
factor all came out right. Just a few weeks after the publication of Dirac’s paper on the 
relativistic wave equation, it was shown independently by C. G. Darwin and W. Gordon 
that an exact solution of Dirac’s equation gave an expression for the discrete energy 
levels of the hydrogen spectrum which was identical to Sommerfeld’s original formula 
derived in 1915, which was in good agreement with experimental results.  
 
 
4 The problem with the negative energy solutions 

 
Since Dirac was using 4 × 4 matrices in his equation, the wave function had four 
components (recall that Schrödinger’s original equation had one component, and Pauli’s 
equation had two components due to the spin degree of freedom). Initially Dirac 
thought that he could simply drop two of the components, since “half of the solutions 
must be rejected as referring to the charge +e on the electron” (Dirac, 1928, p. 618). 
This was possible in a first-order approximation. Looking at the exact solution we can 
see that the situation is far from that simple. Dirac’s equation can be written as a set of 
two coupled differential equations for a pair of two-component wave functions ψΑ and 
ψΒ, where Dirac’s wave function is given by  
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These two wave functions are essential in the solution of Dirac’s equation and cannot be 
disregarded in the calculation of the energy levels. What happens is that the lower two-
components (ψΒ) are smaller that the upper two-components (ψΑ), roughly by a ratio of 
υ/2c, where υ is the ‘velocity’ of the orbiting electron in Bohr’s theory. Now, when 
considering the solution of Dirac’s equation for a free electron with momentum p, we 
see that there are two solutions corresponding to electron states with momentum p and 
energy Ep, and two solutions corresponding to states with momentum –p and energy –
Ep, or as Dirac mentioned to an electron with charge +e (and positive energy Ep). In the 
case of the exact solution for an electron in an external electromagnetic field, as we 
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have seen, we have a four-component wave function, which we can say, by resort to the 
free electron case, to ‘have’ positive and negative energy components, or as Dirac 
mentions, solutions referring to a charge –e and +e.11 In this way we must take, as Dirac 
did, the reference to positive and negative energy components as a “rough one, applying 
to the case when such a separation is approximately possible” (Dirac, 1958, p. 274). 
When taking the non-relativistic limit of Dirac’s equation, the equation for the upper 
two-components, takes the form of the Schrödinger-Pauli two-component wave 
equation (corresponding to a negative energy state), and as mentioned, the lower 
components are smaller than the upper components and can be disregarded. This is the 
procedure taken by Darwin to ‘derive’ Schrödinger’s equation from Dirac’s equation 
(Mehra & Rechenberg, 2000, p. 302). That is we can only disregard two of the 
components of the four-component wave function in the non-relativistic limit. Now, 
Dirac’s results are not non-relativistic. The whole point of Dirac’s approach was to 
develop and apply a relativistic wave equation. 
Dirac soon recognized that there was a fundamental difficulty with his equation. 

Already in his early work with the Klein-Gordon equation Dirac had noticed the 
possibility of solutions corresponding to a charge +e (this is a general characteristic of 
any relativistic equation due to the relativistic formula for the Hamiltonian involving 
E2). The problem is that when considering any small external electromagnetic field, “in 
general a perturbation will cause transitions from states with E positive to states with E 
negative” (quoted in Mehra & Rechenberg, 2000, 306). Accordingly Dirac considered 
that  
 
such a transition would appear experimentally as the electron suddenly changing its charge from –e to 
+e, a phenomenon which has not been observed. The true relativity wave equation should thus be such 
that its solutions split up into two non-combining sets, referring respectively to the charge –e and the 
charge +e. (Dirac, 1928, p. 612) 
 
As we have seen, also in the case of an electron in a central potential as described by 
Dirac’s equation, that is not the case. Dirac knew that; he recognized in the beginning of 
his paper on the relativistic wave equation that he was unable to remove this difficulty 
and considered that his theory “is therefore still only an approximation” (Dirac, 1928, p. 
612). However Dirac expected “the probability of these transitions [to be] extremely 
small” (quoted in Mehra & Rechenberg, 2000, p. 306). That was not the case. Soon 
afterwards Werner Heisenberg showed that the probability for transitions in which an 
electron in a state corresponding to a charge –e goes into a state corresponding to a 
charge +e (a negative energy state) was much larger than Dirac’s estimation. Also, 
Heisenberg showed that the negative-energy states where necessary to obtain the correct 
dispersion formulae (Mehra & Rechenberg 2000, pp. 306-307). The problem with the 
negative-energy solutions was highlighted by O. Klein, when, in the end of 1928, he 
showed that the simple case of a positive-energy wave incident on a potential barrier 
could give rise to a transmitted negative-energy wave (Mehra & Rechenberg, 2000, pp. 
309-311).  
By the end of 1929 Dirac had found a way to solve the ‘± difficulty’ of his electron 

theory. In late March 1929 Heisenberg wrote to Dirac mentioning that H. Weyl thought 
he had a solution to the ± difficulty and asked Dirac if he knew and could give him any 

                                                 
11 According to Dirac, “it is not possible, of course, with an arbitrary electromagnetic field, to separate the 
solutions of [the relativistic wave equation] definitely into those referring to positive and those referring 
to negative values [of energy], as such a separation would imply that transitions from one kind to the 
other do not occur”. (Dirac, 1958, p. 274) 
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details about it. Weyl’s idea consisted in suggesting that the two extra components 
might be ascribed not to the electron but to the proton (Dirac’s equation would be in this 
way describing simultaneously electrons and protons).  Dirac worked on Weyl’s ideas 
and set forward a new interpretation of his equation that might provide a solution to the 
problem of the negative energy solutions.  
Dirac’s first written accounts of his new views were made in an exchange of letters 

with Bohr. In a letter to Dirac from November 24, Bohr had put forward the idea that 
there might not be a strict conservation of momentum and energy in some nuclear 
processes and that this might lead to a solution of the negative energy problem, resulting 
from the fact that, according to Klein, the potential that confines the electron in the 
nucleus induces transitions to negative energy states (by that time it was believed that 
there were electrons in the nucleus of the atoms). Dirac answered, on November 26, that 
“I should prefer to keep rigorous conservation of energy at all costs”, and that “there is a 
simple way of avoiding the difficulty of electrons having negative kinetic energy” 
(quoted in Kragh, 1990, p. 90). Dirac then elaborate on his views: 
 

Let us suppose the wave equation [w/c + e/c·A0(r) + ρ1(σσσσ·γγγγ + e/c·A) + ρ0me)] ψ = 0 does accurately 
describe the motion of a single electron.  This means that if the electron is started off with a +ve energy, 
there will be a finite probability of its suddenly changing into a state of negative energy and emitting the 
surplus energy in the form of high-frequency radiation. It cannot then very well change back into a state 
of +ve energy, since to do so it would have to absorb high-frequency radiation and there is not very much 
of this radiation actually existing in nature. It would still be possible, however, for the electron to increase 
its velocity (provided it can get the momentum from somewhere) as by so doing its energy would be still 
further reduced and it would emit more radiation. Thus the most stable states for the electron are those of 
negative energy with very high velocity. 

Let us now suppose there are so many electrons in the world that all these most stable states are 
occupied. The Pauli principle will then compel some electrons to remain in less stable states. For example 
if all the states of –ve energy are occupied and also few of +ve energy, those electrons with +ve energy 
will be unable to make transitions to states of –ve energy and will therefore have to behave quite properly. 
The distribution of –ve electrons, will, of course, be of infinite density, but it will be quite uniform so that 
it will not produce any electromagnetic field and one would not expect to be able to observe it. 

It seems reasonable to assume that not all the states of negative energy are occupied, but that there 
are a few vacancies or “holes.”  Such a hole which can be described by a wave function like an X-ray 
orbit would appear experimentally as a thing with +ve energy, since to make the hole disappear (i.e. to fill 
it up,) one would have to put –ve energy into it. Further, one can easily see that such a hole would move 
in an electromagnetic field as though it had a +ve charge. These holes I believe to be the protons. When 
an electron of +ve energy drops into a hole and fills it up, we have an electron and proton disappearing 
simultaneously and emitting their energy in the form of radiation. 

I think one can understand in this way why all the things one actually observes in nature have 
positive energy. One might also hope to be able to account for the dissymmetry between electrons and 
protons; one could regard the protons as the real particles and the electrons as the holes in the 
distributions of protons of –ve energy. However, when the interaction between the electrons is taken into 
account this symmetry is spoilt. I have not yet worked out mathematically the consequences of the 
interaction. It is the “Austausch” effect that is important and I have not yet been able to get a relativistic 
formulation of this. One can hope, however, that a proper theory of this will enable one to calculate the 
ratio of the masses of proton and electron. (Quoted in Kragh, 1990, pp. 90-91) 
 
Bohr answered a few days later (in December 5), after discussing Dirac’s letter with 
Klein: 
 
We do not understand, how it works out in detail. Before all we do not understand, how you avoid the 
effect of the infinite electric density in space. According to the principles of electrostatics it would seem 
that even a finite uniform electrification should give rise to a considerable, if not infinite, field of force. In 
the difficulties of your old theory I still feel inclined to see a limit of the fundamental concepts on which 

atomic theory hitherto rests rather than a problem of interpreting the experimental evidence in a proper 

way by means of these concepts. Indeed according to my view the fatal transition from positive to 
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negative energy should not be regarded as an indication of what may happen under certain conditions 

but rather as a limitation in the applicability of the energy concept. 
In the case of electrons impinging on a potential barrier examined by Klein we have, on the one 

hand, a striking example of the difficulties involved in an unlimited use of the concept of potentials in 

relativistic quantum mechanics. On the other hand, we have just in this case an example of the actual 

limit of applying the idea of potentials in connection with possible experimental arrangements. In fact, 

due to the existence of an elementary unit of electrical charge we cannot build up a potential barrier of 

any height and steepness desired without facing a definite atomic problem. In Klein’s example the critical 
height of the barrier is of order mc2, and the rise of potential shall take place within a distance of the order 
h/mc which is the order of magnitude of the wavelength of the electrons concerned. But if the dimensions 
of the barrier perpendicular to the electric force shall be large compared with this wavelength λ0, it claims 
the presence of a double layer of electricity of such a strength that a surface element of size λ0

2 of the 
negative layer contains al least hc/e2 electrons. It is therefore clear that the problem in question cannot 
legitimately be treated as that of one electron moving in a given potential field, but is essentially a many 
electron problem which falls outside the range of present quantum mechanics. 

On the whole it appears that the circumstance that hc/e2 is large compared with unity does not only 
indicate the actual limit of the applicability of the quantum theory in its present form, but at the same time 
ensures its consistency within these limits. In fact the radius r0 of the electron estimated on classical 
theory is e2/mc2 = (h/me)(e2/hc), and we can therefore never determine the position of an electron within 
an accuracy comparable with r0 without allowing an uncertainty in its momentum larger than mc, thus 
entailing an uncertainty of energy surpassing the critical value mc2. The idea that the reach of quantum 
mechanics is bound up with the actual existence of the electron would also seem to be in harmony with 
the fact that the symbols e and m appear in the fundamental equations of the present theory … As regards 
the transitions from positive to negative energy accompanied by radiation I am not sure that they present 
as serious a difficulty for your wave equation as it might appear. The question is, how much those 
features of the theory which claim the transitions in question are involved in the problems, where your 
theory has been found in so wonderful agreement with experiments. In this connection I must correct the 
statement in my former letter regarding the probability of these transitions which is not nearly so large as 
I believed. In discussing the problem more closely with Klein we convinced ourselves that the estimation 
of this probability did not take sufficient regard to the smallness of the wavelength of the radiation 
concerned compared with atomic dimensions. We have not made an actual calculation of any such 
probability, and if you have considered the problem in detail I should be very thankful for any 
information regarding this point. My hope is that it should be possible to defend all the successful 
applications of your wave equation, but I suspect that the natural limitation of these applications prevents 
an extrapolation of the kind you describe in your letter. (Quoted in Moyer, 1981, pp. 1057-1058 [my 
emphases]) 
 
It is important to notice that Bohr started seeing the Klein paradox as resulting from an 
unlimited mathematical application of the concept of potential (or more generally of 
field) in relativistic quantum mechanics. Bohr called attention to the necessity of taking 
into account the elementary unit of electrical charge in the determination of the actual 
potential barrier. Calculations made not taking into account this fact and the limits in the 
determination of the electron’s position (and its associated uncertainty in momentum, 
and according to Bohr also in energy) would be beyond the ‘actual limit of 
applicability’ of the theory and any ‘possible experimental arrangement’. Accordingly, 
Bohr considered that the elimination of Klein’s paradox passed through an essential 
limitation of the mathematical use of the concept of field (see also Darrigol, 1991, pp. 
154-155). However Bohr considered that within the domain of applicability of the 
theory, the concepts (being used in a restricted context) and the results obtained were 
consistent (in chapter 5 I will return to Bohr’s view on relativistic quantum theory). Due 
to this, the problem of the transitions to negative-energy states would not occur in ‘all 
the successful applications of the theory’. In this way there would be no need for the 
hole theory. 
Dirac did not agree with Bohr’s views and in a letter sent to Bohr in December 9, 

stressed his differences with Bohr and gave a further elaboration of his views: 
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I do not completely agree with your views. Although I believe that quantum mechanics has its limitations 
and will ultimately be replaced by something better, (and this applies to all physical theories,) I cannot see 
any reason for thinking that quantum mechanics has already reached the limit of its development. I think 
it will undergo a number of small changes, mainly with regard to its method of application, and by these 
means most of the difficulties now confronting the theory will be removed. If any of the concepts now 
used (e.g. potentials at a point) are found to be incapable of having an exact meaning, one will have to 
replace them by something a little more general, rather than make some drastic alteration in the whole 
theory … There is one case where transitions of electrons from positive to negative energy levels does 
give rise to serious practical difficulties, as has been pointed out to me by Waller. This is the case of the 
scattering of radiation by an electron, free or bound. A scattering process is really a double transition, 
consisting of first an absorption of a photon with the electron jumping to any state and then an emission 
with the electron jumping to its final state (as in Raman effect) (or also of first the emission and then the 
absorption). The initial and final states of the whole system have the same energy, but not the 
intermediate state, which lasts only a very short time. One now finds, for radiation whose frequency is 
small compared with mc/h, that practically the whole of the scattering comes from double transitions in 
which the intermediate state is of negative energy for the electron. Detailed calculations of this have been 
made by Waller. If one says the states of negative energy have no physical meaning, then one cannot see 
how the scattering can occur. 

On my new theory the state of negative energy has a physical meaning, but the electron cannot jump 
down into it because it is already occupied. There is, however, a new kind of double transition now taking 
place, in which first one of the negative-energy electrons jumps up to the proper final state with emission 
(or absorption) of a photon, and secondly the original positive-energy electron jumps down and fills the 
hole, with absorption (or emission) of a photon. This new kind of process just makes up for those 
excluded and restores the validity of the scattering formulas derived on the assumption of the possibility 
of intermediate states of negative energy. 

I do not think the infinite distribution of negative-energy electrons need cause any difficulty. One can 
assume that in Maxwell’s equation div E = –4πρ, the ρ means the difference in the electric density from 
its value when the world is in its normal state (i.e when every state of negative energy and none of 
positive energy is occupied.) Thus ρ consists of a contribution –e from each occupied state of positive 
energy and a contribution +e from each unoccupied state of negative energy. 

I have not made any actual calculation of the transition probabilities from +ve to –ve, but I think they 
are fairly small. (Quoted in Kragh, 1990, pp. 92-93) 
 
A paper containing Dirac’s hole interpretation of his equation was published in early 
1930. In this work Dirac first made clear his departure from Weyl’s original idea of 
associating the negative energy solutions directly to the protons. According to Dirac:  
 
One cannot, however, simply assert that a negative-energy electron is a proton, as that would lead to the 
following paradoxes:  
 
(i) A transition of an electron from a state of positive to one of negative energy would be interpreted as a 
transition of an electron into a proton, which would violate the law of conservation of electric charge. 
 
(ii) Although a negative-energy electron moves in an external field as though it has a positive energy, yet, 
as one can easily see from a consideration of conservation of momentum, the field it produces must 
correspond to its having a negative charge, e.g. the negative-energy electron will repel an ordinary 
positive-energy electron although it is itself attracted by the positive-energy electron. 
 
(iii) A negative-energy electron will have less energy the faster it moves and will have to absorb energy in 
order to be brought to rest. No particles of this nature have ever been observed. (Dirac, 1930, p. 362) 
 
Dirac then presented in more details his hole theory as described in the letters to Bohr. 
Dirac gave in particular an account of the scattering of radiation by an electron 
according to his hole theory. Dirac mentions that in a scattering process two types of 
intermediate states can occur. In one case we have a  
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transition process, consisting of first an absorption of a photon with the electron simultaneously jumping 
to any state, and then an emission with the electron jumping into its final state, or else of first the 
emission and then the absorption. (Dirac, 1930, p. 364) 
 
In the other case  
 
first one of the distribution of negative-energy electrons jumps up into the required final state for the 
electron with absorption (or emission) of a photon, and then the original positive-energy electron drops 
into the hole formed by the first transition with emission (or absorption) of a photon. Such processes 
result in a final state of the whole system indistinguishable from the final state with the more direct 
processes, in which the same electron makes two successive jumps. (Dirac, 1930, p. 365) 
 
In this second case we have an intermediate state with two electrons (or one electron 
and the hole). It is clear that the description of the light scattering by an electron 
involves more than just the original electron: we are faced with a many-body theory. 
Dirac with his hole theory changed the character of his equation from a single-electron 
equation into an equation describing a many-body (in reality infinite) electron system. 
Even before the publication of his paper on the hole theory, several physicists, 

knowing the general lines of Dirac’s ideas, had a sceptical reaction to it. In particular 
Heisenberg made a rough calculation of the electron-proton interaction in the new 
theory. Heisenberg concluded that the electron and the proton had to have the same 
mass (Kragh 1990, p. 94). Dirac had already recognized this problem in one of his 
letters to Bohr, but expected that a future detailed theory of the interaction between 
electrons and protons (holes) might solve this difficulty.  A further objection was given 
a few months latter, in a note by J. R. Oppenheimer (1930a) in which the author 
calculated the transition probability for the annihilation of an electron and a proton that 
corresponds to the filling of a hole in the sea. The result was not very promising. 
Oppenheimer obtained a mean lifetime of a free electron in matter that was too low, and 
totally inconsistent with the observed stability of matter (Kragh, 1990, pp. 101-102). 
Oppenheimer’s proposition was to “return to the assumption of two independent 
elementary particles of opposite charge” (quoted in Kragh, 1990, p. 102). That is, to 
consider the electron and the proton as dissociated particles, each one being related to 
its ‘Dirac sea’ of negative-energy particles. In this way there would not be a problem of 
a possible proton-electron annihilation. More importantly, in 1931 Weyl published a 
paper in which he proved by symmetry properties of Dirac’s equation that the negative-
energy electrons must have the same mass as the positive-energy electrons. In this same 
year Dirac rethought his hole theory in face of the objections being made and presented 
a new view on the problem: 
 
It thus appears that we must abandon the identification of the holes with protons and must find some 
other interpretation for them. Following Oppenheimer, we can assume that in the world as we know it, 
all, and not merely nearly all, of the negative-energy states for electrons are occupied. A hole, if there 
were one, would be a new kind of particle, unknown to experimental physics, having the same mass and 
opposite charge to an electron. We may call such a particle an anti-electron. We should not expect to find 
any of them in nature, on account of their rapid rate of recombination with electrons, but if they could be 
produced experimentally in high vacuum they would be quite stable and amenable to observation. (Dirac 
1931, p. 61) 
 
In 1932 a brief article by C. D. Anderson was published presenting experimental 

evidence for a new kind of positively charged particle with a mass much smaller than 
that of the proton. These experimental findings were presented without taking into 
account Dirac’s theory. By that time P. Blackett and G. Occhialini had independent 
evidence for the positrons and previous to publication they discussed their findings with 
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Dirac. They published their results after Anderson’s publication, mentioning Dirac’s 
theory and presenting some ideas regarding the origin of the positive particle. 
According to Blackett and Occhialini “one can imagine that negative and positive 
electrons may be born in pairs during the disintegration of light nuclei” (quoted in 
Schweber, 1994, p. 69). However they were cautious regarding their proposed 
mechanism:  
 

when the behavior of the positive electrons has been investigated in more detail, it will be possible to test 
these predictions of Dirac’s theory. There appears to be no evidence as yet against its validity, and in its 
favour is the fact that it predicts a time of life for the positive electron that is long enough for it to be 
observed in the cloud chamber but short enough to explain why it had not been discovered by other 
methods. (quoted in Schweber, 1994, p. 69) 
 
After a thorough revision of the experimental evidence for positrons Blackett and 
Occhialini published another article where their support to Dirac’s theory was stronger:  
 

these conclusions as to the existence and the properties of positive electrons have been derived from the 
experimental data by the use of simple physical principles. That Dirac’s theory of the electron predicts 
the existence of particles with just these properties, gives strong reason to believe in the essential 
correctness of his theory. (quoted in Schweber, 1994, p. 69) 
 
Even with the experimental evidence for the positron there was resistance to Dirac’s 

hole theory. In relation to this discovery, Bohr considered that “even if all this turns out 
to be true, of one thing I am certain: that it has nothing to do with Dirac’s theory of 
holes!” (quoted in Kragh, 1990, p. 112). And Pauli wrote to Dirac saying: “I do not 
believe on your perception of ‘holes’, even if the existence of the ‘antielectron’ is 
proved” (quoted in Kragh, 1990, p. 112). It turns out they were right and a different – 
field theoretical – approach was possible without any need for an infinite sea of 
negative-energy particles with some holes in it. 
 
 
5 The field theoretical interpretation of Dirac’s equation 

 
To understand how this field theoretical interpretation of Dirac’s equation came to be, 
we need (at least) to go back to a work by Dirac published in 1927. In this work, Dirac 
presented a non-relativistic treatment of the interaction of electromagnetic radiation and 
atoms, which enabled him to give a dynamical derivation of Einstein’s laws for the 
emission and absorption of radiation, which Einstein had obtained by statistical 
considerations (Darrigol, 1986, p. 226). Dirac followed initially an approach in which 
he considered an assembly of classical particles (that would interact with an atom), 
which were described by the Schrödinger equation. For the case of light quanta, Dirac 
knew that he could not use all the available wave functions, but had to select only 
symmetrical wave functions, corresponding to Bose-Einstein statistics: “The solution 
with symmetrical eigenfunctions must be the correct one when applied to light quanta, 
since it is known that the Einstein-Bose statistical mechanics leads to Planck’s law of 
black-body radiation” (Dirac, 1926, p. 672). 
In his 1927 work, Dirac did not follow the simpler procedure of imposing 

symmetrical wave functions (Dirac, 1958, p. 225), but a procedure more complex and 
physically unclear. This so-called ‘second quantization’ turns out to be simply a method 
that guaranteed that the (quantized) particles, that is particles described by a 
Schrödinger equation, satisfied Bose-Einstein statistics (Schweber, 1994, p. 28). Dirac 
did not arrive at the method by some physical insight. According to his words: 
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I remember the origin of that work was just playing about with equations. I was intending to get a theory 
of radiation at the time. I was just playing about with the Schrödinger equation. I got the idea of applying 
the quantization to it and worked out what it gave and found out it just gave the Bose statistics. (Quoted in 
Darrigol, 1984, p. 461) 
 
In this work Dirac provided a different approach to the interaction of radiation and 

atoms, by considering the electromagnetic radiation as a classical wave (and not as 
constituted by particles), which after quantization satisfies Bose-Einstein statistics. 
Dirac made the bold move of quantizing not directly the electric and magnetic field but 
the vector potential (Dirac, 1927a, p. 262; Miller, 1994, p. 22; Kragh, 1990, p. 126), 
which is resolved into its Fourier components. Using a non-relativistic approximation 
consistent with the one adopted for the light quanta case, Dirac found it possible – by 
making a necessary reinterpretation of the state corresponding to zero light quanta as a 
state with an infinite number of unobservable light quanta with zero energy and 
momentum – to find a Hamiltonian for the system constituted by a (quantized) 
electromagnetic field interacting with an atom, that “takes the same form as in the light-
quantum treatment” (Dirac, 1927, p. 265). This result led Dirac to consider that: 
 
Instead of working with a picture of the photons [light quanta] as particles, one can use instead the 
components of the electromagnetic field. One thus gets a complete harmonizing of the wave and 
corpuscular theories of light. One can treat light as composed of electromagnetic waves, each wave to be 
treated like an oscillator; alternatively, one can treat light as composed of photons, the photons being 
bosons and each photon state corresponding to one of the oscillators of the electromagnetic field. One 
then has the reconciliation of the wave and corpuscular theories of light. They are just two mathematical 
descriptions of the same physical reality. (Quoted in Schweber, 1994, p. 31) 
 
The fact that Dirac considers that there is “a complete harmony between the wave and 
light-quantum description” (Dirac, 1927a, p. 245), does not mean that he takes over this 
equivalence to the case of the electrons. In fact, as Dirac clearly states in this article, he 
makes a sharp distinction between the case of electromagnetic radiation and matter. For 
Dirac there simply is no real de Broglie wave that, after quantization, permits the 
description of the electrons (Dirac, 1927a, p. 247). 
Jordan’s reading of Dirac’s work was quite different. Going back to the 

cumbersome method of second quantization that for Dirac was “nothing but a 
convenient way to take Bose statistics into account” (Darrigol, 1986, p. 229), Jordan 
interpreted the scheme of second quantization as the quantization of a classical wave 
described by a classical wave equation that could be the Maxwell-Lorentz equations for 
the case of the electromagnetic field or a Schrödinger equation for the case of electrons 
seen not as particles but as de Broglie waves (Darrigol, 1986, pp. 229-230). This view 
of Jordan had the advantage to make it possible to treat the quantized waves in a three-
dimensional space (or four-dimensional Minkowski space-time) instead of using a 3n 
(multidimensional) space in the case of an n-particle system (Schweber, 1994, p. 36). In 
a paper sent to publication in July 1927, Jordan made a conceptual turnaround on 
Dirac’s approach, and applied his method to the quantization of quanta obeying Pauli’s 
exclusion principle, 12 that is to electrons. Contrary to the case of photons (light quanta), 
in which there is no limit to the number of particles that may occupy the same state, the 
electrons (according to Pauli’s exclusion principle) cannot be in the same state, that is, 
the occupation number for each possible state can only be 0 or 1 (another way of 
making this statement is to say that the electrons are fermions, that is, they obey Fermi-

                                                 
12 Regarding Pauli’s exclusion principle see e.g. Sánchez Ron (2001, pp. 348-350). 
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Dirac statistics). Jordan’s approach was to take the method used by Dirac with the light 
quanta, and to apply it to the electron as a de Broglie wave – for which there was 
experimental evidence (Darrigol, 1986, p. 219) – that was a solution of a (classical) 
Schrödinger equation. In this way, Dirac’s ‘second quantization’ was from Jordan’s 
perspective a ‘first quantization’ of a classical wave. This was simply implemented by 
taking the coefficients of each normal mode to be matrices satisfying certain 
commutation relations. In this work, Jordan did not take correctly into account the phase 
factors in the matrices “necessary to guarantee that the creation operators for different 
energy states anticommute with one another” (Schweber, 1994, p. 37). This point was 
settled by the end of the year in a collaboration with E. Wigner, where the correct 
anticommutation relations were given. In any case, already in his first incomplete work 
Jordan was able, by his quantization of the wave, to obtain “an evolution identical to the 
one given by anti-symmetrical wave functions in configuration space” (Darrigol, 1986, 
p. 231). That is, Jordan showed the equivalence, for the electrons, of adopting as a 
classical starting point, not the electrons as particles but electrons as classical de Broglie 
waves. With this procedure there was no need for a multidimensional abstract 
configuration space, since it was possible with the wave approach to maintain the 
description solely in terms of a quantized wave described in a three-dimensional space. 
In this way, already in this first incomplete work, Jordan was able to conclude that “a 
quantum-mechanical wave theory of matter can be developed that represents electrons 
by quantum waves in the usual three-dimensional space” (quoted in Darrigol, 1986, p. 
232). This conclusion made possible for Jordan to make the ‘programmatic’ assertion: 
“The natural formulation of the quantum theory of electrons will be attained by 
conceiving light and matter as interacting waves in three-dimensional space” (quoted in 
Darrigol, 1986, p. 232). In the abstract of the work done with Wigner similar 
considerations were made: 
 
The problem at hand is to describe an ideal or nonideal gas that satisfies the Pauli exclusion principle with 
the idea of not using any relation in the abstract (3N-dimentional) configuration space of the atoms of the 
gas, but using only three-dimensional space. This is made possible by representing the gas by a three-
dimensional quantized wave, for which the particular non-commutative properties for multiplying wave 
amplitudes are simultaneously responsible for the existence of corpuscular atoms of the gas and for the 
validity of Pauli’s exclusion principle. (Quoted in Schweber, 1994, p. 38) 
 
Heisenberg and Pauli adopted Jordan’s approach in the development of a quantum 

field approach to the description of the interaction of radiation and matter. In their case 
they took Dirac’s equation as a classical wave equation. The ‘de Broglie’ solution of 
Dirac’s equation is then quantized according to the procedure set forward by Jordan. 
The elementary excitations  (quanta) of the field resulting from the quantization are the 
particles. In a sense this field theoretical approach as applied by Heisenberg and Pauli is 
incomplete. The point is that the energy of the field can be negative. This is so due to 
the presence of the negative energy quanta. This means it was still necessary to make 
use of Dirac’s hole theory to make sense of the field quantization. The negative energy 
states where taken to be full and a positron was identified with an empty negative-
energy state. That is, a positron in this field theoretical view was taken to be the lack of 
an elementary excitation in an infinite sea of negative-energy elementary excitations. 
In November 1933, V. Fock published a paper where he made a symmetrical 

treatment of free electrons and positrons without using negative-energy particles, 
following a procedure by Heisenberg from 1931 in which he explored “a far-reaching 
analogy between the terms of an atomic system with n electrons and those of a system 
in which n electrons in a closed-shell are lacking” (quoted in Pais, 1986, p. 379). In a 
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letter to Pauli from July 1933 Heisenberg had presented that same approach, and used it 
in a paper published in 1934, considering the case where an external field was present 
(Darrigol, 1984, p. 479; Miller, 1994, p. 63).  In this paper he required that “the 
symmetry of nature in the positive and negative charges should from the very beginning 
be expressed in the basic equations of [the] theory” (Heisenberg 1934, p. 169). Taking 
the Dirac equation and its adjoint equation as classical field equations derived from a 
classical Lagrangian, an arbitrary field can be expanded in terms of the complete set of 
free-particle solutions (Schweber, 1961, pp. 222-223):  
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The quantization scheme consists in replacing the expansion coefficients by operators 
satisfying the anticommutation relations [bn, bm]+ = [bn*, bm*]+ = 0 and [bn, bm*]+ = δnm. 
With this procedure ψ(x) and the adjoint spinor field ψ*(x) become operators that act on 
state vectors of a Fock space;13 and br(p) and br*(p) are interpreted as the annihilation 
and creation operators of an electron in the state (p, r). Redefining the operators for the 
negative-energy states as br+2(-p) = dr*(p) and br+2*(-p) = dr(p) with r = 1, 2, these 
operators can be interpreted as the creation and annihilation operators for a positive-
energy positron (Schweber, 1961, p. 223; Miller, 1994, p. 56), and the expansion of the 
ψ(x) operator is now given by 
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With this formulation there are no negative-energy states (identified as the positive-
energy positrons), and so no need for the infinite sea of negative-energy electrons. Also 
in the field operators ψ(x) and ψ*(x) we have simultaneously components related to 
electrons and positrons. Let us consider the total charge operator 
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where n-(p) is the number of the quanta identified as electrons and n+(p) is the number 
of quanta identified as positrons (Jauch & Rohrlich, 1976, p. 64). As we can see from 
this expression, as Jordan proposed, the quantization of charge and subsequent 
emergence of a particle-like concept of an electron can be seen as a result of the 
quantization of the classical field.  
 

                                                 
13 Considering the vacuum state, which is the state with no quanta, an n-quanta Hilbert space can be 
defined by n applications of creation operators. The Fock space is the (infinite) product of the n-quanta 
Hilbert spaces: H(0) ∆ H(1) ∆ H(2) … (Schweber, 1961, pp. 134-137; Gross, Runge & Heinonen, 1991, p. 
21). 
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6 Combining results from the different views on Dirac’s equation 

 
With this field theoretical reinterpretation of Dirac’s equation we are still facing a 
problem. We know that the original one-electron interpretation is not consistent: how 
then can we relate the solutions of Dirac’s equation as a relativistic wave equation for 
an electron to the view imposed by the quantum field perspective?14  
I will look again into the case of the hydrogen atom. As Dirac mentioned “in the 

general case of an arbitrary varying electromagnetic field we can make no hard-and-fast 
separation of the solutions of the wave equation into those referring to positive and 
those to negative kinetic energy” (Dirac, 1930, p. 361). L. L. Foldy and S. A. 
Wouthuysen gave a more detailed account of the situation: 
 

If we regard the electric field as a perturbation, then one can say that the electric field induces transitions 
of the particle between the positive- and negative-energy states of a free particle. This is one way of 
viewing the physical situation. 

On the other hand, one knows that for sufficiently weak fields the Hamiltonian above possesses a 
complete set of eigenfunctions with energy eigenvalues which may be classified according to whether 
they are positive or negative. There exists for these weak fields a clear-cut distinction between these two 
sets of stationary states since they are separated by a relatively large energy gap of order 2m. 
Furthermore, the wave functions corresponding to positive energies show a behavior of the particle 
appropriate to a particle of positive mass, in that the particle tends to be localized in regions of low 
potential energy; while the negative-energy solutions show a behavior of the particle appropriate to a 
particle of negative mass, in that the particle tends to be localized in regions of high potential energy. 

Either of the two descriptions of the behavior of the particle in a weak field given above is of course 
correct, although the distinction between what are called the positive- and negative-energy states is 
different in the two descriptions. However, the question of terminology for positive- and negative-energy 
states being left to our own choice, we are free to choose our definitions in such a way as to give the more 
graphic (and perhaps more intuitively satisfying) description of the actual physical events which are being 
described. In this spirit we feel that the second description is to be preferred since it has a perfectly 
reasonable classical limit. It would be difficult indeed to picture classically the motion of a particle in a 
weak field in terms of transitions between free-particle motions with positive and negative mass. 

Consider now what happens when the particle interacts with strong rather than weak fields. Under 
such circumstances, the division of states into those of positive and negative mass is no longer clear-cut, 
since the energy separation of the two sets of states is reduced to a relatively small amount. Furthermore, 
the wave functions describing these states no longer appropriately describe the motion of a particle of 
fixed sign of mass according to our customary notions. In fact, if we try to interpret the wave function in 
these terms, we encounter certain well-known paradoxes – the Klein paradox, for example. While the 
energy of any stationary state will still have a definite sign, the statement that the particle is in a state of 
positive energy will no longer carry with it the validity of any intuitive conceptions as to the behavior of a 
classical particle with positive energy, and there will be little qualitative difference between certain states 
of positive energy and certain states of negative energy. Hence, in the presence of strong fields, the 
usefulness of a description in terms of positive and negative-energy states will be lost. (Foldy & 
Wouthuysen, 1949, pp. 33-34) 

                                                 
14 A simple answer in what regards the equation itself is that we can see the Dirac one-electron equation 
as a ‘semi-classical’ equation resulting from using the so-called external field approximation (Jauch & 
Rohrlich, 1976, p. 303), where there appears to be a classical potential within the quantum formalism, but 
that really is due to a quantum field theoretical description of the interaction with a very heavy charged 
particle (described by a quantum field) when its recoil is neglected (Schweber, 1961, p. 535). It is within 
the external field approximation that a Dirac field operator equation with an ‘external’ field appears, and 
from which the relativistic one-electron equation with a ‘classical’ potential can be seen to emerge from 
the full quantum electrodynamics (Jauch & Rohrlich, 1976, pp. 307 & 313). 
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When considering the exact solution of the one-electron Dirac equation in a central 

potential (the hydrogen atom) we have a four-component wave function. In simple 
terms we can say that in the four-component wave function we have components that, 
from a quantized field perspective, are related to both electrons and positrons.  As we 
have seen, the quantized field perspective relates the (free) positive-energy solutions to 
the electrons and the (free) negative-energy solutions to the positrons. If we want, 
taking into account this perspective, a simple model for the hydrogen atom with only 
one electron, while using the Dirac equation as a relativistic one-electron equation, we 
must develop a model that uses only two-component positive-energy wave functions to 
describe the electron. This approach is also important if we want to make a clear 
connection between the relativistic and non-relativistic equations, that is, between the 
Dirac and the Schrödinger equations.   
Considering the four-component solutions of the Dirac equation in the presence of 

electromagnetic coupling ψ = (ψΑ ψΒ), in the non-relativistic limit the lower two 
components ψΒ are smaller than the upper two ψΑ. When calculating matrix elements 
like (ψ, γ4ψ) = ψΑ

*ψΑ – ψΒ
*ψΒ, neglecting terms of order (v/c)

2, we obtain an 
expression only in terms of the large components ψΑ

*ψΑ, reducing the matrix element to 
its non-relativistic form in terms of two-component wave functions (Mandl, 1957, pp. 
214-215). In the non-relativistic limit the large components can be seen as the solution 
of the Schrödinger-Pauli two-component wave equation. Concerning this approach to 
the problem of the non-relativistic limit of the Dirac equation, Foldy and Wouthuysen 
argued that “the above method of demonstrating the equivalence of the Dirac and Pauli 
theories encounters difficulties […] when one wishes to go beyond the lowest order 
approximation” (Foldy & Wouthuysen, 1949, p. 29). Foldy and Wouthuysen proposed a 
new method (using a different representation than Dirac’s original one) which would 
not only provide better results for higher-order approximations but also the definition of 
new operators for position and spin “which pass over into the position and spin 
operators in the Pauli theory in the non-relativistic limit” (Foldy & Wouthuysen, 1949, 
p. 29). 
In the case of the Dirac equation for a free electron it is possible to perform a 

canonical transformation on the Hamiltonian that enables the decoupling of the positive- 
and negative-energy solutions of Dirac’s equation, each one becoming associated to a 
two-component wave equation. This means we get two independent equations for two-
component wave functions, and that we can identify the equation with positive-energy 
solution as the Schrödinger-Pauli equation. The case of an electron interacting with an 
external electromagnetic field is more involved. The trick is to consider the 
electromagnetic field as a perturbation and to make a sequence of transformations to 
obtain the separation of negative- and positive-energy solutions. In the non-relativistic 
limit, like in the previous method, the Schrödinger-Pauli equation is obtained.  
It is then possible to rework the relativistic Dirac one-electron equation in a way in 

which only positive-energy solutions are considered. Foldy and Wouthuysen applied 
their method to the case where a Dirac electron interacts with an external 
electromagnetic field.  By making three canonical transformations and using only terms 
of order (1/m)2 they obtained a Hamiltonian (incorporating relativistic correction to this 
order) that enabled a clear separation of positive- and negative-energy solutions. With 
this method the non-relativistic limit of Dirac’s equation results in two uncoupled 
equations one with positive-energy solutions and the other with negative-energy 
solutions.  With their three canonical transformations Foldy and Wouthuysen were able 
to obtain the same wave equation as in the Pauli theory. However it is important to 
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notice that in the previous method we are not taking into account directly the quantized 
Dirac field, and we are basically maintaining the inconsistent one-electron interpretation 
of Dirac’s equation. Also, Foldy and Wouthuysen’s definition of the positive-energy 
solutions was made by taking into account the classical limit, and as they mentioned it 
is not unique. As we have seen the quantization of the (free) Dirac field leads to an 
association of the quanta to individual terms of a plane-wave expansion of the field 
corresponding to either positive or negative energy eigenvalues, which implies choosing 
another definition of positive-energy solutions. 
This leads us to the necessity of taking a quantum field approach to the case of the 

hydrogen atom. One possibility is to use the so-called Furry or bound interaction 
representation within the external field approximation. This gives a method for 
calculating corrections (due to a quantized electromagnetic field) to the energy levels of 
a bound electron (due to a static external potential) determined by the Dirac equation as 
a relativistic one-electron equation (Berestetskii, Lifshitz & Pitaevskii, 1982, p. 487). 
But the starting point is the field operator defined by 
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where ur(x) and vr(x) are obtained by solving the Dirac equation for a positive-energy 
particle representing the electron, and a negative-energy particle representing de 
positron: Hua(x) = Eaua(x) and Hvb(x) = –Ebvb(x), where H = iγ

0γγγγ.∇ − eγ0γµϕµ  + iγ0m, 
with ϕµ a static external field (Jauch & Rohrlich, 1976, p. 313). The first equation is 
exactly the one solved in the case of the one-electron interpretation of the Dirac 
equation. This means that Ea gives the positive energy levels obtained by this method, 
and that in spite of identifying ua(x) as the electron’s positive-energy wave function, it 
contains what in the limit of a free-particle solution are positive- and negative-energy 
components (Schweber, 1961, p. 566). Now, what is needed is a method in which the 
free particle positive-energy characteristic of the electron is maintained during the 
interaction with no mixing of positive- and negative-energy components.  
As we will see in the following chapters, the main working tool in quantum 

electrodynamics, the S-matrix, was designed for scattering problems where we have 
free particles in the beginning and free particles in the end of an interaction (scattering). 
This means that the S-matrix is not very appropriate to deal with the case of a bound 
particle, at least not in a direct way. Moreover, one of the most important characteristics 
of quantum field methods is that the interaction between fermions is represented by the 
exchange of photons: quanta of the electromagnetic field (e. g. Carson, 1996, pp. 127-
129). If we make a model of the atom in which a classical Coulomb field gives the 
effect of the nucleus, this quanta view is lost (as in the external field method previously 
discussed). A way to overcome these difficulties is to address directly the two-body 
problem using the Bethe-Salpeter equation. In this method, the two-body problem is 
addressed by considering directly the two-particle propagator for an electron and a 
proton (which in the calculations is taken to be a ‘big’ positron with the same mass as 
the proton).15 Considering a power series expansion of the two-particle propagator, the 
binding energy between a proton and an electron is basically calculated using what is 
known as the ladder approximation (Schweber, 1961, p. 713). Concerning this 
                                                 
15 There is an indirect method to calculate the energy levels of bound states from the S-matrix, which 
consists in determining the poles of the exact scattering amplitude. But in practice this approach leads to 
a summation of an infinite series of diagrams that corresponds to solving the Bethe-Salpeter equation 
(Berestetskii, Lifshitz & Pitaevskii, 1982, p. 553-556). 
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approximation, H. A. Bethe and E. E. Salpeter remarked that “although the probability 
for the exchange of a quantum during a small time interval is fairly small, during the 
infinite time of existence of the bound state an indefinite number of quanta may be 
exchanged successively. It is just such processes that the ladder-type graphs deal with” 
(Salpeter & Bethe, 1951, p. 1234). Thus, in the quantum field theory approach, the 
binding of the electron in the atom is achieved by an exchange of photons with the 
proton. We see that from a quantum field theory perspective, the description of the 
hydrogen atom (as a two-body problem) leads to a physical picture of the process going 
on in the atom quite different from the one obtained when using inconsistently the Dirac 
equation as a one-electron equation. That is, we see, when going from a central potential 
approach to a quantum field two-body treatment of the hydrogen atom, the importance 
of the quanta concept in the description of interactions in quantum electrodynamics. The 
exchange of quanta is a basic characteristic of the description of physical processes in 
quantum electrodynamics. We will look at this in detail in later chapters. 
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CHAPTER 4 
 
 
 

THE QUANTIZATION OF THE ELECTROMAGNETIC FIELD AND THE 
VACUUM STATE 

 
 
 
 
 
 
 
1 Introduction 

 
There is a widespread idea that we can associate with the concept of quantum vacuum 
important measurable consequences, and even, like in the case of the commonly 
accepted interpretation of the Casimir effect, clear dynamical effects. To better address 
the problem of what vacuum concept we really have in quantum electrodynamics, I start 
in section 2 with an historical account of the coming to be of the quantized 
electromagnetic field and in section 3 with a brief ‘technical’ presentation of the 
quantized electromagnetic field. We will see in particular how Einstein’s light quanta 
(photons) can be seen as resulting from the quantization of the electromagnetic field. 
The quantized electromagnetic field’s vacuum or ground state is the state with the 
lowest energy, corresponding to no (transverse) photons present.  
Due to the quantization, in all the quantum electromagnetic field states 

corresponding to a defined number of quanta, the variance of the electric and magnetic 
fields is not zero. This situation also occurs in the ground state (or vacuum state), and it 
has measurable consequences. This is in clear contrast to the classical counterpart where 
the vacuum state corresponds to a null electromagnetic field in some region of space.  
In section 4, I will focus on the properties of the ground state of the quantized 

electromagnetic field. Following Peter Milonni I will make a case for an interpretation 
of the Casimir effect that does not rely on zero-point energy fluctuations. This does not 
mean that the vacuum of the quantized electromagnetic field can be disposed of. 
Contrary to the classical case where it is possible to consider charged matter in an 
empty region of space – where there is no external electromagnetic field but only the 
field of the charged matter itself –, in the case of quantized fields this is no longer 
possible. According to Milonni, for the formal consistency of the theory, when 
considering a charged particle in an empty region of space, we must take into account 
that the charged particle is always interacting with an external quantized 
electromagnetic field even if just in its ground state. In this way, together with charged 
matter, we must always consider at least an ‘empty-space’ or ‘space-vacuum’ field in its 
vacuum or ground state with its associated non-zero variance; and this is not just a 
formal aspect of the theory, it can be related to experimental results. To clarify things, 
first, in section 5, I will explain the physical meaning of variance, making the case for 
an interpretation in terms of a statistical spread (distribution) in the results of 
independent measurements made on identically prepared systems. This interpretation is 
made within the broader framework of the ‘ensemble’ interpretation of quantum 
mechanics. Then, in section 6, we will see that using the balanced homodyne detection 
method it is possible to obtain experimental results corresponding to the non-vanishing 
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variance of the vacuum state. This implies that we can retain a notion of vacuum with 
experimental meaning that is consistent with an interpretation of the variance in terms 
of a statistical spread (distribution) in the results of independent measurements made on 
identically prepared systems. 
It seems then that we cannot recover the ‘nothingness’ of the classical notion, but, 

nevertheless, the physical properties we can really associate with the vacuum concept 
are much more subtle than usually thought, and do not present any experimental 
particularities that are not found in all quantum states corresponding to a defined 
number of quanta: the non-vanishing variance is a common characteristic of all these 
states, not only the ground state. In this way, I will be making a case for an empirically 
demonstrable notion of the vacuum in quantum electrodynamics independent of 
dynamical fluctuations. 
 
 
2 The historical emergence of the quantized electromagnetic field 

 
Though the story of quantum theories began around 1900 with Planck’s theoretical 
work on the so-called blackbody radiation, a working quantum theory of the 
electromagnetic field (and its interaction with matter) was not available until the late 
1940s.  The quantum theory of radiation can be seen to have its first development not in 
Planck’s early and subsequent work, but in an article published in 1905 that its author 
referred to as “very revolutionary“ (quoted in Kragh, 1999, p. 66). As we have seen, in 
this article Einstein presented what he called a heuristic viewpoint on the nature of 
radiation, considering in particular the emission, absorption, and propagation of light in 
space. Einstein proposed that in the limit where Wien’s law is valid light shows 
atomistic features behaving in “a thermodynamic sense, as if it consisted of mutually 
independent energy quanta” (Einstein, 1905, p. 102).  
An important step forward was made by the end of 1908, when Einstein came up 

with a new argument in favor of the light quanta hypothesis. Einstein studied the energy 
fluctuations of radiation enclosed in a cavity (Einstein, 1909a). Let us consider radiation 
inside an isothermal enclosure at a constant temperature, and take the radiation system 
to be composed of two parts one of them with a small volume v (and the other with a 
volume V). The idea is to determine the (mean square) energy fluctuation in v of the 
instantaneous energy η from the equilibrium value η0. Denoting the entropies of the two 
parts as Σ and σ (for the volume v), and taking Σ0 and σ0 to be the equilibrium values, 
the total entropy can be written as 
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where η = η0 + ε. By taking V to be much larger than v, the deviation of the entropy 
from its equilibrium value is given by 
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to second order in ε. By combining this result with Einstein’s reinterpretation of the 
Boltzmann principle it is possible to obtain the probability of an energy fluctuation 
between ε and ε + dε (Klein, 1964, pp. 10-11):  
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From this it is immediate to determine  
 

the mean value 
2ε of the square of the energy fluctuation of the radiation occurring in v 
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The essential point now is to consider the Planck’s law as empirically given and use it 
to calculate σ. After a simple calculation, Einstein obtained the result 
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for the mean value of the fluctuations of the radiation energy present in v. 
According to Einstein, from the classical Maxwell-Lorentz electrodynamics we 

would expect only to obtain the second term. The appearance of the first term was a 
new piece of evidence for the light quanta hypothesis. According to Einstein “the first 
term, if present alone, would yield a fluctuation of the radiation energy equal to that 
produced if the radiation consisted of point quanta of energy hν moving independently 
of each other” (Einstein, 1909a, p. 366). Einstein made a first remark on his results, 
mentioning that it was as though there was two independent causes for the energy 
fluctuations: “the formula says that in accordance with Planck’s formula the effects of 
the two causes of fluctuation mentioned act like fluctuations (errors) arising from 
mutually independent causes (additivity of the terms of which the square of the 
fluctuation is composed)” (Einstein, 1909a, p. 369). 
In a conference held at Salzburg in September 1909, Einstein made further remarks 

related to his results. At this conference Einstein set forward the idea of a dual character 
of light:  
 

light possesses certain fundamental properties that can be understood far more readily from the standpoint 
of Newton’s emission theory of light than from the standpoint of the wave theory. It is my opinion that 
the next stage in the development of theoretical physics will bring us a theory of light that can be 
understood as a kind of fusion of the wave and emission theories of light. (Einstein, 1909b, p. 379) 
 
Einstein proposed a tentative model in which each light quantum could be regarded 

as a singularity in space surrounded by a field. This was meant simply as a suggestion to 
make plausible the idea that “the two structural properties (the undulatory structure and 
the quantum structure) simultaneously displayed by radiation according to the Planck 
formula should not be considered as mutually incompatible” (Einstein, 1909b, p. 394). 
A theory taking into account the dual nature of light would have to wait for the 
development of quantum mechanics. 
In two articles published in 1925, Heisenberg’s formalism – based on a particular 

law of multiplication of quantum-theoretical quantities derived by correspondence 
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arguments – was developed with more formal mathematics by using matrices (van der 
Waerden, 1967, pp. 36-57; Sánchez Ron, 2001, pp. 419-443). In these articles the 
question of the quantization of the electromagnetic field was considered. In the first 
article an unsuccessful attempt was made to treat a quantized electromagnetic field in 
interaction with a Hertzian dipole oscillator (Mehra & Rechenberg, 2000, p. 200; 
Darrigol, 1986, p. 220). The advance brought by this method was made clearer in the 
second article, where in the last section Jordan treated solely the situation of a free 
electromagnetic wave in a cavity. In a mathematically unrigorous way, Jordan was able 
to obtain Einstein’s formula of 1909 for the average squared energy fluctuations in 
radiation (Darrigol, 1984, p. 450; Darrigol, 1986, p. 221-222). To arrive at this result 
Jordan took advantage of the possibility to treat a wave as an infinite set of linear 
harmonic oscillators corresponding each to a normal mode of the wave. By using the 
recently formulated formalism of matrix mechanics it was a simple task to quantize a 
system of independent linear harmonic oscillators (Kramers, 1964, p. 422), which 
corresponds to imposing the quantum commutation conditions to each normal mode 
(Schweber, 1994, p. 11).  
To avoid calculational complications Jordan considered the simplified case of a one-

dimensional string fixed at both ends of the cavity. The lateral displacement u (x, t) of a 
string with length l is given, when expressed as a Fourier series, by 
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Using the previous expression, the fluctuation in the energy is given by 
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This is exactly the term in Einstein’s derivation resulting form the interference of 

classical electromagnetic waves. 
Up till now this is a totally classical derivation applied to any classically described 

wave phenomena. Going over to quantum mechanics the previous expressions for u(x, 
t) and E become matrix equations. The coefficients of the Fourier expansion qk become 
matrix elements qk (n, m) which vanish except when 
 
nj – mj = 0 for j ≠ k, 
 
nk – mk = ±1. 
 
Following a straightforward quantum mechanical calculation Jordan now obtained 

the result Einstein had obtained for the fluctuation in the energy by purely statistical 
methods: 
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where zν is the number of characteristic frequencies in the interval dν and V is the 
volume that contains the string. 
The most important aspect of this, otherwise straightforward, procedure was the 

conceptual implications brought with it. As said before, in the procedure followed by 
Jordan “ each individual eigenvibration [normal mode] is to be treated as a simple linear 
oscillator” (Born, Heisenberg & Jordan, 1925, p.  375). The fundamental conceptual 
change was that “Jordan saw that he could relate light quanta to wave excitations, and 
elucidate Bose’s counting as the natural counting for quantized waves … Furthermore, 
energy discontinuities in the field appeared as properties of radiation itself, and not of 
the material emitters” (Darrigol, 1986, p. 221). That is, Jordan found a relation between 
the light quanta concept of Einstein satisfying Bose-Einstein statistics – light quanta that 
cannot be seen as classical independent particles, but that show statistical dependence – 
with the quantized normal modes of the electromagnetic field. According to Jordan, “so 
strong an association between the eigenvibrations of a cavity and the light quanta 
postulated formerly can nonetheless be drawn that every statistics of cavity 
eigenvibrations corresponds to a definite statistics of light quanta and conversely” 
(Born, Heisenberg & Jordan, 1925, p.  376). Also we have that  
 
the states of the system of oscillators [corresponding to the normal modes of the electromagnetic field] 
can be characterized by ‘quantum numbers’ n1, n2, n3,… of the individual oscillators, so that apart from a 
additive constant the energies of the individual states are given by  ∑ν=Ε

k
kkn nh . (Born, Heisenberg & 

Jordan, 1925, p. 377) 
 
Following Jordan we must also see n1, n2, n3,... as the number of light-quanta (photons) 
inside the cavity with a frequency ν1, ν2, ν3,…. 
Further developments were made by Dirac. In his ‘The quantum theory of the 

emission and absorption of radiation’, published in February 1927, Dirac developed a 
quantum treatment of the electromagnetic field from two different approaches, which at 
the quantum level gave the same mathematical result. In the final part of his paper he 
extended Jordan’s initial work on the quantization of the electromagnetic field 
(Schweber, 1994, pp. 9-11). However, the main aspect of Dirac’s work was not the 
quantization of a wave; on the contrary his paper is mainly a treatment of an assembly 
of identical quantized particles. As we have already seen, for Dirac this method, later 
called ‘second quantization’, turns out to be simply a different procedure to impose the 
Bose-Einstein statistics on the particles. He could instead have simply selected 
symmetrical wave functions as the physically admissible wave functions for this type of 
particle (Dirac, 1926, p. 672).  
Dirac started with an assembly of N similar independent particles (subject to an 

interaction with an atomic system), whose wave function, solution of the Schrödinger 
equation, is ψ  = Σrarψr (where ψr is the eigenfunction of a particle in the state r).  Dirac 
took the expansion coefficients ar to be canonical conjugates. Working with the 
canonical variables br = ar e

-iwrt/ħ and br* = ar* e
iwrt/ħ (where wr is the energy of a particle 

in the state r), Dirac assumed that these variables were “q-numbers satisfying the usual 
quantum conditions instead of c-numbers” (Dirac, 1927a, p. 251). This gives the false 
impression that an additional quantization scheme is being used, but what is being done 
is changing from a configuration space representation to an occupation number 
representation (Cao, 1997, pp. 166-167). The commutation relation [br, bs*]= δrs holding 
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between br and br* serves to impose the symmetrization of the wave functions. This 
implies that the particles obey Bose-Einstein statistics (Dirac, 1927a, pp. 252-255; 
Schweber, 1994, p. 28).  
As mentioned previously, in the final part of his work Dirac considered the 

quantization of a classical electromagnetic wave. Starting with the classical Hamiltonian 
describing an atom in interaction with radiation, the field was described by canonical 
variables, which in the quantization procedure were taken to be q-numbers satisfying 
the usual quantum commutation relations. Dirac took the field to be described by “the 
canonical variables Nr, θr, of which Nr is the number of quanta of energy of the 
component r, θr, is its canonically conjugate phase, equal to 2πhνr times φr [as 

determined by rφ&  = ∂Η / ∂Er = 1, where H is the field’s Hamiltonian, and Er is the 
energy of a component labelled r]” (Dirac, 1927a, p. 244). We see here Dirac following 
Jordan’s interpretation of the normal modes of the field in terms of the number of light-
quanta associated to each eigenvibration. 
With this procedure Dirac obtained a Hamiltonian for the quantized system, which 

was, according to his view, consistent with the Hamiltonian obtained using the particle 
view (Dirac, 1927a, p. 263). Dirac considered that this work demonstrated the 
equivalence between a quantized electromagnetic wave and a system of bosons (light-
quanta). Implicit in this conclusion is the identification of the quanta of energy with the 
particles (light-quanta). In order to get this result, a particle cannot cease to exist when it 
is apparently absorbed, or be created when it is emitted. It is therefore necessary to have 
an infinite sea of light-quanta (photons), in a state in which their momentum and energy 
are zero, from which the particle can jump from or into (Cao, 1997, pp. 163-164; Dirac, 
1927a, p. 261).  
In his approach to the quantization of a classical electromagnetic wave, Dirac 

“resolved the radiation into its Fourier components, and supposed that their number is 
very large but finite. Let each component be labelled by a suffix r … each component r 
can be described by a vector potential kr chosen so as to make the scalar potential zero” 
(Dirac, 1927a, p. 262).  That is, in modern term, Dirac quantized the vector potential in 
the Coulomb gauge. This meant to consider the vector potential (usually taken in 
classical electrodynamics to be a subsidiary concept when compared with the electric 
and magnetic fields) as an operator, and in this way more fundamental quantum-
mechanically than the electric and magnetic fields strengths. This had never been tried 
before (Kragh, 1990, p. 126). 
Another important contribution in the development of a quantum theory of the 

electromagnetic field (and its interaction with matter) was made in 1928. In parallel 
with a line of work based on the quantization of de Broglie waves (mentioned in the 
previous chapter), Jordan worked out with Pauli a relativistic quantization of the free 
electromagnetic field. Dirac’s quantization method was not relativistically invariant (as 
was also the case with Jordan’s quantization of de Broglie waves).  
The fields, taken to be in a cavity of volume V, were expanded in Fourier series, 

each term corresponding (mathematically) to a harmonic oscillator 
 
 
Ek = i(ћωκ/2V)½ εεεεα{ak,α exp (–iωkt + ik.r) – a

*
κ, α

  exp (iωkt – ik.r) }, 
 
Bk = i(ћ/2Vωκ)

½ k × εεεεα{ak, α exp (–iωkt + ik.r) – a
*
k, α

 exp (iωkt – ik.r) } 
 
(εεεεκ is a unit linear polarization vector), where the operators for the total electric and 

magnetic fields are given by 
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The amplitude (normal mode) coefficients were taken to be operators satisfying the 

commutation relations: 
 
            [ak, α, a

*
k’, α] = δkk’δαα, 

 
            [ak, α, ak’, α’] = [a

*
k, α, a

*
k’, α’] = 0. 

 
From this it follows immediately (as in the simplified case taken by Jordan in 1925) 

that the energy of the quantized electromagnetic wave is given by 
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kk,N h , 

 
where Nk,α is the number of light quanta in a state with momentum k and  polarization 
α. 
From these commutation relations, Jordan and Pauli determined the commutation 

relations for the electric and magnetic fields strengths themselves: 
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with cyclic permutations of x, y and z in this last expression. 
Essential to achieve the goal of an expression that was manifestly relativistically 

invariant, was the introduction by Pauli of a relativistic generalization D (r, t) = 1/4πr 
{δ(r + ct) – δ(r – ct)} of the Dirac delta-function δ(r) appearing in the non-relativistic 
commutation relations (Mehra & Rechenberg, 2000, p. 220). 
By that time, Pauli and Heisenberg were considering the possibility of trying to 

develop a relativistic quantum electrodynamical theory picking up Jordan’s idea on the 
quantization of matter and radiation fields. By taking into account correspondence ideas 
(Miller, 1994, p. 31; Mehra & Rechenberg, 2000, p. 318; Darrigol, 1984, p. 484), in 
1928 Pauli and Heisenberg took as their theoretical starting point the classical 
Lagrangian field theory of continuous systems (that can be applied for example to 
classical sound waves). In general the Lagrangian density for a classical field can be 
written as 
 
   L = L(ψα, grad ψα, αψ& ). 
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By calculating the conjugate momentum of each field (described, as Dirac did, by 

the scalar and vector potentials), the quantization of the field followed from imposing 
commutation relations between field components and their canonically conjugate 
momentum. The canonical momentum πα conjugated to each field component is 
 

           
α

α
ψ∂

∂
=π

&

L
. 

 
The Hamiltonian density can be written as 
 

                      L∑
α

αααα −ψπ=)ψ,π(Η & . 

 
The canonical cuantization results from treating πα and ψα as operators and 

imposing the commutation relations: 
 

                      [πα, ψα]  = ћ/i. 
 
This approach revealed itself inapplicable (as it stood) to the electromagnetic field, 

because the conjugate momentum of the scalar potential was identically zero. The 
Lagrangian density for the electromagnetic field is in terms of potentials defined as 
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We do not have dA4/dt = idϕ/dt in the expression for L (where ϕ is the scalar 

potential). This implies that its conjugate momentum π4 = 0. From this we have the 
commutation relation [π4, ψ4] = 0, instead of ћ/i. This made impossible the quantization 
of the electromagnetic field by this method.   
In January 1929, Heisenberg came up with a formal trick that made it possible to 

circumvent this difficulty and quantize the electromagnetic field; it consisted in adding a 
new term to the electromagnetic field Lagrangian depending on a parameter ε that was 
taken to zero (ε → 0) in the end of the calculations (Darrigol, 1984, p. 484; Schweber, 
1994, p. 41): 
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In their work Pauli and Heisenberg demonstrated the equivalence of their 

quantization method, when applied to the free electromagnetic field, with the previous 
procedure adopted in the work of Pauli and Jordan (Mehra & Rechenberg, 2000, pp. 
322-323). When Pauli and Heisenberg sent their work to publication in 19 march 1929, 
it was still very incomplete, in particular it was lacking clear applications (Mehra & 
Rechenberg, 2000, p. 326), and it did not deal with the problem of the infinite self-
energy of the charged particles, which was simply discarded (Miller, 1994, p. 34). 
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Independently of the Pauli and Heisenberg approach, in 1929, Enrico Fermi 
developed a more straightforward approach in which, contrary to Dirac’s 1927 work, 
not only the radiation field was quantized, but the full electromagnetic field described 
by the vector and scalar potentials, which can be seen as the components of a covariant 
four-vector electromagnetic potential (in modern terms Dirac worked in the Coulomb 
gauge, where only the two components of the transverse radiation field are quantized).  
To achieve this goal Fermi considered “an electromagnetic field of the most general 
type” (Fermi 1932, 125; see also Fermi, 1929), using the d’Alembert equation for the 
vector and scalar potentials: �Aµ = jµ. To make this equation equivalent to Maxwell’s 

equations, Fermi had to take into account the so-called Lorentz condition ∂µA
µ = 0, 

which he regarded as a condition to be satisfied by the field operators. Making a Fourier 
expansion of the vector and scalar potentials, Fermi easily obtained a Hamiltonian 
depending on the charged particle variables and the coefficients of the Fourier series 
expansions of the electromagnetic potentials. From this a quantization procedure was 
immediately possible: “it is sufficient to consider the Hamiltonian expression as an 
operator in which, according to the usual rules, the momenta are equivalent to the 
operator of differentiation with respect to the corresponding coordinate and to 
multiplication by – h/2πi” (quoted in Schweber, 1994, p. 74). 
In the months following their first paper on quantum electrodynamics, Pauli and 

Heisenberg improved their approach, in particular avoiding formal tricks like the use of 
the ε parameter and others (Carson, 1996, pp. 111 & 113). The key was gauge 
invariance. According to Pauli: 
 
In the new paper of Heisenberg and myself it will be shown that exactly with the help of gauge invariance 
these ε-terms can be avoided. As gauge invariance I consider a substitution [of the matter fieldsψ  and 

ψ and the electromagnetic potentials 
µΦ ]  

 

µ

µµ
λλ

∂

λ∂
−Φ=Φ′,ψ=ψ′,ψ=ψ′
x

ee i-i , 

 
where λ may even be a q-number but one connecting with ψ  andψ  on every space-like section t = 

const. (Quoted in Mehra & Rechenberg, 2000, p. 328) 
 
By taking into account gauge invariance, Pauli and Heisenberg were able to adopt a 

gauge that made the calculations simpler, the Coulomb gauge, already used (implicitly) 
by Dirac in 1927, in this way avoiding the use of artificial parameters in the 
quantization procedure. Since they dominated the aspect of proving the relativistic 
invariance of the formalism, they were able to show that the Coulomb gauge, which is 
not manifestly covariant, did not affect the relativistic invariance of the theory: “all 
statements about gauge invariant quantities satisfy the condition of relativistic 
invariance” (quoted in Mehra & Rechenberg, 2000, p. 329). They also showed that their 
formalism reduced to Dirac’s theory in the non-relativistic limit (Mehra & Rechenberg, 
2000, p. 330). 
In this second work, Pauli and Heisenberg noticed Fermi’s note on quantum 

electrodynamics, and re-worked it using their Lagrangian formalism instead of the 
Hamilton formalism adopted by Fermi. They showed that by changing the 
electromagnetic Lagrangian by the term – 1/2 (∂Aµ/∂xµ)

2 the d’Alembert equation used 
by Fermi as his starting point could be derived. Also they noticed that the subsidiary 
condition ∂µA

µ = 0 (which implied working in the Lorentz gauge) necessary to make the 
d’Alembert equation equivalent to Maxwell’s equations, could not, as Fermi initially 
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thought, be imposed as an operator identity but solely as a supplementary condition on 
admissible state vectors: (∂µA

µ)Ψ = 0  (Schweber, 1994, p. 75).  
Fermi in part elucidated the physical meaning of the subsidiary condition in a 

subsequent note. Contrary to Dirac’s work of 1927, in Pauli and Heisenberg’s first 
paper they did not consider solely the radiation field (described by a transverse vector 
potential with two degrees of freedom, corresponding to two polarizations perpendicular 
to the direction of propagation of the wave), but like Fermi they considered the four 
degrees of freedom associated with the full vector and scalar potentials (Carson, 1996, 
p. 110). But they did not discuss the relation between the scalar and vector potentials 
adopted and the transverse vector potential of the radiation field (Carson, 1996, p. 112). 
Neither did Fermi address this point in his first note, he solely mentioned that he wanted 
to develop a more general theory than Dirac’s by taking into account the full 
electromagnetic interaction. Some elucidation on the role of the non-transverse 
components of the four-vector electromagnetic potential was given by L. Rosenfeld also 
in 1929 by showing (choosing a particular reference frame) that the four polarizations of 
each normal mode can be put in a simple relation to the wave vector: two components 
corresponding to transversely polarized light, one to a longitudinal polarization and 
another to a time-like polarization (Carson, 1996, p.  113; Källén, 1972, p. 19).16  
Adopting Pauli and Heisenberg’s view on the condition to be imposed on the 

available states, Fermi knew that this subsidiary condition “determine[s] the form of the 
dependence” (Fermi, 1932, p. 130; see also Fermi, 1930) of the system’s wave function 
on the scalar potential and the longitudinal component of the vector potential. Knowing 
this, Fermi also developed an approach where “the coordinates Qs and χs representing 
the scalar potential and one component of the vector potential are completely 
eliminated” (Fermi, 1932, p. 131; see also Fermi, 1930). By this procedure Fermi 
obtained a Hamiltonian whose electromagnetic part had a term corresponding to a 
transverse (radiation) field and a term corresponding to the Coulomb interaction 
between the charged particles (this procedure corresponds to going from the Lorentz 
gauge to the Coulomb gauge).17 With this approach, Fermi showed that we can regard 
the scalar and longitudinal components of the field – that are not independent degrees of 
freedom of the field as implied in the subsidiary condition – as a representation of the 
Coulomb interaction between charged particles. 
At this point the problem of the quantization of the electromagnetic field in 

interaction with charges was basically settled. In more general terms the theory of 
quantum electrodynamics was still very imperfect; the problem of the infinite self-
energy of the charged particles was not solved. In fact, the theory faced even more 
problems with divergences in the calculations (Schweber, 1994, chapter 2). In practice, 
only a few second-order calculations using perturbation theory were available (Pais, 
1986, pp. 374-376). The ‘serious’ divergences in the theory (Jauch & Rohrlich, 1976, 
pp. 174-175) were only circumvented in the late forties with the renormalization 
program, which made possible to obtain finite results in higher-order calculations. This 
was done by attaching the higher-order contributions – that from a physical point of 
                                                 
16 This situation already occurs (as should be expected) in classical electrodynamics. For each normal 
mode we can always choose a particular reference frame in which the electromagnetic potential is 
represented by two transverse, one longitudinal and one time-like components, and due to the Lorentz 
condition, the contribution of the longitudinal and time-like components compensate each other 
(Bogoliubov & Shirkov, 1959, pp. 55-57). 
17 This result is not particular to the quantum theory of the electromagnetic field; it is also derived in the 
classical theory when considering the Fourier expansion of the field produced by charges, and not only 
the free radiation field (Landau & Lifshitz, 1971, pp. 124-125). 
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view should be smaller and smaller, but that in the mathematical calculations appear in 
integrals that are divergent – to the mass and charge of the electrons (and positrons), 
whose values are not determined by the theory but from experiments (Pais, 1986, pp. 
374 & 462). 
The quantization of the electromagnetic field in the (manifestly covariant) Lorentz 

gauge as realized by Fermi, Pauli and Heisenberg, with the adopted Lorentz subsidiary 
condition, showed not to lead to any incongruence in practical applications, as can be 
seen in the work done in the forties by R. P. Feynman (Carson, 1996, pp. 128). In his 
approach Feynman always considered that a “photon can be polarized in any one of the 
four directions” (Feynman, 1961, p. 122). This was no fortuitous event. Feynman 
wanted a scheme that was relativistically invariant: “Everything I was computing was 
covariant. The way others had formulated everything, they had separated the Coulomb 
potential and the transverse waves … I knew which terms went together … and how to 
generalize to four dimensions from the two transverse dimensions” (quoted in Mehra, 
1994, p. 229). Nevertheless when looking closely at the consequences of the subsidiary 
condition adopted in the quantum electrodynamics developed by Fermi, Pauli and 
Heisenberg, this approach is strictly speaking not consistent (Pais, 1986, p. 355). A 
solution to the inconsistency was given around 1950 by the development of a formalism 
based on the use of an indefinite metric for the Hilbert space (Schweber, 1961, pp. 245-
251). But in the usual way in which covariant calculations are done, where the four 
polarizations of the field are simultaneously taken into account – a typical case being 
the description of the electron-electron interaction –, the indefinite metric operator does 
not appear explicitly (Heitler, 1954, pp. 129-130). This gives an a posteriori 
justification for the procedure of Feynman and others. 
 
 

3 The quantization of the electromagnetic field 

 
In simple terms, the quantization of the electromagnetic field can be presented as 
follows. In the case of an electromagnetic field in a region free of charges, the Maxwell 
Lorentz equations are: 
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From the second pair of equations we see that the electric and magnetic fields (strenght) 
can be defined in terms of a scalar and vector potentials φ(x,t) and A(x, t):  
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This enables us to write down Maxwell-Lorentz equations for free space in terms of the 
scalar and vector potentials.  In a four-vector notation we have that the Maxwell-
Lorentz equations become 
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The potentials are not uniquely determined, since it is possible to leave the fields 
unaltered when doing the following transformation  
 

   
µ

µµµ
∂

Λ∂
+=→

x

(x)
AA'A , 

 
(where Λ(x) is an arbitrary function). This means the theory is invariant regarding what 
is called a gauge transformation (of the second kind). The Maxwell-Lorentz equations 
in free space can be simplified in a manifestly covariant way by taking the potential to 
satisfy the so-called Lorentz condition ∂µA

µ(x) = 0. In this case the Maxwell-Lorentz 
equations reduce to the wave equation �Aµ = 0 (the d’Alembert equation in the free 

charge case). 
In the quantization of the electromagnetic field we take initially the components of 

the four-vector-potential to be independent, that is, we disregard the Lorentz condition. 
We then make a Fourier expansion  (in terms of a complete set of solutions of the wave 
equation) of the free electromagnetic field (as given by the four-vector potential) Αµ(x): 
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For each k there are four independent mutually orthogonal unit vectors or 
‘polarizations’. It is useful to choose the vectors as given by εµ

0(k) 
= (1, 0, 0, 0), and εµ

r(k) = (0,  εr(k)), with r = 1, 2, 3, where ε1(k) and ε2(k) are mutually 
orthogonal unit vectors also orthogonal to k, and ε3(k) is a unit vector longitudinal to 
k. With this choice, the vector-potential dependent on εµ

1(k) and εµ
2(k) refers to 

transversely polarized light; the vector-potential dependent on εµ
3(k) refers to a 

longitudinal polarization; and the vector-potential dependent on εµ
0(k) refers to a so-

called scalar or ‘time-like’ polarization. 
Up till now we are still in the classical realm. By imposing equal time canonical 

commutations on the vector potentials, the Fourier expansion coefficients become 
operators satisfying the commutation relations 
 

   [ar(k), a
*
s(k’)] =  ζrδrsδkk’ 

 
                                      [ar(k), as(k’)] = [a

*
r(k), a

*
s(k’)] = 0, 
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where ζr = 1 for r =1, 2, 3 and ζ0 = – 1 for r = 0. Following the Gupta-Bleuler approach, 
a*r(k) are taken to be creation operators and ar(k) as absorption operators, even if in the 
case r = 0 their role seems to be interchanged due to the minus sign. This would mean 
that A0(x) is an anti-Hermitian operator. In the Gupta-Bleuler method, this problem 
does not arise due to the use of an indefinite metric. The number operators are defined 
as Nr(k) = ζra

*
r(k)ar(k), implying  that the total energy operator is given by  
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rr
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With this choice of absorption and creation operators, and corresponding definition of 
number and energy operators there is a consistent interpretation of these operators, 
because we do not have any negative number of photons or energy appearing (due to the 
scalar photons). However there would be a problem of having states of the quantized 
field with negative norm. Still we must recall that we are taking the creation and 
absorption operators to be independent, and that cannot be the case, since we must take 
into account Lorentz condition. In the Gupta-Bleuler method, use is made of a Lorentz 
condition (∂µΑµ+(x)ψ = 0) less stringent than its classical counterpart. This is necessary 
to have no contradiction with the commutation relations. The subsidiary condition 
selects the physically realizable states, all with a positive-defined norm, in which we 
have [a3(k) – a0(k)]ψ = 0. This implies that the physical states have an admixture of 

longitudinal and scalar photons. As a result of this constraint regarding longitudinal and 
scalar photons, all observable quantities of the field in free space will depend only on 
the transverse photons. For example the expectation value of the energy is given by 
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This does not mean that the longitudinal and scalar photons are irrelevant. In reality 
they cannot be seen as independent dynamical degrees of freedom of the field as the 
transverse part is. When considering for example the electron-electron scattering the 
longitudinal and scalar photons represent (in a covariant way) the Coulomb interaction 
between the electrons. 
With this approach it is guaranteed that the Hamiltonian (energy) operator cannot 

have negative values. This means that we have a lower bound to the energy of the 
quantized electromagnetic field. As is easily seen from the previous expression the state 
corresponding to the lowest value of energy is a state with no transverse photons. This 
does not impose any restriction on the number of time-like and longitudinal photons in 
this ground state (besides the one provided by the subsidiary condition that implies there 
is an equal number of them in the allowed states). However states with different 
admixtures of time-like and longitudinal photons correspond to a particular choice 
within the Lorentz gauge, since the Lorentz condition does not specify the potential 
uniquely (Mandl & Shaw, 1984, p. 89). This means that there really is no physical 
difference between ‘different’ ground states with different admixtures of non-transverse 
photons (Schweber, 1961, p. 251; Källén, 1972, p. 42). In this way, we may simply 
characterize the ground state (without choosing a particular Lorentz gauge) by requiring 
the occupation number for the transverse photons to be zero (Jauch & Rohrlich, 1976, p. 
47). The classical counterpart of this ground-state is simply the space vacuum: a region 
of space without any electromagnetic field.  
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4 The Casimir effect and formal aspects related to the vacuum state 

 
Contrary to the classical case, the ground state of the (free) quantized electromagnetic 
field is presented as having quite a few very ‘visible’ physical effects, in particular the 
so-called Casimir effect. In the usual interpretation of the Casimir effect the ground 
state of the electromagnetic field could have a dynamical effect on macroscopic 
conducing plates located face to face, in the form of an attractive force between the 
plates. Another so-called (electromagnetic) vacuum effect would be the spontaneous 
emission of radiation by atoms in an excited state without radiation present (Aitchison, 
1985, pp. 342-345; Milonni, 1994, pp. 79-111). A different physical interpretation can 
be given to these (and others) so-called vacuum effects without explicit resort to the 
ground state of the field (e.g. Milonni, 1994, pp. 115-138; Zinkernagel, 1998, 48-60).  
 I will look only into the case of the Casimir effect.18  
When considering the quantization of the electromagnetic field (or even a simple 

harmonic oscillator) the canonical quantization procedure does not enforce a specific 
choice of the ordering of the creation and absorption operators appearing in the field 
operators, energy operators, momentum operators, etc. Following Dirac (1958, pp. 84-
88) we may recall that in classical mechanics a dynamical system can be described in 
terms of generalized coordinates qj and momenta pj. Let u and v be two dynamical 
variable functions of qj and pj. The Poisson bracket of these two functions is 
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Some of the main properties of the Poisson bracket are 
 

              [u, v] = – [v, u], 
 

              [u, c] = 0, 
 
where c is a number. In the canonical quantization procedure, a quantum equivalent of 
the Poisson bracket is introduced: 
 

             uv – vu = iћ[u, v],  
 
where u and v are now taken to be operators. This method is the one used in the case of 
the quantization of the electromagnetic field (in the case of the de Broglie field 
anticommutation rules are used). Looking into the case of the quantization of one field 
mode (mathematically equivalent to the quantization of the harmonic oscillator), in 
terms of creation and absorption operators, we have 

                                                 
18 The main difference between Zinkernagel’s views and mine is that I consider that we do not need to go 
beyond standard quantum electrodynamics to show that the Casimir effect is not a vacuum effect. In this 
way I will not consider for example Schwinger’s source theory (see e.g. Rugh, Zinkernagel and Cao, 
1999). I will frame my discussion within standard quantum electrodynamics by considering Milonni’s 
approach like Zinkernagel did. This does not mean that there are no other standard quantum 
electrodynamics calculations which enable to calculate the Casimir effect without reference to the 
vacuum state (see e.g. Jaffe 2003, Jaffe 2005, Graham et al. 2004). Simply, choosing Milloni’s work 
makes it easier to see the difference between my views and Zinkernagel’s. 
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Since [a, a*] = 1, we can write the previous expression as 
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Here we see a term ћω/2 corresponding to the so-called zero-point energy of the field 
mode. This would imply that the electromagnetic field, when in its vacuum state, would 
have an energy different from zero (formally infinite). This would correspond 
physically to the infinite sea of photons in the vacuum state prescribed by  
Dirac in 1927. Like in the case of electrons the sea can be dealt with by recalling (with 
Dirac) that energy measurements are made in relation to the ground-state energy, which 
enables us to set it to zero: 
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A different way of addressing this question is to take away any physical meaning 

and to see the term ћω/2 as resulting simply from an imprecision in the quantization 
procedure. In fact at a classical level there is no difference between ћω/2(aa* + a*a) and 
ћωa*a. This means that there is an ambiguity in the ordering of the operators, since 
depending on our starting classical expression we obtain a different quantum 
Hamiltonian. In this way we can consider the zero-point energy as an artifact of an 
improper application of the quantization rule, and use the so-called normal ordering in 
which we have the operator H = ћωa*a, where there is no zero-point energy (this is what 
I have been doing all the time). Contrary to this view, H. B. G. Casimir presented in 
1948 a calculation sustaining that there are dynamical consequences of this zero-point 
energy. 
In the quantization of the electromagnetic field space is (for practical purposes) 

considered to be divided in ‘boxes’ with a volume V = L3, and one imposes on the field 
the periodic boundary conditions A (x + L, y + L, z + L, t) = A (x, y, z, t). This implies 
(since A  ~ exp ik⋅r) that (kx, ky, kz) = 2π/L (l, m, n), where l, m, n are integers. It is 
standardly held that “this artificial periodic boundary condition will be of no physical 
consequences if L is very large compared with any physical dimensions of interest” 
(Milonni, 1994 , p. 44). If we suppose that there are two (infinite) parallel conducting 
plates located, say, at z = 0 and Z = d, Casimir made the heuristic move of considering 
that this would change the set of modes describing the quantized electromagnetic field 
which would not anymore be simply given by free-space plane-wave modes. This 
would mean that matter would affect radiation by simply changing its quantization 
boundary conditions. 
According to Casimir since we are considering perfect conductors the tangential 
component of the electric field must vanish on the walls of the conductors. This implies 
that  
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In this way the allowed frequencies will be 
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The zero-point energy is given by 
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(in the summation a factor of 2 must be considered due to the polarization, when l, m, n  
≠ 0). 
The difference of the zero-point energy of the field with and without plates U(d) = E(d) 
– E(∞) is taken to be the potential energy of the system plates + vacuum field. That is, 
U(d) is now taken to be the energy required to bring the plates from a large distance to 
d. From the previous expression one derives the expression for the force per unit area 
F(d) =  – U’(d) between the plates: 
 

      4

2

240d

c
F(d)

hπ
−= . 

 
This is, we might say, the conventional derivation of the Casimir effect as a vacuum 
effect. However, as P. W. Milloni and M.-L. Shih(1992) have shown, it is possible to 
arrive at the Casimir force between the plates without having to consider any vacuum 
field in the calculation. This is done simply by adopting the normal ordering of the 
operators and by taking explicitly into account that the conducting plates are not 
mathematical boundary conditions but must be considered as constituted by matter (we 
consider two semi-infinite dielectric slabs with dielectric constants ε1 and ε2 at a 
distance d separated by a layer with dielectric constant ε3; the Casimir result is derived 
in the limiting case of a perfect conductor). There will be an induced dipole moment in 
each atom of the slabs induced by source fields. In the Milonni and Shih calculation the 
approximation that “each dipole interacts, in effect, only with its own field; this field is 
modified from its free-space form by the presence of all the other dipoles” (Milonni & 
Shih, 1992, p. 4245) was made. The energy of this system (of two dielectric slabs 
separated by a medium) is given by  
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where P(r, t) is the polarization due to the dipoles and E(r, t) is the electric field 
present. The electric field can be written as E(r, t) = E0(r, t) + Es(r, t), where E0(r, t) is 
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the source-free (or vacuum) part of the electric field and Es(r, t) is the part due to the 
dipoles present. By using a normal ordering of the field operators we have 
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in which we have only source fields. Milonni and Shih then calculated the change in the 
energy due to an infinitesimal change δd in d, and from this the force between the 
dielectric slabs. The general expression is 
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I will not go into the details of this expression, but simply cnote what force this 
approach predicts in the same case as the one considered by Casimir. We have empty 
space between the slabs, which means that ε3 = 1; also we must consider the case of two 
perfectly conducting plates, which implies taking ε1,2 → ∞. Under these conditions the 
previous expression reduces to 
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F(d)

hπ
−= , 

 
which is the Casimir force. In this way, Milonni and Shih have shown that “the Casimir 
effect can be understood in terms of source fields in conventional quantum 
electrodynamics, with no explicit reference to the zero-point energy” (Milonni & Shih, 
1992, p. 4241). 
A different view was taken by Simon Saunders, who wrote: “I do not think we can 

do without appeal to the zero-point energy in explaining the Casimir effect” (Saunders, 
2002, p. 23). Saunders develops his argumentation without taking into account 
Milonni’s work (or any other work where the Casimir effect is derived without any 
reference to the vacuum state). He mentions for example Lifshitz’s macroscopic theory, 
concluding that “Lifshitz’s methods are perfectly consistent with the interpretation of 
the effect in terms of vacuum fluctuations” (Saunders, 2002, p. 19). This is highly 
doubtful since as we have seen, according to Milonni & Shih, the Casimir force can “be 
calculated in terms of source fields, with no explicit reference to zero-point-field 
energy” (Milonni & Shih, 1992, p. 4241). Also they show that “the general Lifshitz 
expression, and therefore the Casimir force in particular, may be derived in terms of 
sources alone in conventional QED” (Milonni & Shih, 1992, p. 4243).  
Even when agreeing with Milonni’s interpretation, this does not mean that the 

ground state of the quantized electromagnetic field becomes a sort of ‘nothingness’ 
without any physical relevance, as when we consider the classical electromagnetic 
vacuum. That is not the case. As Milonni has remarked, “the vacuum field is absolutely 
necessary in the quantum theory of radiation, if only to preserve commutation relations 
and the formal consistency of the theory” (Milonni, 1994, p. 138). In the classical case 



 84

we can conceive a single dipole in empty space. In this case “the only field acting on the 
dipole is its own radiation reaction field” (Milonni, 1994, p. 52). The difference from 
the classical case is that when considering the quantized electromagnetic field “there is 
an ‘external’ field, namely, the source-free or vacuum field” (Milonni, 1994, p. 52). 
Milonni shows that, in contrast to the classical case, the ground state of the free 
electromagnetic field cannot be disregarded as soon as a charged body (which can be 
seen as a source of electromagnetic field) is considered, as it is necessary to take into 
account the source-free field variables for the preservation of the commutation relations 
(Milonni, 1994, p. 53). 
Let us look at this in more detail. The Hamiltonian for the dipole oscillator in 

interaction with the quantized electromagnetic field can be written as 
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where HF is the field Hamiltonian, x is the operator corresponding to the classical 
coordinate of the oscillator, p is the operator for the dipole momentum, and ω0 is the 
frequency of oscillation of the dipole. In the Heisenberg representation we have (in the 
electric dipole approximation): 
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(where akλ and a

*
kλ are respectively the photon annihilation and creation operators for 

the field mode (k, λ), ekλ are the polarization vectors, and E is the electric field 
operator). In this way the Heisenberg equation for the operator x can be written as: 
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where we have 
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According to Milonni,  
 
E0(t) is the free or zero-point field acting on the dipole. It is the homogeneous solution of the Maxwell 
equation for the field acting on the dipole, i.e. the solution, at the position of the dipole, of the wave 
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equation [“2 – c–2 ∂2/∂t2]E = 0 satisfied by the field in the (source-free) vacuum. For this reason E0(t) is 
often referred to as the vacuum field … ERR(t) is the source field, the field generated by the dipole and  
acting on the dipole. (Milonni, 1994, p. 52) 
 
Considering the previous operator equation for x that can be written as 
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(where, as mentioned, E0(t) is the vacuum electric field operator, and τ = 2e

2/3mc3), and 
the corresponding equation for the momentum operator p, we have the following 
commutation relation between the two operators 
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as is expected according to general quantum mechanics rules. Now if we had not 
considered the vacuum field E0(t), then in the operator equation for x, “the operator x(t) 
would be exponentially damped, and commutators like [z(t), pz(t)] would approach zero 
for t >> (τω0

2)–1” (Milonni, 1994, p. 53). Because of this Milonni concluded that “the 
free field is in fact necessary for the formal consistency of the theory” (Milonni, 1994, 
p. 53). 
      This result and Milonni’s derivation of the Casimir effect in the context of standard 
quantum electrodynamics have been questioned. In Rugh, Zinkernagel & Cao (1999, p. 
129) two critical remarks are made on Milonni’s (and collaborators) approach. One 
point is that Milonni’s approach regarding the derivation of the Casimir effect as due 
only to source fields is not conclusive, because in higher orders of perturbative 
calculations we will have contributions to the vacuum energy from the so-called 
vacuum blob diagrams. But this is the case only when considering the ‘interacting’ 
vacuum (e.g. Rugh & Zinkernagel, 2002, p. 675), it has nothing to do with the quantized 
(source-free) electromagnetic field and its possible quantum states. The other point, also 
made in Rugh & Zinkernagel (2002, p. 683, footnote 50), is that Milonni uses the so-
called fluctuation-dissipation theorem for linearly dissipative systems to arrive at his 
result that the source-free field is necessary for consistency reasons (i.e. the preservation 
of commutation relations), and this is not a sound approach. However, that is not the 
case, even if Milonni presents his results as an example of the theorem (see e.g. 
Milonni, 1988, p. 106). As we have seen the need for the source-free field for the 
preservation of the commutation relations is derived by Milonni without any need for 
the fluctuation-dissipation theorem (see e.g. Milonni, 1984, p. 342; Milonni, 1988, p. 
106; Milonni 1994, pp. 50-54).19 That is, according to Milonni, we must have 
simultaneously with a system consisting of charged matter a different system 
corresponding to the quantized free electromagnetic field, even if only in its ground 
state (when considering charged matter in empty space). However for a different reason 
than the one presented by Rugh & Zinkernagel I regard Milonni’s view regarding the 

                                                 
19 This, as mentioned, is the main difference between Zinkernagel’s views on the Casimir effect and my 
own. Zinkernagel considers that Milloni’s work is not sound and we must go beyond standard quantum 
electrodynamics to show that the Casimir effect is not a vacuum effect. My view is that Milloni’s work is 
sound and shows that we do not have to see the Casimir effect as a vacuum effect (see also Jaffe 2003, 
Jaffe 2005, Graham et al. 2004).  
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need of the free field for the formal consistency of the theory as not conclusive. The 
point is that Milonni arrives at his result by considering a quantum model of a dipole 
oscillator; it is not an ab initio derivation from the formalism of the theory. In this way 
we cannot conclude that Milonni’s consistency claim follows directly from the 
formalism of the theory. Nevertheless, as we will see in the next sections, this 
(proposed) formal aspect related to the vacuum adjusts well with experimental results. 
 
 

5 The physical meaning of variance 

 
As is well known, in the ground state of the quantized electromagnetic field the 
expectation value of the electric and magnetic fields vanishes, that is 

00000 == ΒΕ , but not its variance, because 00 2
Ε and 00 2

Β are non-zero in 

the ground state. What to make of this result? There is a tendency in the literature to 
refer to the non-vanishing variance as ‘fluctuations’ of the vacuum state (Sakurai, 1967, 
pp. 32-33; Aitchison, 1985, pp. 246-247). For example, according to I. J. R. Aitchison 
“the vacuum can now be thought of as a state in which the fields are all in their ground 
states, but executing random fluctuations (even at T = 0) about their zero average 
values” (Aitchison, 1985, p. 347). We must take some care in adopting this type of 
terminology. As has been noticed, we cannot associate the non-vanishing variance of 
the ground state of the quantized electromagnetic field to some sort of fluctuation in 
time: “there is no time evolution of this vacuum state” (Rugh & Zinkernagel, 2002, p. 
673). I will defend here that the mathematical result of a non-vanishing variance of the 
quantized electromagnetic field can be given an interpretation that has a clear 
experimental meaning. 
According to the interpretation of quantum mechanics adopted here, the non-zero 

variance (or its square root, the standard deviation) is determined by considering a large 
(ideally infinite) number of measurements performed in similarly prepared systems 
(Isham, 1995, pp. 80-81; Peres, 1995, pp. 24-26; Ballentine, 1998, pp. 225-227, 
Falkenburg, 2007, pp. 205-207). According to what C. J. Isham called the minimal 
interpretation of quantum theory (which as other authors I refer to as the ensemble 
interpretation): 
 
Quantum theory is viewed as a scheme for predicting the probabilistic distribution of the outcomes of 
measurements made on suitably prepared copies of a system. 
 
The probabilities are interpreted in a statistical way as referring to the relative frequencies with which 
various results are obtained if the measurements are repeated a sufficiently large number of times. (Isham, 
1995, p. 80) 
 
The view of A. Peres is that 
 
A quantum system is a useful abstraction … defined by an equivalent class of preparations. For example 
there are many equivalent macroscopic procedures for producing what we call a photon, or a free 
hydrogen atom, etc. The equivalence of different preparation procedures should be verifiable by suitable 
tests…. While quantum systems are somewhat elusive, quantum states can be given a clear operational 
definition, based on the notion of test. Consider a given preparation and a set of tests … if these tests are 
performed many times, after identical preparations, we find that the statistical distribution of outcomes of 
each test tends to a limit.  Each outcome has a definite probability. We can then define a state as follows: 
A state is characterized by the probabilities of the various outcomes of every conceivable test…. Before 
we examine concrete examples, the notion of probability should be clarified. It means the following. We 
imagine that the test is performed an infinite number of times, on an infinite number of replicas of our 
quantum system, all identically prepared. This infinite set of experiments is called a statistical ensemble. 
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… In this statistical ensemble, the occurrence of event A has relative frequency P{A}; it is this relative 
frequency which is called probability.  (Peres, 1995, pp. 24-25) 
 
Under this view we cannot associate for example the Schrödinger wave function to a 

single system. We must consider a large number of identical ‘quantum systems’ 
prepared in the same way and then subjected to the same measurement procedure. From 
the wave function we can calculate the relative frequencies (probabilities) of particular 
outcomes regarding physical observables of the system.20  
Now we can address the meaning of having 00 2

Ε  ≠ 0. We must consider a 

particular experimental setup that will enable us to make measurements on a quantum 
electromagnetic field. We can consider successive measurements made on a field, 
which can be taken to be in the same initial state at each successive measurement, or we 
may think in terms of different identical experimental setups being used at the same 
time to make measurements of identically prepared fields (in this case all in the vacuum 
state). Then on each of a large number of similarly prepared systems a measurement is 
made of the electric field. According to the adopted interpretation of the theory, there 
will be a frequency distribution for the results of the independent measurements 

according to a standard deviation of 00 2Ε  from a measurement corresponding to 

no transverse photos. That is, sometimes an electric field will be measured different 
from zero even if the electromagnetic field is in its ground-state. Is this again a formal 
aspect of the theory, even if a formal aspect of its interpretation? Or is there any real 
experiments where a measurement is made on the vacuum field and results are obtained 
corresponding to a frequency distribution of results deviating from ‘nothingness’?  
 
 

6 Experimental results on the vacuum state using the balanced homodyne detection 

method 

 
In experiments using the method known as balanced homodyne detection it is possible 
to determine what can be interpreted as quadrature fluctuations of the vacuum or simply 
vacuum noise which corresponds to the non-zero standard deviation predicted by the 
theory (Leonhardt, 1997, pp. 23, 47 & 84-88).   
In the balanced homodyne method, the signal under study is sent into one of the 

ports of a beam splitter. In the present case since we are making a measurement of the 
vacuum electromagnetic field, the port is left unused, that is, there is no external field 
present. The other port receives a strong coherent laser field (called the local oscillator), 
which will provide the phase reference for measuring the quadrature statistics of the 
signal field, which in this case is the vacuum.  
We can write the quantum field operator for a single-mode field as 
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20 In the appendix, I will give a presentation of part of Bohr’s interpretation of quantum mechanics, 
providing a Bohrian reinterpretation, or better, an integrated view on Bohr’s ideas, enlightening the 
internal consistency of Bohr’s ideas, and showing its compatibility with the so-called minimal or 
ensemble or statistical interpretation addressed in the main text.  
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where ω is the frequency of the mode and k is the wave number related to the frequency 
according to k = ω /c. Defining the quadrature operators 
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the field operator can be written as 
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The balanced homodyne detection makes it possible to make a measurement of these 
quadrature components of a quantum field. 
The beam splitter will combine the incoming fields. Taking, for simplicity, each 

incoming field to be described by the mode operators a and b, the output modes are  
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After the optical mixing of the signal and the local oscillator, each beam is directed 
towards a photodetector, which enables a measurement of the field intensities. The 
photodetectors respond to the intensity of the incident light, generating the 

photocurrents Ic = cc*  and Id = dd* . By assuming that the photocurrents are 

proportional to the photon numbers of the beams striking each detector we have that the 
difference I21 = I1 – I2 is proportional to the difference in the photon numbers of each 
beam 
 

θ
/ α=−= q2nnn 21

1221 , 

 

where 
2

α is the intensity of the coherent field (local oscillator), and qθ is a quadrature 

component of the vacuum field (signal). By changing the phase of the coherent field it 
is possible to measure an arbitrary quadrature of the signal field. In particular if the 
phase was initially chosen so as to measure X1 by changing the phase by π/2 it is 
possible to measure X2 and in this way a balanced homodyne detector enables one to 
measure the quadrature components defining the quantum state of the field (Gerry & 
Knight, 2005, pp. 167-168).  
Let us see in more detail what the experiment tell us about the vacuum state. First 

we must recall the interpretation of the quantum formalism. If we use the balanced 
homodyne detector to make one measurement of a quadrature component that by itself 
does not give us any valuable result: 
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It must be distinguished between an individual (single) and an ensemble measurement (i.e. in principle, 
an infinitely large number of repeated measurements on identically prepared objects). Performing a single 
measurement on the object, a totally unpredictable value is observed in general. (Vogel & Welsch & 
Wallentowitz, 2001, p. 225) 
 

In this way we need an experimental procedure that may give us the relative rate at 
which a particular value for a quadrature component qθ is observed, i.e. the probability 
distribution pr(q, θ), where θ is the relative phase between signal and local oscillator. 
Thus, making a large number of measurements of the observable qθ yields pr(q, θ), i.e. 
the probability distribution of its eigenvalues. In general the experimental procedure 
goes as follows: 
 

The phase θ can be easily varied using a piezo-electric translator. To measure quadrature distributions, we 
may fix the phase angle θ and perform a series of homodyne measurements at this particular phase to 
build up a quadrature histogram pr(q, θ). Then the [local oscillator] phase should be changed in order to 
repeat the procedure at a new phase, and so on [, in such a way that we obtain results for a set of different 
phase angles between 0 and π]. (Leonhardt, 1997, p. 99) 
 
The probability distribution pr(q, θ) is equal to q)(U)U(q * θρθ , where ρ is the 

density operator (which provides the most general description of a quantum state), and 
U(θ) = exp(–iθn) is the phase-shifting operator (where n is the photon number operator). 
From the experimentally obtained probability distribution pr(q, θ), it is possible to 
reconstruct the so-called Wigner function W(q, p), which is closely related to the 
density operator. In reality both can be seen as “one-to-one representations of the 
quantum state” (Leonhardt, 1997, p. 40). The interesting part comes now. In the case of 
the vacuum field (like in all others), we have a good agreement between the 
experimentally reconstructed Wigner function and the theoretical Wigner function 
(Leonhardt, 1997, pp. 46-47). In particular, if we consider the quadrature wave function 
of the vacuum state 
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the measured quadrature probability distribution 
2

0 q)(ψ  “is approximately Gaussian 

and already follows the theoretical expectation” (Leonhardt, 1997, p. 23).  
In general there is a good agreement between the theoretical predictions for several 

quantum states of light (e.g. single-photon Fock states and squeezed states) and the 
experimental results (e.g. Breitenbach & Schiller & Mlynek, 1997; Bertet et al, 2002). 
This gives some assurance that the results obtained in the case of the vacuum state can 
be taken to be a property of the vacuum state and not as resulting from some other 
physical origin, for example, from the matter of the photodetectors. I mention this 
because in these experiments we are considering a high intensity field that is treated, by 
correspondence arguments, as a classical field that interferes with the vacuum field, 
producing two different beams. As I said, each beam is directed to a photodetector. 
Ideally each of the two photodetectors will produce a photocurrent that is proportional 
to the number of photons of the beams striking each one. It would seem that we are 
detecting individuated photons due to the vacuum field, which would imply that the 
photodetectors are receiving momentum and energy from the vacuum. However we 
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must recall that what is being detected are the beams resulting from the interference of 
(what can be considered) a classical field and the vacuum field. The possible ‘photons’ 
from the vacuum are not ‘differentiated’ from the ‘photons’ from the classical field. We 
must take into account the usual identification of a classical field with a quantum 
coherent field with a large expectation value of the photon number operator. The 
coherent state does not have a definite number of photons. In fact it can be defined by 
an infinite expansion in terms of photon number states, that is, by taking into account 
photon states corresponding to an infinite number of photons.  Due care is needed in the 
physical interpretation of this situation, in particular in what concerns the possibility of 
detection of photons in the ground state, which I consider not to be possible (and 
theoretically nonsense), and this makes problematic the usual quantum theory of the 
photodetectors based on the idea of photon absorption (Vogel & Welsch & 
Wallentowitz, 2001, pp. 169-190). More than questioning the experimental results 
regarding the vacuum electromagnetic field, this points to a need of revision of the 
theoretical treatment of the interaction of photodetectors with the quantized 
electromagnetic free field. However, I believe that there is no final and conclusive 
approach to address this problem. In quantum electrodynamics we face an ‘intrinsic’ 
limitation in the description of the interaction of radiation and matter (since we are only 
able to make approximate calculations) that leads me to consider that we cannot go 
beyond a ‘model’ level of description of the interaction between the quantized 
electromagnetic field and the photodetectors. However, this problem is well beyond the 
scope of the present work. As I said, what gives me some confidence in the 
interpretation of the experimental results for the quantum electromagnetic vacuum is the 
coherence between the interpretation of 00 2

Ε and the experimental results obtained 

for different quantum states of light, including the vacuum state. We see then that we 
can ascribe to the vacuum state of the quantized electromagnetic field a clear 
operational meaning in terms of the measurement of a non-zero variance, which is 
consistent with the adopted interpretation of the quantum formalism. 
 

7 Conclusions  

 
In this chapter I am more interested in a tentative clarification (or at least in a 
contribution towards it) of the concept of vacuum in quantum electrodynamics than in 
possible philosophical ramifications of the view presented. The lengthy, but necessary, 
technical discussions presented show that there are intricate aspects that make it very 
difficult to have any strong metaphysical commitment regarding the concept of vacuum; 
more than exploring possible metaphysical consequences of the conceptual analysis 
being presented, the intention here is to provide a ‘frame’ within which to make clear 
what we should not attribute to the concept of vacuum and what we might attribute to it 
even if with some reservations. 
We have seen that there are subtle theoretical and experimental aspects related to the 

ground state of the quantized electromagnetic field, which represent a clear departure 
from the ‘nothingness’ of the classical concept of vacuum. However, we must be careful 
not to ascribe too much to the ground state of the quantized field. One difference with 
the classical theory is that (if accepting Milonni’s consistency claim to be generally 
valid) when considering a charged particle we must consider it to be at least in 
‘interaction’ with the ground state of an external quantized electromagnetic field. In a 
certain sense the quantized radiation and matter need a more integrated description, 
while maintaining a clear distinction between radiation and matter. As Milonni stressed, 
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“without [the source-free field] the whole quantum theory of a charged particle in 
vacuum becomes inconsistent” (Milonni, 1994, p. 125).  
As we have seen the other aspect in which the quantum concept of vacuum presents 

a clear departure from the classical ‘nothingness’ is at the experimental level. We see 
experimental results that for their interpretation make it necessary to take into account 
the concept of quantum vacuum. The view defended here is that we can deflate the so-
called experimental vacuum effects to a simple aspect common to any n-photon state of 
the quantum field: a non-vanishing variance of the electric and magnetic fields.21 That 
is, there are no dynamical effects of the vacuum state. In this way the formal 
considerations (pointing to the need of an external ‘independent’ quantized 
electromagnetic field even if in its ground state) and the experimental results (giving 
observational meaning to the mathematical expression of the variance even in the case 
of the vacuum state) are consistent with each other and point to a concept of vacuum 
that has theoretical and experimental relevance. However the only experimental results 
that we can attribute with relative security to the vacuum state relate to a non-vanishing 
variance and not to some spectacular dynamical effects. This implies that we cannot 
attribute any feature to the vacuum state that makes it ‘special’ when compared with 
other states of the quantized electromagnetic field. In this way, whatever metaphysical 
ramifications might be related to the concept of vacuum they do not go beyond the ones 
we might endorse in relation to any other state of the quantized electromagnetic field, 
which is not an unexpected result since the quantized electromagnetic field is a more 
fundamental concept than the particular state it might be in. Looking from this 
perspective, if it was the case that the vacuum state had no experimental relevance (not 
being possible to give an observational meaning to its variance) this would lead to an 
awkward situation regarding the concept of quantum field. We would be in a situation 
in which the physical-mathematical structure of the theory would be inconsistent with 
the available experimental results. On one side, for example a one photon state of the 
quantized electromagnetic field would have experimental meaning (and we could relate 
the variance to observed outcomes of measurements made on the electromagnetic field 
in this state) while on the other side, another state of the field, the ground state, would 
be a sort of a formal artifact (and in this case the variance would be a physically 
meaningless mathematical expression). That is not the case. Thus we see that even when 
not accepting dynamical fluctuations as a property of the vacuum state we can retain an 
experimentally meaningful notion of vacuum state that is consistent with the adopted 
interpretation of the variance within the ensemble interpretation of quantum theories. 
 
 
 
 

                                                 
21 We must recall that this variance is related with measurements made on identically prepared systems 
not one individual system. As mentioned, there is a tendency in the literature to refer to the non-vanishing 
variance as ‘fluctuations’ of the vacuum state (Sakurai, 1967, pp. 32-33; Aitchison, 1985, pp. 346-247). 
This view is misleading since the non-zero variance of the ground state of the quantized electromagnetic 
field cannot be related to a fluctuation in time: “there is no time evolution of this vacuum state” (Rugh & 
Zinkernagel, 2002, p. 673). Considering measurements made on equally prepared systems, they will show 
fluctuations in the results of the successive observations – according to the interpretation of the theory 
followed here (Isham, 1995, pp. 80-81; Peres, 1995, pp. 24-26; Ballentine, 1998, pp. 225-227, 
Falkenburg, 2007, pp. 205-207). The non-vanishing variance is not a temporal property of one single 
system. We observe a statistical fluctuation on the results of measurements made on equally prepared 
systems, not a temporal fluctuation of the same system. 
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CHAPTER 5 
 
 
 

THE INTERACTION OF RADIATION AND MATTER 
 
 
 
 
 
 
 

1 introducion 

 
The more basic and fundamental elements of quantum electrodynamics are already 
present in Dirac’s 1927 work. In it, the electromagnetic field and matter are described 
by classical Hamiltonians; a further term gives the interaction between the field and 
matter (Jordan’s reinterpretation of matter as waves or Pauli and Heisenberg’s 
Lagrangian formalism does not change the mathematical core of the theory and 
procedures used in its applications). All this can be developed within a correspondence 
approach with classical mechanics and field theory, that is, this type of Hamiltonian can 
be put to use in the Maxwell-Lorentz classical electrodynamics or a classical theory of 
fields in interaction (Barut, 1964, p. 138; Bogoliubov & Shirkov, 1959, p. 84). Then a 
second ‘layer’ is put on top of the classical description (in the fully developed theory, 
matter is described by the Dirac equation) through which the quantization of the 
individual fields is achieved (the so-called ‘second quantization’). That is, the 
generalized coordinates (and conjugate momenta) of each field are submitted to 
commutation or anticommutation relations, and the terms in the Hamiltonian for each 
field become operators, as is also the case for the term describing the interaction 
between the fields. But it is important to notice that the fields are quantized as free non-
interacting fields, each by itself. Then we are into the game. For practical purposes 
Dirac makes use of perturbation theory to treat the interaction of radiation and matter.22 
So it was then, and it still is now.  
In section 2 we will look into the details of setting quantum electrodynamics (as the 

theory that describes the interaction of matter and radiation) into ‘motion’. It turns out 
that quantum electrodynamics is a perturbative approach. Also quantum 
electrodynamics relies on the doubtful method of adiabatically switching on/off the 
interaction between radiation and matter. However, not looking too closely into the 
mathematical structure of the theory and considering only a few order terms 
perturbative calculations, quantum electrodynamics presents an astonishing agreement 
with experimental results.  
                                                 
22 The use of perturbative methods has a long history in celestial mechanics. One example is the 
development of an analytical perturbation theory for the three-body problem: the Sun-Earth-Moon system 
(Hoskin & Taton, 1995, pp. 89-107). From the planets, perturbative methods went to the planetary models 
of atoms, being a calculational tool present in the so-called old quantum theory (Darrigol, 1992, pp. 129 
& 171). Also it became fundamental in the creation of matrix mechanics, as it was from the perturbative 
study of the anharmonic oscillator that Heisenberg developed his quantum-theoretical approach (Darrigol, 
1992, pp. 266-267; Paul, 2007, pp. 4-5). Soon after, Heisenberg and Max Born put together a perturbation 
theory within the formalism of quantum mechanics recently developed (van der Waerden, 1967, pp. 43-
50; see also Lacki, 1998). 
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Unfortunately there appear to be severe problems with the previous view. These will 
be addressed in section 3. According to John Earman and Doreen Fraser, the Haag 
theorem seems to imply the mathematical inconsistency of the usual treatment of 
interactions in quantum electrodynamics using perturbative methods (Earman & Fraser, 
2006), in which the concept of quanta is central. Fraser presents the idea that “once 
infinite renormalization counterterms are introduced … it is no longer possible to prove 
Haag’s theorem” (Fraser, 2006, p. 2). I shall argue that simply calling attention to the 
fact that renormalization “renders the theory mathematically not well-defined” (Fraser, 
2006, p. 171), does not provide any answer to the question: “why perturbation theory 
works as well as it does” (Earman & Fraser, 2006, p. 307). This is not an unimportant 
question, since we are facing the puzzling situation that the predictions of quantum 
electrodynamics are so accurate, while the theory from which they are derived appears 
to be mathematically inconsistent. In this section I will try to provide an answer to this 
question. In the process I will try to show that Earman and Fraser’s conclusion that 
“Fock representations are generally inappropriate for interacting fields” (Earman & 
Fraser, 2006, p. 330) or Fraser’s related conclusion that  “an interacting system cannot 
be described in terms of quanta” (Fraser, 2008, p. 842), are not valid in quantum 
electrodynamics: we do not have an interacting system but two weakly interacting fields 
(systems), and their interaction is described in terms of quanta. 
In a nutshell my argument will be as follows: it turns out that quantum 

electrodynamics, because the series expansion of the S-matrix is divergent, is unable to 
treat radiation and matter as one closed system. Rather the theory can only give an 
approximate description (using a perturbative approach) of the interaction between 
radiation and matter as distinct systems. If we try to close the gap and treat radiation and 
matter as one closed system, corresponding to an exact solution of the coupled non-
linear Maxwell-Lorentz and Dirac equations, our perturbative approach fails. My view 
is that there is a one-to-one correspondence between having meaningful mathematical 
results and being clear about the physical assumptions used to set up the theory (in 
quantum electrodynamics I take part of the input physical concepts to be radiation and 
matter taken to be independent systems that are independently quantized due to the 
weak interaction between then). This is so, because the physical concepts are defined in 
connection with a specific mathematical ‘support’, not beyond or independently of 
maths. In a situation where we have an infinity popping up we cannot have a well-
defined use of the physical concepts involved. In the case of quantum electrodynamics 
this situation occurs when trying to give a full description of the (weak) interaction 
between matter and radiation, which would correspond to treating them as one closed 
system. I see the divergence of the S-matrix series expansion as a fingerprint of a 
tentative application of the mathematics of the theory beyond its physical content. 
By focusing on the basic physical concepts used to set up the theory, and not solely 

on its (ill-defined) mathematical structure, we can make sense of the success of quantum 
electrodynamics (independently of the Haag theorem). This provides a different 
perspective than the one adopted by Earman & Fraser that not only contradicts several 
of their conclusions, but also, in my view, makes quantum electrodynamics more 
intelligible.  
 

 

2. Quantum electrodynamics as a perturbative approach 

 
In his 1927 paper Dirac dealt with a system consisting of an atom interacting with 
electromagnetic radiation. Dirac used a non-relativistic Hamiltonian and made his 
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calculations in what would be called the Coulomb gauge. As already mentioned, in this 
article Dirac was able to obtain a dynamical derivation of Einstein’s coefficients for the 
spontaneous and stimulated emission of radiation by an atomic system. In a subsequent 
paper from April 1927 Dirac applied his techniques to the development of a quantum 
theory of the dispersion of radiation by an atom. The starting point was the classical 
Hamiltonian for an atom (an electron in a central potential φ) interacting with an 
electromagnetic field (a transverse radiation field with two polarization components) 
described by a vector potential A: 
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Each Fourier component of the vector potential is written as 
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where in particular νr is the frequency of the radiation in the mode kr. Then Dirac takes 
the field to be a quantum operator, by taking the canonically conjugated variables Nr 
and θr to be quantum operators (q-numbers in Dirac’s approach). Nr is now the number 
of light-quanta of the component r, and θr is its corresponding phase (operator). They 
satisfy the commutation relation 
 

      [θr, Nr] = ih. 
 
 
As in his previous 1927 work Dirac is describing the radiation field by using the 

vector potential A, and making a Fourier expansion of A. It is the vector potential that is 
treated as a quantum operator by applying the quantum rules to each of its components. 
To treat the dispersion of radiation Dirac found it necessary to use perturbation 

theory. According to Dirac: 
 

In applying the theory to the practical working out of radiation problems one must use a perturbation 
method, as one cannot solve the Schrödinger equation directly. One can assume that the term (V say) in 
the Hamiltonian due to the interaction of the radiation and the atom is small compared with that 
representing their proper energy, and then use V as the perturbing energy … In the present paper we shall 
apply the theory to determine the radiation scattered by an atom … If Vmn are the matrix elements of the 
perturbing energy V, where each suffix m and n refers to a stationary state of the whole system of atom 
plus field (the stationary state of the atom being specified by its action variables, J say, and that of the 
field by a given distribution of energy among its harmonic components, or by a given distribution of 
light-quanta), then each Vmn gives rise to transitions from state n to state m; more accurately, it causes the 
eigenfunction representing state m to grow if that representing state n is already excited, the general 
formula for the rate of change of the amplitude am of an eigenfunction being 
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where υmn is the constant amplitude of the matrix element Vmn, and Wm is the total proper energy of the 
state m. To solve these equations one obtains a first approximation by substituting for the a’s on the right-
hand side their initial values, a second approximation by substituting for the a’s their values given by the 
first approximation, and so on. (Dirac, 1927b; pp. 711-712) 
 
Up to second order Dirac found that the Hamiltonian operator gave rise to two 

processes of scattering of radiation by the electron in the atom. In one case, which Dirac 
called direct or true scattering processes, we have a transition “in which a light-quantum 
jumps directly from a state s to a state r” (Dirac, 1927b, p. 717). The other case, which 
shows up only when making an approximate second order calculation, Dirac named 
‘double scattering processes’. When considering two states m and m’ without an 
appreciably difference in energy, there can be a scattering of radiation which “appears 
as the result of the two processes m’ → n and n → m, one of which must be an 
absorption and the other an emission” (Dirac, 1927b, p. 712), where n is a third state 
different from m and m’. According to Dirac in neither of the two processes “is the total 
proper energy even approximately conserved” (Dirac, 1927b, p. 712).23  
As we have already seen, Dirac’s approach was improved by Pauli, Heisenberg, and 

Fermi, in the development of a relativistic theory of the interaction of quantized 
radiation and matter. Looking now at quantum electrodynamics from the established 
Lagrangian approach, we have two classical fields described by the Maxwell-Lorentz 
equations and the Dirac equation. As we have already seen, the Dirac equation can be 
taken to be a classical equation of a spinor field (and its adjoint field). Using the usual 
procedure of Fourier expansion of a wave function this field can be resolved into its 
Fourier components, whose amplitude coefficients become operators after the 
quantization and satisfy anticommutation relations according to Fermi-Dirac statistics. 
An equivalent procedure is taken for the quantization of the electromagnetic field 
(following Bose-Einstein statistics). Up to this point we are dealing with two 
independently quantized fields. Quantum electrodynamics is about the description of the 
interaction between radiation and matter as described by these quantum fields. In 
classical electrodynamics, the relativistic equation of motion of a charged particle in a 
given external field is 
 

                [ ]







×+= H  v

c

1
EeK

rrr
. 

 
This equation can be derived from the Hamiltonian representing the total energy of the 
particle expressed as a function of the canonical coordinates and momenta 
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where the total energy, which can be given by T + eφ, is the fourth component of a four-
vector pµ given by 
 

               pµ = uµ + eAµ 

                                                 
23 In chapter 7 I will look at what might be the physical meaning of these transitory states  (the virtual 
states) that appear in the perturbative treatment of the interaction of radiation a matter. 
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(uµ  is the kinetic momentum given by the relativistic expression for the momentum-
energy four-vector for a free particle). 
From the Hamiltonian it is a simple task to derive the equation of motion for the 

charged particle in an external field: 
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In this way the Hamiltonian for the particle contains also the term describing the 
interaction of the particle with the field. 
In the application of Dirac’s equation as a one-electron equation to the case of 

electrons in an external field (e.g. the hydrogen atom) we use the prescription of going 
from the ‘kinetic momentum’ to the ‘total momentum’ by making the replacement 
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In this way, Dirac’s equation in the presence of an external (classical) field is given by 
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instead of simply  
 

ψ(x) mc ψ(x)i =∂γ µ
µ

h , 

 
which is the case for a free field. As we have seen it is this last equation that is used 
when making the quantization of the Dirac field. The case of the electromagnetic field is 
similar. We quantize the free field, but the (operator) equation for the (quantized) 
electromagnetic field in the presence of (quantized) charges is  
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This set of coupled equations, for the Dirac and electromagnetic field, can be derived 
from a Lagrangian representing the Dirac field interacting with the electromagnetic field 
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24 After quantization this equation becomes an operator equation for a quantized Dirac field in interaction 
with a quantized electromagnetic field. 
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This Lagrangian can be written in terms of the Lagrangians for the free Dirac field, the 
free electromagnetic field and a term representing the interaction between the two fields 
 

    µ
µ ⋅γ++= ψAψeLLL emm . 

 
Since the interaction term in the Lagrangian does not contain any time derivatives of the 
field operators “the canonical momenta are therefore the same functions of the 
dynamical variables as [in the free field case], and we can immediately write down the 
equal time canonical commutation relations”  (Källén, 1972, p.76). That is we could 
apparently start from the Lagrangian for the Dirac and electromagnetic fields in 
interaction to develop the quantization procedure. But contrary to the case of free field 
quantization it is not possible now to obtain commutation relations valid for all times 
since this implies solving first the coupled equations for the fields (Schweber, 1961, p. 
276; Källén, 1972, p.76). The problem is that, as Freeman Dyson mentioned,  
 

these equations are non-linear. And so there is no possibility of finding the general commutation rules of 
the field operators in closed form. We cannot find any solution of the field equations, except for the 
solutions which are obtained as formal power series expansions in the coefficient e which multiplies the 
non-linear interaction terms. It is thus a basic limitation of the theory, that it is in its nature a perturbation 
theory starting from the non-interacting fields as an unperturbed system. Even to write down the general 
commutation laws of the fields, it is necessary to use perturbation theory of this kind. (Dyson, 1952a, p. 
79) 
 
This implies that to treat the interaction of radiation with matter we must start from the 
quantized free fields and then by using perturbation theory treat the interaction between 
the two fields. According to Dyson 
 
Since the perturbation theory treatment is forced on us from the beginning, it is convenient not to set up 
the theory in the Heisenberg representation but to use the interaction representation. The IR is just 
designed for a perturbation theory in which the radiation interaction is treated as small. In the IR the 
commutation rules can be obtained simply in closed form, and so the theory can be set up with a 
minimum of trouble. (Dyson , 1952a, p. 79) 
 
I will consider for the time being that we can (apparently) describe the interaction of 

matter and radiation in terms of a wave function describing the fields as one closed 
system. We take, as Dirac did in 1927, this joint system to be described by a 
Hamiltonian H = H0 + V, where H0 describes the free non-interacting fields and V 
describes the interaction between them. In the Schrödinger picture (representation) the 
equation of motion of the system is the time-dependent Schrödinger equation 
 

(t)V)((t)(t)i S0SSSSt φ+Η=φΗ=φ∂h . 

 
In the interaction representation (or Dirac picture) the state vector describing the system 
is defined in terms of the state vector in the Schrödinger representation as 
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This state vector satisfies the equation 
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also, an operator in the interaction representation is related to the corresponding 
Schrödinger representation operator by 
 

                   hh tiH
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whose time dependency is determined in terms of the unperturbed Hamiltonian 
 

         [ ]0DDt H(t)Q(t)Qi ,=∂h . 

 
In this way we see that in the interaction representation the time evolution of the state 
vector (describing the two fields in interaction) is dependent only on the interaction 
term, while the time evolution of the operators depends on the free-field Hamiltonian. 
In quantum electrodynamics, the majority of its applications are made using the S-

matrix formalism. This formalism is particularly tailor-made for the description of 
scattering processes but is also applicable to bound-state problems (Veltman, 1994, pp. 
62-67). I follow Dyson’s presentation of a typical scattering process as described within 
quantum electrodynamics: 
 
The free particles which are specified by a state A in the remote past, converge and interact, and other 
free particles emerge or are created in the interaction and finally constitute the state B in the remote 
future. (Dyson, 1952a, p.  81) 
 
Dyson calls attention to the fact that:  
 
The unperturbed states A and B are supposed to be states of free particles without interaction and are 
therefore represented by constant state-vector φA and φB in the interaction representation. The actual 
initial and final states in a scattering problem will consist of particles each having a self-field with which 
it continues to interact even in the remote future and past, hence φA and φB do not accurately represent the 
initial and final states.(Dyson, 1952a, p. 81) 
 
Dyson presents what can be considered an operational justification for using the states 
of free particles (usually referred to as bare states) in the calculations, by taking into 
account how scattering experiments are really done (see Falkenburg, 2007, pp. 129-
131): 
 
Let ΨB(t) be the actual time-dependent state-vector of the state B in the IR. We are not interested in the 
dependence of φB(t) on t. In an actual scattering experiment the particles in state B are observed in 
counters of photographic plates or cloud-chambers and the time of their arrival is not measured precisely. 
Therefore it is convenient to use for B not the state-function ΨB(t) but a state function φB which is by 
definition the state-function describing a set of bare particles without radiation interaction [that is without 
self-interaction with its own field], the bare particles having the same momenta, and spins as the real 
particles in state B. (Dyson, 1952a, p. 94) 
 
The transition amplitude of the scattering process is given by SAB = (φ

*
BSφA), where S is 

the so-called S-matrix.  This scattering amplitude SAB can be written as (ψB
–, ψA
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(t))(ttU(t, 00 ψ=ψ)   

 
(where we are using the state vectors and operators  in the Dirac picture), which satisfies 
the equation 
 

)tV(t)U(t,)tU(t,i 00t =∂h . 

 
In this way the S matrix is simply related to the operator U(t, t0) by the formal 
expression S = U(∞,–∞). By using the boundary condition U(t0, t0) = 1 the previous 
equation for U(t, t0) is equivalent to the integral equation 
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This equation is solved by an iteration procedure. We have 
 

          ∫







−+=

t

t 110
0

)V(tdt
i

1)tU(t,
h

 

                )V(t)V(tdtdt
i

2

t

t 1

t

t 21

2

0

1

0
∫ ∫








−+
h

 

               ))V(tV(t)V(tdtdtdt
i

32

t

t 1

t

t 3

t

t 21

3

0

2

0

1

0
∫ ∫∫








−+
h

 

                K+ . 
 
By defining a chronological operator  
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(where we must sum over all permutations of t1, … tn),  so that we have 
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the expansion for U(t, t0) can be written as 
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In applications to scattering problems we need to calculate the S-matrix, that is, U(∞,–
∞). This is the case because in the case of scattering processes we only have 
experimental access to the cross-section. In quantum electrodynamics the scattering 
cross-section is calculated from the transition probability per unit space-time volume, 
which is related to the S-matrix in a simple way (Jauch & Rohrlich, 1976, pp. 163-167). 
According to B. Falkenburg “the effective cross-section is the physical magnitude with 
which the current field theories come down to earth. As a theoretical quantity, the 
cross-section is calculated from the S-matrix of quantum mechanics … as an empirical 
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quantity, it is the measured relative frequency of scattering events of a given type”  
(Falkenburg, 2007, p. 107) 
When calculating the S-matrix we must extend the initial time t0 to –∞ and the final 

time t to +∞. As we have seen in Dyson’s presentation the initial (and final) state of the 
system is taken to be an eigenstate of H0 the Hamiltonian for the non-interacting fields. 
This idea can be given a more formal presentation by considering that the interaction 
between particles in a scattering process is adiabatically switched on in the remote past 
and adiabatically switched off in the remote future (Lippmann & Schwinger, 1950, p. 
473; Bogoliubov & Shirkov, 1959, p. 197). What this means is that at infinity the 
interaction term is taken to zero, that is, there is no interaction between matter and 
radiation. This has important implications. One is that since there is no interaction we 
are really considering two uncoupled systems, the Dirac field, and the electromagnetic 
field. Another point is that in this case the state vectors are taken to be a product of Fock 
states of each field: bare states. Looking at this in terms of scattering of particles (quanta 
of each field), the initial and final states of the scattered particles are states of the (free-
particle) Fock space.  
As we have seen the S-matrix is given as a series expansion in powers of the 

interaction term V(t). We can look at the description of an interaction process as 
described by the S-matrix as a perturbative approach in which only Fock states are 
considered. The use of the interaction representation in the S-matrix approach can be 
seen then as part of a perturbative approach in which the interaction term is leading to a 
perturbation of the free states of the fields. 
To see the importance of the adiabatic ‘switching on’ and ‘switching off’ of the 

interaction to this overall perturbative approach let us look into Dyson’s take on this 
subject. As we have seen Dyson gave an operational justification to the use of a Fock 
state function φB to describe the initial and final state of the Dirac field, instead of ΨB(t) 
the state-vector representing for example a self-interacting electron. Dyson asks the 
question: “what is the connection between ΨB(t)  and φB?”(Dyson, 1952a, p. 94). Let us 
look into his presentation of the adiabatic trick. 
 
Suppose tB to be a time so long in the future after the scattering process is over, that from tB to +∞ the 
state B consists of separated outward-travelling particles. Then the relation between ψB(t) and φB is 
simple. We imagine a fictitious world in which the charge e occurring in the radiation interaction 
decreases infinitely slowly (adiabatically) from its actual value at time tB to zero at time (+∞). In the 
fictitious world, the state ψB(tB) at time tB will grow into the bare-particle state φB at time +∞. Thus 
 
 φB = Ω2(tB) ψB(tB)                                                            (489) 
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and gB(t) is a function decreasing adiabatically from the value 1 at t = tB to zero at t = ∞. Similarly, when 
tA is a time so far in the past that the state A consists of separated converging particles from t = −∞ to t = 
tA we have 
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where gA(t) is a function increasing adiabatically from t = −∞ to t = tA. 
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The scattering matrix element between states A and B is given exactly by 
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Of course (493) is independent of the times tA and tB. When tA and tB are chosen so far in the past that 
(489) and (491) are satisfied, then (493) may be written in the form (487), where now 
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and g(t) is a function increasing adiabatically from 0 to 1 for −∞ < t < tA, equal to 1 for tA ≤ t ≤ tB, and 
decreasing adiabatically from 1 to 0 for tA < t < ∞. Thus we come to the important conclusion that [the] 
formula [M = (φΒ

∗SφΑ)   (487)] for the matrix element is correct, using the bare particle state-functions φA 
and φB, provided that [the] formula  
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for S is interpreted by putting in the slowly varying cut-off function g(ti) to make the integrals converge at 
ti = ±∞. The cut-off functions are to be put in as they appear in (495), and then S is defined as the limit to 
which (495) tends as the rate of variation of g(t) is made infinitely slow. 

The main practical effect of this limiting process in the definition of S is to justify us in throwing 
away all terms in the integrals which oscillate finitely at ti = ±∞. There are however certain cases in which 
the  integral (488) is in a more serious way ambiguous due to bad convergence at ti = ±∞. In these cases 
the cut-off functions have to be kept explicitly until a late stage of the calculations before going to the 
limit g(t) = 1. In all cases, if the limiting process is done in this way, the matrix element M is obtained 
correctly and unambiguously. 
The use of bare-particle wave-functions φA and φΒ in (487) is thus justified. (Dyson, 1952a, pp. 94-95) 
 
In this way, in the S-matrix approach we will be calculating transition amplitudes 
between free-particle states (M = (φΒ

∗SφΑ)). Since the interaction term is given by 

µ
µ ⋅γ ψAψe , we can also see the series expansion of the S-matrix as given in powers of e, 

where e is the electric charge (or in powers of the so-called fine structure constant α  = 
e
2/4π): S = 1 + eS(1) + e2S(2) + … (Källén, 1972, p. 88). 
Let us consider, for example, the quantum electrodynamical treatment of the two-

photon annihilation of an electron and a positron (Sakurai, 1967, pp. 204-208): e+ + e– 
→ 2γ. The initial state corresponds to a Dirac field with two quanta, one corresponding 
to the electron, and the other to the positron (the electromagnetic field is taken to be in 
the vacuum state). In the final state after the ‘scattering’, the Dirac field is in the 
ground-state, that is, with no quanta, and the electromagnetic field is in a state with two 
photons. The second-order transition or scattering amplitude is given by  
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I will not go into the details of this expression but only address some relevant features. 
The expression is an example of the perturbative quantum electrodynamical treatment 
of the interaction between the Maxwell and Dirac fields. In it we have the description of 
the propagation of quanta between two space-time points x1 and x2 (corresponding to 
Dirac’s ‘third state’), and components related to the non-interacting states of each field 
(Fock states): +ee- , γ2 , and the vacuum states of each field 0 . That is, we use only 

the Fock space for each field to calculate the interactions in quantum electrodynamics. 
Also, each quantum field operates in different Fock spaces. 
 
 
3 Possible problems for quantum electrodynamics: the Haag theorem and the 
divergence of the S-matrix series expansion  
 
It seems then that we have a simple procedure to calculate whatever situation of 
interaction between radiation and matter we might have by simply addressing each case 
as if it is a scattering problem and dealing with it using the S-matrix approach with the 
adiabatic switching trick, where we can use as initial and final states Fock states of each 
field. However the situation is not that simple. One crucial aspect of all this adiabatic 
switching trickery is that the following supposition (called the adiabatic theorem) is 
being made:  “If a state is an eigenstate of the Hamiltonian and if a parameter in the 
Hamiltonian is adiabatically changed …, then the same state is also an eigenstate, after 
the Hamiltonian is changed, but with a different eigenvalue” (Källén, 1972, pp. 52-53). 
As we have seen in Dyson’s presentation this is being taken for granted: ‘the state 
ψB(tB) at time tB will grow into the bare-particle state φB at time +∞. Thus φB = 
Ω2(tB) ψB(tB)’. Is this really the case? 
No! From Haag’s theorem (Haag, 1955) we know that we cannot have a unitary 

transformation that relates the field operators corresponding to the free Hamiltonian H 
and the interacting field Hamiltonian HI. Considering that at t0 the Heisenberg picture 
and the Dirac picture (interaction representation) coincide (Earman & Fraser, 2006, p. 
320), it would seem that the state vector in the interaction representation, in the limit t Ø 
±∞, corresponds to free particles due to the fact that the interaction part of the 
Hamiltonian is negligible. But from Haag’s theorem it seems that “at times t = ±∞, all 
the assumptions of the theorem hold for the Heisenberg representation, which represents 
an interaction, and for the interaction representation, which is a Fock representation for 
a free system” (Earman & Fraser, 2006, p. 322). In informal terms Haag’s theorem 
implies that the state vectors in the interaction representation, that for t Ø ±∞ are 
supposed to represent the free field, and the state vector in the Heisenberg 
representation for the interacting fields, are not in a common domain of both H and HI 
(Schweber, 1961, p. 416).  
From Haag’s theorem we can conclude that if we have a free field at t = –∞, the 

interaction representation describes also a free field at any time t0. This means that we 
need to have a state of the full interacting Hamiltonian from the start so that we can 
consistently give the interaction representation its usual interpretation as giving a 
different time dependency to the state vector and the operators (Schweber, 1961, p. 
317). 
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Both the Heisenberg and Dirac pictures can hypothetically be used in either free or 
interacting systems, if we can separate the Hamiltonian in two parts. The change of 
representation does not change the physical situation whether it concerns free or 
interacting fields. There really is no “interaction picture’s assumption that there is a time 
at which the representation for the interaction is unitarily equivalent to the Fock 
representation for a free system” (Fraser, 2006, p. 54).25 This ‘assumption’ has nothing 
to do with the representation being used. The ‘assumption’ is that with an adiabatic 
switching on of the interaction, the state vector for the interacting systems can be 
constructed from the state vector of free fields (Schweber, 1961, p. 320):  
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This is what is supposed to be achieved in the adiabatic switching on of the potential 
that ‘connects’ a free field Hamiltonian with the interacting field Hamiltonian (Jauch & 

Rohrlich, 1976, p. 134; Schweber, 1961, p. 322): 0
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where ε is a parameter that is taken to zero in the end of the computations. The point is, 
as we have seen, that at infinite times before and after the adiabatic switching on/off of 
the interaction potential, the state vector in either the Heisenberg or the Dirac picture is 
assumed to be describing free fields.  
The question here is not thus the representation being used but whether it is possible 

to connect the interacting state to a free field state. It seems clear from the consequences 
of Haag’s theorem that the usual adiabatic switching on/off of the interaction will not do 
the trick. In this way we are in the situation of explaining how it is that with a 
mathematically incorrect procedure it is possible to develop applications from the 
theory that give so good results when compared with experiments. 
It is well known that in the applications of quantum electrodynamics there are 

problems with divergent integrals. These problems are circumvented in practice with 
renormalization techniques in which (basically) all the divergent integrals appearing in 
the series expansion of the S-matrix are related to corrections to the mass and charge of 
the fermions. Since the value of the mass and the charge are not defined by the theory 
but result from measurements, the terms in the series expansion that are divergent (but 
formally should be smaller and smaller) are taken to be part of the observed mass and 
charge. 
It might seem that by using renormalization techniques the consequences of Haag’s 

theorem might be evaded because “once infinite renormalization counter terms are 
introduced, the interaction picture is not mathematically well-defined” (Fraser, 2006, p. 
2). From this it might seem that “renormalization addresses this problem not by refining 
the assumptions, but by rendering the canonical framework mathematically ill-defined” 
(Fraser, 2006, p. 90). But it would be rather strange, to say the least, that by considering 

                                                 
25 Earman and Fraser’s take it that in the infinite past and the infinite future “particles are assumed to be 
infinitely far apart and therefore not interacting” (Earman & Fraser, 2006, p. 321). In this case they 
consider that at t=±∞ “the representation is taken to be a Fock representation” (p. 321). And this is taken 
to be a Dirac picture (interaction representation) assumption: “In the interaction picture ... at t = ±∞ the 
representation is the Fock representation for the free field” (p. 321). At this point I thus disagree with 
Earman and Fraser’s presentation of the consequences of the Haag theorem. I simply do not think that the 
assumption that at infinite past we can take the state of a particular field to be a free state as described by 
a Fock space has to be seen as part of the assumptions of the Dirac picture. But this is a question of detail. 
The main aspect of their presentation is irrefutable: according to the Haag theorem the perturbative 
approach used in quantum electrodynamics to describe interactions is mathematically inconsistent. 
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an impoverished mathematical structure, suddenly, something physically equivalent to a 
unitary transformation connecting free and interacting field operators might emerge. In 
reality this argument does not provide any explanation for why the theory is effective, 
and this is a central question which has correctly been considered to be relevant: “There 
is, however, unfinished business in explaining why perturbation theory works as well as 
it does” (Earman & Fraser, 2006, p. 307). 
If we followed Fraser’s account we would be back where we started since, without 

taking into account the ill-defined mathematics of renormalization (and this is possible 
by considering only the lowest-order calculations), one could say that the adiabatic 
switching on/off of the interaction is also of doubtful mathematical rigor precisely due 
to the Haag theorem. This means that when imposing the adiabatic switching on/off we 
are developing an ill-defined approach. The primary question of the effectivity of the 
theory would remain, independently of the probable impossibility of taking into account 
the Haag theorem in this ill-defined mathematical context (now due to the adiabatic 
switching on/off of the interaction). 
Another aspect of not having a rigorous basis for a procedure to adiabatically 

construct the interacting states from the free states is the following. In the Fock space 
we have a direct connection of quanta to the normal modes of classical field 
configurations. It is from the Fourier splitting of a classical wave into positive and 
negative frequency normal modes, providing the basis for the configuration space, that 
the concept of quanta emerges (via a quantization procedure which results in associating 
quanta to each normal mode). In the case of interacting fields it is not possible to make 
this Fourier expansion (Fraser 2006, p. 136). This implies that it is not possible to use 
the Fock representation for a free field to represent the interacting Dirac and Maxwell 
fields (Earman & Fraser, 2006, p. 322). Following this line of reasoning, this means that 
the quanta concept is unavailable when we consider full interacting fields (Earman & 
Fraser, 2006, p. 330; Fraser, 2008, pp. 2-3). It could seem that the perturbative S-matrix 
approach could overcome this problem by providing a rigorous procedure to describe 
the interacting Dirac and Maxwell fields in the scattering problem by using only the 
Fock states representing free quanta from each field. According to the Haag theorem 
this is not possible. It seems then, according to Earman and Fraser, that we cannot use 
the concept of quanta when dealing with interacting fields. 
It does not seem that the effectiveness of the perturbative approach, in spite of 

Haag's theorem, is a consequence of the need for a mathematical ill-defined mass and 
charge renormalization. At least there is no argument that shows how the efficiency of 
this scheme might result from developing it from a mathematical structure that is ill-
defined due to renormalization. Moreover the renormalization technique is not the only 
element that makes the theory mathematically ill-defined. It seems that we cannot arrive 
at any solid conclusions by analysing from a mathematical perspective, what appears to 
be an ill-defined mathematical structure.  
My view is that the explanation for the good results of the perturbation theory 

approach to scattering (and bound state) problems in spite of the Haag theorem, will not 
be found in the mathematical structure of quantum electrodynamics. As will be seen 
below, the point about Haag’s theorem is that the question of its applicability, is not 
even addressed in the way the physical theory is really used: we have to consider the 
physical input assumptions of the theory together with its mathematical formulation and 

application, not the mathematical structure all by itself. 

As mentioned above, the theory is developed from a canonical quantization of two 
independent classical fields. The description of the interaction between the fields is 
given, like in the classical counterpart, by an interaction term. Formally we can adopt 
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whatever representation is mathematically possible. But since we are (apparently) 
dealing with an ill-defined mathematical structure one should not consider formal 
aspects of the theory, like the full formal S-matrix for a scattering process (which in the 
applications turns out to be an asymptotic series). We must consider the applications of 
the theory that provide results that we can check with experiments. In these 
circumstances the use of the interaction representation only attains a physical meaning 
at the level of applications in which we can consider different systems with an 
interaction that can be considered as a perturbation of their independent states.  In this 
way the fields maintain their identity as separated physical systems even during the 
interactions. In this sense the use of the interaction representation is part of the 
applications. We simply use part of the Hamiltonian, which is possible since the theory 
was developed considering distinct parts in the Lagrangian, one corresponding to the 
free Dirac field, another to the free Maxwell field, and another to the interaction. This is 
the one pulled apart from the others in the interaction representation.   
The description of scattering is developed from the theory considering an initial 

state corresponding to a limited number of free particles (quanta), and with an adiabatic 
switching on of the interaction between the fields, a full interacting state ψb

- is 
apparently obtained. The interacting state ψa

+ that corresponds to a well-defined 
number of quanta in the final state is defined in an equivalent way.  The scattering 
amplitude Sab is given by (ψb

-, ψa
+) (Schweber, 1961, p. 323). The point is that we really 

do not work with these doubtful interacting states. What is going on is quite different. 
We are only considering a few terms of a perturbation expansion of the scattering 
matrix. When considering the applications we are taking advantage of the way the 
theory was developed. We always have clearly distinct fields. For the description of 
their interaction it is not necessary to have a description of both fields as a closed 
interacting system. On the contrary, as we will see next, if we try to make a full 
description of the interaction considering all the terms of the power series expansion of 
the S-matrix, it can “at best only be an asymptotic expansion” (Schweber, 1961, p. 644). 
One of the major achievements of Dyson in the development of quantum 

electrodynamics was showing that the perturbative expansion of the S-matrix is 
renormalized to all orders. As mentioned previously, quantum electrodynamics (QED) 
had tremendous problems of divergent integrals that made impossible but a few lower 
order calculations. This problem was circumvented by the procedure of mass and charge 
renormalization. Dyson showed, in a paper published in 1949, that the renormalization 
procedure could be applied to all orders of the perturbative expansion of the S-matrix 
(Schweber, 1994, pp. 527-544).  
 Soon afterwards, in the summer of 1951, Dyson came out with a physical argument 

that strongly suggested that, after all, “all the power-series expansions currently in use 
in quantum electrodynamics are divergent after the renormalization of mass and charge” 
(Dyson, 1952b, p.  631). 26 According to Dyson, the series expansion of the S-matrix is 
divergent, and this has nothing to do with renormalization (Dyson 1952b). That is, even 
if there were no divergent integrals appearing in the terms of the S-matrix, the series 
would still be divergent. According to Dyson, if we try to make a full description of the 
interaction considering all the (infinite) terms of the power series expansion of the S-
matrix, it can “only be an asymptotic series” (Schweber, 1994, p. 565). That is, 
according to Dyson’s physical argument, we can expect at some point that the term of 

                                                 
26 It is important to notice that Dyson’s is a heuristic physical argument not a rigorous mathematical 
derivation. In my view, this is not a deficiency of Dyson’s argumentation since we are considering a 
theory with an ill-defined mathematical structure. 
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order n+1 will not be smaller than the term of order n and the series starts to diverge: 
“the terms … will decrease to a minimum and then increase again without limit, the 
index of the minimum term being roughly of the order of magnitude 137” (Dyson, 
1952b, p. 632). In Dyson’s view the “divergence will not prevent practical calculations 
being made with the series” (Dyson, 1952b, p. 632). But Dyson’s view was that in a 
certain way the theory only provided a basis for developing the S-matrix series 
expansion (Cushing, 1986, p. 122). In Dyson’s own words: “I had this rather positivistic 
view that all QED was the perturbative series. So if that failed you didn’t really have a 
theory” (quoted in Schweber, 1994, p. 565). Even if strict mathematical proof of the 
divergence of the S-matrix does not exist, further strong evidence in favor of Dyson’s 
claim has been given in the last decades (Aramaki 1989, 91-92; West, 2000, 180-181; 
Jentschura, 2004, pp. 86-112; Caliceti et al, 2007, pp. 5-6). I will now look in more 
details into Dyson’s argument and mention some of the contemporary results that 
reinforce his claims.  
During the summer of 1951 while visiting the ETH In Zurich Dyson found a 

heuristic argument that convinced him that the perturbation theory, used trough the S-
matrix series expansion, diverges. According to Dyson 
 

All existing methods of handling problems in quantum electrodynamics give results in the form of power-
series in e2. The individual coefficients in these series are finite after mass and charge renormalization ... 
The purpose of this note is to present a simple argument which indicates that the power-series expansions 
obtained by integrating the equations of motion in quantum electrodynamics will be divergent after 
renormalization … The argument for divergence is as follows. According to Feynman, quantum 
electrodynamics is equivalent to a theory of the motion of charges acting on each other by a direct action 
at a distance, the interaction between two like charges being given by the formula 

 
                             e2δ+(s12

2),                                                                                            (1) 
 

where e is the electron charge. The action-at-a-distance formulation is precisely equivalent to the usual 
formulation of the theory, in circumstances where all emitted radiation is ultimately absorbed. We shall 
suppose that conditions are such as to justify the use of the Feynman formulation of the theory. Then let 
 

F(e2) =a0 + a2e
2 + a4e

4 + ...                                            (2) 
 
be a physical quantity which is calculated as a formal power series in e2 by integrating the equations of 
motion of the theory over a finite or an infinite time. Suppose, if possible, that the series (2) converges for 
some positive value of e2; this implies that F(e2) is an analytic function of e at e = 0. Then for sufficiently 
small values of e, F(−e2) will also be a well-behaved analytic function with a convergent power-series 
expansion. 

But for F(−e2) we can also make a physical interpretation. Namely, F(−e2) is the value that would be 
obtained for F in a fictitious world where the interaction between like charges is [−e2δ+(s12

2)] instead of 
(1). In the fictitious world, like charges attract each other. The potential between static charges, in the 
classical limit of large distances and large numbers of elementary charges, will be just the classical 
Coulomb potential with the sign reversed. But it is clear that in the fictitious world the vacuum state as 
ordinarily defined is not the state of lowest energy. By creating a large number N of electron-positron 
pairs, bringing the electrons together in one region of space and the positrons in another separate region, it 
is easy to construct a “pathological” state in which the negative potential energy of the Coulomb forces is 
much greater than the total rest energy and kinetic energy of the particles. This can be done without using 
particularly small regions or high charge densities, so that the validity of the classical Coulomb potential 
is not in doubt. Suppose that in the fictitious world the state of a system is known at a certain time to be 
an ordinary physical state with only a few particles present. There is a high potential barrier separating the 
physical state from the pathological states of equal energy: to overcome the barrier it is necessary to 
supply the rest-energy for the creation of many particles. Nevertheless, because of the quantum-
mechanical tunnel effect, there will always be a finite probability that in any finite time-interval the 
system will find itself in a pathological state. Thus every physical state is unstable against the 
spontaneous creation of large numbers of particles. Further, a system once in a pathological state will not 
remain steady; there will be a rapid creation of more and more particles, an explosive disintegration of the 
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vacuum by spontaneous polarization. In these circumstances it is impossible that the integration of the 
equations of motion of the theory over any finite or infinite time interval, starting from a given state of the 
fictitious world, should lead to well-defined analytic functions. Therefore F(−e2) cannot be analytic and 
the series (2) cannot be convergent. (Dyson, 1952b, pp. 631-632) 
 
Almost at the same time as Dyson set forward his argument, C. A. Hurst, working on 
the so-called φ3 theory concluded that the perturbative approach was divergent. In 
particular 
 
He enumerated the number of graphs in field theories with the interaction Hamiltonian of general type 
and showed that the number of graphs with n vertices increases like nn/2 as n increases so that the 
perturbation expansion cannot converge unless the matrix elements decrease with correspondingly great 
rapidity as n increases. He studied the case of a three-scalar field interaction λφ3 and obtained the 
conclusion, by evaluating a lower bound for the matrix elements, that in this case the perturbation 
expansion with respect to λ cannot converge. Hurst remarked that the excellent agreement of QED with 
experiment would indicate that the series is an asymptotic expansion about the singular point = 0, as 
Dyson conjectured. (Aramaki, 1989, pp. 91-92) 
 
Dyson’s and Hurst’s results stimulated W. Thirring to investigate the convergence in the 
λφ3 theory, and he got the same conclusion regarding the series divergence (Aramaki, 
1989, p. 92). Also the calculation of A. Petterman and A. Jaffe with particular models 
supported Dyson’s contention that the renormalized perturbation series diverges (Gill & 
Zachary, 2002, p. 29). More evidence for the perturbation series divergence was found 
in recent years. According to U. D. Jentschura  
 
A priori, it may seem rather unattractive to assume that the quantum electrodynamics perturbation series 
may be divergent even after the regularization and the renormalization. However, as shown by explicit 
nontrivial 30-loop calculations of renormalization group γ functions in a six-dimensional φ3 theory, and in 
a Yukawa theory …, we believe that the ultimate divergence of the perturbative expansion can be 
regarded as a matter-of-fact, clearly demonstrated by explicit high-order calculations. (Jentschura, 2004, 
pp. 108-109) 
 
For Dyson his 1951 conclusion on the divergence of the S-matrix approach meant the 
end of his involvement with quantum electrodynamics. According to Dyson 
 
All my efforts up to that point had been directed toward building a complete convergent theory. Finding 
out that after all the series diverged convinced me that was as far as one could go … That was of course a 
terrible blow to all my hopes. It really meant that this whole program made no sense. (Quoted in 
Schweber, 1994, p. 565) 
 
This makes it even more imperative to justify the perturbative approach (which 

provides excellent agreement with experimental results), and to explain how to get rid 
of large-order terms of a divergent series that simply would make it impossible to use 
the theory. 
Just from a mathematical perspective the use of only a few terms of a divergent 

series is difficult to defend, but by considering the input physical assumptions of the 
theory the justification of throwing away large-order terms will become clear. In part it 
is related to the weakness of the interaction between the Maxwell and Dirac fields 
(Mandl & Shaw, 1984, p. 95). This by itself can explain why a few order terms in a 
perturbative approach can give so good results. But it does not by itself justify 
throwing away terms that should be smaller and smaller but which will ultimately result 
in a divergent series.  
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As mentioned, the scattering matrix amplitude SAB can be written as (ψB
–, ψA

+), where 

we have +

−∞→
=, ΑΑ0

t
ψ)φtU(0lim

0

 and −

ΒΒ
+∞→

=, ψt)φU(0lim
t

. Here U is the time 

displacement unitary operator determined by solving the Schrödinger equation, ϕA and 
ϕB are the initial and final free states, and the in and out states ψA

+ and ψB
–are taken to 

be eigenstates of the full interacting Hamiltonian (Schweber, 1961, pp. 317-323). 
Formally these interacting states can be derived from the (complete) S-matrix. Since the 
S-matrix series expansion is divergent we can conclude that we cannot obtain these 
interacting states (Scharf, 1995, pp. 314-318), i.e. it is not possible to find solutions of 
the coupled non-linear Maxwell-Lorentz and Dirac equations as  (infinite) power series 
expansions in the coefficient e (the electric charge). In other words, it is not possible to 
find a solution for a closed interacting system of an electromagnetic field and charged 
particles (Dirac field).  
Let us recall that the theory was structured around the idea that the interaction 

between radiation and matter is weak (due to the small coupling constant). We do not 
quantize the interacting system, but each field separately; i.e. when we speak of weak 
interaction this has two related aspects: one is that the interaction term in the Lagrangian 
(or Hamiltonian) is small; the other is that from this we are justified to consider the 
quantization of radiation and matter separately as the quantization of free fields, and to 
take the interaction term as a perturbative one.27 As Dyson mentioned, quantum 
electrodynamics “is in its nature a perturbation theory starting from the non-interacting 
fields as … unperturbed systems” (Dyson, 1952a, p. 79). Since we are starting from the 
non-interacting fields, we need to use the adiabatic switching on/off trick to ‘connect’ 
the two quantized systems and so to be able to describe their interaction. Now, as we 
have just seen, if we try to describe within the theory the full weak interaction between 
radiation and matter (corresponding to determining the eigenstates of the full interacting 
Hamiltonian) we get into trouble (i.e. we obtain divergent results).  
We conclude then that, in practice (i.e. in the theory we really have and work with), 

the notion of weak interaction implies an intrinsic approximate approach, i.e. there is, in 
practice, an unbridgeable gap between the notion of weak interaction and the idea of a 
full (complete) description of the (weak) interaction (since a full description of the 
interaction would correspond to obtaining a complete expansion of the S-matrix, which 
is not possible). Thus the divergence of the S-matrix series expansion implies that we 
are unable to bridge the gap that exists between our starting physical assumption of two 
independent unperturbed systems and the (ideal) closed system of fully interacting 
radiation and matter; and there is a good reason for this. 
As Earman & Fraser showed from a formal consideration of fully interacting fields 

(corresponding to an exact solution that we cannot obtain in the case of quantum 
electrodynamics), we cannot describe them in terms of the Fock representation for free 
fields. This means that, formally, for a closed system of interacting fields we cannot use 
all the physical input of quantum electrodynamics associated with the notion of weak 
interaction of radiation and matter (in particular our starting physical assumption of two 
non-interacting fields); i.e. the formal considerations imply an, in principle, 
                                                 
27 It is important to remember that contrary to what formal presentations of the theory might lead us to 
think (e.g. Dyson, 1952a, pp. 58-59; Källén, 1972, pp. 75-80), we do not start with a Lagrangian for an 
interacting system of radiation and matter and then due to practical problems in solving a set of coupled 
non-linear equations we feel forced to resort to perturbative calculations. On the contrary the theory was 
pretty much developed along two separate lines – one of them the quantization of the free electromagnetic 
field (a subject not addressed here) the other the development of a relativistic equation for the electron –, 
from the start taking into account, implicitly, that we were dealing with two clearly distinct weakly 
interacting physical entities: (quantized) charged particles and (quantized) electromagnetic field. 
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incompatibility between the notion of weak interaction as implemented in the theory and 
the (formal) notion of a closed system of fully interacting fields. Also, as we have seen, 
considering the complete series expansion of the S-matrix would correspond to the 
description of a closed system of fully interacting fields. Here the formal results are 
valid, i.e. we would have two contradictory mathematical results. This is not the case 
since the series expansion of the S-matrix is divergent. 
We see then that we disregard the large-order terms not simply for pragmatic 

reasons but for physical reasons. Including these terms would correspond to an 
improper use of the mathematical structure of the theory beyond its physical content (in 
a tentative description of a closed system of radiation and matter): in quantum 
electrodynamics we have the concepts of radiation and matter, and of a weak interaction 
between them, not of fully interacting fields.28 At this point I would like to establish a 
correspondence between getting meaningful mathematical results and the way we set up 

the physical concepts in the theory. In this case, (meaningful) approximate calculations 
of the weak interaction between different physical systems (radiation and matter).  
I think that the situation we are facing here can be illuminated by recalling some of 

Bohr’s views related to the Klein paradox and the problem with infinities in the theory 
(later addressed by renormalization). As we have seen, in the exchange of letters with 
Dirac in late 1929, Bohr addressed the negative energy problem of Dirac’s equation. 
Bohr called attention to the fact that it arises from not taking into account the 
elementary unit of electrical charge in the determination of the actual potential barrier, 
i.e. from not considering the physical concepts inscribed in the theory. According to 
Bohr, if calculations are made in which this fact and the limits in the determination of 
the electron’s position are not taken into account, we would be facing the 
 

actual limit of applying the idea of potentials in connection with possible experimental arrangements. In 
fact, due to the existence of an elementary unit of electrical charge we cannot build up a potential barrier 
of any height and steepness desired without facing a definite atomic problem. (Quoted in Moyer, 1981, 
pp. 1057) 
 
In a nutshell, to Bohr the paradox resulted from “an unlimited [mathematical] use of 

the concept of potentials in relativistic quantum mechanics” (quoted in Moyer, 1981, p. 
1058; see also Darrigol, 1991, pp. 154-155). 
An analogous situation occurs with the (renormalizable) infinities in the theory. 

According to Alexander Rueger’s presentation of Bohr’s ideas, 
 
only for an [atomic] electron weakly interacting with the electromagnetic field could the radiation 
reaction, which would render the electron’s orbit unstable, be ignored; as Bohr stressed repeatedly, strong 
interactions would make the idea of approximately stationary states of the electron in the atom 
impossible. (Rueger, 1992, pp. 317-318) 
 
In these circumstances, Bohr recalls that “the whole attack on atomic problems … is an 
essentially approximate procedure, made possible only by the smallness of [the 
coupling constant]” (Bohr, 1932a, p. 378). That is, to Bohr 
 
the attempts to treat the radiation effects on rigorous lines by considering the atoms and the 
electromagnetic field as a closed quantum-mechanical system led to paradoxes arising from the 
appearance of an infinite energy of coupling between atoms and field. (Bohr, 1932b, p. 66) 

                                                 
28 With this justification for disregarding the large-order terms of the S-matrix series expansion, the 
excellent empirical results of the theory follow simply – in the perturbative approach – from the weakness 
of the interaction between the two separately quantized fields. 
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We have then, according to Bohr, that the physical conditions used to set up the theory 
imply an essentially approximate approach of an electron weakly interacting with the 
electromagnetic field. Like in the case of the Klein paradox if we extend the 
mathematical structure of the theory beyond its physical content we face a breakdown in 
the calculations. In my view, this is exactly the situation we are facing with the 
divergence of the S-matrix series expansion. 
When trying to close the gap between two weakly interacting systems (described by 

an approximate approach) and fully interacting fields (corresponding to obtaining the 
exact solution for a closed quantized system of interacting fields), we face ‘the actual 
limit of applying the idea’ of non-interacting fields that are part of our physical input 
assumptions. 
What we have then is the impossibility of defining within the theory a fully 

interacting state from the two fields that are defined and quantized as independent 
entities. Thus, in my view, we have a theory that is able, on an approximate level, to 
describe (using a few terms in perturbative calculations) the interaction between two 
separate fields, and not a theory describing as a whole a system of fully interacting 
fields. From a formal perspective the Haag theorem says that it is not possible to 
connect the separate fields with (fully) interacting fields when starting from the physical 
assumptions used to articulate the theory, i.e. from the notion of weak interaction as it is 
implemented in quantum electrodynamics.  
In the theory the consequences of the Haag theorem are circumvented not because 

we are facing a “canonical framework mathematically ill-defined” (Fraser, 2006, p. 90) 
but because we are not even trying to describe a system of (fully) interacting fields (this 
eventual possibility is excluded in practice due to the divergence in the series expansion 
of the S-matrix and in principle, on formal grounds, by the above mentioned 
incompatibility between the notion of weak interaction as it is implemented in the 
theory and the formal results related to interacting fields). We are just trying to describe, 
by an ‘essentially approximate procedure’, the weak interaction between radiation and 
matter as distinct systems.29 Thus, there is no conflict in quantum electrodynamics with 
the Haag theorem. 
As the divergence in the series expansion of the S-matrix shows, the Lagrangian of 

quantum electrodynamics does not provide us with the possibility of describing a 
system of interacting Dirac and Maxwell fields, but with the possibility to describe in an 
intrinsically approximate way the interaction between the two fields. The descriptions 
of interactions in the theory are based on the use of the Fock space for each field and the 
idea of (virtual) quanta exchange. There are no alternatives in quantum 
electrodynamics. From the start the theory was not developed to treat the question of 
fully interacting fields, but to treat the question of the interaction between distinct fields 
that are separately quantized. To consider that “Fock representations are generally 

                                                 
29 However I agree with Fraser’s view that we cannot apply Haag’s theorem when working with a 
“canonical framework mathematically ill-defined” (Fraser, 2006, p. 90). What I do not agree with is 
Fraser’s view that renormalization is the factor that makes it possible to evade the consequences of 
Haag’s theorem enabling the theory to be effective (also, as I mentioned, there are other factors which can 
be taken to render the theory mathematically ill-defined). That is because, in my view, in quantum 
electrodynamics, the problem of circumventing the Haag theorem is included in the broader problem of 
explaining how the theory can give so good results. This involves addressing the divergence of the S-
matrix series expansion (necessary to justify the perturbative approach) and circumventing the Haag 
theorem. But these are not unrelated matters. In reality, as we have seen, when addressing the divergence 
of the S-matrix series expansion, the consequences of Haag’s theorem become irrelevant (independently 
of the fact that we are considering a mathematically ill-defined approach). 
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inappropriate for interacting fields” (Earman & Fraser, 2006, p. 330) is, in the context 
of quantum electrodynamics, to turn upside down the theory as it was developed. The 
theory is built on top of the physical idea of independent entities whose interaction 
describes change in nature. When accepting this approach, and its intrinsic limitations, it 
is difficult to consider inappropriate, at least from an empirical point of view, the results 
of quantum electrodynamics; and so, contrary to Earman and Fraser’s views, we can 
retain the concept of quanta in the description of interactions. 
 
 
4 A note regarding the concept of vacuum in quantum electrodynamics 

 
The revision of the role of the Lagrangian of quantum electrodynamics as simply giving 
rise to an essentially approximate approach has immediate consequences on the 
interpretation of the mathematical formalism of the theory. According to this view, even 
if from an abstract point of view we can talk about the Hilbert space of the physical 
states of the full Hamiltonian of the two fields and their interaction, from a physical 
point of view we cannot build up these formal states from the individual states 
corresponding to each field by itself. Since the theory gives rise only to approximate 
procedures we can only build a physical description of the interaction between the fields 
with low-order perturbative calculations using the individual states of each field.30 This 

                                                 
30 This does not mean that we do not need to take into account for example the renormalization of the 
electron’s mass and charge to get agreement with experimental results. The point is the interpretation 
given to this. From an experimental point of view it might seem that the so-called physical electron with 
its ‘cloud’ of virtual photons (the renormalized quanta of the Dirac field) is the physical concept of 
particle we have in the theory when considering bound electrons. But recalling again Bohr’s ideas we see 
that that is not the case when making our considerations from the perspective of the physical-
mathematical structure of the theory. According to Bohr, “the classically estimated ratio between the 
radiative reactions on the electron and the nuclear attraction is … of the same order of magnitude as α3 
[where α is the fine structure constant]. It is just this circumstance which affords a justification for the 
neglect of the radiative reaction in a description of the stationary states including the fine structure” 
(Bohr, 1932b, p. 66). In this way, according to Bohr, “in the account of the simplest features of the 
radiation phenomena, we may neglect entirely the radiation reaction in the calculation of the transition 
probabilities” (Bohr, 1932b, p. 67). But Bohr considers possible “the treatment of such problems as the 
width of spectral lines and the retardation effects in the interaction of electrons bound in atoms. Still, the 
condition for such applications is that the effects in question can be treated as small perturbation of the 
phenomena to be expected if the finite propagation of forces would be neglected” (Bohr, 1932b, p. 67). 
That is, we must consider the electron’s self-energy (due to the radiation reaction) as a small perturbation 
to the ‘bare’ electron in a central Coulomb potential, in order to justify for example the Lamb shift 
calculation regarding the energy shift of stationary states of the electron in the atom. As Rueger called 
attention to, “Bohr stressed[ed] repeatedly, [that] strong interactions would make the idea of 
approximately stationary states of the electron in the atom impossible” (Rueger, 1992, p. 317). 

 Considering the theory as giving rise only to essentially approximate procedures, we do not really 
have a coherent quantum electrodynamical concept of a self-interacting electron, which would be 
“always in interaction with the surrounding cloud of virtual particles” (Thirring, 1958, p. 140). Another 
aspect, related to this is the following: in quantum electrodynamics we describe the physical processes as 
resulting from the interaction of two clearly distinct fields (which are quantized as free independent 
fields). Due to the mass renormalization there is a mismatch between the concept of electron as quanta of 
the Dirac field and the applications where the electron is described by taking into account also the 
electromagnetic field. When considering the electron’s mass, we can no longer make the simple 
association of the electron to quanta of the Dirac field. In the applications of the theory we must consider 
the electron’s mass as resulting from a contribution from the two fields. It is clear that when we go 
beyond the lowest-order approximations, and the mass renormalization is needed to render the results 
finite, we cannot maintain a simple identification of the electrons with quanta of the Dirac field. The 
observed ‘particle’ – the electron – is built, in the applications of the theory, from contributions from the 
two fields (I will came back to this in the next chapter). 
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means in particular that there is no physical meaning within quantum electrodynamics 
to the concept of vacuum (ground state) of the interacting fields. It is usually thought 
that the coupled fields vacuum state can be “formally expanded as a superposition of φ0” 
(Redhead, 1982, p. 86; Schweber, 1961, p. 655), where φ0 are the vacuum states of the 
free fields. But in the theory we really have, this is a vacuous mathematical statement 
without any physical counterpart. This does not imply that the concept of vacuum is not 
relevant in the theory, as we have just seen in the previous chapter. 
 
 
5 Conclusions 

 
As we have seen, Haag’s theorem implies that the perturbative approach used in 
quantum electrodynamics to treat the interaction between the quantized Maxwell and 
Dirac fields is not mathematically consistent. This brings up two big questions. How 
can the way the theory is implemented (giving a prominent role to the concept of quanta 
in the description of interactions) be justified? And even more importantly, “why 
perturbation theory works as well as it does” (Earman & Fraser, 2006, p. 307). Earman 
and Fraser do not provide any answer to this last question as regards quantum 
electrodynamics. And with respect to the first question, Fraser merely proposes to take 
shelter in the ill-defined mathematical structure of the theory to justify the 
inapplicability of the Haag theorem (Fraser, 2006, p. 90). However this argument has no 
explanatory power. It is an argument based solely on the mathematical structure of the 
theory (not taking into account its physical content) and it is not providing an 
explanation of the good results and soundness of the perturbative S-matrix approach.  
According to Dyson the series expansion of the S-matrix, used in the description of 

scattering (and bound state) processes, is divergent. This indicates that the theory only 
provides a description of interactions using a few lower-order terms (which works well 
due to the small coupling constant between the fields). This means that the theory can 
only provide results if we are close to a free field situation. In other words, only when 
considering the interaction between two different fields as a small perturbation to their 
individual free states can the theory provide results in agreement with experiments.  
We see that one has problems when trying to give a full description of the 

interaction, which corresponds to treating matter and radiation as one closed system. 
This would imply to go beyond the initial physical set up of the theory based on the 
idealization of totally non-interacting fields. In this way I think that quantum 
electrodynamics can be seen as providing only an approximate approach to the 
description of the interaction between two fields taken to be different physical systems. 
Only the lower-order terms of the series expansion can be kept. To take into account the 
large-order terms would mean to disrupt the physical input assumptions provided by the 
implementation of the notion of weak interaction (i.e. the possibility of quantization of 
free fields and the description of their interaction perturbatively, using the adiabatic 
switching on/off of the interaction). Due to the small coupling constant between the 
fields, the lower-order terms already provide good results.  
From this perspective, how can Earman and Fraser’s conundrum be solved while 

saving the use of quanta in the description of interactions? It is true that we are in an ill-
defined mathematical context. However, we do not really need that to make the 
consequences of the theorem irrelevant in the theory. If we forget about Haag’s theorem 
and set the machinery into motion, we face the situation that we cannot go from a free 
fields situation to a fully interacting fields situation (exactly as the Haag theorem says). 
This occurs because we are stretching the physical concepts too much and the 
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calculations break down, i.e. we have a theory describing the weak interaction between 
different fields, not a theory describing fully interacting fields. In this way we are 
outside the scope of Haag’s theorem. 
Regarding the concept of quanta − which follows naturally from the quantization 

procedure − this is, as we have seen, a central concept in the quantum electrodynamical 
description of the weak interactions between the fields (as this description involves free-
particle Fock spaces). However we are left with a tension regarding the concept of 
quanta. The point is that we start with the idealization of non-interacting fields, and, as 
we have seen, we need the unphysical adiabatic switching on/off trick to set quantum 
electrodynamics as a perturbation theory into motion. The problem is that when 
addressing scattering problems, we take the particles (for example electrons) to be far 
apart before (and after) the scattering, and because of this not interacting (i.e. electrons 
as quanta of the Dirac field without self-interaction). In this way, we are describing the 
particles observed after the scattering process is over with the idealization of charged 
particles with a ‘disconnected’ charge, and this is rather unphysical – since implicit in 
the possibility of observation of an electron is the possibility of electromagnetic 
interaction with it.  
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CHAPTER 6 
 

 
 

ASPECTS OF RENORMALIZATION IN QUANTUM ELECTRODYNAMICS 
 
 
 
 
 
 
 

1 Introduction 

 

The appearance of divergent integrals in higher-order calculations in quantum 
electrodynamics where the so-called radiative corrections are taken into account has 
been seen as, at least, indicating that the theory fails for high energies. As J. Schwinger 
stated, “electrodynamics unquestionably requires revision at ultra-relativistic energies” 
(quoted in Aramaki, 1989, p. 93). Even considering the accuracy of the theory at lower 
energies, Schwinger considered that the renormalization procedure, that permits 
avoiding the infinites in the results of calculations, ultimately has to be excluded from 
physics (Cao & Schweber, 1993, p. 50). Regarding this problem the position of P. Dirac 
was even less sympathetic: “I am very dissatisfied with the situation, because this so-
called “good theory” does involve neglecting infinities which appear in its equations” 
(quoted in Kragh, 1990, p. 184). In general the position of leading physicists was very 
critical regarding quantum electrodynamics, and some pinpointed structural problems 
that go beyond the high-energy behaviour of quantum electrodynamics. For example N. 
Bohr considered that the whole program only made sense taking into account the 
weakness of the coupling constant, which means applying the theory only in situations 
where the electron interacts weakly with the electromagnetic field (Rueger, 1992, p. 
317).  
In this chapter I will offer a historical account of the renormalization program and 

recover the views of several physicists that I think permits a more enlightening account 
of the meaning of renormalization than more recent accounts.  In sections 2 and 3 the 
historical emergence of the problem of infinites in quantum electrodynamics is 
considered, as well as the ‘provisional’ solution attained in the late forties with the 
completion of a renormalization program. The historical approach will enable to recover 
forgotten aspects of Dirac’s subtraction physics and relate them to some of Bohr’s 
views. This will enable a different view regarding renormalization than the one that has 
become ‘standard’. The conceptual motivation behind Dirac’s subtraction physics is to 
be contrasted with the post-war attitude of the physicists that completed a working 
renormalization approach. We will look in particular into the contributions of 
Schwinger and Feynman. Feynman’s regularization approach is to be contrasted with 
Dirac’s subtraction physics (which technically is similar) in its lack of any conceptual 
justification for regularization. Looking in detail into Feynman’s work will also enable 
us to follow his first-hand account of his overall space-time approach to the description 
of interactions. This is an important subject whose conceptual implications will be 
developed in the next chapters. 
Some more technical details of the renormalization program are considered in 

sections 3 and 4: the calculation of the self-energy of the electron and the photon, and 
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the role of the cut-off procedure that provides a ‘regularization’ of the theory, previous 
to the renormalization proper. We will see that mass renormalization brings with it a 
mismatch with the presupposition in the theory of two different fields independently 
quantized. The electrons (and positrons) are taken to be quanta of the Dirac field, 
characterized in part by what are called the bare mass and bare charge. According to the 
applications of the theory the bare mass of the electrons has no observational meaning; 
the observed mass results from a simultaneous contribution from the Dirac and Maxwell 
fields. In this way we cannot associate the electron exclusively to quanta of the Dirac 
field. It will also be addressed not only the dubious mathematical procedure related with 
the calculation of the photon’s self-energy, but also the even more dubious – from a 
physical point of view – procedure of attaching the infinite constant that pops out in the 
photon self-energy calculation to the charges of the electrons ‘connected’ by the photon 
in an interaction process. In particular the charge renormalization procedure is 
considered in a second-order radiative correction to the Møller scattering amplitude. We 
will in this case notice limitations regarding the temporal description of physical 
processes, which are related with the charge renormalization procedure.  
 
 
2 The emergence of infinites in quantum electrodynamics 

 
When in 1929-30, Heisenberg and Pauli presented in two papers a relativistic quantum 
theory of the interaction between the quantized Maxwell and Dirac fields, they moved 
from Heisenberg’s first view that the self-energy of the electron did not constitute a 
problem and the infinite Coulomb self-energy could be neglected, to a more 
circumspect position recognizing that this problem might even render the theory 
inapplicable (Darrigol, 1984, pp. 484-486). In the first paper, published in 1929, 
Heisenberg and Pauli discarded the infinite Coulomb self-energy of the electrons as 
they did with the zero-point energy of the vacuum, because they considered these 
divergences to be irrelevant infinite constants that disappear as soon as one evaluates 
quantities that are observable like the difference between two energy eigenvalues. Also 
according to Pauli,  
 

the theory can be called a correspondence theory, insofar as all expressions for the Lagrangian of the field 
are indeed taken over directly or indirectly from the classical theory … I believe that we have now arrived 
at the natural limit of range of the correspondence idea on the basis of wave mechanics. Our theory 
naturally fails at all places where the classical picture fails. (Quoted in Mehra & Rechenberg, 2000, p. 
316) 
 
It is well know that in the classical theory of a point-like electron we already have a 

problem with the electron’s self-energy: it is infinite. Even so Pauli had aesthetic 
reservations regarding the self-energy problem in quantum electrodynamics, and even 
though he considered that the infinite constants might be removed in practical 
calculations they represented a ‘defect of beauty in principle’ (quoted in Mehra & 
Rechenberg, 2000, p. 316). According to J. Mehra and H. Rechenberg, in the section 8 
of their paper, Pauli and Heisenberg  
 

progressed to a perturbation scheme … under the assumption that the interaction terms could be expanded 
in a series of small perturbations … The Heisenberg-Pauli solution, however, also contained divergent 
terms of the form 1/rPP (the subscript P referring to the position of the particle), which corresponds to the 
self-interaction of the charged particle, say, the electron. This additive infinite term occurring in the 
energy of the total system may simply be neglected (subtracted), so long as the number of electrons does 
not change. (Mehra & Rechenberg, 2000, p. 325) 
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By the middle of 1929 Pauli (with whom J. R. Oppenheimer had began to 

collaborate) was seeking to improve the theory he had developed with Heisenberg. A 
three-man paper was being planned, where in particular Jordan’s criticism regarding 
gauge invariance would be addressed (Mehra & Rechenberg, 2000, p. 327). By July 
1929 Heisenberg still felt that “the catastrophic self-interaction of the electron does not 
disturb me too much” (Mehra & Rechenberg, 2000, p. 328). Finally Heisenberg and 
Pauli published a second part of their quantum electrodynamics in 1930, and 
Oppenheimer published a separate note regarding specifically the self-energy problem. 
In their paper Heisenberg and Pauli obtained Oppenheimer ‘s result for the Coulomb 
self-energy of the electron. Now however they recognized that the infinite self-energy, 
“in many cases will make application of the theory impossible” (quoted Miller, 1994, 
p.34). Also, the fact that the self-energy problem could not simply be traced back to a 
similar situation occurring already in classical electrodynamics was soon revealed by 
Oppenheimer (1930b) who found out a new (infinite) contribution to the self-energy 
without any classical counterpart. Using Dirac’s second-order perturbation formula 
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for the perturbation term in the Hamiltonian H1, we can consider the particular case 
where i = j. This situation represents the perturbation to the energy of the electron’s 
state i arising from the self-interaction of the electron. Considering for simplicity a 
single free electron (with momentum p and energy E(p) = c(p2 + m2c2)1/2), the sequence 
of transitions i → j → i is  
 

e → e’ + photon → e. 
 

According to A. Pais the “virtual states [e’ + photon] correspond to all momentum-
conserving partitions of p between e’ and the photon. There are infinitely many such 
states” (Pais, 1986, p. 373). The self-energy of the electron is found to be 
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in addition to smaller terms including the electrostatic (Coulomb) self-energy. What 
Oppenheimer obtained with this result was that while the classical self-energy diverges 
linearly (~ 1/r) as we take the electron radius to approach the point-like limit (r → 0), 
the quantum electrodynamical calculation predicted also a quadratic divergence of the 
term W(p). Also, W(p1) – W(p2) is not finite (as Heisenberg and Pauli initially 
expected) but also infinite, which means, “as Oppenheimer stressed, [that] self-energy 
effects causes infinite displacements of spectral lines” (Pais, 1986, p. 373). A disastrous 
result for quantum electrodynamics. 
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The situation of quantum electrodynamics during the thirties did not improve, on the 
contrary. As we have seen, to solve inconsistencies of his electron theory related to the 
existence of negative-energy solutions, Dirac proposed his hole theory. From this, a new 
infinity problem popped out. In Dirac’s hole theory we have an infinite sea filled with 
negative-energy electrons. This made Dirac consider that the electromagnetic field is 
generated by “the difference in the electric density from its value when the world is in 
its normal state (i.e. when every state of negative energy and none of positive energy is 
occupied)” (quoted in Pais, 1986, p. 378). That is, the Maxwell-Lorentz equation for the 
electric field is given, in Dirac’s hole theory, by Div E = – 4π (ρ – <ρ>vaccum). 
Going back to chapter 3, we can recall that in his 1930 paper on the hole theory 

Dirac remarked that “in the general case of an arbitrary varying electromagnetic field 
we can make no hard-and-fast separation of the solutions of the wave equation into 
those referring to positive and those to negative kinetic energy” (Dirac, 1930, p. 361). 
The knowledge of this situation led Dirac to consider in more detail the effect of an 
‘external’ electromagnetic field (that could simply result from the presence of a sole 
electron above the negative-energy sea) on the definition of the ‘normal’ state (vacuum 
state) of the negative-energy sea. According to Dirac  
 

when applied to space in which there is an electromagnetic field, … one must specify just which 
distribution of electrons is assumed to produce no field and one must also give some rule for subtracting 
this distribution from the actually occurring distribution in any particular problem. (Quoted Schweber, 
1994, p. 114) 

 
In a letter to Bohr from September 10, 1933, Dirac summarized his findings: 
 

Peierls and I have been looking into the question of the change in the distribution of negative-energy 
electrons produced by a static electric field. We find that this changed distribution causes a partial 
neutralization of the charge producing the field. If it is assumed that the relativistic wave equation is 
exact, for all energies of the electron, then the neutralisation would be complete and electric charges 
would never be observable. A more reasonable assumption to make is that the relativistic wave equation 
fails for energies of the order 137mc2. If we neglect altogether the disturbance that the field produces in 
negative-energy electrons with energies less than –137mc2, then the neutralization of charge produced by 
the other negative-energy electrons is small and of order 1/137. We then have a picture in which all the 
charged particles of physics electrons, atomic nuclei, etc. have effective charges slightly less than their 
real charges, the ratio being about 136/137. The effective charges are what one measures in all low energy 
experiments, and the experimentally determined value for e must be the effective charge on an electron, 
the real value being slightly bigger. (Quoted in Schweber, 1994, p. 116) 
 
Dirac presented his results at the seventh Solvay Congress held in October 1933. 

Due to the fact that in relativistic mechanics the energy is given by W2 = m2c4 + c2p2, it 
can take positive and negative values. According to Dirac, “it has not been possible to 
develop a relativistic quantum theory of the electron in which the transitions from a 
positive to a negative value of the energy should be excluded”  (Dirac, 1934a, p. 136). 
In particular transitions between the positive and negative energy states are “predicted 
in general for all processes putting into play exchanges of energy of the order mc2” (p. 
136). Dirac considered that  
 
it seems there are no reasons of principle against the applicability of the quantum mechanics to similar 
exchanges of energy. It is true that quantum mechanics does not seem applicable to phenomena which 
involve distances of the order of the classical radius e2/mc2, since the present theory can in no manner 
discuss the structure of the electron. But such distances, considered as electron wavelengths, correspond 
to energies of the order (ћc/e2)(mc2), which are much greater than the changes in question. It seems that 
the most reasonable solution is to search for a physical meaning for the negative energy states. (pp. 136-
137) 
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Dirac went on to present again his hole theory which gave a physical interpretation for 
the negative-energy states: 
 
Let us admit that in the universe such as we know it, the states of negative energy are nearly all occupied 
by electrons, and that the distribution thus obtained is not accessible to our observation on account of its 
uniformity throughout space. Under these conditions every unoccupied negative energy state represents a 
break in that uniformity, and must reveal itself as a kind of hole. It is possible to admit that these holes 
constitute positrons. 

This hypothesis resolves the principal difficulties of the interpretation of the states of negative energy 
… the hole takes exactly the aspect of an ordinary particle, positively electrified. (p. 137) 
 
Dirac then addresses the problem facing his interpretation when an external field is 
present. As already mentioned when there is no external field it is simple to take into 
account the infinite negative-energy sea in the Maxwell-Lorentz equation by 
considering that “the distribution of electrons produces no field in which no state of 
positive energy is occupied. And that it is the deviations from that distribution which 
determine the fields” (p. 138). However as Dirac acknowledges, this hypothesis  
 
is completely satisfactory when it is a question of a region of space where there exists no field, and where 
the distinction between the positive energy states and those of negative energy is cleanly defined; but one 
must specify when it is a question of a region of space where the electromagnetic field is not zero in order 
to be able to lead to results free of all ambiguity. We must specify mathematically which distribution of 
electrons is supposed to produce no field, and also give a rule for subtracting that distribution from the 
one which exists effectively in each particular problem, in such a way as to obtain a finite difference that 
can figure into equation [div E = –4πρ], since, in general, the mathematical operation of subtraction 
between two infinities is ambiguous. (p. 138) 
 
Dirac set out to consider the case of a weak, time-independent electrostatic field 

using the Hartree-Fock approximation. Dirac defined the density matrix R as 
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where the ψ‘s are four-component wave functions that are solutions of Dirac’s equation 
for each individual electron, and the summation runs over all occupied negative energy 
states. The wave functions are determined in the Hartree-Fock approximation, where 
each electron is taken to move in an effective field that is the same for all electrons. The 
equation of motion for R is 
 

Η−= RHRRi &h , 
 
where H = cρ1(σσσσ, p) + ρ3mc

2 – eV is the Hamiltonian for an electron moving in the 
electric field E = –∇V; also due to the exclusion principle we must have R2 = R.  Dirac 
assumes that the distribution R0 that produces no field is given by 
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where W = cρ1(σσσσ, p) + ρ3mc

2 is the kinetic energy of an electron. Dirac then looks for a 
“permanent state for which the equation of motion Η−= RHRRi &h  reduces to HR – RH 
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= 0” (p. 139). In particular Dirac looks for a solution of the form R = R0 + R1 where R1 
is a quantity of first order in V. Dirac considers that  
 
the quantity that interests us is the electric density corresponding to the distribution R1. In order to obtain 
it we must form the diagonal sum of R1, with respect to the spin variables, and then take the general 
diagonal element, multiplied by –e, of the resultant matrix with respect to the position variables x. (p. 
140) 
 
Dirac denotes this quantity by D(R1). Dirac found that when doing the integration of the 
expression for D(R1), “the result contains an infinite logarithm” (p. 141). Dirac’s 
reaction was to use a cut off which rendered the result finite. But, according to Dirac 
there is a physical justification in the use of a cut off: 
 
We could believe, at first sight, that the presence of that infinity renders the theory unacceptable. 
However, we cannot assume that the theory applies when it is a question of energies greater than the order 
of 137mc2, and the most reasonable way to proceed seems to be to limit arbitrarily the domain of 
integration to a value of the momentum … corresponding to electron energies of the order indicated. (p. 
141) 
 
This is an important point. As we have seen, Dirac had mentioned that  
 
quantum mechanics does not seem applicable to phenomena which involve distances of the order of the 
classical radius e2/mc2, since the present theory can in no manner discuss the structure of the electron … 
such distances, considered as electron wavelengths, correspond to energies of the order (ћc/e2)(mc2) [@ 
137mc2]. (pp. 136-137)  
 
This goes along the lines of Bohr’s views on quantum electrodynamics. In Bohr’s terms 
an unbound limit of integration would mean to apply the theory not taking into account 
the physical assumptions used to set up the theory, since we would be disregarding that 
the theory treats the electron as a point-charge; in it we are always considering distances 
larger than the electron’s ‘diameter’ (Bohr, 1932b, pp. 63-64). In his Faraday lecture 
Bohr mentioned that 
 
The scope of the quantum mechanical symbolism is essentially confined, however, to problems where the 
intrinsic stability of the elementary electrical particles can be left out of consideration in a similar way as 
in the classical electron theory. In this connexion, it must not be forgotten that the existence of the 
electron even in classical theory imposes an essential limitation on the applicability of the mechanical 

and electromagnetic concepts. Indeed, the finite propagation of electromagnetic forces brings with it the 

existence of a fundamental length, the so-called “electron diameter” defining a lower limit for the 

extension of the region where the idealization according to which the electron is considered as a charged 

material point is justifiable. Not only would a concentration of the charge of the electron within a smaller 
space result in an essential modification of its mass, but we even meet here with a limitation of the 
unambiguous use of the idea of inertial mass. In fact, we lose any simple basis for a sharp separation 
between ponderomotoric forces and radiative reactions when we consider processes in which the electron 
undergoes a velocity change of the same order as the velocity of light within a length of path equal to the 
electron diameter. It is true that such considerations lose their significance to a large extent on account of 
the existence of the quantum of action which imposes an essential limit to the analysis of motion. The 
fertility of quantum mechanics as applied to the problem of atomic stability lies just in the fact that the 

linear dimensions of the regions ascribed to even the firmest electron-bindings outside the nucleus are 

still very large compared with the classical electron diameter. (Bohr, 1932a, pp. 377-378 [my emphases])  
 
Returning to Dirac’s take on the logarithmically divergent integral, Dirac considered 

that  
 
if P is the value of the vector momentum … to which we limit the integration domain, the final result, 
obtained after a complicated integration, is: 
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where ρ is the electric density producing the potential V, so that 
 

         ∇2V = –4πρ, 
 
and where the terms containing the derivatives of ρ of order greater than second have been neglected. 
(Dirac, 1934a, p. 141) 
 
Now, Dirac’s view was that we could not apply the theory for energies greater than 
137mc2. This means taking the cut off P to be of order 137mc. For this cut off value the 
first term in the expression for ( )x)D(Rxe 1−  is equal to  –(e2/ ћc) ρ (Dirac took the 

second term not to be an important correction in the present conditions). Dirac’s 
interpretation of this result is as follows: 
 
As a result of the foregoing calculation, it would seem that the electric charges which one ordinarily 
observes on electrons and protons and the other particles of physics are not the actual charges which these 
particles carry (appearing in the fundamental equations) but are all slightly smaller, in a ratio of about 
136/137. (Quoted in Schweber, 1994, pp. 115-116) 
 
Dirac tried to improve his approach by presenting a more systematic procedure, 

which, contrary to the previous case (Dirac 1934a), was relativistic and might be 
applied to the case of external time-dependent fields. In a letter to Bohr of November 
10, 1933, Dirac mentioned his new approach:  
 

I have been working at the problem of the polarization of the distribution of negative-energy electrons, 
from a relativistic point of view. If I have not made a mistake, then there is just one relativistically 
invariant, gauge invariant treatment, which gets over all the difficulties connected with the infinites, to the 
accuracy with which the Hartree-Fock method applies … I have not yet seen whether this relativistic 
treatment leads to any kind of compensation of charge arising from the vacuum polarization. (Quoted in 
Schweber, 1994, p. 117) 
 
In his development of the density-matrix formalism Dirac again considers the 

density matrix R; and again it is considered that  
 

each electron moves in a definite electromagnetic field, which is the same for all electrons. This field will 
consist of a part coming from external causes and a part coming from the electron distribution itself, the 
precise way in which the latter part depends on the electron distribution being one of the problems we 
have to consider. (Dirac, 1934b, p. 146) 
 
Dirac’s objective was to find “some natural way of removing infinities from 

( )∑k kkxtRxt and ( )∑ α
k kks xtRxt [which is the current density] so as to leave finite 

remainders” (p. 148). 
In the case of no external field, Dirac found that the singularities of 

( ) 'k'k''t''x'Rt'x' all occurred in the light cone (p. 151). In the case of an external field 

present, Dirac supposed “that the singularities are of the same form as in the case of no 
field, but have unknown coefficients” (p. 152). Dirac showed that the density matrix 
could be divided into two parts R = Ra + Rb, where Ra contains all the singularities and 
“the electric and current densities corresponding to Rb are those which are physically 
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present, arising from the distribution of electrons and positrons. (p. 156). Dirac’s idea 
was that with this division of R in two parts “we can remove the infinities” (p. 156).  
Since the singularities were located in the light cone, this means that when x = x’ – 

x’’ ≠ 0 Ra is finite. According to Pais, “Dirac’s prescription for extracting finite results 
was: first subtract these singular terms, then let x → 0” (Pais, 1986, p. 382). Also, 
according to A. I. Miller, “the intent, of course, is to propose a counter-term  – Ra so 
that R – Ra and, consequently, the measured charge densities are finite. This will be 
accomplished by Heisenberg” (Miller, 1994, p. 60).  
The uniqueness of Dirac’s subtraction method was immediately questioned (Miller, 

1994, p. 60; Pais, 1986, p. 383). Heisenberg tried to improve Dirac’s method, and in the 
process, due to his use of a second quantized version of Dirac’s formalism in which 
electron and positrons were treated in a symmetrical way, came up with the existence of 
an “infinite self-energy of the light-quanta” (Heisenberg, 1934, p. 186). According to 
Heisenberg, when “compared to Dirac’s treatment, [his] paper emphasizes the 
significance of the conservation laws … and the necessity of formulating the basic 
equations of the theory in a manner extending beyond the Hartree approximation” (p. 
169). In the first part of his paper Heisenberg used the density matrix formalism. 
Following Dirac’s approach Heisenberg considers that “one will have to subtract from 
the density matrix [Rs] another density matrix [S] which is determined uniquely by the 
external fields, in order to obtain the ‘real’ density matrix [r, i.e. a density matrix 
without singularities]” (p. 171). The problem with Dirac’s method is according to 
Heisenberg that it does not provide a unique specification for S and because of this for 
the equation of motion of the system (p. 172). Heisenberg’s idea is that “by taking into 
account the conservation laws of charge, energy, and momentum, the possibilities for S 
can be restricted insofar that a particular value can be distinguished as the simplest 
assumption” (p. 172). Heisenberg went on to calculate the vacuum polarization, 
obtaining a corrected second term for the induced charge density (Miller, 1994, p. 64). 
Like Dirac, Heisenberg took this term as having no physical significance. This is not the 
case. As shown in 1935 by E. Uehling, this term yields measurable effects. Uehling 
found for the hydrogen atom the level 2S to be displaced by ∆ν = –27 megacycles per 
second (Pais, 1986, p. 383).  
In the second part of his paper Heisenberg extended the formalism, treating the 

Dirac wave function as a quantized Dirac field and also treating the electromagnetic 
field as a quantized field. In this part Heisenberg gave a symmetrical treatment to 
electrons and positrons being both treated on equal footing as quanta of the quantized 
Dirac field (Heisenberg, 1934, p. 183). Adopting Hamiltonian methods, Heisenberg 
noted that the subtraction of infinites could be done order by order in perturbation 
theory, noticing nevertheless the presence of self-energy-like terms that the subtraction 
procedure could not remove (Schweber, 1994, p. 118). According to Heisenberg “the 
perturbation method can be continued in principle, unless an infinite self-energy causes 
the method to diverge” (Heisenberg, 1934, p. 184).  
This formalism enabled Heisenberg to treat, in particular, the creation and 

annihilation of electron-positron pairs. Heisenberg found that the process by which a 
photon creates an electron-positron pair, which subsequently annihilates creating a 
photon, gives rise to a logarithmically divergent term. Heisenberg interpreted this term 
(in analogy to the electron’s self-energy) as the (infinite) self-energy of the light quanta: 
“we shall treat the matter density associated with a light quantum and in particular the 
self-energy of the light quantum derived on the basis of this matter density ... The 
energy of this matter field becomes infinite, in precise analogy to the infinite self-energy 
of the electrons” (p. 185).   
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Regarding the self-energy problems there was not much improvement during the 
thirties. The only solid result was V. F. Weisskopf’s demonstration that the electron 
self-energy is ‘only’ logarithmically divergent (Pais, 1986, p. 385). Going back to 
Oppenheimer’s calculation of the electron’s self-energy (Oppenheimer, 1930b), 
Oppenheimer found using single-particle theory (i.e. Dirac’s equation as a one-electron 
equation) a new quantum-mechanical term in the electron’s self-energy that diverges 
quadratically. Weisskopf completed in early 1934 a second-order calculation of the 
electron’s self-energy in hole theory (Weisskopf, 1934, p. 158). Weisskopf divided the 
electron’s electromagnetic field in two parts: a rotation-free part and a divergence-free 
part. According to Weisskopf the electrostatic self-energy is given by 
 

 ∫ Φρ=Ε rd'
2

1S r
, 

 
and the electrodynamic self-energy is given by 
 

∫ )Α(−=Ε rdi
2

1
trtr

D rrr
 

 
where itr is the divergent-free part of the current density. Expanding the self-energy 
operators by powers of the electric charge, in the second-order calculation only terms 
proportional to e2 are kept. The electrostatic self-energy calculated in the Dirac single-
electron theory diverges linearly. Weisskopf made his calculation in hole theory, i.e. 
considering a multi-electron system where all the states with negative energy are 
occupied. According to Weisskopf, “to calculate the self-energy of a multi-electron 
system, it is advantageous to use the method of quantized waves, in which the charge 
and current densities act as operators on the eigenfunctions, whose variables are the 
occupation numbers Nk(p) of the stationary states pk, k=1, …, 4 of the free electron” (p. 
160). He then calculated the diagonal element of the self-energy operator ES for a 
particular occupation of states. In this way, in the expression for the electrostatic self-
energy there is a summation over all the negative-energy states plus the occupied 
positive-energy state: the electron whose self-energy we want to calculate. Weisskopf 
found that “the electrostatic self-energy diverges logarithmically in the ‘hole’ theory” 
(p. 163). In this work Weisskopf made a mistake in the calculation of the 
electrodynamic part of the self-energy, obtaining initially a quadratic divergence (like in 
Oppenheimer’s calculation). Soon after W. Furry called Weisskopf’s attention to his 
error. In a correction to his first paper, also published in 1934, Weisskopf presented the 
corrected result. He found like in the case of the electrostatic part of the self-energy that 
in Dirac’s hole theory ED also had a logarithmic divergence (Miller, 1994, p. 61).31 
Writing to Weisskopf in February 1935, Heisenberg called attention to a shortcoming in 
Weisskopf’s calculation. Heisenberg repeated Weisskopf’s calculation and found that 
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31 In 1939 Weisskopf showed that the self-energy of the electron was logarithmically divergent to every 
approximation in an expansion of the self-energy in powers of the fine structure constant 
α (Weisskopf, 1939). 
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Heisenberg found these results suspicious because  
 
one must expect on relativistic grounds that 
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DS . (Quoted in Schweber, 1994, p. 125) 

 
According to Schweber, “the lack of proper relativistic covariance was to plague all 
self-energy calculations in the prewar period” (Schweber, 1994, p. 125). 
 
 
3 The submergence of infinites in quantum electrodynamics 

 
Things changed drastically in 1947, with W. Lamb’s experimental results on the shift of 
the 22S1/2 state relative to the 2

2P1/2 states in the hydrogen atom. H. A. Bethe coming 
from a conference in Shelter Island, held on 2-4 June 1947, did some calculations on a 
train going from New York to Schenectady. In the conference W. Lamb presented his 
recent results on the level shift. Bethe made a nonrelativistic calculation of the Lamb 
shift, taking into account the suggestion by J. Schwinger, Weisskopf, and Oppenheimer 
that the self-energy of the electron was responsible for the shift in the energy levels, and 
Kramers’s idea of mass renormalization  (Pais, 1986, pp. 455-456; Schweber, 1994, p. 
228-231). According to Bethe: “Kramers suggested that what one really ought to do was 
to renormalize the mass of the electron, taking into account its interaction with its own 
electromagnetic field. Then only those parts of the self-energy which are not contained 
in the mass of the particle would be observable” (quoted in Mehra & Rechenberg, 2001, 
p. 1039). Bethe calculated the self-energy W of a bound electron and subtracted to it the 
self-energy W0 of a free electron (with the same average kinetic energy). This 
corresponds to Kramers’s idea of mass renormalization. The difference W–W0 was 
according to Bethe “the true shift of the levels due to interactions” (quoted in Schweber, 
1994, p. 231). This expression is logarithmically divergent. Bethe considered that there 
should be (in the relativistic theory) a natural cut-off at energies around mc2 (which is 
not the case). By taking into account this ad hoc cut-off, Bethe was able to obtain a 
result in good agreement with the observed value. 
As seen above, the idea of renormalization, in the case of the electron’s charge, was 

basically present in Dirac’s report to the Solvay conference of 1933 (Dirac, 1934a). His 
ideas are stated more clearly in the letter to N. Bohr written after the preparation of the 
report:  
 

We then have a picture in which all the charged particles of physics, electrons, atomic nuclei, etc. have 
effective charges slightly less than their real charges, the ratio being about 136/137. The effective charges 
are what one measures in all low energy experiments, and the experimentally determined value of e must 
be the effective charge of an electron, the real value being slightly bigger. (Quoted in Schweber, 1994, p. 
116)32 

                                                 
32 Another statement of the idea of charge renormalization due to the effect of the vacuum polarization 
can be seen in Weisskopf’s paper on vacuum polarization from 1936. According to Weisskopf “the 
polarizability could in no way be observed, but would only multiply all charges and field strengths by a 
constant factor” (Weisskopf , 1936, p. 208). 
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A similar approach regarding the electron self-energy started to emerge in the end of the 
thirties, in Dirac’s own work, and in H. A. Kramers’s investigation of the 
renormalization of the electromagnetic mass at the classical level (as a first step for 
dealing with the problem at the quantum level). Kramers’s intention was to sidestep the 
problem by obtaining a consistent model for a finite size electron – that avoided the 
classical self-energy divergence –, considering from the start the experimental mass of 
the electron (that contained the mechanical mass and the electromagnetic mass). In this 
way Kramers “tried to present the theory in such a fashion that the questions of the 
structure and the finite extension of the particles are not explicitly involved and that the 
quantity that is introduced as the ‘particle mass’ is from the very beginning the 
experimental mass” (Kramers, 1938, p. 254). But mass renormalization was only put to 
use in quantum electrodynamics in 1947, in the quantum-mechanical (non-relativistic) 
train-ride calculation of Bethe. 
A few months after the conference, Schwinger worked on a non-covariant 

relativistic calculation of the Lamb shift using the mass and charge renormalization 
recipe, and obtained finite results to order e2/ħc. Knowing of G. Breit’s suggestion that 
the electron might have an intrinsic magnetic moment different from the one predicted 
by the Dirac equation – that explained the discrepancy with the experimental results 
regarding the hyperfine structure of the hydrogen atom –, Schwinger calculated the so-
called anomalous magnetic moment for an electron in an externally applied 
homogeneous magnetic field, which accounted for the previous hyperfine discrepancies 
between theory and experiment (Mehra & Rechenberg, 2001, p. 1045). Schwinger 
published his results in a short note from late December 1947. This note did not include 
the precise results of his Lamb shift calculations due to discrepancies between the 
Coulomb (Lamb shift) and the magnetic field (anomalous magnetic moment) 
calculations, because there existed a difference in the result for the magnetic moment in 
the case of the electron in an atom and a free electron (Schweber, 1994, p. 319; Mehra, 
1994, pp. 238-239). In this brief note Schwinger presented his view on the need for 
renormalization in quantum electrodynamics. According to Schwinger 
 

Attempts to evaluate radiative corrections to electron phenomena have heretofore been beset by divergent 
difficulties, attributable to self-energy and vacuum polarization effects. Electrodynamics unquestionably 
requires revision at ultra-relativistic energies, but is presumably accurate at moderate relativistic energies. 
It would be desirable, therefore, to isolate those aspects of the current theory that essentially involve high 
energies, and are subject to modification by a more satisfactory theory, from aspects that involve only 
moderate energies and are thus relatively trustworthy. This goal has been achieved by transforming the 
Hamiltonian of current hole theory electrodynamics to exhibit explicitly the logarithmically divergent 
self-energy of a free electron, which arises from the virtual emission and absorption of light quanta. The 
electromagnetic self-energy of a free electron can be ascribed to an electromagnetic mass, which must be 
added to the mechanical mass of the electron. Indeed, the only meaningful statements of the theory 
involve this combination of masses, which is the experimental mass of a free electron. It might appear, 
from this point of view, that the divergence of the electromagnetic mass is unobjectionable, since the 
individual contributions to the experimental mass are unobservable. However, the transformation of the 
Hamiltonian is based on the assumption of a weak interaction between matter and radiation, which 
requires that the electromagnetic mass be a small correction (~(e2/ħc)m0) to the mechanical mass m0 …It 
is important to notice that the inclusion of the electromagnetic mass with the mechanical mass does not 
avoid all divergences; the polarization of the vacuum produces a logarithmically divergent term 
proportional to the interaction energy of the electron in an external field. However, it has long been 
recognized that such a term is equivalent to altering the value of the electron charge by a constant factor, 
only the final value being properly identified with the experimental charge. Thus the interaction between 
matter and radiation produces a renormalization of the electron charge and mass, all divergences being 
contained in the renormalization factors. (Schwinger, 1948a, p. 416) 
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The calculations mentioned in the note were done using non-covariant hole-theoretic 
methods. This is the motive for the discrepancy in the calculations. Afterwards, 
Schwinger developed a covariant formulation of the Heisenberg and Pauli quantum 
electrodynamics. Nevertheless, “there were a great many ambiguities in the procedure” 
(Schweber, 1994, p. 333) of identifying the divergent contributions. Also the calculation 
method was terribly complicated and threatened to become insurmountable in higher-
order calculations. 
A key aspect of Schwinger’s covariant formulation was the deduction of an equation 

(later known as Tomonaga-Schwinger equation) that was a manifestly Lorentz covariant 
generalization of the Schrödinger equation. This was a functional derivative equation 
that describes the state function ψ as a functional ψ[ σ ] of a general three-dimensional 
surface σ in space-time: 
 

[ ] [ ]σψ=
)(δσ

σδψ
  t)H(x, 

x
cih . 

 
According to J. A. Wheeler’s notes on Schwinger’s presentation of his covariant 
formulation at the Pocono conference (held from March 30 to April 2, 1948), “these 
equations contain nothing more than Heisenberg-Pauli formalism and would not be 
required if one knew how to carry out Heisenberg-Pauli calculations consistently” 
(quoted in Schweber, 1994, p. 324). Schwinger applied his formalism in the 
determination of the radiative corrections to the motion of an electron in an external 
electromagnetic field, i.e. the calculation of the anomalous magnetic moment and the 
Lamb shift.  
At the Ann Arbor summer school (from July 19 to August 7, 1948), Schwinger gave 

a more detailed presentation of his formalism including an improved treatment of 
vacuum polarization. The value for the Lamb shift given by Schwinger was 
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which includes the 1/5 Uehling term, and where the 1/2-term is the magnetic moment 
effect (which were not included in the expression Schwinger presented at the Pocono 
conference). 
Schwinger’s lectures were based on his paper ‘quantum electrodynamics I’ (Schwinger 
1948b) and a first draft of a sequel where Schwinger applied the formalism to determine 
the vacuum polarization and the self-energy (Schwinger 1948c). 
In the introduction to the first paper Schwinger gave further insights on his views 

regarding quantum electrodynamics. According to Schwinger 
  

The unqualified success of quantum electrodynamics in applications involving the lowest order of 
perturbation theory indicates its essential validity for moderately relativistic particle energies. The 
objectionable aspects of quantum electrodynamics are encountered in virtual processes involving particles 
with ultra-relativistic energies. The two basic phenomena of this type are the polarization of the vacuum 
and the self-energy of the electron. 

The phrase “polarization of the vacuum” describes the modification of the properties of an 
electromagnetic field produced by its interaction with the charge fluctuations of the vacuum. In the 
language of perturbation theory, the phenomenon considered is the generation of charge and current in the 
vacuum through the virtual creation and annihilation of electron-positron pairs by the electromagnetic 
field. If the electromagnetic field is that of a light quantum, the vacuum polarization effects are equivalent 
to ascribing a proper mass to the photon. Previous calculations have yielded non-vanishing, divergent 
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expressions for the light quantum proper mass. However, the latter quantity must be zero in a proper 
gauge invariant theory. The failure to obtain this result from a gauge invariant formulation can be 
ascribed only to a faulty application of the theory, rather than to an essential deficiency thereof. When the 
electromagnetic field is that of a given current distribution, one obtains a logarithmically divergent 
contribution to the vacuum polarization current which is everywhere proportional to the given 
distribution. This divergent result expresses the possibility, according to the present theory, of creating 
electron-positron pairs with unlimited energy, a situation that presumably will be corrected in a more 
satisfactory theory. Thus the physically significant divergence arising from the vacuum polarization 
phenomenon occurs in a factor that alters the strength of all charges, a uniform renormalization that has 
no observable consequences other than the conflict with empirical finiteness of charge. 

The interaction between the electromagnetic field vacuum fluctuations and an electron, or more 
exactly, the electron-positron matter field, modifies the properties of the matter field and produces the 
self-energy of an electron. The mechanism here under discussion is commonly described as the virtual 
emission and absorption of a light quantum by an otherwise free electron … in a Lorentz invariant theory, 
self-energy effects for a free electron can only result in the addition of an electromagnetic proper mass to 
the electron’s mechanical proper mass. Calculations performed for a stationary electron have yielded a 
logarithmically divergent electromagnetic proper mass, a divergence that results from the possibility of 
emitting light quanta with unlimited energy … the electromagnetic proper mass merely produces a 
renormalization of the electron mass that has no observable consequences, other than the conflict with the 
empirical finiteness of mass. 

It is evident that these two phenomena are quite analogous and essentially describe the interaction of 
each field with the vacuum fluctuations of the other field. The effect of these fluctuation interactions is 
simply to alter the fundamental constants e and m, although by logarithmically divergent factors. 
However, it may be argued that a future modification of the theory, inhibiting the virtual creation of 
particles that possess energies many orders of magnitude in excess of mc2, will ascribe a value to these 
logarithmic factors not vastly different from unity. The charge and mass renormalization factors will then 
differ only slightly from unity, as befits a perturbation theory, in consequence of the small coupling 
constant for the matter and electromagnetic fields, e2/4πħc  = 1/137. (Schwinger, 1949b, pp. 1439-1440) 
 

It is important to notice that Schwinger considers that the divergences result from 
‘virtual processes involving particles with ultra-relativistic energies’. These virtual 
processes came about in perturbative calculations. They are basically the transitory 
states Dirac found in his second order perturbation theory (see chapter 5; see also 
chapter 7 for a treatment of virtual quanta). As Schwinger writes, in the ‘language of 
perturbation theory’ we have, in what regards the vacuum polarization, the creation and 
annihilation of transitory (virtual) electron-positron pairs. The most interesting aspect of 
Schwinger’s view is that he considers that a possible future modification of the theory 
might exclude virtual states with energies ‘many orders of magnitude in excess of mc2’. 
This is Dirac’s subtraction physics with a cut off. The difference is that Schwinger is 
hoping for a future more elaborated theory with a ‘natural’ cut off, while Dirac presents 
the cut off as a necessary ‘patch’ to maintain the calculation within a mathematical 
domain where the physical concepts make sense (in this case the abstraction of the 
electron as a point-like electron; see also chapter 5). To put it simply, Dirac (with Bohr) 
is seeing a conceptual inconsistency when considering integrals without an energy cut 
off, where Schwinger (as other renormalization physicists) sees basically a 
mathematical problem to be solved in a future better theory. 
Back in Cornell (from the conference in Shelter Island) in early July 1947, Bethe 

gave a lecture on his non-relativistic calculation of the Lamb shift, which R. P. 
Feynman attended. According to Feynman:  
 

He explained that it gets very confusing to figure out exactly which infinite term corresponds to what in 
trying to make the correction for the infinite change in mass. If there were … any modification whatever 
at high frequencies, which would make this correction finite, then there would be no problem at all to 
figuring out how to keep track of everything … if in addition this method were relativistically invariant, 
then we would be absolutely sure how to do it without destroying [relativistic invariance]. (Feynman, 
1965, p. 170) 
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Feynman considered first the case of determining a relativistic cut-off for classical 

electrodynamics. Using his path-integral method, Feynman, following Bethe’s idea, 
replaced a delta function appearing in the interaction term of the action by an invariant 
function dependent on a cut-off parameter that made all results finite; this procedure 
corresponding to a ‘regularization’ of the theory. Feynman would then renormalize the 
mass, putting the bare mass and the now finite electromagnetic mass under the umbrella 
of the experimental mass. 
Feynman did not manage to derive the Dirac equation using his path-integral 

method. So, by ‘guessing’ he was able to use an invariant regularization method based 
on a cut-off with the Dirac theory of the electron (Mehra, 1994, pp. 229-234). Feynman 
developed his “little theory of electrodynamics in which the interaction is not exact on a 
delta function” (quoted in Schweber, 1994, p. 427) as if it was different from the 
conventional electrodynamical theory. In his 1948 paper on the relativistic cut-off, 
Feynman presented his method as “a model, for which all quantities automatically do 
come out finite” (Feynman, 1948, p. 1430). This does not mean that Feynman rejected 
the renormalization method. In his calculations he performed the mass and charge 
renormalization, but he saw his method as an “attempt to find a consistent modification 
of quantum electrodynamics” (Feynman, 1949b, p. 778). Because it was inconsistent, 
the correct physics had to be obtained by making the renormalization of mass and 
charge, and obtaining expressions independent of the cut-off parameter by making the 
cut-off parameter go to infinity after renormalization (Feynman, 1962, p. 145).  
In between the Shelter Island and the Pocono conferences, Feynman, after 

developing a relativistic cut off procedure for classical electrodynamics, extended this 
approach to the case of a spinless relativistic particle, being able to obtain a relativistic 
generalization of the expression Bethe had used in his calculations. By applying this 
approach to the Dirac electron (following an intuitive procedure suggested by Bethe), 
Feynman was able to obtain Weisskopf’s expression for the self-energy (now depending 
logarithmically on Feynmam’s cut off parameter). In a letter (from late autumn) written 
to Bert and Mulaika Corber, Feynman commented on his ongoing work: 
 

There was so much talk around here about self-energy, that I thought it would be the easiest thing to 
calculate directly in my form. The result is exactly the same as one gets for ordinary perturbation theory 
… It therefore also gives infinity. I then altered the delta function in the interaction to be a sum of less 
sharp function. This corresponds to a kind of finite electron. Then the self-energy of a non-relativistic 
particle is finite. (Quoted in Schweber, 1994, p. 423) 
 
At the Tenth Washington Conference on Theoretical Physics (held on 13-15 

November 1947), Feynman attended a talk by Schwinger. Feynman was interested in a 
remark made by Schwinger, referring to the fact that, according to Feynman’s 
recollections on the conference, “the discrepancy in the hyperfine structure of the 
hydrogen noted by Rabi, can be explained on the same basis as that of electromagnetic 
self-energy, as can the line shift of Lamb” (quoted in Mehra, 1994, p. 236). After the 
conference Feynman did the calculation of the anomalous magnetic moment using his 
approach.  
In a letter to the Corbers from middle January 1948 we already see an outline of 

Feynman’s regularization approach to the problem of the infinites in quantum 
electrodynamics: 
 

I have been working with a theory of electricity in which the delta function interaction is replaced by a 
less sharp function. Then (in quantum mechanics) the self-energy of an electron including the Dirac hole 
theory comes out finite … actually, the self-energy comes out finite and invariant and is therefore 
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representable as a pure mass … thus all mass cannot be represented as electrodynamic unless the cutoff is 
ridiculously short. The experimental mass is of course the sum of inertial and this electromagnetic 
correction … I think all the problems of electrodynamics can be unambiguously solved by this process: 
First compute the answer which is finite (but contains the cutoff logarithm). Then express the result in 
terms of the experimental mass. The answer still contains the cutoff but this time not logarithmically. 
Take the limit which now exists, as the cutoff goes to infinity. (Quoted in Schweber, 1994, p. 426) 
 
In the meeting of the American Physical Society that took place at the end of 

January 1948, Schwinger reported on his results regarding the anomalous magnetic 
moment of a free electron and his results for the Lamb shift (published on his note from 
December 1947). In this talk Schwinger mentioned that his results for the anomalous 
magnetic moment for an electron in a magnetic field did not agree with the value 
obtained for an electron in a Coulomb field. Feynman mentioned then that he had got 
things right, i.e. the same result for the magnetic moment of an electron, in both cases of 
a free or bound electron (Mehra, 1994, pp. 238-239). In his approach Feynman was not 
working with Dirac’s hole theory, but thinking in terms of paths (in space-time) and 
representing the positrons as electrons going backwards in time (Schweber, 1994, p. 
428).  
By the time of the Pocono conference Feynman had a working approach that 

enabled him to calculate the anomalous magnetic moment, Lamb shift and cross 
sections for diverse processes. What Feynman did not have was a way to deal with the 
vacuum polarization, which in Feynman’s approach was connected with so-called 
closed loops (i.e. paths that give rise to an infinite polarizability of vacuum). In his 
presentation Feynman was still hoping that it was possible to get a consistent theory 
without using loops (Schweber, 1994, p. 443). That was not the case. 
After the Pocono conference Feynman decided to write down his work in a set of 

papers. The first addressed the relativistic cut off for classical electrodynamics. The next 
an extension of this approach to the case of quantum electrodynamics. In this paper 
Feynman got the results for the self-energy obtained previously by Weisskopf and 
Bethe; and it included a discussion of the scattering of an electron by a (classical) 
potential. In this paper Feynman considered only processes in which the photons 
appeared only in the intermediate states of the perturbative calculations. Feynman found 
that he could simply take on equal footing the four polarizations of the photon, 
transverse, longitudinal, and scalar, in a relativistic and gauge invariant way. All this 
before the Gupta-Bleuler method. This state of affair was possible because Feynman 
was considering the case where all the light quanta are virtual. As W. Heitler stresses in 
his classical book on quantum electrodynamics, “we can compute the transition 
probability by choosing an initial state without longitudinal and scalar photons, ignoring 
the Lorentz condition in the meantime, and by calculating only the probabilities of final 
states which have no longitudinal and scalar photons” (Heitler, 1954, p. 130). In the 
case of Feynman’s calculation we do not even have transverse photons in the initial and 
final states. In this paper Feynman had still not found a way to deal with the infinites 
related to the vacuum polarization. We can know about Feynman’s progress on the 
vacuum polarization problem from a letter from late 1948: 
 
In regards to “Q.E.D.” as you put it, I don’t have a cold dope. I can calculate anything, and everything is 
finite, but the polarization of the vacuum is not gauge-invariant when calculated. This is because my 
prescription for making the polarization integral converge is not gauge-invariant. If I threw away the 
obvious large gauge-dependent term (a procedure which I can not justify legally, but which is practically 
unambiguous) the result is a charge renormalization plus the usual Uehling term. The amount of charge 
renormalization depends logarithmically on the cut-off. The Uehling terms are practically independent on 
the cut-off and give the usual –1/5 in the Lamb shift. (Quoted in Mehra, 1994, p. 265) 
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By the end of January 1949 Feynman learned about the Pauli-Villars regularization 

procedure that enables a gauge-invariant regularization of the vacuum polarization. By 
the spring of 1949 he had all the elements together and published his two most 
important papers on quantum electrodynamics, where his approach was presented and 
put to use. 
In his ‘The theory of positrons’, submitted on 8 April 1949, Feynman begins by 

presenting his idea of positrons as electrons moving backward in time. In the abstract 
Feynman writes:  
 
the problem of the behavior of positrons and electrons in given external potentials, neglecting their 
mutual interaction, is analysed by replacing the theory of holes by a reinterpretation of the solutions of the 
Dirac equation. It is possible to write down a complete solution of the problem in terms of the boundary 
conditions on the wave function, and this solution contains automatically all the possibilities of virtual 
(and real) pair formation and annihilation together with the ordinary scattering processes, including the 
correct relative signs of the various terms. 

In this solution, the “negative energy states” appear in a form which may be pictured (as [done] by 
Stückelberg) in spacetime as waves travelling away from the external potential backwards in time. 
(Feynman, 1949a, p. 749) 
 
In here we see Feynman talking about solutions with appropriate boundary conditions, 
not the equations themselves. In the introduction we start seeing how Feynman thought 
about physical processes as described in his scheme: 
 
In the approximation of classical relativity theory the creation of an electron pair (electron A, positron B) 
might be represented by the start of two world lines from the point of creation, 1. The world lines of the 
positron will then continue until it annihilates another electron, C, at a world point 2. Between the times t1 
and t2 there are then three world lines, before and after only one. However, the world lines of C, B, and A 
together form one continuous line albeit the “positron part” B of this continuous line is directed 
backwards in time. Following the charge rather than the particles corresponds to considering this 
continuous world line as a whole rather than breaking it up into its pieces. It is as though a bombardier 
flying low over a road suddenly see three roads and it is only when two of them come together and 
disappear again that he realizes that he has simply passed over a long switchback in a single road. 

This over-all space-time point of view leads to considerable simplification in many problems. (p. 
749) 
 
Feynman then relates his ‘over-all space-time view’ to his path integral approach to 

quantum mechanics. Feynman begins by “a brief discussion of the relation of the non-
relativistic wave equation to its solution” (p. 750). It goes as follows. Starting with the 
Schrödinger equation i∂ψ/∂t = Hψ, if ψ(x1, t1) is the solution at x1 at time t1, then the 
wave function for t2 > t1 is given by 
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where the green function K is given by 
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(En and φn are the eigenvalues and eigenfunctions of the operator H in the case of a free 
particle). Feynman calls “K(2, 1) the total amplitude for arrival at x2, t2 starting from x1, 
t1. (It results from adding an amplitude, exp(iS), for each space time path between these 
points, where S is the action along the path)” (p. 750). 
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In the case of a particle in a weak external potential U (x, t), differing from zero for t 
between t1 and t2, we can expand K in increasing powers of U: 
 

  K(2, 1) = K0(2, 1) + K
(1)(2, 1) + K(2)(2, 1) + ···. 

 
To zero order in U, K is that for a free particle: K0(2, 1). In first order of perturbation 
theory K(1)(2, 1) results from the action of the potential U at some time t3 (between t1 
and t2). From t1 to t3, and from t3 to t2 the particle is free. In this way it can be shown 
that K(1)(2, 1) is given by 
 

  300
1 1)d,3(3)U(3),2(i1(2, τΚΚ−=)Κ ∫
)( . 

 
In Feynman’s explanation of the meaning of these formulas we see how his over-all 
space-time approach goes: 
 
We can imagine that a particle travels as a free particle from point to point, but is scattered by the 
potential U. Thus the total amplitude for arrival at 2 from 1 can be considered as the sum of the 
amplitudes for various alternative routes. It may go directly from 1 to 2 (amplitude k0(2, 1)) … or it may 
go from 1 to 3 (amplitude k0(3, 1)), get scattered there by the potential (scattering amplitude –iU(3) per 
unit volume and time) and then go from 3 to 2 (amplitude k0(2, 3)). This may occur for any point 3 … 
Again it may be scattered twice by the potential … It goes from 1 to 3 (k0(1, 3)), gets scattered there (–
iU(3)) then proceeds to some other point, 4, in space time (amplitude k0(4, 3)) is scattered again (–iU(4)) 
and then proceeds to 2 (k0(2, 4)). Summing over all possible places and times for 3, 4 find that the second 
order contribution to the total amplitude k(2)(2, 1) is 
 

43000
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After presenting his approach in the case of non-relativistic quantum mechanics 

Feynman addresses the relativistic case. Starting with Dirac’s equation (i∇ – m)ψ = Aψ, 
for a particle of mass m in an external potential A, the equation determining the 
propagation of a free particle is (i∇2 – m) K+(2, 1) = iδ(2, 1). In analogy to the non-
relativistic case, the first order and second order corrections to K+(2, 1) are given by 
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The core part of this paper is the selection of the admissible solutions according to 
Dirac’s hole theory (related to his ‘positrons as electrons moving backward in time’ 
view): 
 
We would now expect to choose for the special solution of [the equation for K+(2, 1)], K+ = K0 where 
K0(2, 1) vanishes for t2 < t1 and for t2 > t1 is given by [the equation for K(2,1)] where φn and En are the 
eigenfunctions and energy values of a particle satisfying Dirac’s equation … The formulas arising from 
this choice, however, suffer from the drawback that they apply to the one electron theory of Dirac rather 
than to the hole theory of the positron … the choice K+ = K0 is unsatisfactory. But there are other 
solutions of [the equation for K+(2, 1)]. We shall choose the solution defining K+(2, 1) so that K+(2, 1) for 
t2 > t1 is the sum of [the equation for K(2, 1)] over positive energy states only. … With this choice of 
[K+(2, 1)] our equations such as [the previous one for K+

(1)(2, 1)] and [the previous one for K+
(2)(2, 1)] 

will now give results equivalent to those of the positron theory. (p. 752) 
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In this paper Feynman only considered the case of several non-interacting particles, 
leaving the problem of interacting particles to his next paper. 
In “Space-Time Approach to Quantum Electrodynamics”, sent to publication on 9 

May 1949, Feynman put forward the regularization procedure he had been developing 
within his over-all space-time view. Feynman addressed first the case of particles 
interacting instantaneously, which could then be easily generalized to the case of 
delayed interactions. As in the case of the previous paper Feynman considers 
 
the solutions of equations rather than the time differential equations from which they come. We shall 
discover that the solutions, because of the over-all space-time view that they permit, are as easy to 
understand when interactions are delayed as when they are instantaneous. (Feynman, 1949b, p. 771) 
 
Using the methods of the previous paper, Feynman addresses the case of two interacting 
particles, considering first the non-relativistic case described by the Schrödinger 
equation. In the case of two free particles the amplitude is given by 
 
            K(xa, xb, t; xa’, xb’, t’) = K0a(xa, t; xa’, t’)K0b(xb, t; xb’, t’) 
 

where xa’ and xb’ are the positions of the particles at time t’, and xa and xb the positions 
of the particles at a later time t. We can also define the amplitude 
 

K0(3, 4; 1, 2) = K0a(3, 1)K0b(4, 2) 
 
that the particle a goes from x1 at t1 to x3 at t3 and that particle b goes from x2 at t2 to x4 
at t4. According to Feynman 
 
When the particles do interact, one can only define the quantity K(3, 4; 1, 2) precisely if the interaction 
vanishes between t1 and t2 and also between t3 and t4. In a real physical system such is not the case. There 
is such an enormous advantage, however, to the concept that we shall continue to use it, imagining that 
we can neglect the effect of interactions between t1 and t2 and between t3 and t4. For practical problems 
this means choosing such long time intervals t3 − t1 and t4 − t2 that the extra interactions near the end 
points have small relative effects. As an example, in a scattering problem it may well be that the particles 
are so well separated initially and finally that the interaction at these times is negligible. Again energy 
values can be defined by the average rate of change of phase over such long time intervals that errors 
initially and finally can be neglected. Inasmuch as any physical problem can be defined in terms of 
scattering processes we do not lose much in a general theoretical sense by this approximation. (p. 771) 
 
Feynman first gives an example of this approach in the case of an instantaneous 

Coulomb interaction, and then shows how it can be extended to the case of a delayed 
interaction. Considering a Coulomb potential e2/r (where r is the distance between the 
particles), which is ‘active’ for only a short time interval ∆t0 at time t0, the first order 
correction to the amplitude is given by 
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where t5 = t6 = t0. Considering now the potential to be active all the time, according to 
Feynman, ”the first-order effect is obtained by integrating on t0, which we can write as 
an integral over both t5 and t6 if we include a delta-function δ(t5 − t6) to insure 
contribution only when t5 = t6” (p. 772). In this case the first order correction to the 
amplitude is given by 
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where dτ = d3xdt. In the case of a delayed interaction the story goes as follows. Since 
“the Coulomb potential does not act instantaneously, but is delayed by a time r56, taking 
the speed of light as unity. This suggests simply replacing r56

−1δ(t56) in [the expression 
for K(1)(3, 4;1, 2)] by something like r56

−1δ(t56 − r56) to represent the delay in the effect 
of b on a.”(p. 772). According to Feynman things are not that easy because “when this 
interaction is represented by photons they must be of only positive energy, while the 
Fourier transform of δ(t56 − r56)  contains frequencies of both signs” (p. 773). Because 
of this, Feynman uses instead the expression 
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This is not the whole story. After taking into account the contribution due to the case 
when t5 < t6 (which corresponds to a emitting the quantum that b receives), generalizing 
to an interaction described also by the vector potential, and adapting the formalism to 
the case of electrons described by the Dirac equation, Feynman arrives at the expression 
 
         (1 − αa · αb)δ+(s56

2) = βaβbγaµγbµδ+( s56
2). 

 

In this way, in the case of electrons interacting through an electromagnetic field, the 
amplitude is given by 
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Feynman calls it his fundamental equation for quantum electrodynamics. According to 
Feynman it “describes the effect of exchange of one quantum (therefore first order in e2) 
between two electrons. It will serve as a prototype enabling us to write down the 
corresponding quantities involving the exchange of two or more quanta between two 
electrons or the interaction of an electron with itself” (p. 772). Feynman then gives a 
description of the meaning of the equation presenting a graphical support to his 
interpretation: a Feynman diagram. It goes as follows: 
 
It can be understood (see Fig. 1) as saying that the amplitude for “a” to go from 1 to 3 and “b” to go from 
2 to 4 is altered to first order because they can exchange a quantum. Thus, “a” can go to 5 (amplitude 
(K+(5, 1)) emit a quantum (longitudinal, transverse, or scalar γaµ) and then proceed to 3 (K+(3, 5)). 
Meantime “b” goes to 6 (K+(6, 2)), absorbs the quantum (γbµ) and proceeds to 4 (K+(4, 6)). The quantum 
meanwhile proceeds from 5 to 6, which it does with amplitude δ+(s56

2). We must sum over all the possible 
quantum polarizations it and positions and times of emission 5, and of absorption 6. Actually if t5 > t6 it 
would be better to say that “a” absorbs and “b” emits but no attention need be paid to these matters, as all 
such alternatives are automatically contained in [the fundamental equation]. (pp. 772-773) 
                            
Feynman first applied his technique to the case of the electron’s self-energy. Since 

the calculations turn out to be easier in the momentum-energy space, Feynman 
presented rules to calculate the amplitude working with momentum and energy 
variables. Feynman then shows how his regularization scheme works. In this paper 
Feynman also addresses the problem of vacuum polarization making use of the gauge 
invariant regularization procedure developed by Pauli and Villars. 
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Figure 1: The fundamental interaction (described by Feynman’s fundamental equation). Exchange of one 
quantum between two electrons. 
 
To see regularization at work I will look into the problems of the electron’s self-

energy and photon’s self-energy. In the case of the electron’s self-energy, Feynman’s 
‘fundamental formula’ reduces to 
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According to Feynman, this first order correction to the amplitude K+(2, 1), “arises 
because the electron instead of going from 1 directly to 2, may go (Fig. 2) first to 3, 
(K+(3, 1)), emit a quantum (γµ), proceed to 4, (K+(4, 3)), absorb it (γµ), and finally arrive 
at 2 (K+(2, 4)). The quantum must go from 3 to 4 δ+(s43

2))” (p. 773). Feynman shows 
how this expression is related with the self-energy of an electron, which turn out to be 
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Figure 2: Interaction of an electron with itself 
As mentioned, for easiness in the calculations Feynman works in the momentum-

energy space. In this case the self-energy is the matrix element between u  and u (taken 
from the plane wave solution for a free Dirac electron: u exp(−px)) of the matrix 
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According to Feynman:  
 

The equation can be understood by imagining (Fig. 3) that the electron of momentum p emits (γµ) a 
quantum of momentum k, and makes its way now with momentum p − k to the next event (factor (p − k− 
m)−1) which is to absorb the quantum (another γµ). The amplitude of propagation of quanta is k

−2. (There 
is a factor e2/πi for each virtual quantum). One integrates over all quanta. The reason an electron of 
momentum p propagates as 1/(p − m) is that this operator is the reciprocal of the Dirac equation operator, 
and we are simply solving this equation. Likewise light goes as 1/k2, for this is the reciprocal 
D’Alembertian operator of the wave equation of light. The first γµ represents the current which generates 
the vector potential, while the second is the velocity operator by which this potential is multiplied in the 
Dirac equation when an external field acts on an electron. (p. 775) 
 

 
 

Figure 3: Interaction of an electron with itself. Momentum-energy space. 
 
Up to this point, things are moving smoothly. However if we calculate the integral 

to obtain the self-energy it turns out, as already mentioned, to be infinite. Using 
contemporary notation, the problems in the calculation of the electron self-energy are all 
concentrated in this apparently harmless integral (Mandl & Shaw, 1984, p. 187): 
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As it stands this integral is divergent. From Lorentz invariance Σ(p) can be put in the 
form 
 

                    (p)m)p(m)Bp(A(p) c∑−/+−/+=∑ , 

 
where m is the electron’s (experimental) mass, and, in particular, A = Σ(p) when γµpµ = 
m (Mandl & Shaw, 1984, p. 189). This term provides a correction δm = –e0

2A of 
electromagnetic origin to the bare mass m0 of the electron, which can be seen as 
resulting from the interaction of the electron with its own field. In this way, at the level 
of quantum electrodynamical applications, the electron’s mass that is experimentally 
measured corresponds to a renormalized mass where the electron’s self-energy is taken 
into account. 
      For k Ø ∞ the previous integral is logarithmically divergent (this is the famous 
ultra-violet divergence). A way out is to make a “change in the fundamental laws” 
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(Feynman, 1961, p. 137): the photon propagator 1/k2 is multiplied by a relativistically 
invariant convergence factor, assumed by Feynman to be c(k2) = –λ2/(k2 – λ2). This 
change has to be seen as a formal calculational device, a mathematical trick to get rid of 
the logarithmic divergence in the integral. If we try to see it as a new theory distinct 
from the one derived from classical electrodynamics we obtain a non-hermitian 
interaction Lagrangian that implies that probability is not conserved. Also from a 
physical point of view the use of this convergence factor is equivalent to considering 
“an additional interaction of the electron-positron field with a vector field whose quanta 
have mass λ and whose propagators are –(k2 – λ2)–1” (Schweber, 1961, p. 519). With 
this prescription it is possible to calculate the integral. With this regularization 
procedure we have  
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where Λ is a cut-off parameter (Mandl & Shaw, 1984, 191). It turns out that the only 
contribution from the self-energy which is not renormalized is the finite integral Σc(p). 
From this term the radiative correction (due to the electron self-energy) to the lowest-
order calculations is obtained. If we stopped here, we would have an experimentally 
measurable radiative correction dependent on an arbitrary cut-off parameter Λ.33 To get 
things right, after the renormalization we have to make the cut-off parameter go to 
infinity, so that the radiative correction term “remains well-defined and finite in this 
limit and independent of the details of the regularization procedure” (Mandl & Shaw, 
1984, p. 191). This method to overturn the problem of infinites in quantum 
electrodynamics was summarized by Feynman in one of his quantum electrodynamical 
rules: “(1) Put in an arbitrary cutoff factor c(k2) = – [λ2/(k2 – λ2)] for each propagator 
1/k2. (2) Express everything in mexp = m – δm. (3) Take the limit as λ Ø ∞ and keep 
mexp fixed.” (Feynman, 1962, p. 143). 
 
 
4 Different views on renormalization  

 
It is usually held that the divergence problem in quantum electrodynamics is due to a 
failure of the theory at ultra-relativistic energies, that is, to the fact that there is no upper 
bound to the energy of the virtual quanta that are exchanged during interactions. This 
might lead to the idea that the cut-off parameter serves like a “boundary line separating 
the knowable region from the unknowable” (Cao & Schweber, 1993, p. 52). But since 
there is no indication on where to put this cut-off, it seems that “we cover our ignorance 
by calculating only quantities which are independent of the exact value of the cut-off” 
(Teller, 1988, p. 87). This procedure results in a change from the approximative 
regularized version of the theory to a recovered quantum electrodynamics with 
renormalized mass and charge. This means changing “the status of the cutoff from a 
tentative, and tantalizing, threshold energy to a purely formalistic device” (Cao & 
Schweber, 1993, p. 53). Even if Feynman was trying to achieve a consistent regularized 
theory, and published his method as a provisional one while searching for a “correct 

                                                 
33 This problem does not arise with δm because we consider it to be ‘absorbed’ in the experimental 
measurable mass mexp = m0 + δm, which is seen as an amalgamation of the bare mass and the 
electromagnetic mass, and whose magnitude – as a phenomenological parameter – is determined not by 
the theory but from experiments. 
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form of f+ [the function that substitutes the delta function appearing in the interaction 
term] which will guarantee energy conservation” (Feynman, 1949b, p. 778), it seems 
that it ended up being what Bethe had envisaged from the beginning: a mathematical 
calculational device designed to overcome the divergence problems in some integrals. 
Also, as previously mentioned, from a physical point of view the regularized theory is 
completely different from quantum electrodynamics. It does not have a divergence 
problem because of the presence of an auxiliary vector field. This field can be seen as a 
formal mathematical device if, and only if, after the renormalization we recover a cut-
off independent theory. If we tried to maintain the regularized theory, so that we did not 
have to deal with the problem of infinites in the calculations, we would be working not 
with quantum electrodynamics but with another (inconsistent) field theory. 
We see in the case of Feynman (like previously with Schwinger) a lack of 

understanding of the possible implications at a conceptual level of the regularization 
scheme and renormalization. As we have seen Feynman as looking for a consistent 
modification of quantum electrodynamics. Contrary to Dirac (with Bohr), Feynman 
does not relate the regularization to structural aspects of the theory (i.e. to the adoption 
in Dirac’s equation of a point-like electron) that might imply (even if in an inconsistent 
way) an upper bond to the possible energy exchanges.   
Contrary to a common view I think that the divergence of the integrals and the use 

of the cut-off trick do not reveal where the theory stops being good and a ‘true’ theory 
should come into play. It reveals structural problems in the construction of the theory, 
that are impossible to ignore when we have some integrals, that should (from a physical 
point of view) provide small radiative corrections to lower-order calculations, and end 
up blowing apart in a proliferation of infinites. In quantum electrodynamics the 
description of the interaction between ‘particles’ (like photons and electrons) as quanta 
of the Maxwell and the Dirac fields is given by the perturbative expansion of the 
scattering matrix that describes the interaction (and it is in the terms of the S-matrix that 
the divergent integrals appear). Considering the second-order term of the scattering 
matrix S2(x1, x2) in configuration space, the mathematical expression of the terms 
related with the divergent part of the electron’s self-energy are dependent on δ(x1 – x2). 
This means that “all the divergences in S2(x1, x2) come from terms proportional to δ(x1 – 
x2) and to its derivatives which differ from zero only in the infinitesimal neighbourhood 
of the point x1= x2” (Bogoliubov & Shirkov, 1959, p. 299). The divergence problem 
does not arise solely from the fact that there is in the theory no upper bound to the 
energy of the virtual quanta. It results from the ‘coincidence’ in the theory of the 
inexistence of a natural limit to the energy of virtual quanta and from the local character 
of the interaction between the fields in quantum electrodynamics.  
One other aspect of the mass renormalization procedure is that when we go beyond 

the lowest-order approximations, and the mass renormalization is needed, there is a 
mismatch between the conceptual basis of the theory and its description of matter: 
conceptually quantum electrodynamics is developed from the idea of two independently 
quantized fields – one of them describing matter – that interact. The electrons (and 
positrons) are described in quantum electrodynamics as quanta of the quantized Dirac 
field, having a (bare) mass associated with them. At the same time the higher-order 
calculations require considering the mass of the electron as having a non detachable 
contribution from the Maxwell field. The observed or experimental mass of the electron 
results in the applications of the theory from a simultaneous contribution from the bare 
mass of quanta of the Dirac field and the self-energy of these quanta due to the 
interaction of the Dirac and Maxwell fields. 
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That the divergence in the calculation of the electron’s self-energy reveals structural 
problems related to distinct aspects of the theory does not mean that the theory does not 
have other less noticed limitations, also related to the divergence of integrals. This can 
be seen on a closer look at the second-order calculation of the photon self-energy. Again 
we have a divergent integral and again a regularization scheme is used and a 
renormalization is made. 
The (second-order) photon self-energy leads to a modification of the photon 

propagator: Dµν’(k)= gµνD(k)+ D(k)Πµν(k)D(k), where  Πµν(k) is a quadratically 
divergent integral and D(k) is the bare photon propagator. Considering the requirement 
of Lorentz and gauge invariance, the second-order tensor Πµν(k) must have the form 
(gµνk

2 – kµkν)Π(k2) (Jauch & Rohrlich, 1976, p. 189). As it stands, for k2 = 0 we have 
Πµ

µ(0) ≠ 0. This would mean that the propagator we obtain taking into account this 
second-order correction is not the propagator for a zero mass photon but the propagator 
for a massive neutral vector boson (Sakurai, 1967, p. 275). To recover our photon we 
must recall that Πµν(k) must be gauge invariant. Imposing this condition, we must have 
Πµν(k)k

ν = 0. From this we obtain the ambiguous result that the quadratically divergent 
integral  
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must be identically zero (Jauch & Rohrlich, 1976, p. 190). The only way to circumvent 
this situation is to consider that “the integral is, strictly speaking, meaningless, since it is 
divergent” (Schweber, 1961, p. 552). 
The pragmatic view is that we need a ‘functioning’ theory that is gauge invariant 

and provides a zero mass for the photon in the lower terms of the perturbation 
expansion of the S-matrix that are used in practice. This, when evaluating Πµν(k), can 
be done by taking into account the divergent integral Πµ

µ(0) and subtracting it from 
Π(k2), which leads to a logarithmically divergent integral. Using a gauge invariant 
regularization scheme we have Π(k2)= C + k2Πf(k2), where Πf(k2) is a finite correction 
term that as  ΛØ ∞ “tends to a well-defined finite limit which is independent of the 
detailed form of the regularization procedure” (Mandl & Shaw, 1984, p. 187), and C is 
logarithmically divergent as  ΛØ ∞ (Sakurai, 1967, p. 277). With this procedure we 
obtain a regularized photon propagator that includes second-order photon self-energy 
effects. 
The next step is to incorporate the regularized constant C in a parameter of the 

theory whose value is experimentally determined, so that we can take the cut-off limit to 
infinity and recover quantum electrodynamics from the regularized ‘theory’. 
Considering, for example, the second-order correction to the electron-electron or Møller 
scattering34 due to the self-energy of the photon, the change in the Møller scattering 
amplitude amounts to 
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34 I will look into some general aspects of the Møller scattering in the next chapter. 
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The trick is to consider the (infinite) constant 1 – C not as a correction factor related to 
the photon propagator itself, but, as can be seen more clearly in the limit k2 Ø 0, as a 
correction to the charges of the electrons which interact via the photon. In this way we 
relate this (infinite) correction to the coupling constant. In the limit k2 Ø 0 the modified 
photon propagator is given by D’F(k) = (1 – C) DF(k). We renormalize the theory 
considering that (1 – C) ½ is a correction to the unobservable electron bare charge ebare, 
so that what is observed is eobs= (1 – C)

 ½ ebare. The distinctive flavour of this 
renormalization procedure when compared with the mass renormalization is that we are, 
so to speak, transferring the problems of the photon to the electrons.  
Looking closely at the second-order self-energy correction to the Møller scattering, 

the infinity arising in the photon propagator is absorbed by the charges of the electrons 
‘located’ at both ‘vertices’ of the interaction.  This is possible because the description of 
the scattering by an S-matrix perturbative approach is done in a way that what appears 
in between the initial and final asymptotic states is not described as a process occurring 
in time, but the situation is such that “the S-matrix describes the scattering in the 
operational spirit of Heisenberg’s matrix mechanics. It gives transition probabilities 
which correspond to measurable relative frequencies. But it treats the scattering itself as 
a black box” (Falkenburg, 2007, p. 131). Implicit in the procedure is a notion of time 
lapse between the initial and final asymptotic states (formally taken to be infinitely 
apart). What we do not have is a classical-like description of the photon propagation as 
something taking time to happen: in the renormalization procedure there is no 
possibility for the photon propagation to be seen as related to a causal temporal order 
connecting the electrons evolved in the scattering. In the applications of the theory, the 
Minkowski space-time loses any possible operational meaning related to space and time 
measurements, and becomes a sort of configurational space that is part of the machinery 
that enables to calculate energy-momentum cross-sections. There is, as I said, an idea 
implicit of temporal order in the scattering (also present in the ordering of operators in 
the terms of the S-matrix) but no temporal description of the process as something 
related to the exchange of a ‘signal’ propagating at light speed. All these are pretty 
much well-known aspects of quantum electrodynamics. But I think that the full 
implication of this situation has not been considered previously. The charge 
renormalization is possible only by not requiring a temporal description of the processes 
in the applications of quantum electrodynamics. But if a temporal description was 
(somehow) intended, it is clear that it would be incompatible with the charge 
renormalization procedure, because we can only have charge renormalization in an 
overall temporal description of the interaction going on inside an unobservable ‘black 
box’ (in the next chapters I will explore this situation a bit more). 
Up to this point, I have been considering lowest order radiative corrections and the 

necessary mass and charge renormalization. This is not the whole story. I have not 
mentioned how Feynman’s approach relates to the S-matrix calculations, the 
renormalization to all orders of the S-matrix, and what to make of Dyson’s 1952 result 
about the divergence of the series expansion of the S-matrix; in the process of doing so I 
will return to the views that several physicists have had regarding renormalization. 
Dyson gave a more formal structure to Feynman’s approach. Considering the 

perturbative solution of the Tomonaga-Schwinger equation in terms of a unitary 
operator, Dyson realized that when taking the limits for an initial state in the infinite 
past and a final state in the infinite future, Schwinger’s unitary operator was identical to 
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the Heisenberg S-matrix. Following Feynman’s symmetrical approach between past and 
future, Dyson used a chronological operator P( ) that enabled him to present the S-
matrix in the form 
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where HI(x) is the term in the Hamiltonian corresponding to the interaction between the 
Maxwell and Dirac fields (Dyson, 1948, p. 492). In the case of electron-electron 
scattering, the second-order term of this expansion is given by Feynman’s fundamental 
equation (taking into account Pauli’s exclusion principle).35 
This Dyson did after the summer of 1948, having already talked substantially with 

Feynman and assisting in particular Schwinger’s lectures at Ann Arbor in that summer. 
On arriving at the Institute for Advanced Study in Princeton in early September 1948, 
Dyson wrote home that 
 
on the third day of the journey a remarkable thing happened; going into a sort of semi-stupor as one does 
after 48 hours of bus-riding, I began to think very hard about physics, and particularly about the rival 
radiation theories of Schwinger and Feynman. Gradually my thoughts grew more coherent, and before I 
knew where I was, I had solved the problem that had been in the back of my mind all this year, which was 
to prove the equivalence of the two theories. Moreover, since each of the two theories is superior in 
certain features, the proof of the equivalence furnished incidentally a new form of the Schwinger theory 
which combines the advantages of both. (Quoted in Schweber, 1994, p. 505) 
 
Afterwards Dyson confronted the question of whether the perturbative approach could 
be made finite to every order. Dyson was able to show inductively that if all 
divergences had been removed in a particular order n then they could be removed in 
order n + 1. Since this was the case in lowest order by using renormalization 
procedures, this would also be the case to whatever order we actually achieved when 
making a calculation. In this way the perturbative expansion of the S-matrix is 
renormalizable to all orders (Dyson, 1949). However as we have already seen, the 
perturbative expansion of the S-matrix is divergent. What to make of this with respect to 
renormalization? 
First I will look again into Schwinger’s view on the renormalization. Schwinger 

considered that the infinites meant that the theory breaks down at ultra-relativistic 
energies. Under this view, to Schwinger 
 
[renormalization] is the clear separation of what we don’t know–but which affects our experiments in a 
clear limited way–from what we do know and where we can calculate in detail. In fact, I insist that all 

                                                 
35 The S-matrix program was originally developed by W. Heisenberg as an alternative to quantum field 
theory. His idea was to sidestep the problem of divergences in quantum field theory – in his view due to 
the point-like interaction between fields – by considering only what he saw as measurable quantities 
(Miller, 1994, p. 97). Heisenberg’s idea was to retain only the basic elements of quantum field theory, 
like the conservation laws, relativistic invariance, unitarity, and others, and to make the S-matrix the 
central element of a new theory (Pais, 1986, p. 498). This was not done because in practise it was not 
possible to define an S-matrix without a specific use of the theory it was intended to avoid (Cushing, 
1986, p. 118). The S-matrix later reappeared in mainstream physics with Dyson’s use of it as a 
calculational tool. In Dyson’s view the “Feynman theory will provide a complete fulfilment of 
Heisenberg’s S-matrix program. The Feynman theory is essentially nothing more than a method of 
calculating the S-matrix for any physical system from the usual equations of electrodynamics” (quoted in 
Cushing, 1986, p. 122).  
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theories are like this. –People may not want to face up to it, there is always an area beyond where the 
theory either breaks down or where other phenomena come into play that you don’t know about. They do 
not upset everything in the area you can control, and you isolate that from it: That’s what renormalization 
is really about. Not sweeping infinities away but isolating the unknown part and recognizing its limited 
influence. 

I am not sure that I was at all interested in the mathematical question of convergence to all order. I 
don’t think that is a physical question. I have a feeling even then that I did not take renormalization too 
seriously. If in fact the theory had been not renormalizable at the 27th stage or whatever have you, I 
would have said ”O.K. That’s good” because here is a place where what we don’t know, namely what 
happens at very large energies, enters the theory and will learn something. It wasn’t essential to me that 
the theory be renormalizable to all orders. That was nice to get the theory going to lowest order. What 
would be even more interesting is if it didn’t work. I wasn’t very caught up in all these all order 
questions. (Quoted in Schweber, 1994, p. 366) 
 
We see that for Schwinger it was not problematic that the series expansion of the S-
matrix is divergent (even if he does not mention it explicitly, I think this agrees with the 
view he presents). However, we see that there is not in Schwinger a connection between 
the mathematical problems facing the theory and a limitation on its applicability in a 
way to be consistent with the underlying concepts (like the idea of a point-like electron), 
as we can see in Dirac’s subtraction physics.  
My view is that Dyson’s 1952 new divergence does not change much whatever view 

we decide to have on renormalization.  We can still think that there is a breakdown at 
high energies or/and problems in the type of description of the interaction between the 
fields adopted in quantum electrodynamics. Depending on what we make of Dyson’s 
divergence we can see it related, or not, to the renormalized infinites. I tend to see a 
relation, because, in my view, both are related with limitations in the description of the 
interactions in quantum electrodynamics, and both are manifestations of an improper 
use of the mathematics beyond the physical content of the theory.  
In the previous chapter I defended that we can relate the divergence of the S-matrix 

series expansion with a tentative application of the theory beyond the possibilities 
provided by the input physical assumptions used to set up the theory as a perturbative 
approach. Now I put together the elements for the equivalent point in the case of 
renormalization. For this I will return to Dirac’s subtraction physics and to Bohr’s views 
on the problem of infinities in quantum electrodynamics. In a nutshell Dirac concluded 
that an external electromagnetic field had an effect of polarization of the distribution of 
negative-energy electrons. The calculation of the density matrix of the sea electrons, in 
the simple case of an external electrostatic field, gave a logarithmically divergent result. 
Dirac considered that we cannot assume that the theory applies when it is a question of 
energies greater than the order of 137mc2. So, he used a cut-off to render the results 
finite. With the finite result in his hands, Dirac concluded that there is no induced 
electric density except at the places where the electric density producing the field is 
situated, and at these places the induced electric density cancels a fraction of 1/137 of 
the electric density producing the field. This means that the electron’s charge that is 
measured is smaller than the real charge. 
For me the crucial aspect can be found in Dirac’s argument for the need of a cut off. 

He says that 
 
quantum mechanics does not seem applicable to phenomena which involve distances of the order of the 
classical radius e2/mc2, since the present theory can in no manner discuss the structure of the electron … 
such distances, considered as electron wavelengths, correspond to energies of the order (ћc/e2)(mc2) [@ 
137mc2]. (Dirac, 1934a, pp. 136-137) 
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As already mentioned, this can be seen as a Bohrian sentence, in the sense of taking into 
account the input physical assumptions in the theory of a point-like electron to justify 
disregarding energies greater than the order of 137mc2. To appreciate properly this point 
let us look again into Bohr’s views on quantum electrodynamics: 
  
The foundations of the present treatment of atomic phenomena are the discoveries of the ultimate 
electrical particles and the elementary quantum of action, which rely upon quite separate lines of 
experimental evidence and at the present stage of atomic theory are introduced in essentially different 
and independent ways.… The possibility of treating the elementary particles and the quantum of action 
as independent foundations of the theory of the electronic constitution of atoms rests essentially upon 
the fact that the atomic dimensions, as deduced from quantum-mechanics and symbolized by the 
“radius” of the hydrogen atom a = h2/4π2e2m [(2)], are very large compared with the electron diameter 
given by [ d = e2/mc2 (1)]. Obviously, this is a necessary condition for considering the electron as a 
charged material point in the fundamental mechanical equations…. Notwithstanding its fertility, the 
attack on atomic problems in which the particle idea and the quantum of action are considered as 
independent foundations is of an essentially approximative character … The possibility of treating 
radiation phenomena and other effects of the finite propagation of forces to a considerable extent rests 
entirely on the smallness of the two dimensionless constants of atomic theory, the fine structure 
constant  α = 2πe2/hc and the ratio between the masses of the electron and the proton  β = m / M. Thus 
as will be seen from (1) and (2), it is the small value of α which is responsible for the smallness of the 
ratio between d and a, which is just equal to α2. It is just this circumstance which affords a justification 
for the neglect of the radiative reaction in a description of the stationary states including the fine 
structure ... the attempts to treat the radiation effects on rigorous lines by considering the atoms and the 
electromagnetic field as a closed quantum-mechanical system led to paradoxes arising from the 

appearance of an infinite energy of coupling between atoms and field. The solution of these difficulties 
will certainly claim a formalism in which the elementary particles and the quantum of action appear as 
inseparable features….  It is important, however, to examine more closely to what extent the present 
theory offers a reliable guidance for the analysis of the phenomena ... In this procedure, in which the 
radiation field is not considered as part of the system under investigation ... By a proper application of 
the quantum mechanical formalism it has been possible … the treatment of such problems as the width 
of spectral lines and the retardation effects in the interaction of electrons bound in atoms. Still, the 
condition for such applications is that the effects in question can be treated as small perturbations of 
the phenomena to be expected if the finite propagation of forces would be neglected. Due to the 
smallness of the constant α, mentioned above, this condition is widely fulfilled in problems of atomic 
constitution, since even for the electrons most firmly bound in atoms of high nuclear charge, ”orbital” 

dimensions and spectral wave-lengths are very large compared with the classical electron diameter. 
(Bohr, 1932b, p. 62-67 [my emphases]) 
 
Contrary to others that look into the renormalizable infinites in quantum 
electrodynamics from the perspective of a putative better theory, Bohr looks from 
within quantum electrodynamics. As we have seen, for example in the case of the Klein 
paradox, to Bohr it is not that the negative-energy solutions are non-physical or some 
other thing. It is simply that we cannot disregard the atomicity of matter, and when we 
do that, by considering mathematically possible potentials that are physically impossible 
when taking into account part of the conceptual basis of the theory (i.e. the atomicity of 
matter), we get into trouble. We obtain strange mathematical results without any clear 
physical meaning. The same holds in the case of the renormalizable infinities. In the 
structure of the theory we have a point-like description of the electron. This means we 
can not consider distances were we might have in some way to talk about the internal 
structure of the electron (whatever this might mean). When considering high-energy 
interactions we would be so to speak poking into the electron, i.e. going beyond the 
conceptual basis of the theory. The infinities show not where a better theory is needed 
but where we are stretching the mathematics beyond the physical basis of the theory. In 
quantum electrodynamics, according to Bohr, it only makes sense to consider distances 
larger than the so-called “electron diameter”, which implies taking a limited range for 
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the energy in interactions. This in practice corresponds to using a Dirac type cut off in 
the necessary expressions (i.e. Feynman’s regularization), even if it turns out to be a 
mathematically inconsistent procedure (as others in the theory).  
 
 
5 Conclusions 

 
The objective in this chapter was twofold. One of them was to address renormalization 
from the perspective of the spacio-temporal description of physical processes in 
quantum electrodynamics.  As we have seen implicit in the charge renormalization 
procedure is the fact that we are considering an overall space-time description. In 
practice this means that we are not really describing the physical processes in time. The 
charge renormalization is possible exactly because of this. We implement a view of the 
physical processes as if from outside space-time and we move around infinities that 
should be related to the electromagnetic mediation between charged particles, i.e. 
related to delayed interactions, and ‘by hand’ put the infinities where it is more 
convenient. In this case the infinity due to the photon self-energy is attributed to the 
charge of the particles and ‘renormalized’.  
The other objective of this chapter was to dig into the history of renormalization to 

see if from an encounter with the original moments where the developments were being 
made it was possible to find a ‘new’ perspective on renormalization that might not be 
part of the contemporary philosophical views on renormalization; the objective was not 
to present a detailed study of the different contemporary views.36  
The view regarding renormalization presented here is based on Bohr’s ideas. As we 

have seen, according to Bohr 
 
the existence of the electron even in classical theory imposes an essential limitation on the applicability of 
the mechanical and electromagnetic concepts. Indeed, the finite propagation of electromagnetic forces 
brings with it the existence of a fundamental length, the so-called “electron diameter” defining a lower 
limit for the extension of the region where the idealization according to which the electron is considered 
as a charged material point is justifiable. (Bohr, 1932a, p. 377)  
 
We must recall that in the structure of quantum electrodynamics is inscribed, through 
the Dirac equation, a point-like description of the electron (see chapter 3). This 
idealization of the electron as a point-like particle implies according to Bohr limitations 
to quantum electrodynamics: 
 
the difficulties inherent in any symbolism resting on the idealization of the electron as a charged material 
point appear also most instructively in the recent attempt of Heisenberg and Pauli to build up a theory of 
electromagnetic fields on the lines of quantum mechanics. (Bohr, 1932a, p. 378) 
 
I regard Dirac’s ‘subtraction physics’ as an example of a procedure that identifies and 
overcomes in an imperfect way one of these difficulties.37 As we have seen, according 
to Dirac  

                                                 
36
 In particular I do not address the renormalization group approach (on this subject see e.g. Huggett and 

Weingard, 1995). 
37
 To Bohr the difficulties of quantum electrodynamics were, in particular, “Dirac’s unobservable 

negative energies, the ambiguity of force indicated by the Klein paradox, the unmeasurable magnetic 
moment of the electron, the uninterpretable spin, and the unresolved infinities” (Moyer, 1981, p. 1061). 
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quantum mechanics does not seem applicable to phenomena which involve distances of the order of the 
classical radius e2/mc2, since the present theory can in no manner discuss the structure of the electron … 
such distances, considered as electron wavelengths, correspond to energies of the order (ћc/e2)(mc2) [@ 
137mc2]. (Dirac, 1934a, pp. 136-137) 
 
In this way Dirac made use of a cut-off in the applications of the theory, corresponding 
to a maximum value of the energy of the order 137mc2: 
 
we cannot assume that the theory applies when it is a question of energies greater than the order of 
137mc2, and the most reasonable way to proceed seems to be to limit arbitrarily the domain of integration 
to a value of the momentum … corresponding to electron energies of the order indicated. (Dirac, 1934a, 
p. 141) 
 
With this procedure we would be avoiding a conflict between one of the input physical 
assumptions of the theory (the point-like electron) and applications not taking into 
account this physical assumption. 
Does this means that the theory sets from the inside its experimental domain of 

application? It seems that this was Bohr’s view. According to a letter of Dirac from 
1931, 
 
Bohr is at present trying to convince everyone that the places where relativistic quantum theory fails are 
just those where one would expect it to fail from general philosophical consideration. (quoted in Moyer, 
1981, p. 1060) 
 
This is not the view being defended here. To clarify this point let us consider for 
example Newton’s theory of gravitation. As it is well known, Newton’s theory predicts 
a particular numerical value in relation to the drift of the perihelion of mercury, which, 
contrary to Einstein’s gravitation theory, is not in good agreement with observation. 
However from the internal perspective of Newton’s theory there is nothing strange 
about this result: it is physically meaningful (i.e. it goes along the line of different 
results provided by the theory). What is happening is that we are facing a limit of 
application of the theory in what regards ‘saving the phenomena’. The situation with the 
renormalizable infinities is different; it is not related to the experimental/observational 
domain of applicability of quantum electrodynamics (i.e. it is not related with ‘saving 
the phenomena’). In my view it represents a locus of ‘divergence’ between the physical 
assumptions of the theory and its mathematical applications; contrary to the view that 
Dirac attributes to Bohr (I think correctly), the limitations in the application of physical 
concepts do not affect or enable to define clearly the experimental/observational domain 
of applicability of the theory. When addressing appropriately the problem of infinities 
by the renormalization procedure it does not affect the domain of application of the 
theory.  
How do we identify situations where a mismatch occurs between for example the 

physical idealization of a point-like electron and applications that go beyond this 
idealization? In my view when we obtain results that are not physically meaningful 
(without taking into account any comparison with observations). This is particularly 
clear when for example we expect on physical grounds to calculate a very small 
correction to the electron mass due to its self-energy and it turns out that the result is 
divergent. This does not imply that in all theories we must take a divergent result as a 
sign of a mismatch between the physical input assumptions and the mathematical 
applications of the theory. I have no general argument pointing to this, and I do not even 
explore this possibility. As mentioned, in this work the objective is only to look into a 
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few conceptual-mathematical problems of quantum electrodynamics not related to 
‘saving the phenomena’. 
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CHAPTER 7 
 

 

 

THE FEYNMAN DIAGRAMS AND VIRTUAL QUANTA 
 
 
 
 
 
 
 

1. Introduction 

 

As we have seen, during the development of quantum electrodynamics in the 1930s and 
most of the 1940s, the calculations beyond the lowest order of perturbation theory gave 
infinite corrections to the results, before the renormalization program eventually 
succeeded in “sweeping the dirt under the rug” (Feynman 1962, 137). It might seem that 
the lowest order applications of the theory, where there are no infinites to struggle with, 
are free from problems, and that in particular Feynman’s space-time approach to 
quantum electrodynamics might provide consistent means of representation and 
visualization of the lowest order processes in quantum electrodynamics. In this chapter, 
however, I shall argue that things are not quite that simple. In particular, I will focus on 
the role played by photons in the description of electron-electron interactions. I will 
analyse the relevance of virtual and real photons in making possible a description of the 
interaction as a delayed interaction, as it is possible in classical electrodynamics. 
In section 2 the derivation of Møller’s semi-classical formula for electron-electron 

scattering is considered, by a full quantum electrodynamical treatment using the so-
called Feynman fundamental formula (related to the second-order term of the S-matrix 
expansion). The electron-electron interaction is described in this case as an exchange of 
a virtual photon between the electrons. In section 3 the lowest order calculation of the 
electron-electron scattering that permits the derivation of the Møller formula is used to 
analyse the type of description of interaction provided by quantum electrodynamics and 
its limitations. It turns out that it is not possible to give a description of the electron-
electron interaction as a process occurring in time, i.e. as a delayed interaction. To better 
understand this limitation in relation to the classical description, in section 4 I will 
consider a quantum model for the interaction between two bound electrons. In this case, 
contrary to the previous, the photon responsible for the interaction can be taken to be a 
real photon. In this circumstance we regain a delayed interaction as in the classical case. 
The problem is that we are not truly working with an application of quantum 
electrodynamics, but with a heuristic construction of a quantum model of the interaction 
between two bound electrons patching together different elements.  
 
 

2 The Møller scattering and Feynman’s fundamental equation 

 
In the early 1930s, the relativistic electron-electron scattering was treated using a semi-
classical approach in the lowest order of perturbation theory. C. Møller used in the 
Maxwell equations the charge and current densities associated with the state transition 
of an electron from an initial to a final free state as described by the Dirac equation. The 
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effect of the retarded potentials determined in this way on a second electron results in a 
state transition of the electron. With this scheme Møller obtained a symmetrical 
expression for the matrix elements for the scattering of two electrons interacting via 
classical retarded potentials (Møller, 1931; see also Heitler, 1954, p. 233). Around the 
years 1932-33, the use of correspondence methods by Møller lost part of its appeal, due 
to Bethe and Fermi’s demonstration that the formula could be derived within quantum 
electrodynamics, and also due to Bohr’s confidence in the logical consistency of the 
theory (Kragh, 1992, pp. 323-324), even if, as Bohr recognized, the divergence 
problems in the theory were still not solved, and physics was “confronted with the 
necessity of a still more radical departure from accustomed modes of description of 
natural phenomena” (quoted in Schweber, 1994, p. 84). In any case, Møller’s scattering 
formula did not attract much attention during the thirties and forties, until it revealed 
itself as an almost immediate application of the new formulation of quantum 
electrodynamics (Roqué, 1992, p. 256). 
Briefly Møller’s method goes as follows.  Møller considers that when a particle 

makes a transition (during an interaction) from an initial state i to a final state f, it can 
be associated with charge and current densities given by 
 

        ρ = –eψf
*ψi 

 
         j = eψf

*αψi 
 

Møller then makes use of Klein’s ‘correspondence approach’, where we consider at the 
same time the one-electron Dirac equation and the classical Maxwell-Lorentz equations. 
In Klein’s approach the expressions for the charge and current densities provided by 
quantum theory are used in the classical Maxwell-Lorentz equations to determine the 
field emitted in a transition (Kragh, 1992, p. 310). According to Klein 
 

As we try here to connect wave mechanics directly with the electromagnetic field equations, we will 
assume, that the electromagnetic phenomena corresponding to the magnitudes [of the charge density] and 
[the current density] give, in the sense of Bohr’s correspondence principle, a quantitative expression of 
the observable actions related to the presence of an atom in a certain stationary state. (Quoted in Roqué, 
1992, p. 202) 
 
Møller considers now that the charge and current densities resulting from a quantum 

transition give rise to a classical potential given by the equations 
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where p = (E/c, p) is the four-momentum of the electron. This potential is taken to be a 
perturbation to a second particle described by Dirac’s equation: 
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Møller uses the (spatial part) of the classical perturbing potential, and by considering 
the particles to be described by plane waves (i.e. the particles are described as free 
particles), arrives at the interaction matrix element 
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which is symmetric in the two particles, and can be taken to describe the interaction 
between the particles (even if its derivation was made in an unsymmetrical way by 
taking the potential arising from the first particle to perturb the second particle). By a 
straightforward procedure it is possible to calculate the formula for the scattering cross 
section, which is then used to compare with experimental results. This is, in a nutshell, 
Møller’s semi-classical treatment – in first order of perturbation theory, and using the 
‘correspondence approach’ of Klein – of the electron-electron scattering. 
Should we consider this semi-classical approach when addressing the description of 

interactions in quantum electrodynamics as giving some sort of valuable different 
perspective? Taking into account the views of E. T. Jaynes, accepted here, the answer is 
no. According to Jaynes 
 

What I will call Semiclassical A (SCA) was the original method of incorporating the electromagnetic 
field into quantum theory, antedating QED. SCA is what we were all taught in our first course in quantum 
mechanics, defined for our present purposes (which are served adequately by the model of a single 
nonrelativistic spinless hydrogen atom) by the Schrödinger equation 
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in which the electromagnetic potentials A, φ are considered given. This equation determines the 

effect of the field on the atom; from it we obtain the quantum theory of the Zeeman and Stark effects, the 
Einstein B-coefficients of black-body radiation theory, the Rutherford scattering law, the photoelectric 
cross-section, and with appropriate generalization, very much more. 

SCA is incomplete in that it fails to give the effect of the atom on the field. To supply this, so that 
one could describe emission and scattering of radiation, there arose the ”Klein Vorschrift” … Closely 
related to this was the “transition current method” (TCM) which is still very much in the use today … In 
TCM, one specifies initial ψi and final states ψf, for the electrons, and sandwiches an operator 
representing current, dipole moment, etc. between them, making the “transition current” 
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or the “transition dipole current”, etc. Then we switch to classical electromagnetic theory, and 

calculate the fields that would be produced by such a current or dipole moment. In this way, surprisingly, 
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we obtain the correct Einstein A-coefficients for spontaneous emission. TCM also yields many other 
useful results, such as the Møller e-e scattering formula. 

TCM can hardly be considered as a well-motivated physical theory in its own right, because it mixes 
up the initial and final states in a way that defies any rational physical interpretation. Note, however, that 
if 
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is a linear combination of stationary states, the quantity 
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usually called the “probability current”, will be interpreted by neoclassical theory as actual current 

(or, at least, its divergence will equal the divergence of the actual current). Using the expansion (3), we 
see that the current (4) contains all the transition currents with amplitude ai

*aj: 
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Because of the above difficulty of interpretation, and because both the Klein vorschrift and TCM 

received an a posteriori justification from QED, I would consider that they do not represent parts of any 
semi-classical theory, but should be regarded as convenient short-cut algorithms contained in QED. 
(Jaynes, 1973, pp. 38-40) 
 

We will then turn our attention to the quantum electrodynamical treatment of electron-
electron scattering. 
Following J. A. Wheeler’s view that all physical phenomena could be seen as 

scattering processes (Schweber, 1994, p. 379), Feynman considered the mutual 
interaction of two electrons as a fundamental interaction described by his fundamental 
equation for quantum electrodynamics (Feynman, 1949b, p. 772; see chapter 6 for 
details on Feynman’s ‘fundamental equation’). The Møller scattering formula is 
obtained directly from this equation when Pauli’s exclusion principle is taken into 
account (Feynman, 1949b, p. 773). 
As already mentioned, in 1948, Dyson proved the equivalence of the theories  of 

Feynman and Schwinger (and Tomonaga). The main contribution of Dyson was to show 
that the two so seemingly different approaches could be put together by resort to the S-
matrix approach. In the abstract of his paper, sent to publication in October 6, 1948, 
Dyson states his primary aim: 
 

A unified development of the subject of quantum electrodynamics is outlined, embodying the main 
features both of the Tomonaga-Schwinger and the Feynman radiation theory … The chief results obtained 
are (a) a demonstration of the equivalence of the Feynman and Schwinger theories, and (b) a considerable 
simplification of the procedure involved in applying the Schwinger theory to particular problems. (Dyson, 
1948, p. 486) 
 
In his paper Dyson gives an outline of the derivation of the Tomonaga-Schwinger 

equation: 
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where H1 gives the interaction between the quantized fields. Taking for the general 
solution of the equation a wave function ψ(σ) = U(σ)ψ0, a perturbative solution can be 
given in powers of H1: 
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According to Dyson, U(∞,–∞) “is identical with the Heisenberg S matrix” (p. 489). 
After redefining the Hamiltonian term corresponding to the two independently 
quantized fields in a way to incorporate the electromagnetic mass, Dyson considers the 
perturbative solution of the equation for the unitary operator S(σ,–∞), which is the same 
as that of U(σ,–∞) in the absence of an external field. 
In the presence of an external field, the state vector defined by ψ(σ) = S(σ)Ω(σ), 

obeys the equation iћc[∂Ω/∂σ(x0)] = (S(σ))
–1He(x0)S(σ)Ω = HT(x0) Ω, where He(x0) 

gives the external field. The substitution of the previous series into this equation gives 
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According to Dyson, “the repeated commutators in this formula are characteristic of the 
Schwinger theory, and their evaluation gives rise to long and rather difficult analysis” 
(p. 491). Dyson turns then to Feynman’s approach: 
 
In the Feynman theory the basic principle is to preserve symmetry between past and future. Therefore, the 
matrix elements of the operator HT are evaluated in a “mixed representation”; the matrix elements are 
calculated between an initial state specified by its state vector Ω1 and a final state specified by its state 
vector Ω2’. The matrix element of HT between two such states in the Schwinger representation is 
Ω2

∗ΗΤ Ω1 = Ω2
’*S(∞)ΗΤ Ω1, and therefore the operator which replaces HT in the mixed representation is 

HF(x0) = S(∞)ΗΤ(x0) = S(∞)(S(σ))–1 Ηe(x0) S(σ). (p. 491) 
 
Dyson then shows how to derive what he calls Feynman’s fundamental formula (which 
can be simply related, in second-order, to Feynman’s ‘fundamental equation’). First, 
Dyson defines a chronological operator: “ If F1(x1), …, Fn(xn) are any operators defined, 
respectively, at the points x1, … , xn of space-time, then P() will denote the product of 
these operators, taken in order, reading from right to left, in which the surfaces  
σ(x1), ..., σ(xn) occur in time” (p. 492). 
By substituting the series for HT into the expression for HF, and by taking advantage 

that the integrand in the expression for HF “is a symmetrical function of the points x1, 
… , xn” (p. 492), Dyson obtains 
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In the case where there is no external field present the previous expression simplifies to 
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According to Dyson, “the further development of the Feynman theory is mainly 
concerned with the calculation of matrix elements of [the previous expression] between 
various initial and final states” (p. 492). Dyson then derives the Feynman rules, for 
problems with an initial (and final) charged particle (electron or positron) and with no 
photons in the initial and final states. Accordingly Dyson aims to  
 
obtain a set of rules by which the matrix element of [HF] between two given states may be written down 
in a form suitable for numerical evaluation, immediately and automatically. The fact that such a set of 
rules exists is the basis of the Feynman radiation theory; the derivation in this section of the same rules 
from what is fundamentally the Tomonaga-Schwinger theory constitutes the proof of equivalence of the 
two theories. (pp. 492-493) 
 
Dyson considers the contribution of the nth order term of the transition matrix (S-

matrix) element, which is a sum of terms of the form  
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where DF and SF are the Feynman propagators for an electron and a photon, and ψ(x) is 
the electron-positron field operator and ψ∗(x) its adjoint operator. Following Feynman, 
Dyson calls attention to the fact that to each term in the matrix element can be 
associated a graph (a Feynman diagram) and that there is “a one-to-one correspondence 
between types of matrix elements and graphs” (p. 495). Also Dyson mentions too that 
“in Feynman’s theory the graph corresponding to a particular matrix element is 
regarded, not merely as an aid to calculation, but as a picture of the physical process 
which gives rise to that matrix element” (p. 496). This is an important point to which I 
will return soon. 
As mentioned, the Møller formula for electron-electron scattering can be derived as 

a direct application of quantum electrodynamics through the fundamental equation. This 
is the simplest description of an electron-electron interaction, based on the exchange of 
one virtual quantum between two electrons. We can of course consider improved 
calculations using higher-order corrections (Feynman, 1949b, p. 787), but these terms 
are corrections to the lower-order terms being used. They do not change the overall 
space-time description of interaction processes as already present in the lower-order 
calculations. For this reason I will only consider the overall space-time description of 
scattering processes in quantum electrodynamics as given by its lower-order 
applications. 
 
 

3 The description of interactions as space-time processes resulting from the exchange of 

virtual quanta 

 
In the second-order expansion of the S-matrix the electron-electron interaction results 
from a photon exchange (see Fig. 1). In the overall space-time approach of Feynman we 
are considering virtual photon propagation (exchange) between all the Minkowski 
space-time points. The Feynman photon propagator is given by 
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νµ −= h    (Mandl & Shaw, 1984, p. 86). 
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This expression means that we are considering a photon ‘created’ at one space-time 
location and ‘annihilated’ at another. The use of the time-ordered product T{ } means 
that in this covariant expression we are already considering, depending on the time 
order, a propagation from one electron to the other or vice versa, since T{Aµ(x)Aν(x’)}= 
Aµ(x)Aν(x’) if t > t’, and T{Aµ(x)Aν(x’)}= Aν(x’)Aµ(x) if t’ > t. Loosely speaking, we 
have contributions in which the ‘emitter’ and ‘receiver’ change roles. 
The transition amplitude for Møller scattering in the second-order expansion of the 

S-matrix (the simplest for this process) results from a contribution of all possible 
localized interactions of Dirac and Maxwell fields ‘connected’ by a photon propagator 
(Mandl & Shaw, 1984, p. 113): 
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This means that the overall process we call ‘interaction’ results from the contribution of 
photon propagation from one electron to the other and vice versa: it is a two-way 
process in all space-time.  
The label ‘virtual’ attached to the photon is related to two things. In the space-time 

points where the photon is created or annihilated we have conservation of energy and 
momentum between the photon and the electrons. But the energy-momentum relation 
for the virtual photon is not k2 = (k0)2 – k2 = 0 corresponding to a zero mass photon, it is 
different from zero due to the fact that in the expression for the propagator k and k0 are 
independent of each other (Mandl & Shaw, 1984, p. 86). In a certain sense it is as if the 
‘dynamics’ of the virtual photon are all messed up (the same occurs with the electron 
when it is in the role of a virtual quanta), because it is as if it has a mass during the 
virtual process. At the same time the ‘kinematics’ come out wrong also, because the 
propagator is nonvanishing at space-like separations (Björken & Drell, 1965, pp. 388-
389). The second point is that this virtual quanta is supposed by definition not to be 
observable – it is part of the internal machinery of the application. In the case of the 
photon in the electron-electron scattering it seems impossible to avoid this situation, as 
the idea that this is the most elemental process possible is implicit in the theory. 
 

                                        
 
 
Figure 1: Electron-electron scattering in second order, resulting from a virtual photon exchange (direct 
diagram). 
 
The question arises: are the virtual particles simply the result of the perturbative 

treatment of interaction, i.e. simply mathematical terms, or do they convey as Dyson 
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remarks, “a picture of the physical process which gives rise to that matrix element” 
(Dyson, 1948, p. 496). The contemporary view in philosophy of physics is that they do 
not. According to Tobias Fox, the virtual particles serve “to symbolise the interaction” 
(Fox, 2008, p. 35), and they “are merely pictorical descriptions of a mathematical 
approximation method” (p. 35). Reviewing the arguments of several authors38 Fox 
centers on what he considers the argument that proves the status of virtual particles, “as 
only pictorical symbols for mathematical terms” (p. 36). This so-called argument of 
superposition rests on the (wrong) idea that in the S-matrix description of interactions 
we have to use an infinite expansion of the S-matrix that results in “the infinite 
superposition of Feynman diagrams of higher and higher order” (p. 38), even if 
according to Fox, “due to practical reasons–the perturbation progression is stopped 
sooner or later” (p. 37). 
One among several variants of this argument was set forward by Robert Weingard.  

If, when calculating, say, the amplitude for electron-electron scattering, the complete S-
matrix was (somehow) considered, then there would be an infinite number of terms 
corresponding to an infinite number of combinations of different quanta. One could say 
that in this case the quanta “type and number are not sharp” (Weingard, 1988, p. 46). 
The quanta description of interactions, as quanta exchange, would then appear to be a 
mathematical fiction due to the use of perturbation theory in the calculation of the 
scattering amplitude. However, when considering the scattering as described in the 
theory, we can only use a few terms of the S-matrix expansion. There simply is no 
possibility of considering the (unexisting) exact S-matrix, only the asymptotic S-
matrix.39 
On similar lines, but with important differences in relevant details, Brigitte 

Falkenburg considers the virtual particles as “formal calculational tools” (Falkenburg, 
2007, p. 223). According to Falkenburg the virtual particles come into play within time-
dependent perturbation theory:  
 

the propagators of the virtual field quanta are mathematically components of a quantum theoretical 
superposition. Operationally, it is by no means possible to resolve them into single particle contributions. 
They are nothing but the mathematical contributions to an approximation procedure: like the harmonics 
of the oscillators of a mechanical string, the Fourier components of a classical electromagnetic field, or 
the cycles and epicycles in Ptolemy’s planetary system. (p. 234) 
 
However Falkenburg, after concluding that “virtual field quanta are nothing but formal 
tools in the calculation of the interactions of quantum fields” (p. 237), calls attention to 
the fact that “this does not mean, however, that the perturbation expansion of the S-
matrix in terms of virtual particles is completely fictitious” (p. 237). According to 
Falkenburg, 
 

                                                 
38 For example, Mario Bunge takes the virtual quanta (and interaction processes described as exchange of 
virtual quanta) to be “fictions and as such have no rightful place in a physical theory” (Bunge, 1970, p. 
508); Paul Teller’s view is that “a Feynman diagram is only a component in a much larger superposition” 
(Teller, 1995, p. 139); and Fritz Rohrlich considers that “virtual particles are an artifact of the 
perturbation expansion into free particle states” (Cao, 1999, p. 363). 
39 There might appear to be ways of sidestepping this type of approach by considering the Feynman path 
integral approach (Weingard, 1988, p. 54). But again, when considering the specific applications of the 
theory there is no infinite expansion of the transition amplitudes. In the mathematical expression for the 
transition amplitudes there are quanta propagators, and the interpretation of the propagators relating them 
to quanta cannot be overturned in a (finite expansion) application based on path integrals. 
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The virtual processes described in terms of the emission and absorption of virtual particles contribute to a 
scattering amplitude or transition probability. Hence, infinitely many virtual particles, together may be 
considered to cause a real collective effect. In this sense, they obviously have operational meaning. What 
is measured is an S-matrix element or the probability of a transition between certain real incoming and 
outgoing particles. The transition probability stems from all virtual field quanta involved in the 
superpositions of the relevant lowest and higher order Feynman diagrams. 

In the low energy domain, it is sometimes even possible to single out the contribution of one single 
Feynman diagram to the perturbation expansion. There are even several well-known high precision 
measurements to which mainly one Feynman diagram or the propagator of a virtual particle corresponds. 
This is demonstrated in particular by the best high precision tests of quantum electrodynamics, the 
measurement of the hydrogen Lamb shift and the (g – 2)/2 measurement of the gyromagnetic factor g of 
the electron or muon. Dirac theory alone incorrectly predicts the fine structure of the hydrogen spectrum 
(no splitting of the levels S1/2 and P1/2 for n = 2) and a gyromagnetic factor g = 2 for the electron or muon. 
Measurements reveal the Lamb shift of the hydrogen fine structure and the anomalous magnetic moment 
of the electron. 

The anomalous difference (g – 2)/2 between the prediction of the Dirac theory and the actual 
magnetic moment was measured with high precision from the spin precession of a charged particle in a 
homogeneous magnetic field. The next order quantum electrodynamic correction stems from a single 
Feynman diagram which describes electron self-interaction. Here, theory and experiment agree at the 
level of 1 in 108, with a tiny discrepancy between theory and experiment in the eighth digit. In such a 
case, the experiments are for all practical purposes capable of singling out the real effect of a single 
Feynman diagram (or virtual field quantum). The case of the Lamb shift is similar. Here the next order 
perturbation theory gives a correction based on two Feynman diagrams, namely for vacuum polarization 
and electron self-interaction. The correction shows that only 97% of the observed Lamb shift can be 
explained without the vacuum polarization term. A textbook on experimental particle physics tells us 
therefore that the missing 3% are “a clear demonstration of the actual existence of the vacuum 
polarization term”. Any philosopher should counter that this is not really the case. The virtual field quanta 
involved in this term cannot be exactly singled out. 

Hence, the above conclusions remain. Virtual particles are formal tools of the perturbation expansion 
of quantum field theory. They do not exist on their own. Nevertheless they are not fictitious but rather 
produce collective effects which can be calculated and measured with high precision. (pp. 237-238) 
 
In this way even if Falkenburg recognizes that the virtual quanta can have operational 
meaning, due to the superposition argument she maintains the view that virtual quanta 
are formal tools. My point regarding this view is that the superposition argument does 
not hold in quantum electrodynamics; we do not have an infinite expansion of the S-
matrix, what we have are applications of the theory resting on an approximate scheme 
of description of the interaction between two fields that cannot be taken beyond a few 
order calculations (see chapter 5). We do not ‘stop the perturbation progression for 
practical reasons’; we only really have a few lower order terms to count on. 
Returning to the operational meaning of the virtual quanta it is important to notice 

that “[i]n the low energy domain, it is sometimes even possible to single out the 
contribution of one single Feynman diagram to the perturbation expansion” (Falkenburg 
2007, 237). Knowing that we can only count on a finite number of Feynman diagrams 
(and its corresponding virtual quanta), in some cases it is possible experimentally to 
single out the contribution of a few or even just one Feynman diagram. That is, it is not 
that “the experiments are for all practical purposes capable of singling out the real 
effect of a single Feynman diagram” (Falkenburg 2007, 237–238), on the contrary, the 
experiments are in some cases even capable of singling out the ‘real’ effect of a single 
Feynman diagram, i.e. there are experiments in which we can give operational meaning 
to a virtual quantum exchange (more generally we can give operational meaning to all 
finite superpositions of Feynman diagrams and corresponding virtual quanta). The 
operational relevance of virtual quanta does not by itself imply that they can be given a 
realistic interpretation. In particular, as we will see, a simplistic view of virtual quanta 
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as some sort of quantum entities – the bearers of the quantum interaction – existing in 
space-time is not feasible. 
According to David Kaiser, referring to the S-matrix theory developed in the 1950s 

and 1960s in particular by Geoffrey Chew, there was an “association of ‘realism’ with 
Feynman diagrams … based on their simple similarity to ‘real’ photographs of ‘real’ 
particles” (Kaiser 2000, 75). This resulted from a misinterpretation of lowest-order 
Feynman diagrams as depictions, as a sort of Minkowski diagrams, representing a 
schematic reconstruction of bubble chamber photographs; according to Kaiser 
 

the Feynman and Feynman-like diagrams that were taken over into S-matrix theory were not the high-
order loop corrections … but rather lowest-order and, most frequently, single-particle exchange 
diagrams. And what were the ‘visual ingredients’ of these particular classes of Feynman diagrams? 
Nothing but vertices and propagation lines. (Kaiser 2000, 74; see also Kaiser 2005, 362-373) 
 
This is not the view being proposed here. Letitia Meynell called attention to the fact that 
in Feynman’s work a ‘bubble chamber view’ of the Feynman diagrams is not enforced. 
Meynell asked the question if “Feynman diagrams prescribe imaginings of definite 
trajectories through and positions in space-time?” (Meynell 2008, 53). Now, Feynman 
presented his approach to quantum electrodynamics in two papers from 1949 that are 
strongly interrelated. According to Meynell, “the quintessential Feynman diagram 
pictured in the second paper drew on the physical interpretations and visual schemata of 
the first” (Meynell 2008, 53). In this first paper, Feynman illustrates the scattering of an 
electron with two equivalent pictures (that Meynell calls pre-Feynman diagrams). In one 
case Feynman gives a wave description of the electron scattering and in the other a 
particle description (Feynman 1949a). Thus, According to Meynell, Feynman was not 
trying to enforce a reading of the diagram as representing a trajectory in space-time. In 
fact Feynman called his approach an overall space-time approach (Feynman 1949b, 
769). To see what we can make of Feynman’s overall space-time description of physical 
processes and the role of Feynman’s diagrams and virtual quanta within this approach I 
will now return to the analysis of the description of the electron-electron scattering in 
quantum electrodynamics.  
The crucial aspect of the description of scattering in quantum electrodynamics is 

that there really is no description in time of the interaction. This is due to the fact that in 
the application of the S-matrix method we are always considering a free particle initial 
state (at t = –∞) and a free particle final state (at t = +∞) while disregarding the detailed 
description of the intervening times. In this sense we have an overall temporal 
description of the scattering processes. Feynman did not consider this as a limitation; on 
the contrary, his view was that “the temporal order of events during the scattering … is 
irrelevant” (Feynman 1949a, 749).  
To see how Feynman’s overall space-time approach works out let us consider a 

counterfactual realistic picture of ‘virtual processes in space-time’, involved in the 
calculation of the S-matrix. When considering the interaction between two electrons, the 
S-matrix element is constructed with an underlying idea of an elapsing time. A (virtual) 
photon is emitted by one electron, which means that due to the localized interaction of 
the Dirac and Maxwell fields it is created at a specific space-time point. This photon 
propagates and is luckily absorbed by an electron expecting it. We have a sort of effect 
‘next’: the quantum ‘knows’ what is going to happen and behaves accordingly so that 
we have a smooth adjustment between the electrons and the photon. In reality the 
sequence of creation and absorption of the photon is adjusted ‘ab initio’ in a 
mathematical expression – the S-matrix – that provides an overall temporal (and spatial) 
description of what we consider to be an in time temporal phenomenon. In a certain 
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sense the problem does not lie in the adjustment of the creation and annihilation of the 
photon but in the use of temporal language in an overall description of the interaction in 
quantum electrodynamics; like when Feynman considered a situation where it was 
supposed that “one electron was created in a pair with a positron destined to annihilate 
the other electron” (Feynman 1949b, 773). 
Exploring a little more the counterfactual realistic picture of virtual ‘processes’ 

‘really’ occurring in space-time, if we try to maintain an in time temporal perspective 
considering, in contradiction to the usual interpretation of quantum theories, a 
submicroscopic ‘observer’– say Alice –, then the cat – our propagator – will reveal 
peculiar behaviours. The fact is that the propagator does not vanish for a space-like 
separation. This means that we would have an interaction between space-time points not 
connectable with a classical electromagnetic wave. However in this quantum world the 
photons and electrons (or positrons) being propagated between two points are not 
restricted by the usual energy-momentum relations, so we are beyond any classical 
dynamical description of the ‘propagation’, and, as mentioned previously, we refer to 
these quanta as ‘virtual’ (while using the ontologically charged word ‘real’ for the 
quanta whose energy-momentum relations are k2 = 0 in the case of the photon and p2 = 
m2 in the case of fermions). For a submicroscopic ‘observer’ located in the space-time 
point where a quantum is emitted we can imagine that an objective notion of present 
(emission) and future (absorption) exists. The problem is that for a space-like 
separation, a moving ‘observer’ – Alice – might see the absorption before the emission. 
In the case of electron propagation this would imply seeing a positron. The cat would be 
changing its form. Considering Einstein’s kinematical interpretation of relativity 
(Einstein 1905, 48; see also Smith 1995), from the perspective of a moving ‘observer’ – 
Alice – (which we imagine to make her ‘observations’ using a  ‘submicroscopic’ 
classical electromagnetic wave, i.e. ‘respecting’ Einstein’s relativity), in the situation 
described above it would seem as if there is an interchange of the creation and 
annihilation points. In the case of photon propagation, this only makes her think that the 
direction of propagation is the opposite. In the case of electron propagation it will seem 
as if the (unobserved) quantum is now a positron. But even Alice, taking into account 
relativity theory, can only see the points of interaction between the fields, not the 
propagation ‘process’ itself. In this way the ‘true’ virtual electron only appears to be a 
virtual positron due to ‘kinematical’ relativity, but it is ‘really’ a virtual electron. 
When considering the overall amplitude the problem fades away. The point is that 

the S-matrix is covariant. So, different ‘observers’ will obtain the same result for the 
scattering amplitude, with their identical submicroscopic experimental devices, when 
considering the propagation between all space-time points (a ‘real’ observer cannot 
make these space-time experiments to determine the scattering amplitude, she can only 
obtain experimental cross-sections). We can express the covariant S-matrix in two 
alternative forms (Sakurai 1967, 204): 
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To see the content of these formulas let us consider localized ‘observers’ of ‘processes 
in space-time’ that can be described by Sa. In this case we are considering ‘processes’ 
where t2 < t1. Now, a passer-by might think, in relation to a spacelike propagation, that 
she is seeing a ‘process’ where t1 < t2 as described in Sb. But she will also think that 
another ‘process’, which for the localized ‘observer’ is from Sb, is described in Sa. The 
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overall result will be the same for both ‘observers’. The possible time inversion problem 
does not occurs as it is swept under the covariance of the S-matrix: 
 

        { }∫∫
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where θ(t) = 1 if t > 0, and θ(t) = 0 if t <  0 (Sakurai 1967, 204).  
Going back to real observers, the fact is that we do not have a submicroscopic 

experimental access to the theoretical point-like interaction between the fields (this is 
one of the reasons I call a description of the quanta exchange in terms of space-time 
processes counterfactual; the other is that we are calculating probability amplitudes and 
describing them in terms of classical-like processes in space-time not taking into 
account the interpretation of the formalism). In the case of scattering processes we only 
have experimental access to cross-sections calculated from the S-matrix (Jauch and 
Rohrlich 1976, 163–167). The point is that with the (experimentally accessible) cross-
section calculated from the S-matrix  – the only possible theoretical approach to 
scattering processes within quantum electrodynamics – we are not considering time as it 
goes by, but an overall temporal (and spatial) calculation of the interaction processes: all 
of the past and future is put into it. We see then that the Feynman diagrams must be 
seen as a representation of an overall space-time description of scattering processes (as 
an exchange of quanta) in which “the scattering process itself is a black box” 
(Falkenburg 2007, 234). We do not have an in space and in (through) time description 
of the interactions. In this way a realistic interpretation of virtual quanta as the bearers 
of the quantum interactions in space-time seems to be inappropriate. 
For some it might yet seem that mine is a straw-man position. The fact that I am 

using Dyson’s result against the superposition argument might seem not enough 
according to some views on this argument. It is correct that we cannot consider any 
more that the virtual quanta “type and number are not sharp” (Weingard 1988, 46). 
However it might be the case that there are versions of the superposition argument 
where the fact that we may still consider several Feynman diagrams in the description of 
the interactions is enough to relegate the diagrams and virtual quanta to the role of 
accessory tools not giving in any sense a physical description of the interactions. I think 
that Teller’s argumentation can be seen as an example of this ‘finite’ superposition 
argument. The part of Teller’s argumentation not depending explicitly on classical 
analogies is sustained on the following points: 
1) As we have already seen, in the description of the electron-electron interaction, 

when considering one Feynman diagram (in second order) we 
 

have x1 and x2 as free variables, which must be integrated before we get the diagram’s final contribution 
to the scattering amplitude. The processes allegedly described by the diagram [(which I referred to as 
‘processes’)] must be superimposed for all values of x1 and x2 before we get a description of what is still 
only a contribution of a quantum-mechanical amplitude for a real scattering process. (Teller 1995, 142) 
 
Now, the point is that, as I mentioned, we have only one global process described by 
this one Feynman diagram, corresponding to the black box calculation of localized 
‘processes’, which are mathematical artifacts resulting from the point-like description of 
the interaction between the quantum fields (which has no operational meaning). This 
does not entail that the exchange of quanta cannot be regarded (in some way) as a 
physical process, simply that it is not a physical process in the classical sense of space-
time processes that we have in classical theories. Teller recognizes this much, since he 
mentions that, in his view, “in quantum theories the components represent potentially 
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but not actually existing states” (Teller 1995, 141). I will not discuss Teller’s 
interpretation of quantum field theories, but simply recall that we are not dealing with 
‘classical pictures’ of physical processes occurring in space and in time. Reversing the 
order of arguments, we can take the intricate description of one Feynman diagram 
(representing, in the case being considered, the exchange of one virtual quantum) as the 
physical description of interactions in quantum electrodynamics, giving at the same 
time the only available physical-mathematical meaning to what we understand by the 
term ‘exchange of quanta’. We cannot have implicit in our argumentation classical 
analogies when interpreting the physical-mathematical description of interactions in 
quantum electrodynamics (in this part Teller’s point is dependent on a supposed 
superposition of different ‘processes’ occurring in different points of space-time). 
2) Even if we cannot count on an infinite series expansion of the S-matrix we still 

have a superposition of several terms (related to different Feynman diagrams). 
According to Teller, “the full scattering amplitude, is, in principle, given only when the 
results from second order are further superimposed with contributions from all even 
higher orders” (Teller 1995, 142). Now, we do not have a full scattering amplitude that 
is, in principle, given by further superimposing all higher order terms. However it is in 
general necessary to consider higher order contributions to the S-matrix to get a good 
agreement with experimental results (Falkenburg 2007, 237-238). Again, my view is 
that we must not fall into the trap of classical analogies when addressing a quantum 
electrodynamical description of the interaction of radiation and matter (described within 
the theory as quantum fields). The fact that we can (and sometimes have to) describe the 
scattering by considering simultaneously several Feynman diagrams (corresponding 
each to a particular type of exchange, where the quanta type and number are sharp) does 
not imply that we must see them as simply abstract mathematical tools. My view is that 
we can see the virtual quanta as an explanatory nexus – through an extension of the 
concept of quanta – of the quantized exchange of energy and momentum between real 
particles; this is so even if it turns out to be an intricate one (i.e. resulting from the 
contribution of different Feynman diagrams), in which there is no place for an account 
relying on classical-like analogies, i.e. it is not like we have two tennis players playing 
with several sets of balls at the same time, as Fox refers to (Fox 2008, 42). It is 
important to have in mind that for example in the electron-electron scattering the 
interaction between the particles is mediated by the quantized electromagnetic field, and 
that the core interaction described in quantum electrodynamics is not (contrary to 
Feynman’s views) a scattering process but the interaction between radiation and matter. 
This interaction occurs according to conservation principles and as a quantized 
exchange of energy and momentum between radiation and matter. When transposed to 
the perturbative description of scattering processes (the only one available in quantum 
electrodynamics) the mediation role (guaranteeing the conservation of energy and 
momentum) is taken by virtual quanta of the quantized electromagnetic field, which, as 
has been seen have operational meaning as a finite collective effect.  
The point I am making about virtual quanta as mediators of the quantized exchange 

of energy and momentum in the scattering of ‘real’ particles has some similarities with 
Harré’s views. According to Harré the Feynman diagrams have ‘epistemic power’. This 
is in part due to the fact that the concept of virtual quanta “is legitimated via its 
explanatory power in the tidy accounting of energy budgets” (Harré 1988, 69) in the 
interactions. 
In resume: I have defended that the main argument for taking virtual quanta as 

formal tools – the superposition argument cannot be sustained in quantum 
electrodynamics. In this way by a reconsideration/reformulation of Falkenburg’s 
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argument ‘against’ virtual quanta, I have defended that we can in some experiments 
single out the lowest-order Feynman diagram and give operational meaning to the 
virtual quantum exchange. It is true that we usually need to consider further terms of the 
S-matrix series expansion as corrections to this (in Feynman’s words) ‘fundamental 
interaction’, but since the series expansion of the S-matrix is at best asymptotic we 
know that this is a finite correction of the main term describing the interaction. For 
example in the electron-electron scattering simultaneously with the photon exchange we 
can consider a finite number of higher order processes involving other virtual quanta, 
and the finite collective effect of the superpositions of the virtual quanta exchanges has 
operational meaning. Besides this operational dimension, the concept of virtual quanta 
has an epistemic dimension. As mentioned, in the description of scattering processes it 
is the virtual quanta that implement the quantized exchange of energy and momentum. 
Harré attributes epistemological relevance to this fact since the virtual quanta enable to 
explain/characterize for example the electron-electron scattering through a conserved 
exchange of energy and momentum between the two particles. In this way at an 
‘epistemic level’ we can consider the virtual quanta to be more than simply 
mathematical tools since they convey a relevant physical description/explanation of the 
quantum interaction in terms of providing the link for a quantized exchange of energy 
and momentum between the real particles. The epistemic dimension by itself does not 
entail an ontological reading of the virtual quanta concept, but taken toghether with the 
operational dimension they are strong evidence for taking the virtual quanta to be more 
than formal tools (implying that the Feynman diagrams are more than simply mnemonic 
aids to calculations). 
 

 
4 A quantum model of the delayed interaction between two bound electrons 

 
To try to recover a temporal description of processes we have to build a model of 
interaction that approaches somewhat the ones provided by classical electrodynamics.  
Let us consider two well-separated hydrogen atoms (see e.g. Fierz, 1950). Considering 
the interaction between the bound electrons, we do not have to consider all space-time. 
The photon is emitted in a certain region, where we can consider one of the atoms to be 
located, and is absorbed in another region by the other atom (i.e. the electron bound in a 
static external field). For clearly separated atoms we can get a notion of temporality 
from the sole propagation of a photon from one atom to the other. But with this kind of 
model we disregard the two-way character of the interaction, and approach the more 
classical description of radiation emission.  
Suppose that the emission from one atom takes place at a certain region Vy of space-

time, meaning that the atom is in a certain location of space and that a photon with 
energy ω0 is emitted during a period of time T. This photon is absorbed in the region Vx 
by another atom. We are going to take for granted for the moment that if the emission 
takes a time T then there will be an uncertainty ∆ω in the energy ω0 of the photon, so 
that we have T∆ω > 1. At the same time we will consider only a situation where ∆ω is 
much smaller that ω0, which means that the sign of the energy is defined, and so it is 
clear that the energy is flowing out of the atom in Vy. We thus suppose we can adjust T 
so that ∆ω á ω0. From all this we have that ω0T à1. With this condition, considering 
“the part of S-matrix which is due to transitions in Vx and Vy” (Pauli, 1973, p. 134) and 
using explicitly the form of the wave functions of the bound electrons, every instant of 
time in the space-time region Vx is greater than every instant of time in Vy. In this 
particular model we can from the S-matrix obtain a description of emission and 
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absorption of a photon consistent with a notion of temporal order associated with the 
process, but this temporal order is imposed independently of the S-matrix calculation. 
What the calculation provides are definitions of the time relations involved and the 
spatial separation of the two regions that were from the start considered bound and 
separated in space-time.  The result is that the two bounded regions do not overlap, so 
that we can say that “if the energy of the charged particles in Vx increases … and if the 
energy in Vy decreases, then Vx is later in time than Vy” (Pauli, 1973, p. 133). Also, the 
second region must be on the (diffuse) light cone of the first. For this reason, besides an 
uncertainty ±T resulting from “the uncertainty in the time of the emission process” 
(Thirring, 1958, p. 146), we only have contributions in the S-matrix from space-time 
points in regions that can be connect by photons propagating at light speed. This also 
means that for the distance r between the two atoms we have rω0 à 1: the second atom 
must be in the wave zone of the first (roughly speaking a region where r is much bigger 
than the wavelength of the emitted photon: r à λ). 
Maybe the most interesting aspect of this model is that in the wave zone we see that 

the contribution from the propagator comes from the poles, corresponding to a process 
with a real photon (Thirring, 1958, p. 146). As Feynman remarked “in a sense every real 
photon is actually virtual if one looks over sufficiently long times scales. It is always 
absorbed somewhere in the universe. What characterizes a real photon is that k Ø 0” 
(Feynman, 1962, p. 95). We see that the distinction between virtual and real can depend 

on the separation between the atoms: in the near zone (r á λ) the photons are virtual 
and on the wave zone they are real (Thirring, 1958, p. 146). 
One point is clear from the previous case. To approach an idea of ‘temporality’ (i.e. 

temporal order in the physical processes) in models of interaction, using as a 
fundamental part quantum electrodynamics, we need structures in the models – like the 
atoms in our case – that permit the appearance of real photons, which approach a more 
classical electrodynamical type of interaction (emission and posterior absorption of 
light). Also for a consistent outcome from this model it is necessary that ω0T à 1 and 
this is not provided by the theory directly, because there is no time-energy uncertainty 
relation in quantum theories in the same sense as in non-relativistic quantum mechanics 
where there is an uncertainty relation between the position and momentum operators 
(Hilgevoord, 1996, p. 1451). We have somehow to impose it from the outside.   
In the Maxwell-Lorentz classical theory we have a relation between ∆ω – the line 

width – and the lifetime T of the radiation emission process. Considering “a linear 
harmonic oscillator as a simple model for a light source” (Heitler, 1954, p. 32), and 
taking into account the effect of the field produced by the charge on the charge itself 
(the self-force), the (emission) intensity distribution is given by 
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where  ν0 is the frequency of the undamped oscillator, and γ is the width at half of the 
maximum intensity and is equal to the reciprocal of the lifetime of the oscillator (due to 
the damping of the self-force the oscillator radiates during a period of time until it 
comes to rest). Under the assumption that the reaction force is small we have that the 
lifetime is long when compared with the period of the oscillator, so that we have γ á 
 ν0, that is, ω0T à 1. Following the same approach when describing the decay of an 
excited state of an atom in quantum theory, again it is assumed that “the lifetime is large 
compared with the frequency of the atom” (Heitler, 1954, p. 183), that is ω0T à 1, and 
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we obtain the same expression for the intensity distribution of the emission (now as a 
probability function). In this way, we do not use any ‘uncertainty’ relation to obtain the 
result ω0T à 1 which is needed to obtain a model for the interaction between the atoms 
that appears to give a consistent spatio-temporal description of the interaction. Thus, the 
model is dependent on results that can be also derived in a classical treatment of the 
emission of radiation by an atom.  
There is a huge difference between the quantum treatment of a two-atom system and 

the quantum electrodynamical description of scattering processes. In the model we 
obtain the desired result by patching together different parts while the S-matrix 
calculation of scattering amplitudes is a direct application developed from the 
Lagrangian of interacting Dirac and Maxwell fields. 
By a heuristic procedure, taking into account the relation ω0T à 1 and the 

corresponding emission line, a specific form is given to the bilinear density ψγψ µ in the 
second order term of the S-matrix used in this model. In this way the – classically 
derivable – spectral line curve is a fundamental aspect of this model (Fierz, 1950, pp. 
734-735; Pauli, 1973, pp. 134-135). This means that this model could be seen as a semi-
classical one. Then an adjustment is made of the distance between the atoms so that the 
second atom lies in the wave zone of the first. The point is that, as mentioned before, in 
the near zone the photon behaves as a virtual one, while in the wave zone we have (as a 
limit) the energy-momentum relation for a ‘real’ photon. This means that in the last leg 
of the model development, depending on how we choose the distance between the 
atoms, we can have a situation where we can associate a causal temporal order to the 
emission and absorption process of a ‘real’ photon, or a situation where it is not possible 
to associate a causal temporal order to the emission and absorption of a ‘virtual’ photon. 
Another difference between this model and the S-matrix calculations of scattering 
processes is that in the second case we obtain results that can be compared to 
experiments (Falkenburg, 2007, pp. 105-107) while in the first case we can only 
associate with the model a thought experiment (Buchholz & Yngvason, 1994, p. 613). 
In this way the model patched from the theory gives the impression of a solid verifiable 
consequence which it really is not. This does not seem to be a solid procedure we can 
use to defend that we can retain within a quantum treatment the possibility of a temporal 
description of processes that we have in classical electrodynamics. 
 

 

5 Conclusions 

 
It is clear that we only have access to a temporal description of interactions using the S-
matrix when developing models that approach more classical situations. The problem is 
that in a full quantum electrodynamical S-matrix calculation we really do not have a 
representation of scattering processes in space-time (we face this same situation for 
bound-state problems, which can be treated by using basically the same S-matrix 
approach). We have an overall space-time description, and from this, the incorrect idea 
that we have a description of processes in time. What we really have is a mathematical 
construction using as a basic structure the Minkowski space-time that enables us to 
obtain the cross-section for a particular scattering. But this theoretical cross-section is 
determined from the contribution of the Feynman diagrams in energy-momentum space, 
and ultimately it is this energy-momentum cross-section that is compared with 
experimental results (Falkenburg, 2007, p. 131). 
We do have (in a limited sense) a description of the interaction in terms of virtual 

quanta exchange between our observed ‘particles’. What we do not have is a description 
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of this exchange in space and through time. We have a quantum electrodynamical 
application based on a computational device – the propagator – and a calculation based 
on a configurational space constituted by the Minkowski space-time points. In the case 
of scattering experiments we have no ‘insider’ making observations, we have the initial 
state corresponding to a determined preparation of the system and the final calculated 
state that will enable us to make comparisons with the experimental results (Peres, 
1984, p. 647). To have a path in space-time we cannot consider the elemental 
interactions, because we cannot observe the configurational space where the interaction 
‘occurs’ through the mathematical device of the propagator. Let us recall Heisenberg’s 
description of an α-particle in a Wilson cloud chamber. Heisenberg considers that each 
successive ionisation of molecules of the medium is “accompanied by an observation 
of the position” (Heisenberg, 1930, p. 69). This sequence of observations reveals a 
‘path’ in space. However, in between each ionisation, the particle is described by a 
wave function. There is no quantum mechanically described microscopic trajectory. 
Each observation corresponds to a state preparation for the next one. It is the sequence 
of observations controlled by us that gives the impression of a trajectory in space-time. 
In the case of Møller scattering we do not have that. It is a unique and global process 
associated with a single experiment. It is not possible to visualize this process as 
something that is going on as we speak. Minkowski space-time has to be seen, when 
used in the context of S-matrix calculations, as a configurational space, where 
mathematical objects like the propagators are used as calculation tools. If we consider 
the scattering process as a ‘black box’ (Falkenburg, 2007, p. 234), it is the space-time 
itself that is this black box. When considering an overall space-time approach we take 
the observer to be outside this space-time, and there is not much we can say about the 
temporal order of the phenomena as described by the theory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 162

CHAPTER 8 
 
 
 

THE RELATION BETWEEN CLASSICAL AND QUANTUM 
ELECTRODYNAMICS 

 
 
 
 
 
 
 
1. Introduction 
 
In the wonder world of physics it is often thought that the relation between the classical 
and quantum theory is unproblematic and that by a more or less clear procedure we can 
regard the classical theory as some sort of limit of the quantum theory. Usually these 
considerations are done in the realm of non-relativistic quantum theory and not much is 
said about the relation between quantum electrodynamics and classical electrodynamics. 
Be it the relativistic or non-relativistic theory, we are in the paradoxical situation, which 
is usually presented as non-paradoxical and natural, that the quantum theory is supposed 
to contain the classical theory but at the same time needs it for its own foundation 
(Landau, 1974, p. 13). 
In the following I will try to present the idea that classical electrodynamics and 

quantum electrodynamics form a not fully coherent theoretical framework in which the 
quantum part has to be seen as an extension of the classical part but not as containing 
the classical theory. In this way quantum electrodynamics cannot be regarded as an 
independent and more fundamental theory of physics than its classical counterpart.40 
First, section 2 will present the current classical framework provided by classical 

electrodynamics and the theory of relativity,41 and address the question of the possible 
inconsistency of classical electrodynamics and the possible meaning of this. Then, in 
section 3, after looking again briefly into the development of quantum electrodynamics 
from the quantization of the classical Maxwell field and the classical Dirac field, I will 
address the possibility of a classical limit. Taking into account the limitation of quantum 
electrodynamics in the temporal description of scattering processes I will defend that 
properly speaking we cannot reduce classical electrodynamics to quantum 
electrodynamics.  
 
 

 

 

                                                 
40 In this work, I am not taking into account different interpretations of quantum theory and different 
approaches to the quantum theory of measurement (in particular decoherence). I am solely developing my 
argument within an ensemble interpretation (e.g. Isham 1995, pp. 80-81) that gives a natural connection 
between the calculations done using quantum electrodynamics and the results from the experimental 
procedures followed (e.g. Falkenburg 2007, pp. 106 and 207). 
41 I am here taking the theory of relativity to be part of classical physics. This is the view usually adopted, 
in which, for example, Einstein’s theory of gravitation is taken to be a classical field theory (e.g. Landau 
and Lifshitz 1971). 
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2 Classical electrodynamics 
 
Classical electromagnetism as presented nowadays is not the theory as developed by J. 
C. Maxwell. In his more mature work, published in 1873, Maxwell used the Lagrangian 
formalism to avoid any specific mechanical model of the medium that causes the 
electric and magnetic phenomena (Harman, 1982, p. 118). His approach was centered 
on the description of this medium – the ether. The electric current was described as a 
variation of the polarization – seen as a more fundamental concept – in a material 
medium (dielectric or conductor); and in this line, the electric charge was considered 
‘simply’ as a spatial discontinuity in the polarization (Darrigol, 2003, p. 164). In 
practice Maxwell considered the ether and matter as a single medium existing in 
absolute space (Harman, 1982, p. 120), more exactly, he treated matter “as if it were 
merely a modification of the ether” (Whittaker, 1910, p. 288). This was a macroscopic 
theory of the electromagnetic medium that did not make a clear-cut distinction between 
matter and ether. 
In 1892, what can be considered as a new microscopical classical version of 

electrodynamics was developed by H. A. Lorentz. Adopting the view of microscopical 
charged particles used in action-at-a-distance theories, Lorentz combined it with the 
Maxwell theory of the ether in a way that enabled him to explain Fresnel’s results 
regarding the propagation of light in moving bodies. The positive and negative charged 
material particles would move in the ether without dragging it and only interacting with 
each other through the mediation of the ether that filled all space: they had a delayed 
interaction (Whittaker, 1910, p. 420). 
Lorentz presented the fundamental equations of his theory as a generalization of the 

results provided by electromagnetic experiments (Lorentz, 1909, p. 14). This means that 
he made an extension of Maxwell’s macroscopic field equations to a microscopic level 
taking into account his consideration of the charge as a density distribution attached to a 
microscopic solid body. With this microscopic and atomistic turn, the field equations 
are in Lorentz electrodynamics given by:  
 

div d = ρ,           div h = 0, 
 

rot h = 1/c (d&  + ρv),   and rot d = –1/c h& , 
 

where d is the dielectric displacement, h is the magnetic force, ρ is the charge density, 
and v is the absolute velocity of the microscopic body (Lorentz, 1909, p. 12). 
Lorentz considered that the ether pervades all space including the ‘interior’ of the 

solid bodies, but as being always at rest in relation to absolute space. The law that 
dictates the influence of the electromagnetic fields, as a manifestation of the internal 
state of the ether, on the charged bodies, can be seen, as in the previous cases, as an 
extension of the experimental results represented in the force laws of Coulomb and 
Biot-Savart, and is given by f = d + 1/c [v × h]. These five equations with their 
underlying assumptions can be considered the core of Lorentz’s electrodynamics 
(McCormmach, 1970). 
With Lorentz’s electrodynamics the conceptual distinction between matter and ether 

is clearer than in the Maxwell theory. We have a more precise physical characterization 
of matter, ether, and their interaction, and the scope of application of the theory is 
extended. In this way we can consider Lorentz’s electrodynamics as more fundamental 
than Maxwell’s. But it appears to have a weak spot, which is maintained even after 
considering A. Einstein’s contribution to classical electrodynamics bringing with it the 
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downfall of the concepts of ether and absolute space and the rethinking of 
electrodynamics within the more general theory of relativity. 
When in his first works on the subject Lorentz considered the existence of charged 

corpuscles, he associated them with the ions of electrolysis. P. Zeeman’s experimental 
results that the charge to mass ratio of the particles was one thousand times smaller than 
supposed indicated that these particles were not the ions of electrolysis. This conceptual 
distinction led Lorentz to consider the existence of sub-atomic corpuscles (with positive 
or negative charge), adopting as others the term ‘electrons’ (Arabatzis, 1996, pp. 421-
424). Lorentz considered the electron as a charged rigid body, giving to it a “certain 
degree of substantiality” (Lorentz, 1909, p. 14), to which the laws of motion apply. He 
modelled the electron as a sphere with a uniformly distributed surface charge. He 
considered the electron when in motion in relation to the ether (at rest in absolute space) 
to take the form of an elongated ellipsoid. Considering a very small departure from 
uniform motion and applying expressions obtained in that case, Lorentz determined “the 
force on the electron due to its own electromagnetic field” (Lorentz, 1909, p. 38). He 
found that this effect corresponded to the existence of a mass of electromagnetic origin 
and was led to the idea of an effective mass composed of the mechanical mass and the 
electromagnetic mass. Due to Kaufmann’s experiments, and considering the mechanical 
mass not from the point of view of the not yet developed theory of relativity but from 
Newtonian mechanics, Lorentz even considered the possibility that the electron’s mass 
was all of electromagnetic origin. Lorentz’s work was critically examined by H. 
Poincaré who concluded that a non-electromagnetic internal pression was needed, so 
that the electron was stable under the electrostatic repulsion between its elements of 
charge (Poincaré, 1905). 
From the point of view of the theory of relativity it is clear that the mass of the 

electron cannot be solely of electromagnetic origin. The electron’s momentum and 
energy generated by its own field do not form a four-vector. In relativistic mechanics 
we can consider a particle to be defined by having a determined energy-momentum 
four-vector (Jammer, 1961, p.164). This definition can be justified without taking into 
consideration any aspect of electrodynamics, as G. N. Lewis and R. C. Tolman have 
done: we can determine the relativistic expression for the particle’s mass by considering 
the collision between the particles and postulating a conservation law of momentum and 
using the relativistic law of addition of velocities (Pauli, 1958, p. 118). From this it can 
immediately be seen that the momentum and the energy of the particle behave under 
Lorentz transformation as the components of a four-vector. This result can be checked 
experimentally again without any explicit use of electrodynamics, as was done in the 
early thirties by F. C. Champion, who studied the scattering of β-particles with electrons 
at rest in a Wilson chamber (Zhang, 1997, p. 234). This means that the experimental and 
conceptual framework of relativistic mechanics can be developed and verified on its 
own, detached from any electrodynamical considerations. This point is crucial in the 
analysis of the difficulties that relate to classical models of the electron. 
When considering a point-like model of the electron, the self-energy is infinite. In 

1938, P. Dirac proposed a clear covariant procedure to separate the finite and infinite 
contributions to the self-energy (Dirac, 1938). The infinite contribution to the electron’s 
mass is taken care of by a renormalization procedure in which the observed mass 
encloses the mechanical mass and the (infinite) electromagnetic mass. The finite effect 
is a reaction force depending on the derivative of the acceleration. So, when considering 
the electron’s self-energy we have a departure from the Lorentz force equation and 
obtain an equation – the Lorentz-Dirac equation – in which besides the external force 
we have present the radiation reaction from the electron’s field. This equation has very 
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unphysical solutions. In the absence of any external force the equation admits solutions 
where the radiation reaction provides a self-acceleration to the charged particle. 
Choosing appropriate asymptotic conditions this type of solution is avoidable. 
Nevertheless a problem still remains. When considering the case of a particle subject to 
an external force, the motion of the particle is affected by the force even “before the 
action of the force” (Barut, 1964, p. 198): we have a pre-acceleration of the electron 
before the action of the external force. It seems that the point-like electron is not a 
classically acceptable model. The pre-acceleration solution, where we have a non-zero 
acceleration before the external force is applied, appears to be avoidable with a classical 
extended electron model.  
Let us consider a classical extended electron model consisting in “a charge e 

uniformly distributed on the surface of an insulator which remains spherical with 
constant radius a in its proper inertial frame of reference” (Yaghjian, 1992, p. 31). 
Taking into account the finite velocity of propagation of an electromagnetic disturbance 
across the ‘electron’, in the derivation of the solution to the equation of motion of this 
‘electron’, no pre-acceleration solutions occur.  
This result has been challenged, and it might be the case that even this model does 

not resolve the problem of pre-acceleration (Frisch, 2005, p. 62). In this way there 
seems to be no conceptually unproblematic way to overcome the inconsistency we have 
in the actual applications of classical electrodynamics where, when considering a 
particle-field system, the Lorentz laws are applied taking into account energy-
momentum conservation while ignoring the self-field of the particle. According to M. 
Frisch  
 

the standard way of modeling phenomena involving the interaction between discrete charged particles and 
electromagnetic fields relies on inconsistent assumptions ... the equation of motion for discrete charges 
that is used in all applications of classical electrodynamics, which ignores the self-fields of the charge, is 
inconsistent with the Maxwell equations and the standard principle of energy momentum conservation.  
(Frisch, 2007, p. 2) 
 
Also, in Frisch’s view  
 
there are a host of conceptual problems that arise when one tries to develop a fully coherent and complete 
classical theory of charged particles interacting with electromagnetic fields—a theory that does not simply 
ignore self-interaction effects. (Frisch, 2007, pp. 3-4)  
 
In this way the conceptual problems would be forcing upon us an inconsistent approach. 
I think that rather than some sort of inconsistency we are here facing interesting and 

revealing aspects of classical electrodynamics. I think one thing that we can conclude 
from the analysis that led to the inconsistency claim by M. Frisch, is that we have a 
limited description of matter within classical theory. As has been noted regarding 
classical electrodynamics,  
 

the main problem with taking this theory to be the fundamental theory of the interaction of classical 
charges and fields is that it is in an important sense incomplete. Without substantive additional 
assumptions concerning how charged particles are to be modelled, the theory cannot be understood as 
describing the behaviour of the particle-field system. (Frisch, 2005, p. 47) 
 
Basically we only have general rules from relativistic mechanics that give an overall 
prescription about what general laws matter must ‘obey’; like the definition of the 
concept of particle by considering that it must have a certain energy-momentum four-
vector, which is independent of any particular model of the particle and the possible 
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inconsistency of any derived force law (as I mentioned earlier, the experimental and 
conceptual framework of relativistic mechanics can be developed and verified on its 
own, detached from any electrodynamic considerations). We really do not have any 
elaborated theory of matter. From this I would say that the classical theory is 
incomplete, in the sense that part of its conceptual framework – the one related with the 
description of matter – shows severe limitations. But, contrary to the view expressed by 
Frisch (2007), I find it difficult to regard (in some sense) a theory that we have strong 
reasons to consider incomplete as being inconsistent.  
Another aspect, related to the previous, is that the theory was designed by 

considering two clearly distinct entities: the field and the particles, and in the usual 
applications of the theory “electric charges are treated either as being affected by fields 
or as sources of fields, but not both” (Frisch, 2004, p. 529). In trying to overcome this 
approximate approach, the development of the theory faces clear difficulties that within 
the classical realm seem to have no easy solution (Frisch, 2007, p. 11). In this way, 
recalling the case of quantum electrodynamics, it seems that we might be facing the 
intrinsically approximate character of the description of the interaction of radiation and 
matter also at the classical level, which seems inevitable in the present approach 
developed by considering radiation and matter as two clearly distinct phenomena. If it 
turns out to be so, we are really facing something else than ‘simply’ a problem of 
incompleteness of the classical theory.42 
 
 

3 The relation between classical and quantum electrodynamics 

 
In this part I will defend the idea that quantum electrodynamics cannot be seen as a 
more fundamental theory than its classical counterpart, in the sense that we could 
recover the classical theory from some sort of limit of the quantum theory. Instead I will 
propose to see the quantization procedure as a literal ‘upgrading’ procedure in which we 
build the quantum part from the classical one in such a way that the quantum part is 
dependent of the underlying classical structure. 
I will start, in the first subsection, by considering the quantization procedure. I will 

then consider briefly the literature addressing the so-called classical limit in quantum 
electrodynamics. While in the case of quantum mechanics there is a vast literature about 
this subject, it seems that physics and philosophy have not taken the question of the 
relation between classical electrodynamics and quantum electrodynamics too much into 
account. What we find is basically the usual idea of the Planck’s constant ‘limit’ (h Ø 0) 
transposed to the case of quantum electrodynamics.  
In the second subsection I present part of the argument against the previous 

simplified view of the relation between the two theories. As we know the application of 
quantum electrodynamics to the description of bound-state or scattering problems is 
made by resorting to perturbative approaches (in particular the S-matrix approach). The 
point is that in the perturbative approach we are calculating integrals that go from t = –∞ 
to t = +∞. This overall temporal description makes it impossible to associate a particular 

                                                 
42 As we have seen, according to Bohr’s views this is also the situation in quantum electrodynamics (Bohr 
1932a, p. 378; Bohr 1932b, p. 66; see also Rueger 1992, pp. 317-318). That we might be facing similar 
problems in the two theories can be expected according to the view being proposed here on the relation 
between the two ‘theories’; another example is the renormalization of the electron’s mass in the two 
‘theories’; see e.g. Barut (1964, pp.190-191) and Schweber (1961, pp. 524-530). 
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time interval (duration) to the physical processes described by the theory.43 The problem 
is then to see how the duration of physical processes which are found at the 
macroscopic level (as described by classical theories) could emerge from the quantum 
realm since the theory is unable to provide any indication of a temporal duration of the 
processes that are supposed to be occurring at the microscopic level and constituting the 
macroscopic level where our perception of time is taking place. 
Now if we take classicality as emerging from the ‘quantum world’, the physical 

processes that at a macroscopic level we see taking place during finite time intervals 
should emerge from some, even if ‘diffuse’, assignment at the quantum level of a 
‘duration’ to the physical processes (‘constituting’ the macroscopic ones). As 
mentioned, at the level of the usual applications of quantum electrodynamics this is not 
possible: we just have an overall temporal description. In subsection 3.3 I will consider 
whether it might be possible within quantum electrodynamics to recover a more 
classical type of association of a time interval to physical processes. To this purpose I 
will consider Fierz’s (1950) take on Fermi’s two-atom system (see e.g. Fermi, 1932). It 
turns out that the description, using in part the formalism of quantum electrodynamics, 
of the interaction between two bound electrons cannot be seen as a direct application (or 
consequence) of the theory. It is more like a piecemeal model that can be seen to 
include a classical input. It is exactly this classical input (or quantum input at the 
correspondence level where by design the quantum theory provides results equivalent to 
those of the classical theory) that makes it possible to associate a temporal time interval 
– duration – to the process of emission and subsequent absorption of a photon between 
two bound electrons. In this way it seems that the type of temporal description of 
physical processes we have at the classical level cannot be regarded as emerging from 
the quantum level of description.  
 
 
3.1 The quantization procedure and the so-called classical limit 

 
Within quantum electrodynamics the starting point are classical fields like the Maxwell 
field and the Dirac spinor field defined on a Minkowski space-time. We can see the 
quantization scheme as a set of physical rules that enable an extension of the 
applicability of the classical concepts to phenomena that while categorized as related to 
matter, radiation and their interaction are beyond the classical sphere of description. 
As we have seen in chapter 4, considering the usual quantization procedure, in the 

case of a free Maxwell field the vector potential can be expanded as 
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In order for Aµ(x) to be related to the Maxwell equations, a subsidiary condition is 
imposed, the so-called Lorentz subsidiary condition, which, as mentioned, at a quantum 
level has to be changed. In this case the connections between the classical equations and 
concepts and their quantum upgrades are very direct. Under the quantization scheme 
Aµ(x) is now a field operator, and the Fourier expansion coefficients are now, as 

                                                 
43 In quantum electrodynamics, interaction processes are described as exchange of virtual quanta, and it is 
impossible to associate to the exchange of virtual quanta finite time intervals in opposition to the case of 
real quanta where this is possible (see main text; see also chapter 7). 
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operators, conditioned by the commutation relations [Aµ(x), Aν(x’)] = 0, [A’µ(x), 
A’ν(x’)] = 0, and [Aµ(x), A’ν(x’)] = –iħc2gµν (x – x’) (Mandl & Shaw, 1984, p. 86). 
In the case of the Dirac equation, as we have seen in chapter 3, we can consider the 

equation as a classical equation of an electron-wave, that can have its properties 
explored in experiments like the diffraction experiment of Davisson and Germer 
(Tomonaga, 1962, p. 10, Vol. 2). Following Jordan, we can consider the quantization of 
this classical spinor field, using in this case anticommutation relations, and obtaining, 
by a procedure even more simple than the quantization of Maxwell field, the Dirac field 
operators 
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where cr*, dr*, cr and dr obey the anticommutation relations [cr(p), cr*(p)] = [dr(p), 
dr*(p)] = δrs δpp’, with all other anticommutation relations vanishing (Mandl & Shaw, 
1984, p. 68). 
As mentioned, we can see Dirac’s equation as a classical-level description of matter 

from a wave perspective, but in agreement with the laws of relativistic mechanics. In 
particular, the relativistic Hamiltonian H = c(m2c2 + p1

2 + p2
2 + p3

2) 1/2 can be seen as 
fundamental in the derivation of Dirac’s equation (e.g. Dirac, 1958, p. 255): in his 1928 
paper on the relativistic one-electron wave equation, Dirac considered that the 
relativistic wave equation of the electron should be linear in p0  = iħ ∂/(c∂t) and pr = –iħ 
∂/(c∂xr) with r = 1, 2, 3. In this way it had the form (p0 + α1p1 + α2p2  + α3p3 +  β)ψ = 0. 
The matrices α1, α2, α3 and β, are determined by the relativistically invariant equation 
(p0

2 – m2c2 – p1
2 – p2

2 – p3
2) ψ = 0 defined using the relativistic Hamiltonian (Dirac, 

1928). 
The previous quantization scheme enables the construction of the quantum structure 

from the underlying classical structure. According to C. J. Isham, “the need for such a 
tentative approach is rather unsatisfactory, and suggests that the whole idea of 
‘quantizing’ a given classical system is suspect even though, in practice, the procedure 
does generate many quantum systems of considerable importance … A more logical 
process would be to start from a quantum system that is given in some intrinsic way, 
and then to ask about its classical limit” (Isham 1995, p. 94). The problem is that “there 
is no clear understanding of what it means to specify a quantum system in an ‘intrinsic 
way’” (Isham 1995, p. 94). This situation does not prevent taking the quantum theories 
to be broader than their classical counterparts that are supposed to be recovered from 
them by some sort of limiting procedure, i.e. it is usually considered that classicality 
emerges from the quantum realm (see e.g. Landsman 2006, p. 38).  
A definition of a limiting procedure in which classical theory appears as some sort 

of limit of quantum theory presents mathematical and conceptual problems, which have 
not received an unequivocal answer (Ballentine 1998, p. 388; see also Landsman 2006). 
In general the idea of a classical limit is that we might define a sort of mathematical 
limit that corresponds to a succession of quantum mechanical theories that would take 
us from quantum to classical physics (Rowe 1991, p. 1111). In this way “an explicit 
algorithm may then be used to construct the classical phase space, define a consistent 
Poisson bracket, and find a classical Hamiltonian, such that the resulting classical 
dynamics agrees with the limiting form of the original quantum dynamics.” (Yaffe 
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1982, p. 408) The key point is that the ‘original’ quantum dynamics is constructed by a 
quantization procedure from the classical description, as was done by Dirac using 
classical Hamiltonians and the Poisson brackets (see e.g. Kragh 1990, p. 19). To 
develop a sort of mathematical procedure to go the other way around can be seen as a 
consistency check, independently of the interpretation of this procedure as an 
emergency of classicality.44 The point of all this is that there is an ambiguity in the 
interpretation of this procedure. For some it can be seen simply as a consistency check 
and for others as a limiting procedure. It is only after the argument being presented next 
(about limitations in the temporal description of physical processes) that I have an 
independent argument to claim that the so-called limiting procedure is just a consistency 
check. 
To present classical electrodynamics as a limit of quantum electrodynamics is a 

tricky business, but with the usual long mathematical manipulations we might recover 
expressions that look like some expressions of classical electrodynamics from quantum 
electrodynamics, and with this have the impression of obtaining a classical limit of 
quantum electrodynamics. However in the journey through this mathematical jungle we 
are loosing sight of the physical interpretation of the formalism of quantum 
electrodynamics – we only recover some uninterpreted mathematical expressions that 
resemble expressions from classical electrodynamics but which have not been given a 
physical interpretation according to the quantum theory they belong to. We can see 
examples of this, for example, in the work by Stehle and DeBaryshe (1966) and Dente 
(1975). In the case of Dente the classical limit is supposed to emerge, in the simple case 
of a particle interacting with an oscillator, by considering the expression for the 
transition amplitude where the photon coordinates are ‘eliminated’. According to Dente 
the expression for the transition amplitude, “is just the expression which should arise in 
a classical electrodynamical calculation” (Dente, 1975, p. 1737). The problem is that 
this is a quantum-electrodynamical expression and should be interpreted accordingly; 
also this result can be ‘read’ as a consistency check, i.e. (1) we start from classical 
physics, (2) we implement a quantization procedure, and (3) we present a 
‘mathematical’ procedure to ‘recover’ classical-like expressions.45  
Regarding Stehle and DeBaryshe they call attention to the fact that even the 

expected ‘correspondence’ under particular circumstances (according to the authors the 
high-intensity limit) between quantum-electrodynamical and classical-electrodynamical 
calculations faces difficulties. They consider in particular the case of the scattering of 
light by light that has no classical counterpart. According to Stehle and DeBaryshe, “it 
is not clear that even a low-frequency limit will lead to Maxwell theory” (Stehle & 
DeBaryshe, 1966, p. 1136). However in the case of the scattering of light by free 
electrons it is possible to obtain from the quantum-electrodynamical calculation a cross-
section equivalent to the classical one (see also Schweber, 1961, pp. 638-640). This 
result does not have to be seen as a mathematical derivation of the classical limit. It can 
be seen as a consequence of the correspondence principle, which entails, in particular 
circumstances, ‘identical’ predictions from both theories (for details on the 
correspondence principle see e.g. Bokulich, 2009; Darrigol, 1997). 
That the so-called ‘limiting procedure’ does not deliver what it promises can be seen 

by considering the temporal description of physical processes within quantum 
electrodynamics as compared to the description we have at the level of classical 

                                                 
44 I thank Henrik Zinkernagel for calling my attention to this possibility. This view is also presented by 
Bohm (1951, p. 626). 
45 That we should be careful with this type of naïve identification of a ‘classical limit’ can be seen already 
in the case of quantum mechanics; see e.g. Ballentine, Yang, and Zibin (1994). 
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electrodynamics. In fact, if classical electrodynamics could be seen as a sort of 
‘mathematical limit’ of quantum electrodynamics, the description of processes in the 
classical theory should also be in some way a limit of an ‘underlying’ quantum 
description of the processes. As I will show next, that is not the case. 
 
 

3.2 The overall temporal description of physical processes in quantum electrodynamics 

 
The retardation due to the finite velocity of propagation of the electromagnetic 
interaction should also be revealed in a quantum electrodynamical treatment by looking 
at the quantum description of the electromagnetic interaction between charged particles. 
This would guarantee that it is in principle possible to associate a finite time interval to 
a particular physical process described at the quantum level. The problem is that 
quantum electrodynamics does not provide an ‘in time’ description of scattering 
processes (i.e. we cannot associate a finite time interval corresponding to the retardation 
in the interaction to a physical process like an electron-electron scattering); on the 
contrary the theory only provides transition probabilities which correspond to 
measurable relative frequencies, and, as emphasized by B. Falkenburg, “it treats the 
scattering itself as a black box” (Falkenburg, 2007, p. 131).46  
The system constituted by the Dirac and Maxwell fields in interaction is described 

by a set of coupled non-linear equations. It is not possible to find exact solutions of 
these field equations and the use of perturbative calculations becomes mandatory to the 
point that, according to Dyson, quantum electrodynamics “is in its nature a perturbation 
theory starting from the non-interacting fields as an unperturbed system” (Dyson, 
1952a, p. 79). To be able to use free fields in the description of scattering processes two 
things are necessary: (1) to consider that the initial and final states of the system are 
eigenstates of the Hamiltonian for the non-interacting fields (intuitively meaning that 
since the particles are far apart their interaction is negligible), and (2) that the 
interaction occurs in a short (undefined) period of time when compared to the time it 
takes the particles to arrive at the ‘interaction region’ and their posterior observation 
(which is taken to occur much later when the particles are not interacting anymore).   
This rather vague picture of a scattering process is given a more formal structure 

within the theory by considering that the interaction between particles in a scattering 
process is adiabatically switched on from the remote past and adiabatically switched off 
in the remote future (Lippmann & Schwinger, 1950, p. 473; see also Bogoliubov & 
Shirkov, 1959, p. 197). This is achieved by considering an initial state at t = –∞ 
corresponding to free particles and a final state at t = +∞ also corresponding to free 
particles. This will imply that in this approach, when calculating the so-called S-matrix, 
we are always considering integrations between –∞ and +∞ in the temporal variable (the 
same occurs with the spatial variables), while disregarding the detailed description of 
the intervening times. In this sense we have an overall temporal description of the 
scattering processes, but there really is no description in time of the interaction (we are 
unable to associate a finite time interval to a physical process). From an experimental 
point of view, things make sense as they are because in scattering processes we only 
have experimental access to cross-sections. In quantum electrodynamics the scattering 
cross-section is calculated from the transition probability per unit space-time volume, 
which is related to the S-matrix in a simple way (for details see e.g. Jauch & Rohrlich, 
1976, pp. 163-167). According to Falkenburg,  

                                                 
46 For more details regarding the content of this section see chapters 5 and 7 
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the effective cross-section is the physical magnitude with which the current field theories come down to 
earth. As a theoretical quantity, the cross-section is calculated from the S-matrix of quantum mechanics 
… as an empirical quantity, it is the measured relative frequency of scattering events of a given type. 
(Falkenburg, 2007, p. 107) 
 
We might think that this ‘black box’ description results from a particular method 

and is not a general feature of the theory; but the case is that, even if this formalism is 
particularly tailor-made for the description of scattering processes, it is also applicable 
to bound-state problems (see e.g. Veltman, 1994, pp. 62-67). That is, all the calculations 
made within quantum electrodynamics, giving an excellent agreement with 
experimental results, can be seen as S-matrix type perturbative calculations (see e.g. 
Berestetskii, Lifshitz & Pitaevskii, 1982, p. 554). 
 
 

3.3 A tentative quantum electrodynamical model providing a temporal description of 

physical processes 

 
Even if the theory shows severe limitations in assigning a temporal duration to physical 
processes, we might hope that there are still some other applications of quantum 
electrodynamics approaching more classical situations where this ‘black box’ type of 
description (characterized by an overall space-time approach) does not arise. At first 
sight, it could seem that a simple treatment of the interaction between two atoms might 
provide just that (Fierz, 1950): when an atom initially in an excited state decays 
emitting a photon, it will only be absorbed by a second atom (initially in ground state) 
after roughly the time r/c (where r is the distance between the atoms and c is the 
velocity of light). In this way, it would be possible to associate a clear (finite) time 
interval to the interaction process (i.e. we do not have an overall temporal description of 
the physical process but an in time description like in the classical case). 
There is a huge difference between this treatment of a two-atom system and the 

description of scattering processes. As I have mentioned in the previous chapter, in the 
model we obtain the desired result by patching together different elements. It is not a 
purely quantum electrodynamical derivation. In the model, first we obtain a wave 
function associated with the electron bound in an atom by solving the Dirac equation as 
a relativistic one-electron equation and by using the equation in a way that is known not 
to have a consistent interpretation (Schweber, 1961, p. 99), and then defining field 
operators using the (one-electron) solutions to the equation. In this way in the field 
operators that are associated with the electrons we have contributions that from a 
quantum field theory point of view are related also to positrons (see chapter 3). These 
operators are used within the S-matrix formalism which from a mathematical point of 
view can be done and is the usual procedure followed (Jauch & Rohrlich, 1976, pp. 
318-319), but which does not corresponds to a full quantum field theory calculation; 
properly speaking it is a semi-classical calculation due to the use of an unquantized 
external field.47 In any case in the model development we only need very general 
characteristics of these field operators (Pauli, 1973, p. 133). 

                                                 
47 Usually the term semi-classical is used when considering some heuristic approach with both classical 
and quantum components. One example is Møller’s original derivation of an electron-electron scattering 
formula based on the correspondence principle (Kragh, 1992, pp. 310-312), but whose rigorous 
justification is only possible when deriving it from quantum electrodynamics (Jaynes, 1973, p.40). Here I 
am also using the term semi-classical when we seem to have a classical potential in a quantum 
electrodynamical equation (see footnote 14, chapter 3). 
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As we have seen, to arrive at the intended result the relation ω0T à1 between the 
time of the emission process T and the energy of the emitted photon ω0 is fundamental. 
This relation can be seen as resulting from the classical theory of the natural line 
breadth. It can also be made plausible in a quantum theory calculation (Heitler, 1954, 
pp. 181-184); and it can be seen simply as following from considering Bohr’s 
correspondence principle. Taking into account this relation and the corresponding 
emission line, a specific form is given to the bilinear density ψγψ µ  in the second order 
term of the S-matrix used in this model: 
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with ψγψ µ ~ a1a2
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2/T2] , where ω0 > 0.

48 
We have then in the ‘core’ expression of the model a term derived in the 

correspondence limit, i.e. a term that can be derived either by classical electrodynamics 
or quantum mechanics.  
In simple terms what I mean by ‘correspondence limit’ is the asymptotic agreement 

between the predictions of quantum and classical mechanics. According to Bohr the 
correspondence principle can be seen as a law of quantum theory (see e.g. Bokulich, 
2009). His view is that “the correspondence principle expresses the tendency to utilise 
in the systematic development of the quantum theory every feature of the classical 
theories in a rational transcription appropriate to the fundamental contrast between the 
[quantum] postulates and the classical theories” (quoted in Bokulich, 2009, p. 18). In 
Heisenberg’s and Bohr’s view matrix mechanics embodies the correspondence ideas by 
a ‘symbolic’ translation of the Fourier components of the motion to corresponding 
quantum amplitudes. According to Darrigol in this last formulation of the 
‘correspondence principle’ as part of quantum theory we have a ‘symbolic translation’ 
of classical concepts (i.e. we obtain the corresponding quantum concepts by the 
quantization procedure) and maintain the (statistical) asymptotic agreement between the 
quantum and the classical theories (Darrigol, 1997). It is important to notice that this 
asymptotic agreement (correspondence limit) is built into the theory and it is not related 
to any eventual ‘mathematical limiting procedure’ that recovers the classical theory 
from the quantum theory. 
The implication of all this is that the model must be seen as a semi-classical one. 

Thus when using this model we are then at the ‘interface’ of contact between the 
classical and quantum theories. We are not ‘diving’ into the quantum world, which is 
supposed to be underlying the classical mode of description. What I am interested in is 
the (in time) temporal description (if any) of physical processes in this ‘quantum world’, 
i.e. the description given in a full quantum electrodynamical calculation. Before 
returning to this point let us return to the model under consideration. 
The final ingredient in the development of the model is an adjustment by hand of the 

distance between the atoms so that the second atom lies in the wave zone of the first. In 
this way we can take the photon to be real, and we find that it is possible to associate a 
causal temporal order to the emission and absorption process of the ‘real’ photon. In 

                                                 
48 We see that a Gaussian function is being used. The expected function according to classical theory (or 
its quantum counterpart) is a Lorentzian function. The Gaussian can be obtained when considering the 
broadening due to the Doppler effect occurring in a ‘gas’ of atoms at temperature T (Major, 1998, pp. 
142-149). That is, the expression being used is not valid in the case of one single atomic system, which is 
the case being considered in this model. 
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summary, we are using a model that describes a thought-experiment; it makes reference 
to general aspects of the electron’s wave function that result from using Dirac’s 
equation not as a classical wave equation (from which a quantum field is derived by a 
quantization procedure), but as a semi-classical one-electron equation (Schweber, 1961, 
p. 100). Ultimately the main input that determines the form of the bilinear density is not 
provided by the Dirac equation computation but by a heuristic use of what can be seen 
as a classical result for the radiation emission of a bound electron and an adjustment by 
hand of the distance between the atoms to make it possible to obtain the desired 
temporal behaviour. This cannot be seen as an application of the quantum 
electrodynamical formalism. More properly it is a heuristic semi-classical model, 
which, as mentioned, works at the correspondence level of description (since part of its 
elements are described by classical physics).  
I think that to arrive at any conclusive results, we have always to stick to the 

physical interpretation of quantum theory and consider clear applications of quantum 
electrodynamics related with feasible experiments. Here we have seen that the theory 
only provides ‘black box’ descriptions of physical processes, corresponding to an 
overall space-time approach. In this way from what has been presented one cannot 
consider that from the quantum level of description it is possible to recover the 

temporal description of processes that we have at a classical level.  
 
 

4 Conclusions 

 
Considering the results presented here, there seems to be no smooth and physically 
unproblematic way to connect quantum electrodynamics with classical electrodynamics. 
Thus the status of quantum electrodynamics has to be reconsidered. Quantum 
electrodynamics cannot be seen as an independent theory that “contains [classical] 
electrodynamics as a special case” (Stehle & DeBaryshe, 1966, p. 1135).  It seems more 
adequate to regard quantum electrodynamics as a physical-mathematical upgrade of 
classical theory (electrodynamics and the theory of relativity), which permits an 
extension of the domain of application of the classical theory in the description of 
natural phenomena, but which does not constitute a reduction of the classical theory. 
This conception of quantum electrodynamics as something constructed on top of 
classical physics fits well with Darrigol’s idea of a modular structure of physical 
theories. According to Darrigol 
 

The practice and the history of physics show that physical theories are not homogenous wholes, and that a 
given physical theory is usually used in conjunction with other theories … I introduce the notion that any 
non-trivial theory has essential components, or modules, which are themselves theories with different 
domains of application. (Darrigol, 2008, pp. 195-196) 
 
Thus quantum electrodynamics can be seen as part of a broader theoretical modular 
structure that is expected to describe –with both its classical and quantum parts– what 
we consider to be the phenomena of matter, radiation and their interaction. Quantum 
electrodynamics works as an extension (or upgrade module) of the classical theory into 
‘regions’ where previously this failed completely. But since it has been developed from 
classical concepts, and its probabilistic interpretation puts clear constraints on the 
applicability of the theory, we cannot expect to recover the classical part of the 
description of the phenomena from the quantum part by some limiting procedure. In 
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particular, it is not possible to recover fully, from quantum electrodynamics, the kind of 
temporal description of physical processes that we have with the classical theory. 49 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
49 From a different perspective, not taking into account the relation between classical and quantum 
electrodynamics, Teller (1999) argues against taking quantum electrodynamics to be a fundamental 
theory. 
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CAPÍTULO 9 
 
 
 

COMENTARIOS FINALES 
 
 
 
 
 
 
 
Como conclusión de este estudio histórico-filosófico de anomalías en la electrodinámica 
cuántica cabe precisar un poco lo que tiene o no de filosófico este trabajo. Haciendo una 
analogía con la cuestión de la teoría de perturbaciones tratada en este trabajo se puede 
decir que aquí se presenta un análisis filosófico de primer orden sin adentrarme en 
cuestiones más complejas. Esta es una opción consciente que resulta de lo intrincado de 
los problemas filosóficos implícitos en este trabajo.  
Los debates filosóficos desde la filosofía de la física enfocando la teoría cuántica de 

campos van desde perspectivas defendiendo que la teoría cuántica de campos no aporta 
ningún elemento autónomo que no se encuentre ya en la mecánica cuántica (Cushing, 
1988) a la perspectiva de que existen temas filosóficos propios a la teoría cuántica de 
campos (Cao, 1999). Un ejemplo es el caso ‘clásico’ de la cuestión del estatus 
ontológico de los cuantos en la teoría: la llamada cuestión de la ‘interpretación’ 
(ontológica) en términos de cuantos o campos.  
Por lo general los problemas tratados me parecen bastante más vastos e intrincados 

que los estudios filosóficos especializados permiten suponer. En particular con la idea 
propuesta aquí de que no se puede analizar la teoría cuántica sin tener también en cuenta 
la teoría clásica surgen dudas respecto a la ‘validez’ y ‘generalidad’ de muchos análisis 
‘filosóficos’ disponibles en el mercado académico. Esto es en parte el motivo de 
presentar ‘estudios separados de primer orden’ sin buscar una integración clara de los 
distintos elementos. 
     ¿Cómo se podría hacer una filosofía de ‘orden’ superior? En primer lugar resulta 
evidente la cuestión de usar la estructura más general clásico-cuántica. Pero no es sólo 
eso. Queda evidenciado en este trabajo que existe una cuestión de adecuación entre la 
matemática y la física. Ésta se tiene que tratar en un ámbito más amplio que el de la 
electrodinámica (clásico-cuántica). También la cuestión de la consistencia del 
formalismo físico-matemático con la experimentación. Aquí creo posible un tratamiento 
centrado en la electrodinámica pero un enfoque más global puede resultar más 
interesante. A lo largo del trabajo queda clara la importancia que doy al aspecto de 
comparar/relacionar el formalismo con la experimentación (lección aprendida con el 
trabajo clásico de Bohr y Rosenfeld (1933) que no abordo de forma directa en este 
trabajo), pero esto es, en si mismo, un trabajo que va bastante más allá de lo que busqué 
realizar aquí. La cuestión de la adecuación entre la estructura matemática y los 
conceptos físicos implementados en la teoría, es a mi entender una cuestión que también 
Bohr enfocó sin denominarla así. Es uno de los elementos que exploro en este trabajo 
para tratar de dar una interpretación clara del formalismo que haga consistente la 
práctica de los físicos y la estructura conceptual de la teoría (y así evitar la aceptación 
meramente pragmática de tener que recurrir a un método aparentemente ad hoc que era 
lo que estaba pasando en la teoría). Lo que no hago es ir más allá de esta cuestión más 
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específica e intentar desarrollar una ‘visión’ filosófica del papel de la matemática en la 
física. Esto es una cuestión mucho más amplia, que creo no poder tratar solamente 
teniendo en cuenta una teoría en particular. Pese a no desarrollar filosóficamente estos 
temas, ellos están presentes en este trabajo, y junto con la cuestión del espacio-tiempo 
(para la cual también es necesaria una perspectiva más amplia) constituyen el hilo 
conductor que ‘conecta’ los distintos capítulos. Así, aunque no presento el desarrollo 
filosófico más amplio en el que se podría encuadrar mi trabajo, presento ejemplos claros 
e interconectados (por resultar de la misma teoría) de la importancia de las mencionadas 
cuestiones filosóficas de orden superior. 
Así, por ejemplo, al tratar la cuestión del vacío del campo electromagnético enfoqué 

la cuestión de la consistencia entre la interpretación del formalismo físico-matemático 
de la teoría y los resultados experimentales que se pueden considerar como una 
‘manifestación’ del vacío electromagnético. Resulta que son consistentes, pero hay un 
problema a nivel de la teorización física respecto a la descripción de la interacción entre 
la radiación y materia. Eso no parece posible de evitar en la electrodinámica cuántica 
que resulta ser un método intrínsecamente aproximativo, que no permite tratar la 
radiación y la materia como un sistema cerrado en el cual se da una descripción exacta 
de la interacción. Incluso parece que ésta es la situación en la electrodinámica clásica. 
Resultaría extraño si no fuera así ya que la estructura de la electrodinámica cuántica se 
construye partiendo de la de la electrodinámica clásica. Resulta así esencial tratar la 
cuestión de la relación entre la estructura matemática y conceptual en la teoría para 
interpretar el formalismo y sus aplicaciones. Así, al contrario de la visión más usual en 
la filosofía de la física, podemos ver la necesidad de la renormalización como una 
indicación del ajuste ‘fino’ que hay entre la estructura matemática y conceptual. Los 
infinitos resultan en este caso de aplicarse la teoría sin tener en cuenta la estructura 
atómica de la materia que es una componente esencial de la formalización matemática 
del concepto físico de electrón en la ecuación de Dirac. Del mismo modo la divergencia 
de la expansión en serie de la matriz-S se puede ver como resultado de una aplicación 
ilimitada del formalismo matemático sin tener en cuenta la definición limitada de 
interacción con que se parte en la teoría. Como Bohr y Rosenfeld precisaron, en la 
electrodinámica cuántica se describe la interacción evanescente (vanishing) entre 
radiación y materia nada más (Bohr & Rosenfeld, 1950, p. 794). Resulta entonces que 
los resultados divergentes con que nos enfrentamos en la teoría tienen origen en un uso 
ilimitado del formalismo matemático. Queda por saber si eso es una característica 
general en la física-matemática o si hay teorías ‘avanzadas’ en que tal situación no 
ocurre. También las cuestiones filosóficas relacionadas con la teoría de perturbaciones 
van más allá del caso particular aquí tratado, por lo que no se pueden obtener 
conclusiones generales de este caso particular. 
La cuestión de la adecuación físico-matemática tiene incidencia en la interpretación 

de los términos de la expansión en serie de la matriz S, en particular en lo que respecta 
al estatus de los cuantos virtuales. Pero esto no afecta el aspecto de la descripción 
espacio-temporal global tal como la tenemos en la electrodinámica cuántica. Como 
comenté en la introducción el estudio filosófico de los conceptos de espacio y tiempo 
teniendo en cuenta alguna aportación de la electrodinámica cuántica, es un estudio 
bastante más vasto de lo que aquí se hace por lo que no se puede presentar en este 
trabajo ninguna visión filosófica particular respecto a esta materia. Los resultados 
comentados llevan antes a buscar un enfoque conjunto clásico-cuántico de las 
cuestiones relacionadas con el espacio-tiempo como un ejemplo particular de la 
necesidad de usar por lo general este enfoque siempre que tratamos algún aspecto 
conceptual/filosófico relacionado con las teorías cuánticas. 
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APPENDIX  
 
 
 

BOHR’S QUANTUM POSTULATE AND TIME IN QUANTUM MECHANICS  
 
 

 
 

 

 

 

1 Introduction 

 

Niels Bohr considered that the “discovery of the elementary quantum of action, which 
revealed a feature of wholeness inherent in atomic processes” (Bohr, 1958, p. 2) means 
a departure from the classical physics description, where we assume that the interaction 
of a physical system with a measuring instrument can ultimately be disregarded. In the 
case of quantum phenomena we have to be aware that due to the “indivisibility of the 
quantum of action” (Bohr, 1934, p. 5) we must associate to all “individual atomic 
processes an element of discontinuity quite foreign to the fundamental principles of 
classical physics, according to which all actions may vary in a continuous manner” 
(Bohr, 1934, p. 4). This means that in the case of all atomic processes every energy 
change results from an indivisible – and because of that discontinuous – transition 
between different states that cannot be continuously connected. These ideas were 
summed up by Bohr and presented in what he called the quantum postulate (and its 
consequences). 
In section 2 I will give a historical account of the coming to be of the postulate of 

the quantum and some of its consequences according to Bohr’s views on quantum 
theory. In section 3, I will consider the temporal description of quantum systems given 
by the time-dependent Schrödinger equation, taking into account Bohr’s views on the 
interpretation of the formalism of the theory. In particular, considering Bohr’s 
interpretation of the wave function – related to the role he gives to the experimental 
arrangement in the interpretation of the mathematical formalism of the theory –, it is 
possible to accommodate the discontinuous changes in individual systems with a 
temporal description of an ensemble of identical systems in a continuous ‘classical’ 
time (that is external to the quantum systems themselves). But as will be shown we 
must address the question: are Bohr’s ideas coherent taking into account his quantum 
postulate and the use in the description of a quantum system of an external classical 
time? Following the ideas of Don Howard the answer seems to be no. But from a 
different perspective (compatible with views put forward, for example, by Paul Teller, 
Simon Saunders or Henrik Zinkernagel) the answer can be yes. 
In a nutshell, according to Bohr it is not possible to define a quantum system 

independently of the experimental context – (at least in part) classically described – that 
defines the conditions in which the quantum phenomenon is manifested. In this way it is 
not possible to take the wave function as describing an isolated quantum system – a 
concept that has no meaning for Bohr – but a quantum system defined in a particular 
experimental context, which, at least in part, is classically described. Also, Bohr did not 
consider the need for the wave function collapse during the observation of a quantum 
system (Howard, 2004, p. 669). This is possible if the wave function is not associated 
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with an individual quantum system but to a probabilistic description of identically 
prepared quantum systems submitted to the same experimental procedure (Teller, 1980, 
pp. 211-214).  
One point of quantum theory that is usually not considered in connection with 

Bohr’s ideas is the concept of time being used in the theory. In reality the use of a 
classical concept of time is coherent with Bohr’s ideas. Even if Bohr did not develop in 
detail his views regarding space and time in quantum theory, it is possible to give a 
coherent reading of his ideas by taking into account the need for a classical description 
of part of the experiment. This makes possible a classical treatment of time, and this 
even if the quantum postulate implies the impossibility of conceiving the quantum 
phenomena independently of the measuring apparatus. In particular it is possible to see 
the temporal parameter of the Schrödinger equation as an external classical time related 
to the measuring apparatus. This makes it possible to have simultaneously: 
 

A) A quantum system defined in a way that is dependent on the experimental context 
(due to the quantum postulate). 
 
B) A space-time macroscopic reference frame associated with the measuring apparatus, 
but defined without taking into account the indissociability of the quantum system to the 
measuring apparatus. 
 
C) The description of the quantum system using a classical clock with which it has no 
direct interaction.50 
 
Some further remarks are presented in the end of this appendix.  
 
 
2 The quantum postulate 

 
Around 1912-1913 Bohr developed a model of the atom51 based on the idea of 
stationary states – not submitted to the consequences of the classical theory of radiation 
–, where the electron can jump from one stationary state to another by emission or 
absorption of radiation with a frequency ν given by the relation hν = E´ – E´´, where E´ 
and E´´ are the energies of each stationary state. This might seem to be an application of 
Einstein’s ideas on the emission and absorption of light quanta. That is not the case 
(Mehra & Rechenberg, 2000, pp. 94 & 109). 
In his 1913 article Bohr presented a model of the atom in which he incorporated 

‘quantum’ ideas in the classical ‘planetary system’ model of the atom developed by E. 
Rutherford. Besides his idea of stationary states – where the classical laws of 
electrodynamics are put to rest allowing us to consider that there was no emission of 
radiation, while at the same time the electron was supposed to have a classical orbit 
described by classical mechanics – the main point in Bohr’s approach was the non-
classical description of the emission of electromagnetic radiation that could ‘explain’ 
the line-spectra of hydrogen. In the beginning of his article, Bohr gave a first treatment 
of the emission of radiation when an electron passed from one stationary state to 

                                                 
50 In this way, I will be presenting a reconstruction (in Howard’s sense; see Howard, 1994, p. 203) of 
Bohr’s interpretation of the quantum formalism, which in my view makes compatible Bohr’s quantum 
postulate and Bohr’s views regarding space and time in quantum theory. 
51 For an account of Bohr’s research that lead to his atomic model see e.g. Sánchez Ron (2001, pp. 255-
284). 
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another, based on the so-called Planck’s second theory, which was formulated by 
Planck between 1910 and 1912 (Kuhn 1978).  Bohr considered that during the binding 
of the electron, when the electron passed from a free state of zero energy to a stationary 
state (or when the electron passed from one stationary state to another stationary state 
with lower energy), we had an “emission of a different number of Planck’s energy-
quanta” (Bohr, 1913, p. 139). At the same time Bohr considered that this process 
corresponded to an “emission of a homogeneous radiation” (Bohr, 1913, p. 139). It 
seems Bohr was not thinking in terms of Einstein’s light quanta but in terms of an 
electromagnetic wave whose energy was, according to one of Bohr’s assumptions, 
given by hν = E´ – E´´. This of course is inconsistent with the use of a multi-quantum 
radiation process in the description of the binding of the electron (Darrigol, 1992, p. 
89). In any case Bohr clearly stated that these ‘special assumptions’ were not essential 
in the development of his model and that other assumptions might be used. In this 
article Bohr followed two other different approaches, progressively freeing his model 
from Planck’s considerations on the way (Jammer, 1966, pp. 78-80).  
In his second approach Bohr considered that the radiation emitted when the electron 

passed from one stationary state to another corresponded to a single energy quantum 
whose energy is equal to hν. In this case Bohr considered that the relation between the 
(binding) energy of the electron W and its frequency of (orbital) revolution ω was given 
by the expression W = f(τ)ωh, where τ is an integer whole number corresponding to a 
particular stationary state. By considering the transition between two stationary states 
and taking into account the Balmer series formula, Bohr found that we must have f(τ) = 
cτ, where c is some undetermined number. To determine the value of c, Bohr, following 
a method used previously by Planck (Jammer, 1966, p. 50; Kuhn, 1978, pp. 278-279; 
Planck, 1914, pp. 164-166), considered the limit where there should be an agreement 
with classical electrodynamics. In the case of two successive stationary states τ = N and 
τ = N – 1, when “N is great” (Bohr, 1913, 146), we must have f(τ)=τ/2 to agree with the 
results from classical electrodynamics. 
Finally, Bohr gave up any account of the emission of radiation based explicitly on 

the concept of energy quanta, and solely by an analogy with classical electrodynamics 
he tried to make plausible the previous relation between the (emitted) energy W and 
frequency ω of the electron in the stationary state. In the limit of large N, the frequency 
of the emitted radiation is given by ν = nω, that corresponds to one of the harmonics of 
ω, which are expected to be emitted according to classical theory (Tomonaga, 1962, p. 
93). In this limit of large N, the frequency of the emitted radiation does not depend on 
the difference of energy of the different stationary states and can be calculated solely 
from the frequency of one stationary state. Bohr considered that:  
 

the interpretation of the equation [W = τωh/2] is not that the different stationary states correspond to an 
emission of different numbers of energy-quanta, but that the frequency of the energy emitted during the 
passing of the system from a state in which no energy is yet radiated out to one of the different stationary 
states, is equal to different multiples of ω/2, where ω is the frequency of revolution of the electron in the 
state considered. (Bohr, 1913, p. 146) 
 

With this approach Bohr develops his model of the atom without having to address 
directly the problem of the nature of radiation and Einstein’s hypothesis of the light 
quanta.52 

                                                 
52 Bohr associates the expression E = hν (that he uses to determine the energy of the electromagnetic 
radiation) with Planck, and in his article we refers to some of Planck’s articles published between 1910 
and 1912. In his different formulations of his second theory Planck associated the quanta of energy to the 
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In 1923 Bohr addressed directly the hypothesis of light quanta (Klein, 1970, p. 21). 
Bohr considered that the concept of light quanta “excluded in principle the possibility of 
a rational definition of the conception of a frequency ν” (Bohr, 1924, p. 35), and that “in 
spite of its heuristic value, however, the hypothesis of light-quanta, which is quite 
irreconcilable with so-called interference phenomena, is not able to throw light on the 
nature of radiation” (Bohr, 1923, p. 32). In this article Bohr made an explicit association 
of the expression hν = E´ – E´´ with the emission or absorption of electromagnetic 
waves by taking more fully into account the correspondence (analogy) with classical 
electrodynamics that he used already in his 1913 article: 
 

a process of transition between two stationary states can be accompanied by the emission of 
electromagnetic radiation, which will have the same properties as that which would be sent out according 
to the classical theory from an electrified particle executing an harmonic vibration with constant 
frequency. This frequency ν has, however, no simple relation to the motion of the particles of the atom, 
but is given by the relation hν = E´ – E´´, where h is Planck’s constant, and E´and E´´ are the values of 
the energy of the atom in the two stationary states that form the initial and final state of the radiation 
process. Conversely, irradiation of the atom with electromagnetic waves of this frequency can lead to an 
absorption process, whereby the atom is transformed back from the latter stationary state to the former. 
(Bohr, 1923, p. 33) 
 
Around July of 1925 it was already clear to Bohr that a more classical wave-like 

picture of the electromagnetic radiation was untenable. This was due to experimental 
results, related to the so-called Compton scattering, obtained by W. Bothe and H. 
Geiger. In their experiment, Bothe and Geiger confirmed energy-momentum 
conservation in individual atomic processes by observing a simultaneous detection 
(coincidences) of scattered x-rays and recoil electrons in the scattering of x-rays by free 
electrons (Fick & Kant, 2009, pp. 399-401). Also A. H. Compton and A. W. Simon 
made an experiment in a cloud chamber that permitted the observation of the track of 
the recoil electrons and the direction of scattering of the x-rays (due to the occasional 
production of secondary tracks). They obtained the expected relation, according to the 
light-quanta hypothesis, between the scattering angles of the x-rays and the electrons 
(Jammer, 1966, p. 186). 
According to Bohr we do not observe directly the scattered x-ray but 

“photoelectrons released by the scattered radiation” (Bohr, 1925a, p. 204). It is 
important to take this into account to understand Bohr’s reasoning. The experimental 
result of Bothe and Geiger implies strict energy-momentum conservation in the 
interaction of the electron and the radiation. This implies that depending on the change 
of energy and momentum in the recoil electron we will have a change in the energy and 
momentum of the photoelectron, which is causally dependent on the changes in the first 
electron due to the strict conservation of energy and momentum in the interaction of the 
electrons with the radiation. Bohr refers to this situation as a “coupling between the 
emission of the recoil electrons … and the photoelectrons” (Bohr 1925a, 204). 
Considering this electromagnetic coupling between two individual transition processes 

                                                                                                                                               
resonators (oscillating dipoles) not to the electromagnetic field (Kuhn, 1978, p. 231). Planck did not 
accept Einstein’s idea of the light quanta (Kuhn, 1978, p. 233). Specifically, in is mature formulation of 
his second theory, Planck proposed to “make the deviation from the laws of classical electrodynamics … 
as slight as possible” (Planck, 1914, p. 152). In this way, Planck considered that “the absorption of 
radiation by an oscillator takes place in a perfectly continuous way” (Planck, 1914, p. 161). It is only in 
the emission of radiation that the behaviour of the oscillators departures from classical theory. According 
to Planck “the oscillator emits in irregular intervals, subjected to the laws of chance; it emits, however, 
only at a moment when its energy of vibration is just equal to an integral multiple n of the elementary 
quantum ε = hν, and then it always emits its whole energy of vibration nε”. (Planck, 1914, p. 161) 
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(one occurring with the recoil electron and the other with the photoelectron), Bohr 
concludes that “no space-time mechanism seemed conceivable that permitted such a 
coupling and at the same time achieved a sufficient connection with classical 
electrodynamics” (Bohr, 1925a, 204). That is, it is not possible to maintain a wave-like 
picture because of the conservation of energy and momentum in individual atomic 
processes. This does not mean a renunciation of the wave-like perspective and adoption 
of the light quanta concept. According to Bohr the problem is not simply 
“distinguishing between two well-defined conceptions of the propagation of light in 
empty space corresponding to either a corpuscular theory or a wave theory of light” 
(Bohr, 1925a, p. 204). The real problem being faced is “to what extent the space-time 
pictures [wave-like or particle-like], by means of which the description of natural 
phenomena has hitherto been attempted, are applicable to atomic processes” (Bohr, 
1925a, p. 204). The paradoxical situation facing Bohr is that there is no simple choice 
between two incompatible pictures used in the description of natural phenomena. We 
are in a situation where “the radiative activity of individual atoms is influenced by the 
presence of other atoms in the sense to be expected in the picture of the wave 
propagation of light” (Bohr, 1925a, p. 204), but on the other hand we have to recall “the 
coupling between individual atomic processes [due to energy-momentum conservation], 
which forces upon us the picture of a corpuscular propagation of light” (Bohr, 1925a, 
pp. 204). In another article published in December of 1925, Bohr states that one is 
facing “an essential failure of the [wave-like and particle-like] pictures in space and 
time on which the description of natural phenomena has hitherto been based” (Bohr 
1925b, 848). This situation did not prevent Bohr from grasping the profound conceptual 
meaning of accepting the “individuality of single [atomic] processes” (quoted in Mehra 
& Rechenberg, 2000, p. 191) due to the strict conservation of energy and momentum in 
the interaction of matter and radiation, as had been verified in the experiments of Bothe 
and Geiger, and Compton and Simon and proposed by Einstein in 1905 within his light-
quanta hypothesis. 
In a letter to H. A. Lorentz from 24 June 1926, accepting an invitation to attend a 

meeting, Bohr mentioned the eventual name of the report he would present: “Le 
Postulat des Quanta et le Nouveau development de l’Atomistique” (Mehra & 
Rechenberg, 2000, p. 175). What Bohr meant by ‘le postulat des quanta’ or as it appears 
in English, the quantum postulate, would appear in print only in 1928. According to the 
Bothe-Geiger and Compton-Simon experiments, it is necessary to use the idea of an 
elementary quantum in the description of the interaction between matter and radiation. 
Because of the indivisibility of the quantum we have to consider that in each single 
atomic process of interaction between the electron and the electromagnetic radiation we 
have a “discontinuous change of energy and momentum” (Bohr, 1927, p. 93). From this 
we may speak of the ‘individuality of single processes’. Connected with this idea of 
individuality is the possibility of a coupling between spatially separated atomic 
processes, meaning with the term ‘coupling’ the causal relation between individual 
processes due to energy-momentum conservation.53 But the essential point in the 
quantum theory is the indivisibility of the quantum, as Bohr mentioned: 

                                                 
53 Scott Tanona gives an account of Bohr’s reaction to the Bothe-Geiger experiment that stresses the 
‘coupling’ between different atoms, or more generally the coupling between an atomic system and a 
measurement instrument (i.e., according to Tanona, a Bothe-Geiger-type coupling with a measurement 
instrument). In this way Tanona gives to ‘individuality’ a slightly different meaning than the one adopted 
here (which relates the term already to the interaction between radiation and matter). Also Tanona 
stresses Bohr’s emphasis on the breakdown of the classical space-time pictures and not on the light-
quantum concept (Tanona, 2004, pp. 498-500; see also Murdock, 1987, pp. 29-30). 
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Its essence may be expressed in the so-called quantum postulate, which attributes to any atomic process 
an essential discontinuity, or rather individuality, completely foreign to the classical theories and 
symbolised by Planck’s quantum of action. (Bohr, 1928, p. 580) 
 

This has an immediate consequence that Bohr stressed clearly in the same article: 
 

The quantum postulate implies that any observation of atomic phenomena will involve an interaction with 
the agency of observation not to be neglected … the definition of the state of a physical system, as 
ordinarily understood, claims the elimination of all external disturbances. But in that case, according to 
the quantum postulate, any observation will be impossible … if in order to make observation possible we 
permit certain interactions with suitable agencies of measurement, not belonging to the system, an 
unambiguous definition of the state of the system is naturally no longer possible. (Bohr, 1928, p. 580) 
 

That is, as a consequence of the ‘quantized’ interaction, there is no way, as in classical 
physics, to consider a smaller and smaller interaction that in the limit of an 
‘infinitesimal’ exchange of energy-momentum would enable us to define a quantum 
system independently of the experimental context where it is being observed.  
In his later writings the importance Bohr gave to this consequence of the quantum 

postulate becomes even clearer. In successive drafts for an article published in 1956, 
Bohr uses the word ‘wholeness’, ‘indivisibility’, and ‘unity’ (Honner, 1987, p. 69), 
finally writing “The essential indivisibility of proper quantum phenomena” (Bohr, 1956, 
p. 87). In several others of his later writings Bohr refers to a ‘feature of wholeness’ in 
the atomic processes (Bohr, 1954, p. 71; 1958, p. 2; 1962a, p. 78; 1962b, p. 80).  This 
characterization of atomic processes by their ‘wholeness’ results from Bohr’s insight 
into the consequences of the “atomistic feature in the energy transmission” (Bohr, 1933, 
p. 421), that he addressed in published articles since 1928, according to which “all 
effects of light may be traced down to individual processes, in each of which a so-called 
quantum is exchanged” (Bohr, 1933, p. 421). We see then that it is Bohr’s recognition 
of the quantized interaction between radiation and matter (embodied in the light-
quantum concept) that leads him to the generalization that all atomic processes result 
from indivisible (atomistic) momentum and energy exchanges (i.e. all atomic processes 
are discontinuous). 
One of the most relevant aspects of the “impossibility of separating a behavior of 

atomic objects from the interaction of these objects with the measuring instruments” 
(Bohr, 1948, p. 313) is the need of redefining the meaning of the term phenomena. 
According to Bohr we have to limit the “use of the word phenomenon to refer 
exclusively to observations obtained under specified circumstances, including an 
account of the whole experiment” (Bohr, 1948, p. 317). In this way we are no “longer in 
a position to speak of the autonomous behavior of a physical object, due to the 
unavoidable interaction between the object and the measuring instruments” (Bohr, 
1937, p. 293). This implies that for Bohr the wave-function of a ‘quantum’ system does 
not have an independent meaning on its own, it can only be defined in the context of an 
experimental arrangement: we can not speak of the wave-function of an electron by 
itself, only of its wave function as defined in a particular experimental setup (Teller, 
1980, p. 206; Camilleri, 2007, p. 522). This contextualization of the quantum 
phenomena brings with it, according to Bohr, the need to use classical concepts.  Thus, 
according to Bohr we must consider that: 
 

[An] unambiguous communication of physical evidence demands that the experimental arrangement as 
well as the recording of the observations be expressed in common language, suitably refined by 
vocabulary of classical physics. In all actual experimentation this demand is fulfilled by using as 
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measuring instruments bodies like diaphragms, lenses and photographic plates so large and heavy that, 
notwithstanding the decisive role of the quantum of action for the stability and properties of such bodies, 
all quantum effects can be disregarded in the account of their position and motion. (Bohr, 1962b, p. 91) 
 
There is one important aspect of Bohr’s interpretation of quantum mechanics not yet 

mentioned (besides his complementarity, which I will not address). More exactly an 
aspect that Bohr does not mention himself, i.e. something that is altogether inexistent in 
Bohr’s account of quantum theory, namely the wave packet collapse. 
As is well known the wave packet collapse is a central aspect of the so-called 

Copenhagen interpretation of quantum mechanics. In his “Who invented the 
‘Copenhagen interpretation’? A study in mythology”, Don Howard (2004) calls 
attention to the fact that Bohr’s interpretation, “makes no mention of wave packet 
collapse or any of the other silliness that follows therefrom, such as a privileged role for 
the subjective consciousness of the observer” (Howard, 2004, p. 669). This view had 
already been put forward by Paul Teller in his “The projection postulate and Bohr’s 
interpretation of quantum mechanics”: 
 

My position is very simply that Bohr gives the state function a statistical interpretation and a statistical 
interpretation has no need of the projection postulate [i.e. the collapse of the wave function during 
measurement]. (Teller, 1980, p. 211) 
 

Teller’s view was that to Bohr 
 

The state function must be taken as a purely symbolic device for calculating the statistics of classically or 
commonly described experimental outcomes in collections of phenomena grouped by shared 
specifications of experimental conditions. (p. 206) 
 

Accordingly 
 

On Bohr’s view the state function describes not one individual case, but a whole ensemble of cases with 
a common preparation characterized in the language of classical physics or daily discourse. (p. 213) 
 
I agree with Teller’s reading or ‘interpretation’ of Bohr. This means that what we 
nowdays call the statistical or ensemble interpretation (Isham’s minimal interpretation) 
was basically the interpretation of Bohr or at least we can see it as an interpretation 
compatible to what we know about Bohr’s views on quantum theory, i.e. a Bohrian 
interpretation. It is this Bohrian interpretation that is being followed in this work. 
 
 
3 The concept of time in quantum theory and Bohr’s quantum postulate 

 
To see the role of the concept of time in quantum theory we have to consider the 
quantum-theoretic description of time-dependent phenomena by the time-dependent 
Schrödinger equation: 
 

Ψ(t)H
t

Ψ(t)
i =

∂

∂
h , 

 
where H is the Hamiltonian  and ψ the wave function of a system. For the present 
purpose, I will consider the quantum-theoretical description of the spontaneous 
emission of radiation by an atom. In this case the Hamiltonian is H = Hatm +Hrad +Hint, 
where Hatm is the Hamiltonian for an atom, Hrad is the Hamiltonian for the 
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electromagnetic field, and Hint is the Hamiltonian describing the interaction between the 
electromagnetic field and the atom. Considering the case where the electromagnetic 
field wavelength is much larger than the dimension of the atom, the interaction between 
the field and the atom can be described using the electric dipole approximation 
(Loudon, 1973, pp. 42-43). Also, in the case of a weak coupling between the field and 
the atom, the time-dependent Schrödinger equation can be solved in first-order 
perturbation theory (Ballentine, 1998, pp. 349-350). To determine the spontaneous 
emission rate (and from this the lifetime of the excited state), corresponding to the 
transition of an atom initially in an excited state to the ground state (with the 
electromagnetic field initially in the vacuum state), a further approximation will be 
considered: we will consider a time t larger than the inverse of the frequency of the 
spontaneously emitted photon, but since it is a first-order calculation we must also take t 
to be smaller than the excited state lifetime (Craig & Thirunamachandran, 1984, pp. 84-
86). Solving the time-dependent Schrödinger equation for this case we see that the 
probability of finding the atom in the excited state follows an exponential decay law, 
that is, the time dependence is given by e-t/τ, where τ is the excited state lifetime (Allen 
& Eberly, 1975, p. 167). This means that if we consider an ensemble of equally 
prepared systems each one consisting of an atom in the same excited state (in a suitable 
experimental setup), and we measure the time it takes for each atom to decay, for a large 
ensemble the measured times will fall on an exponential line defined by the lifetime of 
the atoms. However, as we have seen, according to the quantum theory “the process of 
transition is indivisible” (Bohm, 1951, p. 426). In this way, when considering just one 
atom there is only a sole perception of a change in the state of the atom due to the 
instantaneous emission of radiation at a certain time. Without any external clock there 
would be no way of timekeeping with just this one atom. There would be no 
timekeeping before the emission of radiation and after the emission of radiation, only a 
perception of the change itself due to the emission of a photon. But the time-dependence 
of the wave function is not related to (what can be called) an internal time related with 
some dynamical variable, but to a time parameter that is external to the quantum 
systems. Quantum theory is formulated by considering a background space-time that 
enters the equations of the theory as parameters not dependent on any physical systems 
that are described by the theory. In this way the time parameter can be considered as 
external to the physical systems whose equations of motion are dependent on these 
space-time parameters. On the other hand, it is possible to define what can be called an 
internal time by considering some dynamical variable of a quantum system whose 
behaviour mimics the external time (Hilgevoord, 2005, p. 31). One example is the 
quantized linear oscillator, described by a quantized angle variable whose eigenvalue 
runs through the interval [0, 2π], and whose equation of motion describes “the 
behaviour we expect of the hand of a clock” (Hilgevoord, 2002, p.304): tU(t) ω+φ=φ , 

where U(t) is the time evolution operator, φ is an angle variable, and ω is the constant 
frequency of the ‘quantum clock’ (Larmor clock). It is important to notice that the 
dynamical variable φ is described quantum mechanically. For example, if we try to use 
this ‘clock’ to measure the time of decay of an atom in an excited state and consider an 
ensemble of clocks subjected to the same experimental arrangement (each clock being 
coupled to an atom that is not directly observed), we obtain a time distribution from the 
ensemble of clocks (for the time of decay) according to the exponential decay law (see 
Peres, 1995, pp. 406-412).  
We see then that in the case under consideration of an atom in an excited state, its 

description, as just mentioned, presupposes an external time flowing independently of 
the atom. This means that in the quantum theory we cannot really think in terms of one 
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isolated system: the temporal behavior as described in the quantum theory is not 
perceptible from the behavior of one isolated system but only by taking into account an 
ensemble of equally prepared systems.  
The exponential decay law considered in the case of the spontaneous emission of 

electromagnetic radiation is common in the temporal behavior of different physical 
systems. The first known example is the disintegration of radioactive substances that 
follows an exponential law of decay (Rutherford & Chadwick & Ellis, 1930, pp. 4-8). 
Considering this, we could imagine a situation where “all ‘regular’ clocks were 
abolished from our laboratories, and we were forced to use radium clocks, in which the 
defining events are the disintegration of individual atoms” (Campbell, 1927, p. 779). In 
this situation, if we had only a few radium atoms (or equivalently in case of the 
spontaneous emission, a few atoms in an excited state), from the sequence of more or 
less simultaneous groups of decays, it would not be possible to construct an exponential 
curve and with it have a rough timekeeping procedure. But for a very large ensemble, 
we have, as time goes by, a clearer notion of the temporal behavior of the ensemble as a 
whole, even without an explicit reference to an external clock. On similar lines, in the 
case being considered of the temporal description of the spontaneous emission, each 
individual atom, according to the quantum postulate, will have a discontinuous change 
of state at a particular (external) time, and it is only possible to determine the 
probability for this change. But considering a large ensemble of identical systems, by 
measuring the time of decay of each one we obtain a distribution that fits an exponential 
curve. In this way the regularity of the temporal behavior of a quantum system is only 
made ‘visible’ by considering a large ensemble of equally prepared systems (Peres, 
1995, p. 403). But we must recall that the time dependence of each equally prepared 
quantum system is determined in terms of an external classical time measured by a 
‘classical’ clock. 
I will now address the problem of seeing how this use of a classical external time 

fits into Bohr’s account of quantum theory. For Bohr, the space and time description of 
a quantum phenomenon is dependent on the definition of a space-time reference frame 
through “fixed scales and clocks” (Bohr, 1949, p. 40). This coordinate system is “fixed 
in the ordinary way by means of solid bodies and unperturbable clocks” (Bohr, 1928, p. 
584).54 That is, for Bohr the reference frame is defined by the macroscopic experimental 
arrangement. 
Not only is the existence of a coordinate system linked to an experimental 

arrangement, but also for its definition we have to disregard the quantum postulate – in 
what regards the stipulation of a reference frame ‘connected’ with the experimental 
setup – and consider it defined entirely on classical terms. This is because, according to 
Bohr,  “if we want to use the idea of space-time we must have watches and rods which 
are outside and independent of the object under consideration” (Bohr, 1985, p. 369). 
This classical operationally defined space-time coordinate system (i.e. a coordinate 
system presupposed by an inertial material frame of reference so large and heavy that all 
quantum effects can be disregarded so that it has a well-defined position and momentum 
in relation to the background space-time) not in directly interaction with the quantum 

                                                 
54 In this work I will make the simplifying assumption that we can identify directly the space-time 
reference frame with the background space-time, i.e. that the reference frame is inertial. This means that I 
am taking the effective laboratory frame to be an inertial frame or at least to be, for all practical purpose, 
nearly inertial. It is important to notice that by definition an inertial reference frame is one in which 
Newton’s laws of motion are valid. This implies that the operationally defined inertial reference frame 
(the material frame of reference) must itself be describable by classical dynamics (for details on this 
subject see Dickson, 2004).  
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system, can be seen as implemented in the formalism of the quantum theory as external 
space and time parameters that appear in the Schrödinger equation and wave function.  
That we must consider, according to Bohr’s view, the space and time parameters as 

related to the experimental arrangement, can be expected by taking into account Bohr’s 
interpretation of the quantum formalism. Due to the quantum postulate the wave 
function (and the Schrödinger equation) cannot be seen as something intrinsic to a 
quantum system and independent of the experimental arrangement that enables the 
observation of the phenomena we associate with the quantum system. This means also 
that part of the conceptual content and mathematical description of the wave function is 
dependent on the existence of an experimental arrangement. In particular the time 
parameter that appears in the Schrödinger equation and wave function depends on a 
background space-time, that we can see as justified, according to Bohr’s interpretation 
of the quantum formalism, by taking into account – due to the quantum postulate – the 
unavoidable interaction of the quantum system with the experimental arrangement with 
its entirely classically described “fixed measuring rods and synchronized clocks” (Bohr, 
1955, p. 90).  
To sum up: on one hand we must take the quantum system – due to the quantum 

postulate – not to be definable without taking into account the experimental setup; and 
on the other hand we must take the reference frame to be independent of the quantum 
system so that it can be described entirely in classical terms. This situation is not 
inconsistent. In reality it is possible to present a coherent view on the consequences of 
the quantum postulate in what regards the classical description of space and time, by 
noticing that, according to Bohr, not all of the experimental arrangement has to be 
considered in direct interaction with the quantum system, only the “significant parts of 
the experimental arrangement” (Bohr, 1962b, p. 92). This is what makes it possible to 
consider that the watches and measuring rods “are outside and independent of the object 
under consideration” (Bohr, 1985, p. 369). That is, at the same time the quantum system 
and its mathematical description cannot be defined without taking into account, due to 
the quantum postulate, the interaction with the measuring instruments, but in what 
regards the rods and clocks belonging to the experimental arrangement (necessary for 
the definition of the space-time reference frame), they are independent of the quantum 
system (i.e. not in direct interaction), and so not submitted to the consequences of the 
quantum postulate being treated as totally classical entities.  
This reading of Bohr’s ideas implies considering the part of the experimental 

arrangement not directly in interaction with the quantum system as describable by 
classical physics. What about the parts that are in interaction? According to Paul 
Teller’s account of Bohr’s interpretation of quantum mechanics: 
 

Bohr acknowledges that one may include the immediate macroscopic measuring device as part of the 
object described with the formalism of quantum mechanics, as long as there remains some further part of 
the total experimental context which receives a classical description. (Teller, 1980, p. 215) 
 

I agree with Teller’s reading of Bohr. Let us consider the two-slit electron diffraction 
experiment. According to Bohr, depending on what we want to measure, the position or 
momentum of the electron, we must use a first diaphragm rigidly fixed to the apparatus 
(in the case of a position measurement) or not rigidly connected to the apparatus (in the 
case of a momentum measurement). In the second case the position and momentum of 
the diaphragm are treated quantum mechanically: 
 
In the arrangement suited for the control of the momentum of the first diaphragm, this body can no longer 
be used as a measuring instrument for the same purpose as in the previous case [(the position 
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measurement)], but must, as regards its position relative to the rest of the apparatus, be treated, like the 
particle traversing the slit, as an object of investigation, in the sense that the quantum-mechanical 
uncertainty relations regarding its position and momentum must be taken explicitly into account. (Bohr, 
1935, p. 698) 
 
How is it possible to treat classically the diaphragm in one case and in the other to treat 
it quantum mechanically? According to Bohr, this is made acceptable by taking into 
account his correspondence principle. Bohr mentions the “necessity of discriminating in 
each experimental arrangement between those parts of the physical system considered 
which are to be treated as measuring instruments and those which constitute the objects 
under investigation” (Bohr, 1935, p. 701). Bohr considers that “the place within each 
measuring procedure where this discrimination is made is … largely a matter of 
convenience” (p. 701). Accordingly, there is no  
 
inconsistency in the quantum-mechanical description, connected with a change of the place where the 
discrimination is made between object and measuring agencies … we only have a free choice of this place 
within a region where the quantum-mechanical description of the process concerned is effectively 
equivalent with the classical description. (p. 701)  
 
To provide a more elaborated characterization of the reconstruction being proposed 

in this paper I will make a contrast with Don Howard’s reconstruction of Bohr’s 
interpretation of quantum mechanics, which in my view makes it very difficult to give a 
coherent reading of Bohr’s ideas when taking into account his views on space and time 
in quantum mechanics. According to Howard: 
 

Bohr demanded a classical description only of those properties of the measuring instrument that 

are correlated, in the measurement interaction, with the properties of the observed object that we 

seek to measure … this implies, as well, a classical description of the associated measured 

properties of the observed object itself. A quantum description would be possible for the remaining 

properties of instrument and object, the properties not crucially involved in the measurement. 

(Howard, 1994, p. 203) 

 

In the articulation of his argument, Howard first makes it plausible, by quoting Bohr, 
the idea that not all of the measuring instrument has to be described in classical terms. 
Howard focuses on the description of the diaphragm in the previously mentioned 
experiment (which he refers to as diaphragm A), which as mentioned in a particular 
experimental setup had to be rigidly connected with the rest of the measuring apparatus 
while in another experimental setup had to be detached from the support that defines 
the frame of reference. Howard considers that in both cases – of a movable or fixed 
diaphragm – we can consider the diaphragm as part of the measuring instrument. I think 
the quotation of Bohr cited by Howard (the passage in page 698 of Bohr’s 1935 article 
quoted above) is ambiguous enough to accommodate also Howard’s reading. Also, in a 
different article, regarding the particular experimental arrangement for measuring the 
momentum, Bohr mentions that “certain parts of the whole device must naturally be 
given the freedom to move independently of others” (Bohr, 1949, p. 48), and this goes 
along the lines of Howard’s proposal. But I think that, according to the reconstruction 
of Bohr’s ideas proposed here, this possibility of giving a classical or quantum-
mechanical description of the diaphragm is taken care of by taking into account Bohr’s 
line of argumentation related to his correspondence principle: there is a freedom of 
choosing to treat part of the experimental setup quantum mechanically (usually as part 
of the object under investigation) or classically (usually as part of the measuring 
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apparatus). That is, we can choose where to make the ‘Heisenberg cut’ according to our 
convenience without entailing any inconsistency.55  
More complicated in my view is another point of Howard’s argumentation. Howard 

considers also that  
 
In neither arrangement will the whole of diaphragm A be given a classical description. In the second 
arrangement, the position is described quantum mechanically; in the first, we may infer, the momentum 
will be so described. What will be described classically are, by implication, only those properties of 
diaphragm A that are correlated with the observed system in the measurement. (Howard, 1994, p. 214) 
 
According to Howard, further evidence for this interpretation can be found in two 
passages from Bohr (1939a). The first one is: 
 
We must recognize that a measurement can mean nothing else than the unambiguous comparison of 
some property of the object under investigation with a corresponding property of another system, serving 
as a measuring instrument, and for which this property is directly determinable according to its definition 
in everyday language or in the terminology of classical physics. (p. 311) 
 
While this passage cannot be said to contradict or give direct evidence to Howard’s 
claim, the second passage seems to me to be a typical Bohrian reference to a 
consequence of the correspondence principle: 
 
In the system to which the quantum mechanical formalism is applied, it is of course possible to include 
any intermediate auxiliary agency employed in the measuring process. Since, however, all those 
properties of such agencies which, according to the aim of the measurements have to be compared with 
the corresponding properties of the object, must be described on classical lines, their quantum mechanical 
treatment will for this purpose be essentially equivalent with a classical description. (pp. 315-316) 
 
But again (as in the case mentioned above), no clear conclusion can be given in relation 
to Howard’s interpretation of these quotations without taking fully into account Bohr’s 
views regarding quantum mechanics, or more exactly a ‘self-consistent’ reconstruction 
of Bohr’s writings making compatible Bohr’s quantum postulate and Bohr’s doctrine of 
a classical space and time.56  
To set my case I will need to consider Howard’s full-blown development of his 

views. In another passage Howard spells out his main point again: 
 
This means that the only essential use of classical methods of description will be in connection with that 
property of the instrument that is correlated with the property of the object that the instrument is designed 
to measure. (Howard, 1994, p. 216) 
 
From this several things will follow: 

                                                 
55 In the view presented here, the ‘Heisenberg cut’ is an unavoidable aspect of considering a (classically 
described) reference frame taken to be, according to Bohr’s views, outside and independent of the 
quantum system under consideration. Accordingly the meaning I give to ‘wholeness’ or ‘unity’ is not like 
in Howard’s case of an entanglement between the quantum system and the experimental arrangement in 
its totality, but results from the indivisibility of the quantum interaction, which entails – according to the 
quantum postulate – the impossibility of defining the quantum system independently of the experimental 
arrangement (see also footnote 53).  
56
 However, in this particular case we do not have to look far to notice that this quotation taken out of 
context can have a broad array of (re)interpretations. Just a few lines below Bohr writes: “the only 
significant point is that in each case some ultimate measuring instruments, like the scales and clocks 
which determine the frame of space-time coordination – on which, in the last resort, even the definitions 
of momentum and energy quantities rest – must always be described entirely on classical lines, and 
consequently kept outside the system subject to quantum mechanical treatment”. (Bohr, 1938a, p. 316) 
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A) We must interpret Bohr’s reference to classical concepts as not related to the 
correspondence principle, since, according to Howard, only certain properties of both 
the measurement apparatus and the object must be considered from a classical 
perspective. In this way, we must look for some other type of ‘essential equivalence’ 
between the quantum and classical description.57 In Howard’s view the kind of 
convergence between quantum and classical descriptions demanded by the 
correspondence principle is a wholesale convergence, not an ‘essential equivalence’ 
between selected sets of properties (Howard, 1994, p. 217; see also Howard, 2005, pp. 
28-29). 
 
B) According to Howard we will find this ‘essential equivalence’ by looking at the case 
of an ensemble of identically prepared composite systems (consisting on the 
measurement setup and the ‘quantum object’) described by a density matrix built with 
non-factorizable state functions (due to the entanglement between the measurement 
setup and the ‘quantum object’) – the pure case. With a proper selection of sub-
ensembles describing factorizable state functions (according to Howard corresponding 
to the classical idea of separability) the ensemble can be seen as a mixture of elements 
of the sub-ensembles. According to Howard in each experimental context it is possible 
to find the proper mixture that gives exactly the same predictions as the original density 
matrix for the entangled pair (Howard, 1994, pp. 220-222; see also Shlosshauer & 
Camilleri, 2008, pp. 17-18). Howard considers this approach as the key to a 
reconstruction of Bohr’s views on the need of classical concepts: 
 
It is upon this disarmingly simple mathematical fact—the equivalence, context by context, of pure cases 
and mixtures—that I build my interpretation of Bohr's doctrine of classical concepts. I claim that we 
make the clearest sense out of Bohr's stress on the importance of a classical account of experimental 
arrangements and of the results of observation, if we understand a classical description to be one in terms 
of appropriate mixtures. More specifically, I would reconstruct the doctrine of classical concepts as 
follows. Given any measurement interaction, a description in terms of a pure case is correct, in the sense 
that it yields all of the right predictions. This is the proper quantum mechanical account of the interaction, 
and such an account can always be given for all aspects of the interaction, including all parts of both 
instrument and object. Such a description reflects the essential nonseparability of the quantum mechanical 
interaction formalism, the nonseparability that Bohr stresses as a fundamental lesson of the quantum 
mechanical account of the instrument/object interaction; it reflects, too, the non-classical character of 
quantum statistics. On the other hand, precisely because of its nonseparability, a description in terms of a 
pure case does not permit us to distinguish instrument and object in the way that Planck and Einstein 
thought necessary to ensure objectivity. But here is where the concept of an appropriate mixture finds its 
place. Once we specify the kind of measurement being performed, an appropriate mixture can be 
constructed that gives all of the right predictions for the parameters involved in such a measurement; and, 
at least with respect to those parameters, we can separate the states of the instrument and the object and 
give a purely classical, ignorance interpretation of their statistics. The proper “classical” description, then, 
is a description in terms of an appropriate mixture. (Howard, 1994, pp. 222-223) 
 
C) One of the implications of all this is clearly spelled out in the following sentence:  

                                                 
57 In Howard’s reading of Bohr’s Como lecture (Bohr, 1928), Bohr takes the object and instrument to 
form an entangled pair that is described quantum mechanically. In order to assign a measured value to the 
quantum system we must consider the object and instrument not to be entangled (in what regards the 

property of the measuring instrument that is correlated, in the measurement, with the property of 
the observed object that we seek to measure). According to Howard, “doing that is what Bohr means 
by a description in terms of ‘classical concepts’” (Howard, 2005, p. 28). In this way according to Howard 
reading of Bohr, “the descriptions are ‘classical’ simply in the sense that entanglement is denied and 
separability is affirmed” (p. 28). For more details on Howard’s use of the term ‘classical’ see point B and 
the quotation within. 
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The fourth question asked why, in the description of a measuring instrument, the only essential use of 
classical methods of description is in the account of that parameter of the instrument that is correlated 
with the measured property of the object. The answer is that only in connection with these properties need 
we assume the separability of instrument and object. And the appropriate mixture reconstruction reflects 
this fact by its context dependence: A different mixture is appropriate to every different context, in the 
sense that an appropriate mixture yields the correct predictions only for those parameters measurable in 
that context. All other parameters—of both object and instrument—are correctly described only quantum 
mechanically, in terms of the pure case density matrix. (Howard, 1994, p. 224) 
 
In this way, we would not need a description of the apparatus in classical terms. The 
classical description (in Howard’s sense) is only necessary for the part that we can 
consider to be in direct interaction with the object and even in this case only for the 
parameter involved in the measurement. In the case being considered, for a fixed 
diaphragm we would have to give a classical description of the position of the 
diaphragm and the object, and in the case of a moving diaphragm it would be necessary 
to give a classical description of the momentum. All the rest would be described 
quantum mechanically. 
This interpretation faces problems when we consider Bohr’s views on the concepts 

of space and time in quantum mechanics. As Jan Hilgevoord mentions, there seems to 
be a problem related to the use of the time concept in quantum mechanics that has posed 
a challenge to several physicists but to which Bohr makes no reference (Hilgevoord, 
2005): the inexistence of a time operator in quantum mechanics. Bohr does not mention 
this because in his interpretation of quantum mechanics there is simply no motive not to 
consider space and time from a classical perspective (Hilgevoord, 2005, pp. 47-48). 
This should be clear from the presentation made above of Bohr’s reliance on classical 
concepts of space and time in his interpretation of quantum mechanics. However, and I 
must stress this point, it is important to notice that for Bohr the classically described 
space-time reference frame (which is part of the experimental arrangement) is taken to 
be outside and independent of the observed quantum system.  
This is in direct contradiction with Howard’s reconstruction. As we have just seen 

Howard considers that: 
 

1) The only essential use of classical methods of description (in Howard’s sense) will be 
in connection with that property of the instrument that is correlated with the property of 
the object that the instrument is designed to measure. 
 
2) A quantum description would be possible for the remaining properties of instrument 
and object, the properties not crucially involved in the measurement. 
 
As it stands I consider this view incompatible with Bohr’s account of reference frames 
in the experimental arrangements. Bohr wrote explicitly that “if we want to use the idea 
of space-time we must have watches and rods which are outside and independent of the 
object under consideration” (Bohr, 1985, p. 369), and in similar lines that “some 
ultimate measuring instruments, like the scales and clocks which determine the frame of 
space-time coordination … must always be described entirely on classical lines, and 
consequently kept outside the system subject to quantum mechanical treatment” (Bohr, 
1939a, p. 316). As I have shown this view is compatible with Bohr’s quantum postulate. 
As it stands Howard’s reconstruction seems to be at odds with Bohr’s views on space 
and time in quantum mechanics. In particular, according to Howard’s views, we would 
have to consider that the entire quantum mechanically described apparatus is entangled 
with the quantum object (since Howard considers that only for the relevant parameter of 
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the measurement we need a ‘classical’ separability of apparatus and object). It is not 
clear how, in these circumstances, an external classical time might fit into Howard’s 
reconstruction. 
Parts of the views being developed here have been noticed before. For example by 

Simon Saunders who made the following remark: 
 
The conditions of an experiment must ultimately involve rigid connections to bodies of arbitrarily large 
mass. In that case the uncertainty relations, for the latter bodies, become irrelevant (so long as there is 
non-zero latitude in both position and momentum). Bohr admitted as much when he remarked that the 
freedom of choice in the divide between quantum and classical was restricted to “a region where the 
quantum mechanical description of the process concerned is effectively equivalent with the classical 
description” [5, p.701], and later, when he said that the requirements of unambiguous description of the 
apparatus “is secured by the use, as measuring instruments, of rigid bodies sufficiently heavy to allow a 
completely classical account of their relative positions and velocities” [9, p.3]. (Saunders, 2005, p. 24) 
 
In similar lines Henrik Zinkernagel remarked that: 
 
Bohr actually agreed that the measurement apparatus can also be described by quantum theory. However, 
he writes (1939, p. 104): 
 
...in each case some ultimate measuring instruments, like the scales and clocks which determine the frame 
of space-time coordination – on which, in the last resort, even the definitions of momentum and energy 
quantities rest – must always be described entirely on classical lines, and consequently kept outside the 
system subject to quantum mechanical treatment. 
 
The point is that we can treat a measuring apparatus (or part of this) as a quantum system, but only when 
some other system is then treated classically. (Zinkernagel, 2006, p. 5) 
 
Zinkernagel’s and Saunders’s reading of Bohr seems to go along similar lines as the one 
being presented here, as is the case with the previous quotation from Teller (see page 8). 
Teller mentions that, according to Bohr, even if we have the possibility of describing 
quantum mechanically the immediate macroscopic measuring device (i.e. the part of the 
instrument in interaction with the object under investigation), we have to describe 
classically some further part of the experimental arrangement. Saunders stresses the 
need of a material frame of reference (bodies of arbitrarily large mass) to describe any 
experiment, and, quoting Bohr, that this material frame of reference must be described 
by classical dynamics. Zinkernagel quotes Bohr saying that the material frame of 
reference must be described entirely by classical dynamics and taken to be outside the 
system subjected to a quantum mechanical description (in an hypothetical revision of 
Howard’s approach this might imply taking from the start the material frame of 
reference to be disentangled from the quantum system). 
I think it is fair to say that we are all reading Bohr as implying the need for a 

classical physics account of (at least) part of the experimental arrangement (the one not 
directly in interaction with the quantum system), stressing in particular the need for a 
classical account of the reference frame. This view is clearly at odds with Howard’s. 
Howard’s reconstruction implies an all-quantum description of the entangled pair 
instrument & object, giving just a classical description (in Howard’s sense), for both the 
instrument and object, of the property being measured. On the reconstruction being 
presented here (which I must stress is compatible with the interpretation being given to 
the quantum postulate), according to Bohr, we must describe classically58 the material 
frame of reference, taken to be independent59 from the object of observation. In this way 

                                                 
58 In the sense of using classical theories, not in Howard’s sense. 
59 In my sense this means not in direct interaction; in Howard’s sense it might mean disentangled. 
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I consider Howard’s, nevertheless very interesting, reconstruction of Bohr’s 
interpretation of quantum mechanics to be incompatible (at least as it stands at the 
moment) with Bohr’s conception of space and time in quantum mechanics (related to an 
operationally defined and classically described reference system). In exact opposition to 
Howard’s views, Bohr’s doctrine of a classical space and time implies treating 
classically (in the usual sense) the parts of the measuring apparatus that are not in 
interaction with the quantum system. 
 
 

4 Conclusions 

 
In the quantum theory we can only recover a temporal description of the behavior of 
physical systems when considering an ensemble of identically prepared systems that are 
subjected to similar experimental arrangements. In fact, we cannot from one single 
system have a well-defined sense of temporal flow. This might lead one to consider that 
there is a tension between the idea of a continuous time and the discontinuous jumps 
between the possible states of a quantum system. In part the tension is avoided by 
constructing the theory considering a background space-time on which it is not the 
temporal behavior of an individual system – due to the discontinuity – that is described 
but the temporal behavior of an ensemble. Another related point is that the discontinuity 
is implemented in the theory already with the previous ‘input’ of a background time, 
that is, we talk about discontinuous changes as implied in the quantum postulate from 
the perspective of a macroscopic continuous space-time related to the experimental 
arrangement from which it looks as if the quantum system has discontinuous changes. 
As Bohr stressed, the point is that, as a consequence of the quantum postulate we cannot 
regard the physical properties of the quantum system as intrinsic and independent of the 
experimental arrangement being used (with its related classical reference frame). 
According to Bohr: 
 

No result of an experiment concerning a phenomenon which, in principle, lies outside the range of 
classical physics, can be interpreted as giving information about independent properties of the object; but 
is inherently connected with a definite situation in the description of which the measuring instruments 
interacting with the objects also enter essentially. (Bohr, 1939b, p. 269) 

 
While within the scope of classical physics we are dealing with an idealization, according to which all 
phenomena can be arbitrarily subdivided, and the interaction between the measuring instruments and the 
object under consideration neglected, or at any rate compensated for, it was stressed that such interaction 
represents in quantum physics an integral part of the phenomena, for which no separate account can be 
given if the instruments shall serve the purpose of defining the conditions under which the observations 
are obtained … The characteristic new feature in quantum physics is merely the restricted divisibility of 
the phenomena, which for unambiguous description demands a specification of all significant parts of the 
experimental arrangement … the whole purpose of the formalism of quantum theory is to derive 
expectations for observations obtained under given experimental conditions. (Bohr, 1962b, pag. 91-92) 
 
In this way the characterization of the discontinuous behavior of the quantum system, 
that is, of the phenomena being observed, rests on the previous notion of a time 
coordinate (associated with clocks that are part of the measurement apparatus). We have 
no intrinsic notion of discontinuity by itself; this notion arises in the context of a theory 
that, following Bohr’s view on the interpretation of the formalism, does not treat the 
phenomena we observe and relate to a ‘quantum object’ (like for example an electron) 
with something that has a meaning independent of the experimental arrangement that 
permits its observation. We have a discontinuity in the context of an operational notion 
of a continuous time that is simultaneously inscribed in the formalism of the theory as 
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an external parameter in the Schrödinger equation. It is from the perspective of this 
external time, which we use in the description of the functioning of any measurement 
apparatus, that the discontinuity we associate with the phenomena appears, 
simultaneously with a statistical description of the (continuous) temporal behavior of an 
ensemble of equally prepared systems. 
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