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Abstract

Several Multi-Criteria-Decision-Making methodologies assume the exis-
tence of weights associated with the different criteria, reflecting their relative
importance.

One of the most popular ways to infer such weights is the Analytic Hier-
archy Process, which constructs first a matrix of pairwise comparisons, from
which weights are derived following one out of many existing procedures, such
as the eigenvector method or the least (logarithmic) squares. Since different
procedures yield different results (weights) we pose the problem of describing
the set of weights obtained by ”sensible” methods: those which are efficient
for the (vector-) optimization problem of simultaneous minimization of dis-
crepancies.

A characterization of the set of efficient solutions is given, which enables us
to assert that the least-logarithmic-squares solution is always efficient, whereas
the (widely used) eigenvector solution is not, in some cases, efficient, thus its
use in practice may be questionable.

Keywords: Analytic Hierarchy Process, Vector Optimization, Eigenvector
method, Multiobjective Fractional Programming.

1 Introduction

Several strategies have been suggested in the literature to associate with a set
D ={dy,...,dyn} of decisions weights x1, xs, . . ., xy reflecting decision-maker’s pref-
erences. In the Analytic Hierarchy Process (AHP), [I4] I5] [7] 18], an N x N matrix
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is obtained after asking the decision-maker (DM) to quantify the ratio of his/her
preferences of one decision over another. In other words, for every pair of decisions
d;, dj, the term a;; > 0 is requested satisfying

L5

g~ — (1)
J

The matrix A so obtained must be a positive reciprocal matrix, i.e.,

aji:i>0 forallz',jzl,Q,...,N.
;j
For a given positive reciprocal matrix A, different procedures can be followed in
order to obtain weights z1,...,zy according to , see e.g. [1l 21 71 O 3] 16]. In
particular, Saaty proposes the so-called FEigenvector method (EM): z is a column
vector satisfying the equation
Ar = Anax @,

where A, is the dominant eigenvalue of the positive reciprocal matrix A. See e.g.
[15] for further details, and [5] for commercial software with it.

Many other choices have been proposed in the literature to derive x according
to , mostly given as optimal solutions of optimization problems such as

N T 2
RULY > (‘%‘) ) (2)

++ 4,5=1

or

2

min Z (log log(aij)> : (3)
xGIR_H_ 1,j=1 Ly

where ]Rf + denotes the set of strictly positive vectors in RY.

It should become evident that different procedures, — (EM) or those derived from
or ([3)-, although following ([l), may yield different weights, and even different
ranking of decisions may happen, as already shown e.g. in [16].

This naturally leads to the Nonconvex Vector-Optimization problem

min (|* aij|)izj (X)

We recall the reader, e.g. [l 201 21], that, given an optimization problem ( P),
min (f1(z), ..., fe(2)) ,

zeSs
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y € Sissaid to dominate x € Sif fi(y) < fi(z) foralli =1,... k, with f;(y) < fi(z)
for some i. Moreover, z € S is said to be efficient for (P) if no y € S dominates z,
and z is said to be locally efficient for (P) if there exists a neighborhood V' of z in
S such that no y € V dominates x.

Our aim is to find a full description of the set of locally efficient and efficient
solutions for (X), and to explore whether the usual weighting methodologies, are
(or are not) efficient for (X).

2 A test for efficiency

Problem (X) is a multiple-objective nonlinear nonconvex problem whose feasible
set is the strictly positive orthant IRf +, which is not closed. This makes at first
glance (X) very hard to solve. However, it is easy to construct an LP-based test of
efficiency. Indeed, one has

Theorem 1 Let z* € ]RJLF. For each k,l =1,..., N, define gy = i—’“ — ag|. Then
l

x* is efficient for (X) if and only if for each k,l =1,... N, k # 1, g is the optimal

value of the Linear Problem

min ¢
s.t.  m — (€5 + a;j)x; <0 for all pairs (7,7) # (k,{)
x; + (€i5 — a;j)x; > 0 for all pairs (,7) # (k, 1)

T —t < ay

TEp+1 2> ag (4)
1’121

T1,...,ony >0

t : unrestricted.

PROOF
It is a well known result of Vector Optimization, e.g. [4], that z* is efficient for (X)
if and only if for any pair of indices k,l =1,..., N, k # [, z* is an optimal solution

to the fractional optimization problem (Py;), [19]

inf |% — akl|

s.t. ;—] — a;;| < ey for all pairs (4, 5) # (k, 1) (P)
T1,...,xn > 0.

Let k,1 € {1,...,N}, k # [ be given, and define the vector y as y = Lx*.

T

_ Then, z* solves (Py) if and only if y does, what happens if and only if y solves

(Pra),
inf \xk - akl|

st. |2 —ay| < ey for all pairs (4, 5) # (k,1) (Pu)
o =1 kl
.Z'17...,I'N>O.
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Problem (Py) is equivalent to the Linear Problem

inf ¢
s.t. @, — (45 4 ai;)z; <0 for all pairs (i, j) # (k,1)
z; + (€5 — a;;)z; > 0 for all pairs (7, 7) # (k, 1)
T — t S (093] (5)
Tp+1 2> ay
X = 1
T1,...,xn > 0.

This problem can also be written equivalently by replacing the strict inequalities

xz; > 0 by non-strict inequalities x; > 0. In other words, we claim that (EI) is
equivalent to @ Indeed, any z feasible for is also feasible for (@) Conversely,
for any x, feasible for (4)), we have that

X = 1>0
€ — (?Elj —+ CLlj)Ij < 0 for all 7,

(6)

from which we deduce that z; > 0 for all j : else, if z; = 0, @ would yield z; = 0,
which contradicts z; = 1. Hence, the result follows. O

Although Theorem enables us to check whether a given z* € ]R_]X 4 is efficient
or not, it does not give insight in the structure of the efficient set. For this reason

we devote the remaining of this section to provide alternative characterizations of
efficiency for (X).

Given a function 7 : R;; — IR, consider the Vector-Optimization Problem

(X0 |

Lemma 2 Let m: IRy, — IR be strictly increasing. Then, z* € ]RL is efficient
for (X5) iff * is locally efficient for (X;).

PROOF
For each i,j = 1,..., N, i # j, the function = € ]RJLr — ;f—J is quasimonotonous
and strictly quasimonotonous, [I0] i.e., both lower and upper level sets and strict
lower and upper level sets are convex. Since 7 is strictly increasing, the function
T € IRf L w(;’f—]) is also quasimonotonous and strictly quasimonotonous. Hence,
the function € RY, +— max {F(%) — m(a;;), —W(%) + W(aij)} = |7r(:%) —m(aqj)|
is quasiconvex and strictly quasiconvex, i.e., both its lower and strict lower level sets
are convex.

By definition, if z* is efficient then x* is also locally efficient. Conversely, given
x*, locally efficient, suppose, by contradiction, that it is not efficient. Then there

exists y € ]Rf + such that

¥

77(;1) — m(aij)

Yi
W(Jj) — m(ai;)

2 Vi, J,

4
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with at least one inequality strict. Since the function is (strictly) quasiconvex, this
property also holds for any z in the open segment with endpoints z* and y, and, in
particular, for z arbitrarily close to z*. This contradicts the assumption that x* is
locally efficient. Hence x* must be efficient for (X). O

As a first conclusion, taking 7(t) = ¢, we obtain that
Theorem 3 z* € IF{]J\:Jr is efficient for (X) iff x* is locally efficient for (X).

Theorem 4 Let m: IRy — IR be strictly increasing then, x* € ]RL is efficient
for (X) iff x* is efficient for (X,).

PROOF
Let z* be an efficient solution of problem (X ); we will show that x* is also efficient
for (X, ). Suppose, by contradiction, that z* is not efficient for (X ), thus, by Lemma
2l 2 is not locally efficient for (X,).

Then there exists y € IRf +, sufficiently close to z*, such that

(2 - wto)| 2| (£) - nta)| s G
with at least one inequality strict, and satisfying
YL > 4y Vij, such that Li > ay; (8)
Yj Tj
Yi .o ¥
= < a; Vi, j, such that =% < a;; 9)
Yj Tj
Moreover, implies
m| = | =m(a;), Vi,jsuchthat | — | =m(a;). (10)
Yj Tj
Since 7 is assumed to be strictly increasing, (B) and (P) can be rephrased as
Yi . Jff
7T () > m(a;j), Vi,j such that 7 <*> > 7(a;), (11)
Y Ty
Yi . i
m| = | <m(a;), Vi, jsuchthat 7| — | <m(a;). (12)
Yj J
By this implies that
&—%‘ < |5 —ay| Vi
Yj J

with at least one inequality strict. This contradicts the assumption that z* is efficient

for (X).



The converse, is shown analogously using Theorem B] and will not be given here.
O

Taking 7(t) = logt, we have that 2* € IRY, is efficient for (X) iff z* is efficient
for (Xog),
min ([log(z:) — log(z;) — log(as;))., (Xiug).

acelRfJr
For a given x € RY, let log(z) denote the vector

log(z) = (log(z1), log(x2), - ., log () .
The discussion above shows the following

Corollary 5 z* € RY, is efficient for (X) iff log(z*) is efficient for the piecewise
linear convex vector-optimization problem (Y'),

min (1~ 35~ log(a)) - )

Corollary 6 The set of efficient solutions of (X) is connected.
PROOF

By [3l, the set Ey of efficient solutions of (V') is connected. Using Corollary |one
has that the set of efficient solutions of (X) is the image of Ey under the continuous

mapping
(Zla s 7ZN> = (eXp(zl)a s 7eXp(ZN))7

showing connectedness. O

Corollary 5| shows that, in particular, any optimal solution to
a 2
min > |y —y; — log(ay)] (13)
yeR ij=1
is efficient for (Y'), yielding

Corollary 7 The row geometric mean x*,

N ¥
Tl = (Haij) ci=1,...,N (14)
j=1

is efficient for (X)

PRrooF
Optimality conditions, which are both necessary and sufficient for the unconstrained
convex smooth program ([L3) read

> (ye — yi — loglaw;)) — > (vi — yk — log(aw)) =0, k=1,...,N. (15)
ik ik
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Since A is a positive reciprocal matrix, log(a;x) = —log(ax;) for all i, k, thus
can also be written as

N N
Nykzzyj+zlog(akj), k=1,...,N,
Jj=1 j=1

a particular solution of which is given by v,

1
N

1Y N
yk:NZIOg(akj):log Hakj , k=1,...,N
j=1 J=1

Hence, x* defined in is such that log(z*) is efficient for (Y'). Hence, z* is efficient
for (X). O

Now we present a geometrical characterization of efficiency.

Definition 8 Giveny € RY, let G(y) be the digraph G(y) = ({1,2,..., N}, E(y)),

(i,7) € E(y) iff @ # j and y; —y; > log(ai;)

Observe that, by definition, for i,j given, ¢ # j, either (i,j) € E(y) or (j,i) €
E(y), or both.

Theorem 9 y is efficient for (Y) iff G(y) is strongly connected.

PROOF
Let y* be an efficient solution of (Y). This is equivalent, [3], to the fact that y* is
an optimal solution of the scalar problem (P)

min, pa(y) =3 Nij lyi — y; — log(ay;)] (Py)

ve i#j

for some A = (\;j)ixj, with A;; > 0 for all ¢, j, ¢ # j. Problem (P,) is convex, hence,
a necessary and sufficient optimality condition for y* is

0 € dpaly"). (16)

The objective of (Py) can be written as

paly) = ; Aijmax { (i — y; —log(ai;)) , (y; — yi +log(ai;))} - (17)

hence, every subgradient £ at y* has the form

6 = Z )\ij (ei — ej> + Z )\ij (—ei + ej> +

(i,9) € E(y™) (i,9) ¢ E(y™)

(4,9) ¢ E(y™) (4,9) € E(y™)
+ Z /\ij [,uij (ei — ej) + (1 — /flz’j) (—ei + ejﬂ
(3,7) € E(y™)

(4,1) € B(y™)
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where p;; € [0, 1] for all ¢, j such that {(,7), (j,7)} C E(y*). Hence, condition (16|
can be rewritten as

(i,5) € E(y*) (5,5) & E(y™) (i,3) € B(y™)
(G, 1) ¢ E(y™) (G,1) € E(y™) (4,9 € BE(y*)
that is ) )
0= > XNj— > Ni Vi=1,2,...,N (19)
(1,5)EE(y*) (F)EE(Y*)

where \;; > 0, for all 4, j with i # j.

The homogeneous system ( has at least one positive solution if and only if
there exists a feasible flow in G(y*) verifying the lower bound on the flow ;\ij > 1,
for every arc (i,7). Following the circulation theorem of Hoffman [8] 1], this is
equivalent to the non existence of cuts (S, S) having positive value V(S), where

V(S) = d(S) +1(S,S) — u(S, S), (20)

and d(.5) is the sum of the demands at nodes of 5, I() and u() are the sums of lower

and upper bounds on the corresponding arcs. In our problem every demand is null,
then d(S) = 0. Moreover

1(5,9) =#{(i,j) € G(y") i €8, j ¢ S}, (21)

that is, [(S, S) is the number of arcs from S to its complement. On other hand, there
is no upper bounds on the individual flows through the arcs, that is u(S,S) = +oo
if (S,9) # 0.

Hence, G(y*) cannot contain directed cuts, i.e. cuts satisfying (.S, 5) = 0, [8] [T1],
since in other case, there exists S such that u(S,S) = 0 which implies a positive
value of V(S) in (20). Finally, note that a directed graph is strongly connected if
and only if it has no directed cuts. O

From the previous results one then obtains

Corollary 10 Vector z € RY, is efficient for (X) iff G(log(z)) is strongly con-
nected.

Corollary 11 Ifz € RY, is efficient for (X) and x* € RY, is such that E(log(z*)) 2
E(log(x)), then =* is efficient for (X).

Remark 12 A characterization similar to that obtained in Corollary[10 is possible
for weakly efficient solutions. We recall that x* € ]R]J\:Jr 18 said to be weakly efficient
for (X) iff no x € R, exists with

X
J
Lj

< foralli,j,i#j

J
With the same scheme of the proof, one can show that z* & ]RL s weakly efficient

for (X) iff G(log(z*)) contains at least one cycle.

8
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Corollary will be the cornerstone of a geometrical characterization of the
efficient set for (X). First we have

Lemma 13 Given y* € RY, the following statements are equivalent:
1. y* 1is efficient for (Y).
2. Forallk =1,...,N, the set Bi(y*) := {z € RN : 2, =0,2 — z; — log(a;;) >0
Vi,j=1,...,N such that y; —y; —log(a;;) > O} is bounded.

Proor
y* is efficient for (V) iff for all k= 1,.... N, (W], ..., Y51, Yit1s - - - Yn) is efficient
for (Y%)

min (y; — y; — log(aij) |, 2 - 115 + 108 (k)] 1y - [yi — log(ain) ) (Yk)

(Yx) is a linear multiobjective regression problem with design matrix of maximum
rank, N —1 (it contains an (N — 1) x (N — 1) identity submatrix). Hence, Theorem
1 of [3] applies. Thus, y* is efficient iff the sets By(y*) are bounded O

Theorem 14 For 2* € RY, define C(z*) as
C(z") = {x e RY : @ —ayx; >0,Vi,j=1,...,N such that x} — ajx} > O}
The following statements are equivalent:
1. z* is efficient for (X).
2. Forallk=1,...,N, the set {x € C(x*) : ), = 1} is contained in RY, U{0}.
3. C(z*) C RY, u{0}.

PROOF

(1 = 2) Let 2* be an efficient solution for (X) and k& € {1,..., N}. Then the vector

28 = L 2% is also efficient for (X)), thus by Corollary log 2* is efficient for Problem

L
(Y). By Lemma (13| the set

Bi(logz*) = {Z €RN: 2, =0,z — 2 — log(ai;) >0
Vi,j=1...N such that log(z}) — log(z}) — log(a;;) > O}
= {z €RN: 2, =0,z — 2 — log(ai;) >0
Vi,j =1...N such that ] — x;aij > O}
is bounded.

Let us suppose by contradiction that there exists x € C(z*) N {z : 2, = 1}, with
at least one null component, say x; = 0.
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Since z* € RY,, the vector 2* := (1 — Az + Az* € RY,, VA € (0,1] and 2* €
C(x*)N{x : 2, = 1} by convexity of such set. Then log 2* € By(logz*), VA € (0, 1].
Since By(logz*) is bounded, the limit

- A
1/{%1 log(x7)

is finite, which is a contradiction with the assumption that z; = 0.

(2 = 3) Let z € C(z*) and suppose, by contradiction, that at least one of its
components, say x;, is zero. Since z # 0, there exists at least a nonzero component
x. Since C(z*) is a polyhedral cone, the vector éx € C(z*) and has a zero
component which contradicts the assumption that C(z*)N{z : z; = 1} C RY, U{0}.

(3 = 1) Let us assume that C(z*) C IRY, U{0}, and we will show that By,(log z*)
is bounded.

C(z*) can be re-written as

C(z")

deD

{Z)\dxd: )\dZOVdED} (22)

where {2%: d € D} is the (finite) set of extreme directions of C(x*).
Since, by assumption, C'(z*) C ]Rf . U{0}, one has that z¢ has all its components

strictly positive (else, since 0 € C(z*), one would have some nonzero = € C(z*) \
R, ). Hence, for each k=1,..., N,

Cla)n{z e R : 2, =1} = Z)\—jxd:AdZO,ZAdzl : (23)
deD Tk deD

Thus C(z*) N {z € RY : 2, = 1} is bounded (it is the convex combination of
a finite set of points). Hence, there exist 0 < L¥ < Uf,...,0 < L% < U¥ such
that LF < 2; < UF, Vi =1,...,N,Vz € C(a*)n{x € RY : 2, = 1}. Given
z € By(logx*), the vector e® := (exp(z1),...,exp(zk-1), 1, exp(2k41),- .., exp(zn)),
satisfies
exp(z;)
exp(z;)
thus

= exp(z — z;) > exp(log(ai;)) = a;; Vi, j such that (i,7) € E(logz™), (24)

e* €Oz )N{z e RN : z, = 1}. (25)
Hence, we have 0 < LF < exp(z;) < UF, thus —oo < log(LF) < z; < log(UF) <
+00 Vi, showing that Bjy(logz*) is bounded. By Lemma [13] log(z*) is efficient for
(Y) thus z* is efficient for (X). O

We summarize with the following

Corollary 15 Let E ={E C{1,...,N} x{1,..., N} such that Vi, j, i # j, (i,j) €
E or (j,i1) € E} and, for each E € &, define Cg as

CE = {l’ S Rf T — Q05 2 Ov<l,j) S E} .

Then, for x* € ]wa the following statements are equivalent:
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1. z* is efficient for (X).
2. There exists E € £ such that Cp C RY, U {0} satisfying z* € Cg.

3. There exists E € £ such that ({1,..., N}, E) is strongly connected satisfying
r € Cg.

PROOF
(1=2,3). Set E = E(log(x*)), thus Cr = C(z*) and G(log(z*)) = ({1,...,N}, E).
Since z* € C(z*), Part 2 follows from Theorem [[4] and Part 3 from Corollary [L0]
(2= 1) Let E € € such that Cp C RY, U {0} satisfies 2* € Cp. By definition
C(z*) C Cg, thus, by Theorem [[4]one has that z* is efficient.
(3=1) Let F € &€ such that ({1,..., N}, E) is strongly connected and z* € Cg.
By definition, E(log(z*)) 2 FE, thus, G(log(z*)) is strongly connected. Finally,
Corollary [I0] implies that z* is efficient. 0

3 The Eigenvector Method and efficiency

In this Section we show, by means of an example, that the solution provided by the
Eigenvector Method may not be efficient for (X). To do this, consider the 4 x 4
matrix A,

126 2
1143
A=11 1 ;1
¢ )
I 19

The eigenvalues of A are the roots of a polynomial function of fourth degree.
Hence, they can be calculated analytically. In particular, using the symbolic com-
putation package MAPLE [12] highest-modulus eigenvalue A .y,

Amax ~ 4.103141140

From A,.x, an associated eigenvector x is obtained exactly. In order to obtain
the corresponding z-graph, observe that for i # 7,

(1,7) € E((log(x))) iff A(x)y; == z; — xja; >0

The coefficients A(x);; were calculated numerically using interval arithmetic,
accommodating round-off errors, using the package INTPAK [6]. The results are
displayed in Table

This yields

E(log(r)) = {(1,3),(1,4),(2,1),(2,3),(4,2), (4,3)}

No directed path from 3 to 1. Hence, x is not efficient.

11


https://www.researchgate.net/publication/237131068_Maple_V_Programming_Guide_for_Release_5?el=1_x_8&enrichId=rgreq-39ced96f8d2d7339953028f7d52ec838-XXX&enrichSource=Y292ZXJQYWdlOzIyNTYyMzk2MjtBUzoxMTQ5NTY1OTkwNDIwNTFAMTQwNDQxOTE5Nzc2MQ==
https://www.researchgate.net/publication/242365279_An_experimental_interval_arithmetic_package_in_maple?el=1_x_8&enrichId=rgreq-39ced96f8d2d7339953028f7d52ec838-XXX&enrichSource=Y292ZXJQYWdlOzIyNTYyMzk2MjtBUzoxMTQ5NTY1OTkwNDIwNTFAMTQwNDQxOTE5Nzc2MQ==

A(z)ij

LN =N W W NS,

S R WO W W NN N s,

(-2.5066080075891861670 , -2.5066080075891843904)
(.14380576758662222¢-1 , .14380576758667095¢-1)
(1.871897356839027781 , 1.871897356839037799)
(1.2533040037945921952 , 1.2533040037945930835)
(.2604942921739238855 , .2604942921739260512)
(-1.953230537705527812 , -1.953230537705517857)

(-.23967627931111824e-2 | -.23967627931103703e-2)

(-.651235730434815128e-1 , -.651235730434809715¢-1)

(-.356208049799086164e-1 , -.356208049799073180e-1)
(-.935948678419518899 , -.935948678419513890)

(.651076845901839286 , .651076845901842604)

(.712416099598146361e-1 , .712416099598172328e-1)
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