Research Article
Thermodynamic Modelling of Dolomite Behavior in Aqueous Media

Tadeusz Michałowski¹ and Agustin G. Asuero²

¹ Faculty of Engineering and Chemical Technology, Technical University of Cracow, 31-155 Kraków, Poland
² Department of Analytical Chemistry, The University of Seville, 41012 Seville, Spain

Correspondence should be addressed to Tadeusz Michałowski, michalot@o2.pl

Received 20 August 2011; Revised 19 October 2011; Accepted 27 October 2011

Academic Editor: Jaime Wisniak

Copyright © 2012 T. Michałowski and A. G. Asuero. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The compact thermodynamic approach to the systems containing calcium, magnesium, and carbonate species is referred to dissolution of dolomite, as an example of nonequilibrium ternary salt when introduced into aqueous media. The study of dolomite is based on all attainable physicochemical knowledge, involved in expressions for equilibrium constants, where the species of the system are interrelated. The species are also involved in charge and concentration balances, considered as constraints put on a closed system, separated from the environment by diathermal walls. The inferences are gained from calculations performed with use of an iterative computer program. The simulated quasistatic processes occurred under isothermal conditions, started at a pre-assumed pH₀ value of the solution where dolomite was introduced, and are usually involved with formation of other solid phases. None simplifying assumptions in the calculations were made.

1. Introduction
Dolomite (CaMg(CO₃)₂, abbr. pr1) is perceived as an unusual, metastable mineral [1, 2], and its behavior is considered as one of the most exciting topics in geology [3]. Its chemical properties should be put in context with other, most important carbonate minerals: calcite (CaCO₃, pr2) and magnesite (MgCO₃, pr3) [4]. The trigonal structure of calcite is composed of alternate layers of calcium and carbonate ions. The crystal structure of magnesite is the same as one for calcite, and then magnesite properties are similar to those of calcite. However, a significant difference in Pauling’s ionic radii: 99 pm (for Ca⁺²), 65 pm (for Mg⁺²), [5] causes an incompatibility of the cations in the same layer of dolomite structure. Crystal lattice of ideal dolomite (M₁ = 184.4 g/mol, ρ₁ = 2.899 g/cm³) consists of alternating octahedral layers of Ca⁺² and Mg⁺² ions, separated by layers of CO₃⁻² ions [6]. Complete ordering is energetically favourable at lower temperatures. Presumably, it is the principal crystallographic constraint securing nearly ideal (Ca:Mg = 1:1) dolomite stoichiometry [6].

Ideal dolomite, CaMg(CO₃)₂, is a particular case (x = 0) of the compound Ca₁₋ₓMgₓ⁺⁺(CO₃)₂ [7–10], considered as a result of partial disarrangement of Ca⁺² and Mg⁺² in structure of real dolomite. This disarrangement is evidenced by weak or diffuse spectral lines in the reflected X-ray diffraction patterns [11]. The composition of sedimentary dolomites is not exactly stoichiometric; it ranges from Ca₀.₅Mg₀.₅(CO₃)₂ to Ca₀.₀₆Mg₀.₉₄(CO₃)₂ (i.e., −0.₁₆ < x < 0.₀₄) [1]. The mineral Ca₀.₅Mg₁.₅(CO₃)₂ (x = 0.₅) is named huntite. Sedimentary dolomites with x > 0 are named calcium dolomites, and the ones with x < 0 are named magnesian dolomites. The carbonate dominated by calcite (ρ₂ = 2.₇₁ g/cm³) is called limestone. Other carbonates: ankerite Ca(Fe, Mg, Mn)(CO₃)₂ and kutnohorite Ca(Mn,Mg,Fe)(CO₃)₂, with bivalent cations: Fe⁺² and Mn⁺², substituting a part of Mg⁺² ions in the layered structure, enter also the dolomite group.

A rock formed by the replacement of dolomite with calcite [12]

CaMg(CO₃)₂ + Ca⁺² = 2CaCO₃ + Mg⁺² (1)

in dedolomitisation (calcitisation) process is named dedolomite [13]. Calcium ions in this process are provided, for example, by calcium-rich water, and magnesium ions...
are liberated. Molar volume of dolomite (184.4/2.899 = 63.608 cm3/mol) is lower than two molar volumes of calcite (2 · 100.09/2.71 ≈ 73.867 cm3/mol), and, therefore, reaction (1) causes an increase in the solid volume, equal (73.867 − 63.608)/63.608, that is, ca. 16% [4].

Dedolomitisation is a particular case of a diagenesis [14], where an alteration of sediments into sedimentary rocks occurs. This process is accompanied by an increase in porosity, expressed by a percentage pore space. The pores form a void space or are filled with a fluid.

Dolomite is thermodynamically unstable, and dedolomitisation occurs under different conditions. The dedolomitisation in alkaline media is represented by reaction [15]

$$\text{CaMg(CO}_3\text{)}_2 + \text{Ca(OH)}_2 = 2\text{CaCO}_3 + \text{Mg(OH)}_2.$$ (2)

The reverse process (i.e., dolomitisation) occurs, for example, during evaporation of seawater. High temperatures enhance the dolomitisation process [16]. In dolomitisation, magnesium ions from seawater replace calcium ions in calcite, and dolomite is formed [17]. Dolomite growth is favoured by high Mg/Ca ratios and high carbonate contents; this fact is predictable from the Le Chatelier-Brown principle [18].

The main objective of this paper is to provide the way for better understanding the dolomite dissolution at different conditions [19] affected by pH, initial concentration of dolomite (C_0) in the system ([$pr1$]$_{i=0} = C_0$), and concentration of CO$_2$. The knowledge of dissolution in acidic media is essential in aspect of improved recovery of oil and gas from sedimentary basins at low temperatures [20], whereas dedolomitisation in alkaline media plays a significant role in deteriorating the concrete structure [15, 21].

As will be stated in what follows, the solubility product value (K_{sp1}) of dolomite is a critical factor in quantitative description of its behavior in the systems where dolomite is put in contact with aqueous solutions, containing dissolved CO$_2$ and, moreover, a strong acid (e.g., HCl) or a strong base (e.g., KOH). This paper follows the one concerning struvite [22, 23], as another representative of a group of the nonequilibrium precipitates formed by ternary salts.

2. Kinetics of Dolomite Dissolution and Stoichiometry

In aqueous systems, ideal dolomite can be considered as an equimolar mixture of two carbonate components: calcite and magnesite, that is, $pr1 = pr2 + pr3$. This simplifying assumption deserves some reservation, concerning relative rates of dissolution of the dolomite components; the literature provides ambiguous data in this respect, however. The results obtained according to AAS method by Lund et al. [24] exhibited stoichiometric dissolution of dolomite in relation to Ca and Mg, whereas other experiments [25] showed that pure dolomite dissolves more slowly than pure calcite.

Dolomite exists in a variety of morphological forms [26]. Minerals with greater defect densities dissolve faster since their effective surface areas are greater than more perfect specimens of the same compound. The rate of surface-controlled dolomite dissolution is significantly less than one of calcite [27].

Dissolution rate increases with decreasing grain size [28]. The experiments done for kinetic purposes showed that the mass loss of single dolomite crystals [29] (in response to pH and pC$_{CO_2}$) or one for finely dispersed dolomite particles [27] (in response to pH) was measured.

The dissolution of ionic crystals is a complex process, involving some surface and transportation phenomena. Ions are transferred from the surface of the solid material to an unsaturated solution [30]. The surface phenomena depend on the morphology (microstructure) of the crystals. The rate of any dissolution process is effected by surface and transport phenomena.

Kinetics of dolomite dissolution has been tested at different pH and temperatures [20]. According to a model by Busenberg and Plummer [29], the dissolution of dolomite is an effect of simultaneous action of H$^+$, H$_2$CO$_3$, and H$_2$O.

The dissolution studies were usually carried out with suspensions or powdered materials employed, and the resulting concentration changes of Ca and Mg species in the bulk solution were measured [31]. For this purpose, in situ (e.g., conductometric, pH-metric, pH-static [32]) or ex situ (e.g., titrimetry, AAS [33]) methods of analysis were employed [30]. As an option, a rotating disc (RD) formed of dissolving dolomite attached at the end of rotating disc shaft was applied [34]. A loss in mass of the solid material was also measured [35].

It should be noted that repeated trials to precipitate ideal dolomite under laboratory conditions at room temperature were unsuccessful [36, 37]; dolomite was precipitated at elevated temperatures (150–300°C) [38], for example, by heating calcite with Mg salt in aqueous media, at elevated CO$_2$ pressures [39]. Dolomite is formed as a result of complex, not well-understood physicochemical phenomena [40, 41], because of the difficulties arising in preparation of stoichiometric dolomites [42]. These difficulties caused, among others, that the solubility product (K_{sp1}) of dolomite in water

$$K_{sp1} = \left[\text{Ca}^{2+}\right]\left[\text{Mg}^{2+}\right]\left[\text{CO}_3^{-2}\right].$$ (3)

measured according to different methods yielded inconsistent and unreliable results. The mechanism of dolomite formation in sedimentary environment (the so-named dolomite problem [43]) is not well understood, as hitherto [44].

3. Principles of Simulation of Dolomite Dissolution

3.1. General Remarks. Simulations are needed to check the models used. In modelling of chemical systems, different computer programs were developed. Among others, the Joint Expert Speciation System (JESS) computer program [45–48] is sometimes applied, for example, in [49]. A new approach, called Generalized Approach to Electrolytic Systems (GATES), was elaborated by Michałowski in 1992 and presented lately in some review papers [50–52] and in
textbooks [53, 54]. For example, the systems with struvite [22, 23] were elaborated according to GATES.

The equilibria in the system with solid carbonates are affected by total concentration \(C_{\text{CO}_2} \) of carbonate species, introduced by \(\text{CO}_2 \) dissolved in aqueous media, and by presence of \(\text{NaOH} \) \((C_b) \) or \(\text{HCl} \) \((C_a)\), used to moderate pH of the solution. At \(C_b = C_a \), the effect is practically tantamount with absence of the related species in the solution, provided that \(C_a \) and \(C_b \) values are small; that is, the effect of ionic strength is negligible.

3.2. Equilibrium Constants. The set of equilibrium constants [1, 55–59] referred to the two-phase system in question is involved with solubility products \((K_{\text{sp}i}) \) of precipitates, \((\text{pri}_i, i = 1, \ldots, 5)\), expressed by (3) and

\[
\left[\text{Ca}^{2+} \right] \left[\text{CO}_3^{-2} \right] = K_{\text{sp}2} \left(pK_{\text{sp}2} = 8.48 \right),
\]

\[
\left[\text{Mg}^{2+} \right] \left[\text{CO}_3^{-2} \right] = K_{\text{sp}3} \left(pK_{\text{sp}3} = 7.46 \right),
\]
\[
\left[\text{Mg}^{+2} \right] [\text{OH}^{-1}]^2 = K_{\text{sp}4} (pK_{\text{sp}4} = 10.74),
\]
\[
\left[\text{Ca}^{+2} \right] [\text{OH}^{-1}]^2 = K_{\text{sp}5} (pK_{\text{sp}5} = 5.03),
\]
and soluble species (complexes, protonated forms):
\[
\left[\text{MgHCO}_3^{+1} \right] = 10^{1.16} \cdot \left[\text{Mg}^{+2} \right] \left[\text{HCO}_3^{-1} \right],
\]
\[
\left[\text{MgCO}_3 \right] = 10^{3.4} \cdot \left[\text{Mg}^{+2} \right] \left[\text{CO}_3^{-2} \right],
\]
\[
\left[\text{CaHCO}_3^{+1} \right] = 10^{4.11} \cdot \left[\text{Ca}^{+2} \right] \left[\text{HCO}_3^{-1} \right],
\]
\[
\left[\text{CaCO}_3 \right] = 10^{3.22} \cdot \left[\text{Ca}^{+2} \right] \left[\text{CO}_3^{-2} \right],
\]
\[
[HCO_3^{-1}] = 10^{10.33-pH} \cdot [CO_3^{-2}],
\]
\[
[H_2CO_3] = 10^{6.38-pH} \cdot [HCO_3^{-1}],
\]
\[
[MgOH^{+1}] = 10^{5.57} \cdot \left[\text{Mg}^{+2} \right] [\text{OH}^{-1}],
\]
\[
[CaOH^{+1}] = 10^{4.3} \cdot \left[\text{Ca}^{+2} \right] [\text{OH}^{-1}],
\]
\[
[H^{+1}] [OH^{-1}] = K_w \ (pK_w = 14.0).
\]

One should be noted that soluble complex species: MgCO_3 and CaCO_3, characterized by stability constants, are different from the precipitates: p{\text{r2}} = CaCO_3 and p{\text{r3}} = MgCO_3, characterized by the solubility products (K_{\text{sp}i}, i = 2, 3) values.

The pK_{\text{sp}1} values for dolomite reported in the literature range from ca. 16.5 to 19.35 [37, 55, 56, 60, 61], that is, within ca. 3 units. Some inferences [37] lead to the conclusion that the most probable pK_{\text{sp}1} value is 17.2 ± 0.2. In this context, the value 19.35 taken in [55] seems to be excessively high. Such diversity in pK_{\text{sp}1} value may reflect the difficulties involved with obtaining stoichiometric dolomite.

The inequality K_{\text{sp}1} < K_{\text{sp}2} \cdot K_{\text{sp}3}, that is, pK_{\text{sp}1} > pK_{\text{sp}2} + pK_{\text{sp}3}, valid for all K_{\text{sp}1} values quoted above, expresses the kind of synergistic effect securing almost perfect arrangement of Mg^{+2} and Ca^{+2} ions in area of the corresponding planes of dolomite crystallographic structure.

The values for stability constants of soluble complexes: Mg(OH)_2 and Ca(OH)_2, introduced for calculations in [55], are highly controversial and then were omitted in the related balances formulated below. In this context, the complexes MgOH^{+1} and CaOH^{+1} and their stability constants are well established.

The dissolution of dolomite (p{\text{r1}}) proceeds up to the saturation of the solution against the corresponding precipitate. Provided that the solution is unsaturated against the corresponding solid phase (p{\text{r}}), the expression for the related solubility product (K_{\text{sp}1}) is not valid, under such conditions. For this purpose, the expressions
\[
q_1 = \frac{[\text{Ca}^{+2}][\text{Mg}^{+2}][\text{CO}_3^{-2}]^2}{K_{\text{sp}1}} ,
\]
\[
q_2 = \frac{[\text{Ca}^{+2}][\text{CO}_3^{-2}]}{K_{\text{sp}2}} ,
\]
\[
q_3 = \frac{[\text{Mg}^{+2}][\text{CO}_3^{-2}]}{K_{\text{sp}3}} ,
\]
\[
q_4 = \frac{[\text{Mg}^{+2}][\text{OH}^{-1}]^2}{K_{\text{sp}4}} ,
\]
\[
q_5 = \frac{[\text{Ca}^{+2}][\text{OH}^{-1}]^2}{K_{\text{sp}5}} ,
\]
related to all possible precipitates (p{\text{r}}, i = 1, ..., 5) were considered.

3.3. Formulation of the Dolomite Dissolution Model. We refer to the system obtained after introducing m_1 g of dolomite into V mL of aqueous solution with dissolved CO_2 (C_{CO_2}), NaOH (C_b), and/or HCl (C_a); NaOH and/or HCl are used to moderate pH value of the solution. Assuming that the volume change resulting from addition of pr1 is negligible, and denoting current (t ≥ 0) concentration of pr1 by [pr1], [pr1]_{t=0} = C_0 = (10^3 \cdot m_1/M_1)/V, we get the concentration and charge balances
\[
F_1(x) = [\text{pr1}] + \sum \text{Mg} - C_0 = 0,
\]
\[
F_2(x) = [\text{pr1}] + \sum \text{Ca} - C_0 = 0,
\]
\[
F_3(x) = 2[\text{pr1}] + [\text{MgHCO}_3^{+1}] + [\text{MgCO}_3] + [\text{CaHCO}_3^{+1}] + [\text{CaCO}_3] + [\text{H}_2\text{CO}_3] + [\text{HCO}_3^{-1}] + [\text{CO}_3^{-2}] - (2C_0 + C_{CO_2}) = 0,
\]
\[
F_4(x) = [H^{+1}] - [OH^{-1}] + \Delta + 2[\text{Mg}^{+2}] + [\text{MgOH}^{+1}] + 2[\text{Ca}^{+2}] + [\text{CaOH}^{+1}] + [\text{MgHCO}_3^{+1}] + [\text{CaHCO}_3^{+1}] - [\text{HCO}_3^{-1}] - 2[\text{CO}_3^{-2}] = 0,
\]
where
\[
\Delta = C_b - C_a
\]
the expressions:
\[
\sum \text{Mg} = [\text{Mg}^{+2}] + [\text{MgOH}^{+1}] + [\text{MgHCO}_3^{+1}] + [\text{MgCO}_3],
\]
\[
\sum \text{Ca} = [\text{Ca}^{+2}] + [\text{CaOH}^{+1}] + [\text{CaHCO}_3^{+1}] + [\text{CaCO}_3]
3.4. Calculation Procedure. The relations (11) are valid, if x is chosen properly. For any other vector x', $x' \neq x$, at least one of the functions (11) differs from zero, and then

$$F(x') = \sum_{i=1}^{4} |F_i(x')|^2 > 0$$

The calculation procedure is based on minimizing principle, quite analogous to one presented in [22, 23]. According to
this approach, the sum of squares (12) is taken as the mini-
mized function.

In a dynamic process, as the dissolution of pr1 is, a choice
of pr1 = −log[pr1] as the steering variable is advised; the
value of [pr1] changes during the pr1 dissolution. The next
step is the choice of independent variables, xi = x_i(pr1),
i = 1, . . . , 4. The x_i values are involved with concentrations
of some independent species. In our case, the best choice
is x = [x1, x2, x3, x4]T = [pH, pHCO3, pMg, pCa]T, where
pH = −log[H+], pHCO3 = −log[HCO3−], pMg = −log[Mg2+], pCa = −log[Ca2+] were considered as inde-
pendent variables. A choice of pX indices, not concentrations
[X], resulted from the fact that 10−pX > 0 for any real
pX = −log[X] value, pX ∈ R. The third step is the choice
of numerical values for components of the starting vector
x′ = x∗; if x∗ ̸= x, one can expect that F(x∗) > 0 (12).
The x∗ value is referred to particular value of the steering
variable, x∗ = x∗(pr1), for example, for pr1 = −log Cpr1.

The step Δpr1 is needed, and initial steps Δpr1 for pX and
lower (px(int)) and upper (px(sup)) limits for expected pX
values are also required by the iterative computer programs
applied in the minimization procedure.

The searching of x(pr1) vectors, where F(x(pr1)) is
close to zero for different pr1 values, can be made according
to MATLAB iterative computer program. The searching
procedure satisfies the requirements put on optimal x(pr1)
values—provided that the F(x(pr1)) value (12), considered
as optimal one, is lower than a preassumed, sufficiently small
δ-value

\[F(x′(pr1)) < \delta. \quad (13) \]

Then we consider that the equality x′(pr1) = x(pr1) is
fulfilled. It means that F_i(x(pr1)) ≡ 0 for all i = 1, . . . , 4,
that is, (7) are fulfilled simultaneously, within tolerable
degree of proximity assumed for all pr1 values taken from
defined pr1 interval. If pr1 dissolves wholly, the pr1 covers
the interval from pr1 to the value resulting from graphical
needs, that is, from the scale for pr1 assumed to plot the
related (e.g., speciation) curves. If the solubility product for
pr1 is attained at defined point of the dissolution process,
then upper value assumed for pr1 is the value correspond-
ing to this point.

The iterative computer programs are usually designed
for the curve-fitting procedures where the degree of fitting
of a curve to experimental points is fine. In particular
case, the criterion of optimization is based on differences
F(x(pr1(N + 1)) − F(x(pr1(N))) between two successive
(Nth and N + 1th) approximations of the F-value, and the
optimisation is terminated if the inequality

\[|F(x(pr1(N + 1)) − F(x(pr1(N)))| < \delta \quad (14) \]

is valid for any preassumed, sufficiently low δ-value, for ex-
ample, δ = 10−15.

However, one may happen that the condition (14) can
be fulfilled at local minimum different from the global mini-
mum. It occurs when the starting values x∗(pr1) are too
distant from the true value x(pr1), where the equality
F(x(pr1)) = 0 is fulfilled. In this case, one should repeat
the calculations for a new vector x∗ (pr1), guessed at a par-
ticular pr1 value chosen at the start for minimisation.

All vectors x = x(pr1) obtained for different pr1 values
are the basis for plotting the speciation curves for all species
(X_i) in the system. The curves are usually plotted in the
logarithmic diagrams, on 2D plane, with pr1 on the abscissa
and log[X_i] on the ordinate. Other variables, for example, pH
on the abscissa, can also be applied.

4. Simulated Dedolomitisation

4.1. Preliminary Data. We refer first to aqueous solutions
obtained before introducing pr1 into it. Any particular
solution is characterised by pC_{CO2} = −log C_{CO2} and pH =
pH0 values, where pC_{CO2} equals 2, 3, 4, 5, or ∞ (the latter
value refers to C_{CO2} = 0) and pH0 values cover the set of
natural numbers within the interval (3, 12). The pH0 value
corresponds to the presence of a strong acid (HB, C0 mol/L)
or strong base (MOH, C0 mol/L), see (8). The solution is then
characterised by a defined pair of (pC_{CO2}, pH0) values.

After introducing pr1 into the solution, its initial (t =
0) concentration in the two-phase system equals [pr1]_t=0 =
C0 mol/L. Two values for pC0 = −log C0, equal 2 and 3, were
assumed. The set of parameters (pC0, pC_{CO2}, pH0) assumed
involves a multitude of different phenomena occurred in the
system considered. The examples presented in the following
concern only some particular cases.

The volume change of the system, affected by addition
of pr1, can be neglected. The volume changes, involved
with further dissolution and formation of precipitates, are
neglected too. In order to neglect the diffusion effects, the
systems were (virtually) mixed (homogenised). The dissolu-
tion has been considered as a quasistatic process, carried out
under isothermal conditions.

4.2. Discussion on Particular Systems. At the first stage of the
process that occurred after pr1 addition, the solution is
unsaturated against any particular precipitate, that is, q_i < 1 (i =
1, . . . , 5) in (6). At defined point, it saturates against
another precipitate. As will be stated in the following, two different
precipitates: pr2 = CaCO3 or pr5 = Mg(OH)2, are formed in
the systems considered. Then the solution saturates against
pr1 or forms wholly to the second precipitate; in the
latter case, the saturation towards pr1 is not attained. At a
relatively high C_{CO2}, value, pr1 dissolves wholly and no other
precipitate is formed (q_i < 1). The curves expressing the
relations (9) and (10) are referred to unsaturated solutions in
nonequilibrium systems and termed dissolution curves. The
curves expressing the relations (9) and (10), when referred
to the solutions saturated against a particular precipitate, are
termed the solubility curves (∑Me ≤ sMe, Me = Ca, Mg).
The dissolution curves presented below are then terminated:

(a) by the bifurcation point, where the solubility product
(K_{sp}) for the corresponding precipitate (pr2 or pr5)
is attained (q_i = 1 or q_5 = 1), or
(b) by the point, where [pr1] = 0 at q_i < 1 (i = 1, . . . , 5),
that is, pr1 dissolves wholly.
The dissolution/solubility curves, obtained at $pC_0 = 2$ and 3, are plotted in Figures 1(a)–1(d), for different pH_0 and pC_{CO_2} values. The curves plotted in Figures 1(c) and 1(d) refer to different sets of (pC_0, pC_{CO_2}, pH_0) values. When C_{CO_2} exceeds distinctly the C_0 value ($pC_0 = 3$), pr1 dissolves wholly before the solubility product for pr2 is attained.

The plots for soluble species consisting the expressions for $\sum Ca$ and $\sum Mg$ ((9), (10)) and referred to different sets of (pC_0, pC_{CO_2}, pH_0) values are presented in Figures 2(a) and 2(b) (for $pC_0 = 2$) and Figures 2(c) and 2(d) (for $pC_0 = 3$).

As results from the course of speciation curves plotted in Figure 2, the first (dissolution) step can be represented by reactions:

$$pr1 + 2H_2O = Ca^{2+} + Mg^{2+} + 2HCO_3^{-1} + 2OH^{-1}, \quad (15a)$$

$$pr1 + H_2O = Ca^{2+} + Mg^{2+} + HCO_3^{-1} + CO_3^{2-} + OH^{-1}, \quad (15b)$$

$$pr1 = Ca^{2+} + Mg^{2+} + 2CO_3^{2-}, \quad (15c)$$
Figure 4: The log s_{Me} versus pH relationships ($\sum \text{Me} = s_{\text{Me}}$ in (9), (10) at $(p_{C_{\text{H}_2}O}, p_{C_{\text{O}_2}}) = (2, 5)$ for different pK_{sp1} values assumed for pr1:
(a) 16.54; (b) 16.7; (c) 17.0; (d) 17.2; (e) 17.4; (f) collected effect of K_{sp1} values (indicated at the corresponding curves) on log s_{Mg} value.
Figure 5: The log s_{Me} versus pH relationships ($\Sigma Me = s_{Me}$ in (9), (10)) at (pC_{O_2}, pC_{CO_2}) = (3, 5) for different pK_{sp1} values assumed for pr1: (a) 16.54; (b) 16.7; (c) 17.0; (d) 17.2; (e) 17.4; (f) collected effect of pK_{sp1} values (indicated at the corresponding curves) on log s_{Mg} value.
where soluble species are formed. At the bifurcation points, the solubility product for pr2 is attained \((q_2 = 1)\) and then pr2 is precipitated:

\[
\text{pr1} + \text{Ca}^{2+} = 2\text{pr2} + \text{Mg}^{2+},
\]

\[
\text{pr1} + \text{H}_2\text{O} = \text{pr2} + \text{Mg}^{2+} + \text{HCO}_3^{-} + \text{OH}^{-}.
\]

The soluble magnesium species evolved into the solution, as the result of transformation of pr1 into pr2, are represented by m-lines, referred to (9); each of the m-lines terminates at the point where the solubility product \((K_{sp1})\) for pr1 is attained (i.e., \(q_1 = 1\)) and further dissolution of pr1 is stopped. As we see, the pH values corresponding to the bifurcation points are lowered with growth of \(C_{CO_2}\) value. The growth in \(C_{CO_2}\) causes also a significant growth in dissolution/solubility values.

The points where the solubility product \((K_{sp1} = 16.54)\) for pr1 is attained \((q_1 = 1)\) at the same pair of \((C_0, pC_{CO_2})\) values and different pH values are marked and connected by limes on the corresponding plots in Figure 3. In the middle part of the resulting curves, the points are grouped together, within a small area.

The course of the related plots is affected by \(pK_{sp1}\) value, assumed for solubility product of dolomite (pr1), as indicated in Figure 4 (for \(C_0 = 2\)) and Figure 5 (for \(C_0 = 3\)). The points referred to different pH0 values were omitted there, for brevity.

4.3. Solubility Curves for Dolomite Plotted at Different Presumed \(pK_{sp1}\) Values. As has been stated above, the values for \(pK_{sp1}\) attainable in the literature differ in wide range of values: from 16.54 to 19.35. Except the troubles involved with dolomite stoichiometry, these (serious) discrepancies in \(pK_{sp1}\) value are affected by (resulted from) differences in solubility of calcite and magnesite. Namely, calcite constituent of dolomite dissolved more rapidly than magnesite constituent [27]. These effects, together with possible nonstoichiometry of dolomite (i.e., formation of magnesian calcite), make the system with dolomite a highly complicated one.

The speciation curves for dolomite are plotted at \(pC_{CO_2} = 5\) and \(C_0 = 2\) and different \(pK_{sp1}\) values; it results that at \(pK_{sp1}\) equal 16.54 and 16.7, the equilibrium solid phase is calcite. However, when pH of the solution is greater than the boundary (minimal) value, the solid phase contains two equilibrium precipitates: calcite and dolomite. However, for \(pK_{sp1} = 17\) at lower pH values, the equilibrium solid phase is dolomite and calcite appears as the second equilibrium solid phase at pH greater than ca. 10.2. At \(pK_{sp1} = 19.35\), calcite is not formed. The curves of \(log[X_i]\) versus pH relationships plotted for different species \(X_i\) (i.e., precipitates: pr1, pr2 and soluble complexes: \(\text{Mg}^{2+}, \text{Ca}^{2+}, \text{MgHCO}_3^{-}, \text{CaHCO}_3^{-}, \text{MgCO}_3\), and \(\text{CaCO}_3\)) are terminated at pH where the solubility product \((K_{sp})\) for pr5 is attained. The plots of solubility curves for magnesium and calcium differ significantly at \(pK_{sp1}\) equal 16.54 and 16.7. At \(pK_{sp1} = 17\), the plots bifurcate at higher pH values. At \(pK_{sp1} = 19.35\), both plots overlap.

Some thermodynamic data given above are modified, to some degree, by kinetic effects. Namely, from the data referred to dissolution of dolomite into solutions with different pH0 [27] or pH0 and p(CO2) [29] values, it results that overall effectiveness of dolomite dissolution is largely affected (limited) by dissolution of pr3 component, owing to the fact that pr2 in dolomite dissolves faster than pr3.

5. Final Comments

The paper provides the calculation procedure that enables some changes in speciation in the system with dissolving dolomite to be followed. In each case, the dissolution was considered as a quasistatic, isothermal process. The dissolution concept refers to the systems where solubility product of the related precipitate has not been crossed yet. The dissolution has been considered under different conditions, expressed by (a) concentration of the solid phase \((C_0\) mol/L), (b) concentration \((C_{CO_2}\) mol/L) of CO2, and (c) concentration of a strong acid \((C_a\) mol/L) or base \((C_b\) mol/L), expressed by the value \(\Delta = C_a - C_b\). The procedure applied enables the concentrations of particular species formed at different pH of the solution to be calculated at different moments of the dolomite dissolution. This way, the dissolution \((\sum Me, mol/L)\) value was plotted. At the end of the dissolution process, \(\sum Me\) assumes its limiting value, equal to the solubility \((sMe, mol/L)\), that is, \(\sum Me = sMe\). As results from the examples quoted, in some instances the solubility product of other (different from the dissolving) solid phases is crossed. Higher (relative) concentration of CO2 in the solution promotes the dissolution of dolomite.

Symbols

\(C_0:\) initial concentration (mol/L) of dolomite (pr1) in two-phase system
\(C_b, C_a:\) concentrations (mol/L) of KOH or HCl, respectively, in the initial solution \(\Delta = C_a - C_b\)
\(K_{sp1-5}:\) solubility products for CaMg\((CO_3)_2\) (pr1), CaCO3 (pr2), MgCO3 (pr3), Ca\((OH)_2\) (pr4); Mg\((OH)_2\) (pr5), respectively
\(M_i:\) molar mass (g/mol) of pri
\(pC_0 = -\log C_0\)
\(pC_{CO_2} = -\log C_{CO_2}\)
\(pK_{spi} = -\log K_{spi}\) (i = 1, ..., 5)
\([pri]_i:\) molar conc. of pri
\(s:\) Solubility (mol/L)
\(t:\) time.

References

