The Riemann-Hilbert problem for matrix-valued orthogonal polynomials1

Manuel Domínguez de la Iglesia

Department of Mathematics, K. U. Leuven

Seminar classical analysis
Leuven, November 5, 2008

1joint work with Andrei Martínez Finkelshtein
Outline

1. Preliminaries

2. The RH problem for OMP

3. An example
Outline

1 Preliminaries

2 The RH problem for OMP

3 An example
Let W be a $N \times N$ a weight matrix such that $dW(x) = W(x)dx$.

We can construct a family of OMP such that

$$
\int_{\mathbb{R}} P_n(x) W(x) P_m^*(x) dx = \delta_{n,m} I, \quad n, m \geq 0
$$

$$
P_n(x) = \gamma_n (x^n + a_{n,n-1}x^{n-1} + \cdots) = \gamma_n \hat{P}_n(x)
$$

The matrix-valued polynomials of the second kind, defined by

$$
Q_n(x) = \int_{\mathbb{R}} \frac{P_n(t) W(t)}{t - x} dt, \quad n \geq 0
$$

$(P_n)_n$ and $(Q_n)_n$ satisfy a three term recurrence relation

$$
tP_n(t) = A_{n+1} P_{n+1}(t) + B_n P_n(t) + A_n^* P_{n-1}(t), \quad n \geq 0
$$

$$
det(A_{n+1}) \neq 0, \quad B_n = B_n^*
$$
Let W be a $N \times N$ weight matrix such that $dW(x) = W(x)dx$. We can construct a family of OMP such that

$$\int_{\mathbb{R}} P_n(x) W(x) P_m^*(x) dx = \delta_{n,m} I, \quad n, m \geq 0$$

$$P_n(x) = \gamma_n (x^n + a_{n,n-1}x^{n-1} + \cdots) = \gamma_n \hat{P}_n(x)$$

The matrix-valued polynomials of the second kind, defined by

$$Q_n(x) = \int_{\mathbb{R}} \frac{P_n(t) W(t)}{t - x} dt, \quad n \geq 0$$

$(P_n)_n$ and $(Q_n)_n$ satisfy a three term recurrence relation

$$tP_n(t) = A_{n+1}P_{n+1}(t) + B_nP_n(t) + A_n^*P_{n-1}(t), \quad n \geq 0$$

$\det(A_{n+1}) \neq 0$, $B_n = B_n^*$
Let W be a $N \times N$ weight matrix such that $dW(x) = W(x)dx$. We can construct a family of OMP such that

\[
\int_{\mathbb{R}} P_n(x) W(x) P_m^*(x) dx = \delta_{n,m} I, \quad n, m \geq 0
\]

\[P_n(x) = \gamma_n (x^n + a_{n,n-1}x^{n-1} + \cdots) = \gamma_n \hat{P}_n(x)\]

The matrix-valued polynomials of the second kind, defined by

\[
Q_n(x) = \int_{\mathbb{R}} \frac{P_n(t) W(t)}{t-x} dt, \quad n \geq 0
\]

$(P_n)_n$ and $(Q_n)_n$ satisfy a three term recurrence relation

\[tP_n(t) = A_{n+1} P_{n+1}(t) + B_n P_n(t) + A_n^* P_{n-1}(t), \quad n \geq 0\]

\[\det(A_{n+1}) \neq 0, \quad B_n = B_n^*\]
Let W be a $N \times N$ a weight matrix such that $dW(x) = W(x)dx$. We can construct a family of OMP such that

$$\int_{\mathbb{R}} P_n(x) W(x) P_m^*(x) dx = \delta_{n,m} I, \quad n, m \geq 0$$

$$P_n(x) = \gamma_n (x^n + a_{n,n-1}x^{n-1} + \cdots) = \gamma_n \hat{P}_n(x)$$

The matrix-valued polynomials of the second kind, defined by

$$Q_n(x) = \int_{\mathbb{R}} \frac{P_n(t) W(t)}{t - x} dt, \quad n \geq 0$$

$(P_n)_n$ and $(Q_n)_n$ satisfy a three term recurrence relation

$$tP_n(t) = A_{n+1}P_{n+1}(t) + B_nP_n(t) + A_n^*P_{n-1}(t), \quad n \geq 0$$

$$\det(A_{n+1}) \neq 0, \quad B_n = B_n^*$$
The coefficients of the TTRR satisfy

\[A_n = \gamma_{n-1} \gamma_n^{-1}, \quad B_n = \gamma_n (a_{n,n-1} - a_{n+1,n}) \gamma_n^{-1} \]

The TTRR for monic OMP

\[x \hat{P}_n(x) = \hat{P}_{n+1}(x) + \alpha_n \hat{P}_n(x) + \beta_n \hat{P}_{n-1}(x), \quad n \geq 0 \]
\[\alpha_n = a_{n,n-1} - a_{n+1,n}, \quad \beta_n = (\gamma_n^* \gamma_n)^{-1} (\gamma_n^* \gamma_{n-1}) \gamma_{n-1} \]

Second-order differential equations of hypergeometric type

\[P_n''(x) F_2(x) + P_n'(x) F_1(x) + P_n(x) F_0(x) = \Lambda_n P_n(x), \quad n \geq 0 \]
\[\text{deg } F_i \leq i, \quad \Lambda_n \quad \text{Hermitian} \]
The coefficients of the TTRR satisfy

\[A_n = \gamma_{n-1}\gamma_n^{-1}, \quad B_n = \gamma_n(a_{n,n-1} - a_{n+1,n})\gamma_n^{-1} \]

The TTRR for monic OMP

\[x\hat{P}_n(x) = \hat{P}_{n+1}(x) + \alpha_n \hat{P}_n(x) + \beta_n \hat{P}_{n-1}(x), \quad n \geq 0 \]
\[\alpha_n = a_{n,n-1} - a_{n+1,n}, \quad \beta_n = (\gamma_n^*\gamma_n)^{-1}(\gamma_n^*\gamma_{n-1}) \]

Second-order differential equations of hypergeometric type

\[P_n''(x)F_2(x) + P_n'(x)F_1(x) + P_n(x)F_0(x) = \Lambda_n P_n(x), \quad n \geq 0 \]
\[\deg F_i \leq i, \quad \Lambda_n \text{ Hermitian} \]
The coefficients of the TTRR satisfy

\[A_n = \gamma_{n-1}\gamma_n^{-1}, \quad B_n = \gamma_n(a_{n,n-1} - a_{n+1,n})\gamma_n^{-1} \]

The TTRR for **monic** OMP

\[x\hat{P}_n(x) = \hat{P}_{n+1}(x) + \alpha_n\hat{P}_n(x) + \beta_n\hat{P}_{n-1}(x), \quad n \geq 0 \]
\[\alpha_n = a_{n,n-1} - a_{n+1,n}, \quad \beta_n = (\gamma_n^*\gamma_n)^{-1}(\gamma_n^*\gamma_{n-1}\gamma_{n-1}) \]

Second-order differential equations of **hypergeometric** type

\[P_n''(x)F_2(x) + P_n'(x)F_1(x) + P_n(x)F_0(x) = \Lambda_nP_n(x), \quad n \geq 0 \]
\[\deg F_i \leq i, \quad \Lambda_n \quad \text{Hermitian} \]
Outline

1. Preliminaries

2. The RH problem for OMP

3. An example
Solution of the RH for OMP

\(Y^n : \mathbb{C} \rightarrow \mathbb{C}^{2N \times 2N} \) such that

1. **Analyticity.** \(Y^n \) is analytic in \(\mathbb{C} \setminus \mathbb{R} \)

2. **Jump Condition.** \(Y^n_+(x) = Y^n_-(x) \begin{pmatrix} I & W(x) \\ 0 & I \end{pmatrix} \) when \(x \in \mathbb{R} \)

3. **Normalization.** \(Y^n(z) = (I + O(1/z)) \begin{pmatrix} z^nI & 0 \\ 0 & z^{-n}I \end{pmatrix} \) as \(z \to \infty \)

For \(n \geq 1 \) the unique solution of the RH problem above is given by

\[
Y^n(z) = \begin{pmatrix} \hat{P}_n(z) & \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{\hat{P}_n(t)W(t)}{t-z} \, dt \\ -2\pi i \gamma^*_{n-1} \gamma_{n-1} \hat{P}_{n-1}(z) & -\gamma^*_{n-1} \gamma_{n-1} \int_{\mathbb{R}} \frac{\hat{P}_{n-1}(t)W(t)}{t-z} \, dt \end{pmatrix}
\]
Solution of the RH for OMP

Let $Y^n : \mathbb{C} \rightarrow \mathbb{C}^{2N \times 2N}$ such that

1. **Analyticity.** Y^n is analytic in $\mathbb{C} \setminus \mathbb{R}$

2. **Jump Condition.** $Y^n_+(x) = Y^n_-(x) \begin{pmatrix} I & W(x) \\ 0 & I \end{pmatrix}$ when $x \in \mathbb{R}$

3. **Normalization.** $Y^n(z) = (I + O(1/z)) \begin{pmatrix} z^nI & 0 \\ 0 & z^{-n}I \end{pmatrix}$ as $z \to \infty$

For $n \geq 1$ the unique solution of the RH problem above is given by

$$Y^n(z) = \begin{pmatrix} \hat{P}_n(z) & 1 \int_{\mathbb{R}} \frac{\hat{P}_n(t)W(t)}{t-z} dt \\ -2\pi i \gamma^*_n \gamma_n \hat{P}_{n-1}(z) & -\gamma^*_n \gamma_n \int_{\mathbb{R}} \frac{\hat{P}_{n-1}(t)W(t)}{t-z} dt \end{pmatrix}$$
Also we find a solution of the inverse

\[
(Y^n)^{-1} = \left(- \left(\int_{\mathbb{R}} \frac{W(t) \hat{P}_{n-1}^*(t)}{t - z} \, dt \right) \gamma_{n-1}^* \gamma_{n-1} - \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{W(t) \hat{P}_n^*(t)}{t - z} \, dt \right)
\]

- The Liouville-Ostrogradski formula

\[
Q_n(z) P_{n-1}^*(z) - P_n(z) Q_{n-1}^*(z) = A_n^{-1}
\]

- The Hermitian property

\[
Q_n(z) P_n^*(z) = P_n(z) Q_n^*(z)
\]
Also we find a solution of the inverse

\[(Y^n)^{-1} = \begin{pmatrix}
- \left(\int_{\mathbb{R}} \frac{W(t) \hat{P}_{n-1}^*(t)}{t - z} dt \right) \gamma_{n-1}^* \gamma_{n-1} \\
2\pi i \hat{P}_{n-1}^*(z) \gamma_{n-1}^* \gamma_{n-1}
\end{pmatrix}
- \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{W(t) \hat{P}_n^*(t)}{t - z} dt \]

- The Liouville-Ostrogradski formula

\[Q_n(z) P_{n-1}^*(z) - P_n(z) Q_{n-1}^*(z) = A_n^{-1}\]

- The Hermitian property

\[Q_n(z) P_n^*(z) = P_n(z) Q_n^*(z)\]
Also we find a solution of the inverse

\[
(Y^n)^{-1} = \left(-\left(\int_{\mathbb{R}} \frac{W(t)\hat{P}_{n-1}(t)}{t-z} \, dt \right) \gamma_{n-1}^* \gamma_{n-1} - \frac{1}{2\pi i} \int_{\mathbb{R}} \frac{W(t)\hat{P}_{n}(t)}{t-z} \, dt \right)
\]

- The Liouville-Ostrogradski formula

\[
Q_n(z)P_{n-1}^*(z) - P_n(z)Q_{n-1}^*(z) = A_{n-1}^{-1}
\]

- The Hermitian property

\[
Q_n(z)P_n^*(z) = P_n(z)Q_n^*(z)
\]
The three-term recurrence relation

If we call $R = Y^{n+1} (Y^n)^{-1}$ and denoting

$$Y^n(z) = \begin{pmatrix} I + \frac{1}{z} Y_1^n + \mathcal{O}_n(1/z^2) \end{pmatrix} \begin{pmatrix} z^n/l & 0 \\ 0 & z^{-n/l} \end{pmatrix}, \quad z \to \infty$$

then

$$Y^{n+1}(z) = \begin{pmatrix} zl + (Y_{11}^{n+1}) - (Y_1^n)_{11} & -(Y_1^n)_{12} \\ (Y_{11}^{n+1})_{21} & 0 \end{pmatrix} Y^n(z)$$

- $\gamma_{n-1} \gamma_{n-1} = -\frac{1}{2\pi i} (Y_1^n)_{21} = -\frac{1}{2\pi i} (Y_1^{n-1})_{12}^{-1}$
- $\alpha_n = (Y_1^n)_{11} - (Y_{11}^{n+1})_{11}, \quad \beta_n = (Y_1^n)_{12} (Y_1^n)_{21}$
- $B_n = \gamma_n ((Y_1^n)_{11} - (Y_{11}^{n+1})_{11}) \gamma^{-1}, \quad A_n^* = \gamma_n (Y_1^n)_{12} (Y_1^n)_{21} \gamma^{-1}$
- $(Y_{11}^{n+1})_{21} (Y_1^n)_{12} = (Y_1^n)_{12} (Y_{11}^{n+1})_{21} = I, \quad (Y_1^n)_{11} + (Y_1^n)^*_{22} = 0$
The three-term recurrence relation

If we call $R = Y^{n+1}(Y^n)^{-1}$ and denoting

$$Y^n(z) = \left(I + \frac{1}{z} Y^n_1 + O_n(1/z^2) \right) \begin{pmatrix} z^n & 0 \\ 0 & z^{-n} \end{pmatrix}, \quad z \to \infty$$

then

$$Y^{n+1}(z) = \left(zI + (Y^{n+1}_1)_{11} - (Y^n_1)_{11} \right) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} Y^n(z)$$

- $\gamma_{n-1}^* \gamma_{n-1} = -\frac{1}{2\pi i} (Y^n_1)_{21} = -\frac{1}{2\pi i} (Y^{n-1}_1)_{12}^{-1}$
- $\alpha_n = (Y^n_1)_{11} - (Y^{n+1}_1)_{11}$, $\beta_n = (Y^n_1)_{12} (Y^n_1)_{21}$
- $B_n = \gamma_n((Y^n_1)_{11} - (Y^{n+1}_1)_{11}) \gamma_n^{-1}$, $A_n^* = \gamma_n(Y^n_1)_{12} (Y^n_1)_{21} \gamma^{-1}_{n-1}$
- $(Y^{n+1}_1)_{21} (Y^n_1)_{12} = (Y^n_1)_{12} (Y^{n+1}_1)_{21} = I$, $(Y^n_1)_{11} + (Y^n_1)^*_{22} = 0$
The three-term recurrence relation

If we call \(R = Y^{n+1}(Y^n)^{-1} \) and denoting

\[
Y^n(z) = \left(I + \frac{1}{z} Y_1^n + O_n(1/z^2)\right) \begin{pmatrix} z^n & 0 \\ 0 & z^{-n} \end{pmatrix}, \quad z \to \infty
\]

\[
Y^{n+1}(z) = \begin{pmatrix} zI + (Y_1^{n+1})_{11} - (Y_1^n)_{11} & -(Y_1^n)_{12} \\ (Y_1^{n+1})_{21} & 0 \end{pmatrix} Y^n(z)
\]

- \(\gamma_{n-1} = -\frac{1}{2\pi i} (Y_1^n)_{21} = -\frac{1}{2\pi i} (Y_1^{n-1})_{12}^{-1} \)
- \(\alpha_n = (Y_1^n)_{11} - (Y_1^{n+1})_{11}, \quad \beta_n = (Y_1^n)_{12} (Y_1^n)_{21} \)
- \(B_n = \gamma_n ((Y_1^n)_{11} - (Y_1^{n+1})_{11}) \gamma_n^{-1}, \quad A_n^* = \gamma_n (Y_1^n)_{12} (Y_1^n)_{21} \gamma_n^{-1} \)
- \((Y_1^{n+1})_{21} (Y_1^n)_{12} = (Y_1^n)_{12} (Y_1^{n+1})_{21} = I, \quad (Y_1^n)_{11} + (Y_1^n)^*_{22} = 0 \)
The three-term recurrence relation

If we call \(R = \mathcal{Y}^{n+1}(\mathcal{Y}^n)^{-1} \) and denoting

\[
\mathcal{Y}^n(z) = \left(I + \frac{1}{z} \mathcal{Y}^n_1 + \mathcal{O}_n(1/z^2) \right) \begin{pmatrix} z^n & 0 \\ 0 & z^{-n} \end{pmatrix}, \quad z \to \infty
\]

\[
\mathcal{Y}^{n+1}(z) = \begin{pmatrix} zI + (\mathcal{Y}^{n+1}_1)_{11} - (\mathcal{Y}^n_1)_{11} & - (\mathcal{Y}^n_1)_{12} \\ (\mathcal{Y}^{n+1}_1)_{21} & 0 \end{pmatrix} \mathcal{Y}^n(z)
\]
The three-term recurrence relation

If we call \(R = Y^{n+1}(Y^n)^{-1} \) and denoting

\[
Y^n(z) = \left(I + \frac{1}{z} Y_1^n + O_n(1/z^2) \right) \begin{pmatrix} z^n & 0 \\ 0 & z^{-n} \end{pmatrix}, \quad z \to \infty
\]

\[
Y^{n+1}(z) = \begin{pmatrix} zI + (Y_1^{n+1})_{11} - (Y_1^n)_{11} & -(Y_1^n)_{12} \\ (Y_1^{n+1})_{21} & 0 \end{pmatrix} Y^n(z)
\]

- \(\gamma^*_n Y_{n-1} = -\frac{1}{2\pi i} (Y_1^n)_{21} = -\frac{1}{2\pi i} (Y_1^{n-1})^{-1}_{12} \)
- \(\alpha_n = (Y_1^n)_{11} - (Y_1^{n+1})_{11}, \quad \beta_n = (Y_1^n)_{12} (Y_1^n)_{21} \)
- \(B_n = \gamma_n ((Y_1^n)_{11} - (Y_1^{n+1})_{11}) Y_n^{-1}, \quad A^*_n = \gamma_n (Y_1^n)_{12} (Y_1^n)_{21} Y_{n-1}^{-1} \)
- \((Y_1^{n+1})_{21} (Y_1^n)_{12} = (Y_1^n)_{12} (Y_1^{n+1})_{21} = I, \quad (Y_1^n)_{11} + (Y_1^n)^*_{22} = 0 \)
Let \((P_n)_n\) an orthonormal family. Then we have

\[
K_n(x, y) = \sum_{j=0}^{n-1} P_j^*(y) P_j(x) = \frac{P_{n-1}^*(y) A_n P_n(x) - P_n^*(y) A_n^* P_{n-1}(x)}{x - y}
\]

This kernel has the following properties

1. \(K_n(x, y) = K_n^*(y, x)\)
2. \(K_n(x, y) = \int_{\mathbb{R}} K_n(s, y) W(s) K_n(x, s) ds\)

We also have that

\[
K_n(x, y) = \frac{1}{2\pi i(x - y)} \begin{pmatrix} 0 & I \end{pmatrix} (Y^n)^{-1}(y)(Y^n)^{+}(x) \begin{pmatrix} I \\ 0 \end{pmatrix}
\]
The kernel

Let \((P_n)_n\) an orthonormal family. Then we have

\[
K_n(x, y) = \sum_{j=0}^{n-1} P_j^*(y) P_j(x) = \frac{P_{n-1}^*(y) A_n P_n(x) - P_n^*(y) A_n^* P_{n-1}(x)}{x - y}
\]

This kernel has the following properties

1. \(K_n(x, y) = K_n^*(y, x)\)
2. \(K_n(x, y) = \int_\mathbb{R} K_n(s, y) W(s) K_n(x, s) ds\)

We also have that

\[
K_n(x, y) = \frac{1}{2\pi i(x - y)} \begin{pmatrix} 0 & I \end{pmatrix} (Y^n)^{-1}(y)(Y^n)^+ (x) \begin{pmatrix} I \\ 0 \end{pmatrix}
\]
The kernel

Let \((P_n)_n\) an orthonormal family. Then we have

\[
K_n(x, y) = \sum_{j=0}^{n-1} P_j^*(y) P_j(x) = \frac{P_{n-1}^*(y) A_n P_n(x) - P_n^*(y) A_n^* P_{n-1}(x)}{x - y}
\]

This kernel has the following properties

1. \(K_n(x, y) = K_n^*(y, x)\)
2. \(K_n(x, y) = \int_{\mathbb{R}} K_n(s, y) W(s) K_n(x, s) ds\)

We also have that

\[
K_n(x, y) = \frac{1}{2\pi i(x - y)} \begin{pmatrix} 0 & I \\ I & (Y_n)^{-1} \end{pmatrix} (Y_n)^{+1} (y)(Y_n)^{+}(x) \begin{pmatrix} I \\ 0 \end{pmatrix}
\]
A differential equation

We consider weight matrices of the form

\[W(x) = \rho(x) T(x) T^*(x), \]

where \(T \) satisfies \(T'(x) = G(x) T(x) \).

Consider

\[X^n(z) = Y^n(z) J(z) = Y^n(z) \begin{pmatrix} \rho(z)^{1/2} T(z) & 0 \\ 0 & \rho(z)^{-1/2} (T(z))^{-*} \end{pmatrix} \]

Then \(\frac{d}{dz} X^n(z) X^n(z)^{-1} \) is entire and near infinity it behaves like

\[\left(I + \frac{Y_1}{z} + O(z^{-2}) \right) \begin{pmatrix} \frac{1}{2} \frac{\rho'(z)}{\rho(z)} + G(z) & 0 \\ 0 & -\frac{1}{2} \frac{\rho'(z)}{\rho(z)} - G(z)^* \end{pmatrix} \left(I - \frac{Y_1}{z} + O(z^{-2}) \right) \]
A differential equation

We consider weight matrices of the form

\[W(x) = \rho(x) T(x) T^*(x), \]

where \(T \) satisfies \(T'(x) = G(x) T(x) \).

Consider

\[X^n(z) = Y^n(z) J(z) = Y^n(z) \begin{pmatrix} \rho(z)^{1/2} T(z) & 0 \\ 0 & \rho(z)^{-1/2} (T(z))^* \end{pmatrix} \]

Then \(\frac{d}{dz} X^n(z) X^{-1}(z) \) is entire and near infinity it behaves like

\[\begin{pmatrix} I + \frac{Y_1}{z} + O(z^{-2}) \\ \frac{1}{2} \frac{\rho'(z)}{\rho(z)} + G(z) \end{pmatrix} \begin{pmatrix} 0 \\ -\frac{1}{2} \frac{\rho'(z)}{\rho(z)} - G(z)^* \end{pmatrix} \begin{pmatrix} I - \frac{Y_1}{z} + O(z^{-2}) \\ 0 \end{pmatrix} \]
A differential equation

We consider weight matrices of the form

\[W(x) = \rho(x) T(x) T^*(x), \]

where \(T \) satisfies \(T'(x) = G(x) T(x) \). Consider

\[X^n(z) = Y^n(z) J(z) = Y^n(z) \begin{pmatrix} \rho(z)^{1/2} T(z) & 0 \\ 0 & \rho(z)^{-1/2} (T(z))^{-*} \end{pmatrix} \]

Then \(\frac{d}{dz} X^n(z) X^n(z)^{-1} \) is entire and near infinity it behaves like

\[\begin{pmatrix} I + \frac{Y_1}{z} + O(z^{-2}) \end{pmatrix} \begin{pmatrix} \frac{1}{2} \frac{\rho'(z)}{\rho(z)} + G(z) & 0 \\ 0 & -\frac{1}{2} \frac{\rho'(z)}{\rho(z)} - G(z)^* \end{pmatrix} \begin{pmatrix} I - \frac{Y_1}{z} + O(z^{-2}) \end{pmatrix} \]
We will study in detail the RH problem for the weight matrix

\[W(x) = e^{-x^2} e^{Ax} e^{A^*x}, \quad x \in \mathbb{R}, \]

where

\[
A = \begin{pmatrix}
0 & \nu_1 & 0 & \cdots & 0 \\
0 & 0 & \nu_2 & \cdots & 0 \\
0 & 0 & 0 & \cdots & \nu_i \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \nu_{N-1} \\
0 & 0 & 0 & \cdots & 0
\end{pmatrix}, \quad \nu_i \in \mathbb{C} \setminus \{0\}
\]

Therefore, \(\rho(z) = e^{-z^2} \) and \(T(z) = e^{Az} \) with \(T'(z) = AT(z) \).

It was shown by Durán-Grünbaum that

\[
\hat{P}_{n}''(z) + \hat{P}_{n}'(z)(2A - 2zI) + \hat{P}_{n}(z)(A^2 - 2J) = (-2nI + A^2 - 2J)^n P_n(z),
\]

where \(J \) is the diagonal matrix \(J = \sum_{i=1}^{N}(N - i)E_{i,i} \).
We will study in detail the RH problem for the weight matrix

\[W(x) = e^{-x^2} e^{Ax} e^{A^*x}, \quad x \in \mathbb{R}, \]

where

\[
A = \begin{pmatrix}
0 & \nu_1 & 0 & \cdots & 0 \\
0 & 0 & \nu_2 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \nu_{N-1} \\
0 & 0 & 0 & \cdots & 0
\end{pmatrix}, \quad \nu_i \in \mathbb{C} \setminus \{0\}
\]

Therefore, \(\rho(z) = e^{-z^2} \) and \(T(z) = e^{Az} \) with \(T'(z) = AT(z) \).

It was shown by Durán-Grünbaum that

\[
\hat{P}_n''(z) + \hat{P}_n'(z)(2A - 2zI) + \hat{P}_n(z)(A^2 - 2J) = (-2nI + A^2 - 2J)\hat{P}_n(z),
\]

where \(J \) is the diagonal matrix \(J = \sum_{i=1}^{N} (N - i)E_{i,i} \).
The Lax pair

Let Y^n be the solution of the RH for W and consider

$$X^n(z) = Y^n(z) \begin{pmatrix} e^{-z^2/2}e^{Az} & 0 \\ 0 & e^{z^2/2}e^{-A^*z} \end{pmatrix}$$

$$X^{n+1}(z) = \begin{pmatrix} zI + \left(Y_1^{n+1} \right)_{11} - \left(Y_1^n \right)_{11} - \left(Y_1^n \right)_{12} \\ \left(Y_1^{n+1} \right)_{21} \end{pmatrix} X^n(z)$$

$$\frac{d}{dz}X^n(z) = \begin{pmatrix} -zI + A & 2\left(Y_1^n \right)_{12} \\ -2\left(Y_1^n \right)_{21} & zI - A^* \end{pmatrix} X^n(z)$$

Compatibility conditions

$$2(\beta_{n+1} - \beta_n) = A\alpha_n - \alpha_n A + I$$

$$\alpha_n = \frac{1}{2} \left(A + (\gamma_n^*\gamma_n)^{-1}A^*(\gamma_n^*\gamma_n) \right)$$
The Lax pair

Let Y^n be the solution of the RH for W and consider

$$X^n(z) = Y^n(z) \begin{pmatrix} e^{-z^2/2}e^{Az} & 0 \\ 0 & e^{z^2/2}e^{-A^*z} \end{pmatrix}$$

$$X^{n+1}(z) = \begin{pmatrix} zI + (Y_1^{n+1})_{11} - (Y_1^n)_{11} & -(Y_1^n)_{12} \\ (Y_1^{n+1})_{21} & 0 \end{pmatrix} X^n(z)$$

$$\frac{d}{dz} X^n(z) = \begin{pmatrix} -zI + A & 2(Y_1^n)_{12} \\ -2(Y_1^n)_{21} & zI - A^* \end{pmatrix} X^n(z)$$

Compatibility conditions

$$2(\beta_{n+1} - \beta_n) = A\alpha_n - \alpha_n A + I$$

$$\alpha_n = \frac{1}{2} (A + (\gamma^n_\gamma^n)^{-1} A^* (\gamma^n_\gamma^n))$$
The Lax pair

Let Y^n be the solution of the RH for W and consider

$$X^n(z) = Y^n(z) \begin{pmatrix} e^{-z^2/2}e^{Az} & 0 \\ 0 & e^{z^2/2}e^{-A^*z} \end{pmatrix}$$

$$X^{n+1}(z) = \begin{pmatrix} zI + (Y^{n+1}_1)_{11} - (Y^n_1)_{11} & -(Y^n_1)_{12} \\ (Y^{n+1}_1)_{21} & 0 \end{pmatrix} X^n(z)$$

$$\frac{d}{dz} X^n(z) = \begin{pmatrix} -zI + A & 2(Y^n_1)_{12} \\ -2(Y^n_1)_{21} & zI - A^* \end{pmatrix} X^n(z)$$

Compatibility conditions

$$2(\beta_{n+1} - \beta_n) = A\alpha_n - \alpha_n A + I$$

$$\alpha_n = \frac{1}{2}(A + (\gamma^*_n\gamma_n)^{-1}A^*(\gamma^*_n\gamma_n))$$
Ladder operators

Lowering operator

\[\hat{P}'_n(z) = A\hat{P}_n(z) - \hat{P}_n(z)A + 2\beta_n\hat{P}_{n-1}(z) \]

Therefore

\[\beta_n = \frac{1}{2} (nl + a_{n,n-1}A - Aa_{n,n-1}) \]

Raising operator

\[\hat{P}'_n(z) = -2\hat{P}_{n+1}(z) + 2z\hat{P}_n(z) + A\hat{P}_n(z) - \hat{P}_n(z)A - 2\alpha_n\hat{P}_n(z) \]
Ladder operators

Lowering operator

\[\hat{P}'_n(z) = A\hat{P}_n(z) - \hat{P}_n(z)A + 2\beta_n\hat{P}_{n-1}(z) \]

Therefore

\[\beta_n = \frac{1}{2}(nI + a_{n,n-1}A - Aa_{n,n-1}) \]

Raising operator

\[\hat{P}'_n(z) = -2\hat{P}_{n+1}(z) + 2z\hat{P}_n(z) + A\hat{P}_n(z) - \hat{P}_n(z)A - 2\alpha_n\hat{P}_n(z) \]
Second-order differential equations

Introduce the following differential/difference operators

\[
\begin{align*}
R_1 &= \partial^1 + \partial^0 A, \quad L_1 = 2\beta_n E^{-1} + AE^0 \\
R_2 &= \partial^1 + \partial^0 (A - 2zI), \quad L_2 = -2E^1 + (A - 2\alpha_n)E^0 \\
\partial^k &= \frac{d^k}{dz^k}, \quad E^k f(n) = f(n + k)
\end{align*}
\]

The ladder operators are equivalent to

\[
\hat{P}_n(z)R_1 = L_1 \hat{P}_n(z), \quad \text{and} \quad \hat{P}_n(z)R_2 = L_2 \hat{P}_n(z)
\]

Therefore, the OMP \(\hat{P}_n \) satisfy two second-order differential equations

\[
\begin{align*}
\hat{P}_n(z)R_1 R_2 &= L_1 \hat{P}_n(z)R_2 = L_1 L_2 \hat{P}_n(z), \\
\hat{P}_n(z)R_2 R_1 &= L_2 \hat{P}_n(z)R_1 = L_2 L_1 \hat{P}_n(z)
\end{align*}
\]
Second-order differential equations

Introduce the following differential/difference operators

\[R_1 = \partial^1 + \partial^0 A, \quad L_1 = 2\beta_n E^{-1} + AE^0 \]
\[R_2 = \partial^1 + \partial^0 (A - 2zI), \quad L_2 = -2E^1 + (A - 2\alpha_n)E^0 \]
\[\partial^k = \frac{d^k}{dz^k}, \quad E^k f(n) = f(n + k) \]

The ladder operators are equivalent to

\[\hat{P}_n(z) R_1 = L_1 \hat{P}_n(z), \quad \text{and} \quad \hat{P}_n(z) R_2 = L_2 \hat{P}_n(z) \]

Therefore, the OMP \(\hat{P}_n \) satisfy two second-order differential equations

\[\hat{P}_n(z) R_1 R_2 = L_1 \hat{P}_n(z) R_2 = L_1 L_2 \hat{P}_n(z), \]
\[\hat{P}_n(z) R_2 R_1 = L_2 \hat{P}_n(z) R_1 = L_2 L_1 \hat{P}_n(z) \]
Preliminaries
The RH problem for OMP
An example

Second-order differential equations

Introduce the following differential/difference operators

\[
R_1 = \partial^1 + \partial^0 A, \quad L_1 = 2\beta_n E^{-1} + AE^0
\]
\[
R_2 = \partial^1 + \partial^0 (A - 2zI), \quad L_2 = -2E^1 + (A - 2\alpha_n)E^0
\]
\[
\partial^k = \frac{d^k}{dz^k}, \quad E^k f(n) = f(n + k)
\]

The ladder operators are equivalent to

\[
\hat{P}_n(z) R_1 = L_1 \hat{P}_n(z), \quad \text{and} \quad \hat{P}_n(z) R_2 = L_2 \hat{P}_n(z)
\]

Therefore, the OMP \(\hat{P}_n \) satisfy two second-order differential equations

\[
\hat{P}_n(z) R_1 R_2 = L_1 \hat{P}_n(z) R_2 = L_1 L_2 \hat{P}_n(z),
\]
\[
\hat{P}_n(z) R_2 R_1 = L_2 \hat{P}_n(z) R_1 = L_2 L_1 \hat{P}_n(z)
\]
We will proof the following:

- Both equations are equivalent
- They are also equivalent to the second-order differential equation of hypergeometric type

\[
\hat{P}_n''(z) + \hat{P}_n'(z)(2A - 2zI) + \hat{P}_n(z)(A^2 - 2J) = (-2nI + A^2 - 2J)\hat{P}_n(z)
\]

The first one is

\[
\hat{P}_n''(z) + 2\hat{P}_n'(z)(A - zI) + \hat{P}_n(z)A(A - 2zI) =
- 4\beta_n\hat{P}_n(z) + 2\beta_n(A - 2\alpha_{n-1})\hat{P}_{n-1}(z) - 2A\hat{P}_{n+1}(z) + A(A - 2\alpha_n)\hat{P}_n(z)
\]

And the second

\[
\hat{P}_n''(z) + 2\hat{P}_n'(z)(A - zI) + \hat{P}_n(z)(A - 2zI)A - 2\hat{P}_n(z) =
- 4\beta_{n+1}\hat{P}_n(z) + 2(A - 2\alpha_n)\beta_n\hat{P}_{n-1}(z) - 2A\hat{P}_{n+1}(z) + (A - 2\alpha_n)A\hat{P}_n(z)
\]
We will proof the following:

- Both equations are equivalent
- They are also equivalent to the second-order differential equation of hypergeometric type

\[
\hat{\mathcal{P}}''_n(z) + \hat{\mathcal{P}}'_n(z)(2A - 2zl) + \hat{\mathcal{P}}_n(z)(A^2 - 2J) = (-2nl + A^2 - 2J)\hat{\mathcal{P}}_n(z)
\]

The first one is

\[
\hat{\mathcal{P}}''_n(z) + 2\hat{\mathcal{P}}'_n(z)(A -zl) + \hat{\mathcal{P}}_n(z)A(A - 2zl) = \\
- 4\beta_n \hat{\mathcal{P}}_n(z) + 2\beta_n(A - 2\alpha_{n-1})\hat{\mathcal{P}}_{n-1}(z) - 2A\hat{\mathcal{P}}_{n+1}(z) + A(A - 2\alpha_n)\hat{\mathcal{P}}_n(z)
\]

And the second

\[
\hat{\mathcal{P}}''_n(z) + 2\hat{\mathcal{P}}'_n(z)(A -zl) + \hat{\mathcal{P}}_n(z)(A - 2zl)A - 2\hat{\mathcal{P}}_n(z) = \\
- 4\beta_{n+1} \hat{\mathcal{P}}_n(z) + 2(A - 2\alpha_n)\beta_n\hat{\mathcal{P}}_{n-1}(z) - 2A\hat{\mathcal{P}}_{n+1}(z) + (A - 2\alpha_n)A\hat{\mathcal{P}}_n(z)
\]
We will proof the following:

- Both equations are equivalent
- They are also equivalent to the second-order differential equation of hypergeometric type

\[
\hat{P}''_n(z) + \hat{P}'_n(z)(2A - 2zl) + \hat{P}_n(z)(A^2 - 2J) = (-2nl + A^2 - 2J)\hat{P}_n(z)
\]

The first one is

\[
\hat{P}''_n(z) + 2\hat{P}'_n(z)(A - zl) + \hat{P}_n(z)A(A - 2zl) = \\
- 4\beta_n\hat{P}_n(z) + 2\beta_n(A - 2\alpha_{n-1})\hat{P}_{n-1}(z) - 2A\hat{P}_{n+1}(z) + A(A - 2\alpha_n)\hat{P}_n(z)
\]

And the second

\[
\hat{P}''_n(z) + 2\hat{P}'_n(z)(A - zl) + \hat{P}_n(z)(A - 2zl)A - 2\hat{P}_n(z) = \\
- 4\beta_{n+1}\hat{P}_n(z) + 2(A - 2\alpha_n)\beta_n\hat{P}_{n-1}(z) - 2A\hat{P}_{n+1}(z) + (A - 2\alpha_n)A\hat{P}_n(z)
\]
We will proof the following:

- Both equations are equivalent
- They are also equivalent to the second-order differential equation of hypergeometric type

\[
\hat{P}''_n(z) + \hat{P}'_n(z)(2A - 2zl) + \hat{P}_n(z)(A^2 - 2J) = (-2nl + A^2 - 2J)\hat{P}_n(z)
\]

The first one is

\[
\hat{P}''_n(z) + 2\hat{P}'_n(z)(A - zl) + \hat{P}_n(z)A(A - 2zl) =
- 4\beta_n\hat{P}_n(z) + 2\beta_n(A - 2\alpha_{n-1})\hat{P}_{n-1}(z) - 2A\hat{P}_{n+1}(z) + A(A - 2\alpha_n)\hat{P}_n(z)
\]

And the second

\[
\hat{P}''_n(z) + 2\hat{P}'_n(z)(A - zl) + \hat{P}_n(z)(A - 2zl)A - 2\hat{P}_n(z) =
- 4\beta_{n+1}\hat{P}_n(z) + 2(A - 2\alpha_n)\beta_n\hat{P}_{n-1}(z) - 2A\hat{P}_{n+1}(z) + (A - 2\alpha_n)A\hat{P}_n(z)
\]
Subtracting two last equations we get an important relation

\[\beta_n(A - 2\alpha_{n-1}) = (A - 2\alpha_n)\beta_n \]

Using ladder operators we get that both equations are

\[
\hat{P}''(z) + 2\hat{P}'(z)(A - zI) + \hat{P}(z)A(A - 2zI) =
2(A - \alpha_n)(\hat{P}'(z) + \hat{P}(z)A - A\hat{P}(z)) + (A^2 - 2zA - 4\beta_n)\hat{P}(z)
\]

\[
\hat{P}''(z) + 2\hat{P}'(z)(A - zI) + \hat{P}(z)(A - 2zI)A =
2(A - \alpha_n)(\hat{P}'(z) + \hat{P}(z)A - A\hat{P}(z))
+ (A^2 - 2zA - 4\beta_{n+1} - 2\alpha_nA + 2A\alpha_n + 2I)\hat{P}(z)
\]
Subtracting two last equations we get an important relation

\[\beta_n (A - 2\alpha_{n-1}) = (A - 2\alpha_n) \beta_n \]

Using ladder operators we get that both equations are

\[
\hat{P}_n'''(z) + 2\hat{P}_n'(z)(A - zI) + \hat{P}_n(z)A(A - 2zI) =
2(A - \alpha_n)(\hat{P}_n'(z) + \hat{P}_n(z)A - A\hat{P}_n(z)) + (A^2 - 2zA - 4\beta_n)\hat{P}_n(z)
\]

\[
\hat{P}_n'''(z) + 2\hat{P}_n'(z)(A - zI) + \hat{P}_n(z)(A - 2zI)A =
2(A - \alpha_n)(\hat{P}_n'(z) + \hat{P}_n(z)A - A\hat{P}_n(z))
+ (A^2 - 2zA - 4\beta_{n+1} - 2\alpha_nA + 2A\alpha_n + 2I)\hat{P}_n(z)
\]
To proof that the equations above are of hypergeometric type we use that

\[(A - \alpha_n)\hat{P}_n'(z) + (A - \alpha_n + zI)(\hat{P}_n(z)A - A\hat{P}_n(z)) - 2\beta_n\hat{P}_n(z) = \hat{P}_n(z)J - J\hat{P}_n(z) - n\hat{P}_n(z)\]

Remarks

- The OMP \(\hat{P}_n\) satisfy a first-order differential equation (not of hypergeometric type), something that is not possible in the scalar case.
- These results are consistent if we compare them with the scalar situation (Hermite polynomials with \(\alpha_n = 0\) and \(\beta_n = \frac{1}{2}n\)).
To proof that the equations above are of hypergeometric type we use that

\[
(A - \alpha_n) \hat{P}_n'(z) + (A - \alpha_n + zI)(\hat{P}_n(z)A - A\hat{P}_n(z)) - 2\beta_n \hat{P}_n(z) = \\
\hat{P}_n(z)J - J\hat{P}_n(z) - n\hat{P}_n(z)
\]

Remarks

- The OMP \hat{P}_n satisfy a first-order differential equation (not of hypergeometric type), something that is not possible in the scalar case.
- These results are consistent if we compare them with the scalar situation (Hermite polynomials with $\alpha_n = 0$ and $\beta_n = \frac{1}{2} n$).
To prove that the equations above are of hypergeometric type we use that

\[
(A - \alpha_n) \hat{P}'_n(z) + (A - \alpha_n + zI)(\hat{P}_n(z)A - A\hat{P}_n(z)) - 2\beta_n \hat{P}_n(z) = \\
\hat{P}_n(z)J - J\hat{P}_n(z) - n\hat{P}_n(z)
\]

Remarks

- The OMP \(\hat{P}_n \) satisfy a **first-order** differential equation (not of hypergeometric type), something that is not possible in the scalar case.
- These results are consistent if we compare them with the scalar situation (Hermite polynomials with \(\alpha_n = 0 \) and \(\beta_n = \frac{1}{2} n \)).