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SHARP WEIGHTED BOUNDS FOR MULTILINEAR MAXIMAL
FUNCTIONS AND CALDERÓN-ZYGMUND OPERATORS

WENDOLÍN DAMIÁN, ANDREI K. LERNER, AND CARLOS PÉREZ

Abstract. In this paper we prove some sharp weighted norm inequalities for
the multi(sub)linear maximal function M introduced in [18] and for multilinear
Calderón-Zygmund operators. In particular we obtain a sharp mixed “Ap −A∞”
bound for M, some partial results related to a Buckley-type estimate for M, and
a sufficient condition for the boundedness of M between weighted L

p spaces with
different weights taking into account the precise bounds.

Next we get a bound for multilinear Calderón-Zygmund operators in terms of
dyadic positive multilinear operators in the spirit of the recent work [16]. Then
we obtain a multilinear version of the “A2 conjecture”. Several open problems are
posed.

1. Introduction

The modern theory of weighted norm inequalities for some of the main operators
in Harmonic Analysis originated in the beginning of the 70’s in the works by R.
Hunt, B. Muckenhoupt, R. Wheeden, R. Coifman and C. Fefferman. In particular,
it was realized that the key role in this theory is played by the so-called Ap condition.
Much later, the question about the sharp dependence of the Lp(w) operator norm
in term of the the Ap constant or characteristic of the weight appeared. First, for
the Hardy-Littlewood maximal operator this problem was solved by S. Buckley [2].

It turned out that for singular integrals the question is much more complicated.
In [21], S. Petermichl solved it for the Hilbert transform. Recently, T. Hytönen
[9] gave a complete solution for general Calderón-Zygmund operators solving the
so-called A2 conjecture. A bit later this result was improved in [12] in the case
p = 2 and for general p in [10]. A further improvement was obtained in [11] where a
non-probablistic proof was found together with a q-variation estimate. We refer to
these papers for a more detailed history and for some other closely related results
like (1.3).

The aim of this paper is to give some multilinear analogues of the above mentioned
results in the spirit of the theory of multiple weights developed recently in [18]. We

introduce some notation. Given ~f = (f1, . . . , fm), we define the multi(sub)linear
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maximal operator M by

M(~f )(x) = sup
Q∋x

m
∏

i=1

1

|Q|

∫

Q

|fi(yi)|dyi,

where the supremum is taken over all cubes Q containing x. It is shown in that paper
that this operator controls in several ways the class of multilinear Calderón-Zygmund
operators (see section 2.2). A particular instance of this intimate relationship is the
class of weights characterizing the weighted Lp spaces for which both operators
are bounded. To define this class of weights we let ~w = (w1, . . . , wm) and ~P =

(p1, . . . , pm). Set
1
p
= 1

p1
+ · · ·+ 1

pm
and ν~w =

∏m
i=1w

p/pi
i . We say that ~w satisfies the

A~P condition if

[~w]A~P
= sup

Q

( 1

|Q|

∫

Q

ν~w

)

m
∏

i=1

( 1

|Q|

∫

Q

w
1−p′i
i

)p/p′i
< ∞.

It is easy to see that in the linear case (that is, if m = 1) [~w]A~P
= [w]Ap is the

usual Ap constant. In [18] the following multilinear extension of the Muckenhoupt
Ap theorem for the maximal function was obtained: the inequality

(1.1) ‖M(~f )‖Lp(ν~w) ≤ C
m
∏

i=1

‖fi‖Lpi(wi)

holds for every ~f if and only if ~w satisfies the A~P condition.
The first question we are going to study is the question about the sharp depen-

dence of C in (1.1). In the standard situation, namely when m = 1, two different
types of sharp weighted inequalities for the Hardy-Littlewood maximal operator M
are known. First, Buckley’s theorem [2] says that for any 1 < p < ∞,

(1.2) ‖M‖Lp(w) ≤ Cn,p[w]
1

p−1

Ap
.

Until very recently this result was thought to be sharp since the exponent of [w]Ap

cannot be improved. However, recently T. Hytönen and the third author [12] (see
also [13] for another proof) showed that (1.2) can be improved in the following way.
Define the A∞ constant of w by

[w]A∞
= sup

Q

1

w(Q)

∫

Q

M(wχQ).

This definition goes back to the characterization of the A∞ class of weights given by
N. Fujii [7] (see also M. Wilson [22]). It is not difficult to show that [w]A∞

≤ cn[w]Ar

for any r ≥ 1. It was shown in [12] that

(1.3) ‖M‖Lp(w) ≤ Cn,p([w]Ap[σ]A∞
)1/p,

where σ = w1−p′. This estimate implies (1.2) since [σ]A∞
≤ c[σ]Ap′

= c[w]
1

p−1

Ap
, and

therefore ([w]Ap[σ]A∞
)1/p ≤ c[w]

1
p−1

Ap
.
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Our multilinear results related to (1.2) and (1.3) are somewhat surprising. They
show that contrary to the case m = 1, multilinear versions of (1.2) and (1.3) are
independent of each other. We are able to get a full analogue of (1.3). However such
an analogue does not yield an expected full analogue of (1.2). Our first main result
is the following.

Theorem 1.1. Let 1 < pi < ∞, i = 1, . . . , m and 1
p
= 1

p1
+ . . . + 1

pm
. Then the

inequality

(1.4) ‖M(~f )‖Lp(ν~w) ≤ Cn,m, ~P [~w]
1
p

A~P

m
∏

i=1

([σi]A∞
)

1
pi

m
∏

i=1

‖fi‖Lpi(wi)

holds if ~w ∈ A~P , where σi = w
1−p′i
i , i = 1, . . . , m. Furthermore the exponents are

sharp in the sense that they cannot be replaced by smaller ones.

Even though the result of this theorem is sharp it would be of interest to find an
extension of Buckley’s estimate (1.2). However this task seems to be more compli-
cated. Currently we can get only several partial results expressed in the following
theorem.

Theorem 1.2. Let 1 < pi < ∞, i = 1, . . . , m and 1
p
= 1

p1
+ . . . + 1

pm
. Denote by

α = α(p1, . . . , pm) the best possible power in

(1.5) ‖M(~f )‖Lp(ν~w) ≤ Cn,m,p [~w]
α
A~P

m
∏

i=1

‖fi‖Lpi(wi).

Then we have the following results:

(i) for all 1 < p1, . . . , pm < ∞, m
mp−1

≤ α ≤ 1
p

(

1 +
∑m

i=1
1

pi−1

)

;

(ii) if p1 = p2 = · · · = pm = r > 1, then α = m
r−1

.

It is easy to see that the upper and lower bounds for α in (i) coincide if m = 1.
The upper bound for α in (i) is a corollary of Theorem 1.1 after an application of
Lemma 3.1 (see section 3). However, in the case of (ii) α coincides with the lower
bound in (i). This says that if m ≥ 2, then the upper bound in (i) is not sharp, in
general. Hence, contrary to the linear situation, (1.4) cannot be used in order to
get a sharp bound in terms of [~w]A~P

. Perhaps, the explanation of this is that the
right-hand side of (1.4) involves m+ 1 independent suprema while the definition of
[~w]A~P

involves only one supremum or else Lemma 3.1 is not sharp. Resuming, the
problem of finding the sharp α in (1.5) remains open except the case considered in
(ii).

We also give a sufficient condition for the “two-weighted” boundedness of M
with precise bounds generalizing the corresponding linear result from [20] and its
multilinear counterpart in [19]. Let X be a Banach function space. By X ′ we denote
the associate space to X . Given a cube Q, define the X-average of f over Q and
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the maximal operator MX by

‖f‖X,Q = ‖τℓQ(fχQ)‖X , MXf(x) = sup
Q∋x

‖f‖X,Q,

where ℓQ denotes the side length of Q and where τδf = f(δx), δ > 0, x ∈ R
n.

Theorem 1.3. Let 1 < pi < ∞, i = 1, . . . , m and 1
p
= 1

p1
+ . . . + 1

pm
. Let Xi be a

Banach function space such that MX′

i
is bounded on Lpi(Rn). Let u and v1, . . . , vm

be the weights satisfying

K = sup
Q

(u(Q)

|Q|

)
1
p

m
∏

i=1

‖v
−1/pi
i ‖Xi,Q < ∞.

Then

‖M(~f )‖Lp(u) ≤ Cn,mK
m
∏

i=1

‖MX′

i
‖Lpi (Rn)‖fi‖Lpi (vi).

This result can be seen as a two weight version of (1.4) when considering function
spaces X given by X = Lrp′ for 1 < p, r < ∞ so that

‖MX′‖Lp(Rn) = ‖M(rp′)′‖Lp(Rn) ≈ (r′)1/p.

Another interesting example is given when considering the Orlicz space space X =
LB where B is a Young function for which ‖MX′‖Lp(Rn) = ‖MB̄‖Lp(Rn) is finite. In

particular if B(t) = tp
′

(log(e+ t))p
′−1+δ , δ > 0, 1 < p < ∞ it follows from [20] that

‖MX′‖Lp(Rn) = ‖MB̄‖Lp(Rn) ≈ (
1

δ
)1/p.

We turn now to some multilinear analogues of the sharp weighted results for
singular integrals. First, we recall some linear results. Let T be a Calderón-Zygmund
operator. Then it was proved by T. Hytönen [9] in full generality that

(1.6) ‖T‖Lp(w) ≤ CT,n,p[w]
max(1, 1

p−1
)

Ap
(1 < p < ∞).

Observe that it suffices to prove (1.6) in the case p = 2; then for any other p the
result follows by the sharp extrapolation theorem. Note also that (1.6) in the case
p = 2 was usually referred as the A2 conjecture. In two recent papers [16, 17] a
different proof of (1.6) was found by the second author. This proof shows that there
is an intimate relationship between the (continuous) singular integral T and some
very special dyadic type operators. These operators are defined by means of the
concept of sparseness. Given a sparse family S = {Qk

j} of cubes from a dyadic
grid D , (these notions will be defined in Section 2.1) we consider the operator AS,D

defined by

AS,Df(x) =
∑

j,k

fQk
j
χQk

j
(x).
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It was proved in [16, 17] that for any Banach function space X ,

(1.7) ‖Tf‖X ≤ cT,n sup
S,D

‖AS,D |f |‖X.

A rather simple argument found in [3] shows that ‖AS,D‖L2(w) ≤ c[w]A2 . Therefore
if X = L2(w), then (1.7) implies (1.6) for p = 2.

The second main result of this paper is an extension of (1.7) to the multilinear
setting. Here, the dyadic operator that appears naturally is a multilinear version of
the operator AD,S given by

AD,S(~f )(x) =
∑

j,k

(

m
∏

i=1

(fi)Qk
j

)

χQk
j
(x).

Given ~f = (f1, . . . , fm), denote ~|f | = (|f1|, . . . , |fm|).

Theorem 1.4. Let T (~f ) be a multilinear Calderón-Zygmund operator and let X be
a Banach function space over R

n equipped with Lebesgue measure. Then, for any

appropriate ~f ,

‖T (~f )‖X ≤ cT,m,n sup
D,S

‖AD,S( ~|f |)‖X ,

where the supremum is taken over arbitrary dyadic grids D and sparse families
S ∈ D.

Similarly to the linear case, we would like to apply this result when X = Lp(ν~w).
However, the exponent p is allowed to be smaller than one, to be more precise
1/m < p < ∞ (see section 2.2). Therefore, if 1/m < p < 1, Theorem 1.4 cannot
be applied since in this case the space Lp(ν~w) is not a Banach space. This raises
an interesting question whether the condition in Theorem 1.4 that X is a Banach
space can be relaxed until that X is a quasi-Banach space. It is natural to consider
first this question in the linear situation. Observe that in the current proof of (1.7)
the fact that X is a Banach space was essential.

The third main result of this paper can be seen as a multilinear version of the
A2 conjecture (1.6). Indeed, one of the main results obtained in [18] is that if

~w ∈ A~P , then an analogue of (1.1) holds with T (~f ) instead of M(~f ). Hence, the
question about the sharp dependence on [~w]A~P

in the corresponding inequality is
quite natural. It is interesting that contrary to the linear situation where (1.7)
implies the A2 conjecture, we are currently able to apply Theorem 1.4 only in one
particular case being the content of the following theorem.

Theorem 1.5. Let T (~f ) be a multilinear Calderón-Zygmund operator. Assume that
p1 = p2 = · · · = pm = m+ 1. Then

(1.8) ‖T (~f )‖Lp(ν~w) ≤ CT,m,n[~w]A~P

m
∏

i=1

‖fi‖Lpi (wi).
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Several remarks about this result are in order. As we already mentioned, Theorem
1.5 can be regarded as a multilinear “A2 conjecture”. However, it is natural to ask
how to extend it to all 1 < pi < ∞. This leads to several interesting problems. As
we explained above, (1.6) can be obtained from the case p = 2 by the sharp version
of the extrapolation theorem of Rubio de Francia obtained in [5] (see also [6] or [4]
for different and simpler proofs). It would be very desirable to get a multilinear
analogue of this result. Having such an analogue, inequality (1.8) probably would
be a starting point to extrapolate from.

Observe, however, that (1.6) can be proved also without the use of extrapolation.
Indeed, one can easily prove (1.6) with AD,S instead of T for all 1 < p < ∞ (as
it was done in [3] for p = 2), and then apply (1.7) with X = Lp(w). The proof of
(1.6) for AD,S is very close in spirit to the proof of Buckley’s inequality (1.2) found
in [14]. Hence, it is natural to ask whether it is possible to find a similar proof for a
multilinear version of AD,S . But this leads to a problem of finding α in Theorem 1.2
by the method in [14]. Part (ii) of Theorem 1.2 indeed obtained by an adaptation
of this method. However how to do that in the case of different pi is not clear.

The paper is organized as follows. Some preliminaries are contained in Section 2.
In Section 3 we prove all theorems related to M. Section 4 is devoted to the proof
of Theorem 1.4. Finally, Theorem 1.5 is proved in Section 5.

2. Preliminaries

2.1. Dyadic grids. Recall that the standard dyadic grid in R
n consists of the cubes

2−k([0, 1)n + j), k ∈ Z, j ∈ Z
n.

Denote the standard grid by D.
By a general dyadic grid D we mean a collection of cubes with the following

properties: (i) for any Q ∈ D its sidelength ℓQ is of the form 2k, k ∈ Z; (ii) Q∩R ∈
{Q,R, ∅} for any Q,R ∈ D ; (iii) the cubes of a fixed sidelength 2k form a partition
of Rn.

We say that {Qk
j} is a sparse family of cubes if: (i) the cubes Qk

j are disjoint in

j, with k fixed; (ii) if Ωk = ∪jQ
k
j , then Ωk+1 ⊂ Ωk; (iii) |Ωk+1 ∩Qk

j | ≤
1
2
|Qk

j |.

With each sparse family {Qk
j} we associate the sets Ek

j = Qk
j \Ωk+1. Observe that

the sets Ek
j are pairwise disjoint and |Qk

j | ≤ 2|Ek
j |.

Given a cube Q0, denote by D(Q0) the set of all dyadic cubes with respect to Q0,
that is, the cubes from D(Q0) are formed by repeated subdivision of Q0 and each
of its descendants into 2n congruent subcubes. Observe that if Q0 ∈ D , then each
cube from D(Q0) will also belong to D .

We will use the following proposition from [12].

Proposition 2.1. There are 2n dyadic grids Dα such that for any cube Q ⊂ R
n

there exists a cube Qα ∈ Dα such that Q ⊂ Qα and ℓQα ≤ 6ℓQ.
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Lemma 2.2. For any non-negative integrable fi, i = 1, . . . , m, there exist sparse
families Sα ∈ Dα such that for all x ∈ R

n,

M(~f )(x) ≤ (2 · 12n)m
2n
∑

α=1

ADα,Sα(
~f )(x).

Proof. First, by Proposition 2.1,

(2.1) M(~f )(x) ≤ 6mn

2n
∑

α=1

MDα(~f )(x).

Consider Md(~f ) taken with respect to the standard dyadic grid. We will use
exactly the same argument as in the Calderón-Zygmund decomposition. For cn
which will be specified below and for k ∈ Z consider the sets

Ωk = {x ∈ R
n : Md(~f )(x) > ckn}.

Then we have that Ωk = ∪jQ
k
j , where the cubes Qk

j are pairwise disjoint with k
fixed, and

ckn <

m
∏

i=1

(fi)Qk
j
≤ 2mnckn.

From this and from Hölder’s inequality,

|Qk
j ∩ Ωk+1| =

∑

Qk+1
l ⊂Qk

j

|Qk+1
l |

< c
− k+1

m
n

∑

Qk+1
l ⊂Qk

j

m
∏

i=1

(

∫

Qk+1
l

fi

)1/m

≤ c
− k+1

m
n

m
∏

i=1

(

∫

Qk
j

fi

)1/m

≤ 2nc−1/m
n |Qk

j |.

Hence, taking cn = 2m(n+1), we obtain that the family {Qk
j} is sparse, and

Md(~f )(x) ≤ 2m(n+1)AD,S(~f )(x).

Applying the same argument to each MDα(~f ) and using (2.1), we get the state-
ment of the lemma. �

2.2. Multilinear Calderón-Zygmund operators. Let T be a multilinear opera-
tor initially defined on the m-fold product of Schwartz spaces and taking values into
the space of tempered distributions,

T : S(Rn)× · · · × S(Rn) → S ′(Rn).

We say that T is an m-linear Calderón-Zygmund operator if, for some 1 ≤ qj < ∞,
it extends to a bounded multilinear operator from Lq1 × · · · × Lqm to Lq, where
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1
q
= 1

q1
+ · · ·+ 1

qm
, and if there exists a function K, defined off the diagonal x = y1 =

· · · = ym in (Rn)m+1, satisfying

T (f1, . . . , fm)(x) =

∫

(Rn)m

K(x, y1, . . . , ym)f1(y1) . . . fm(ym) dy1 . . . dym

for all x 6∈ ∩m
j=1 supp fj ,

|K(y0, y1, . . . , ym)| ≤
A

( m
∑

k,l=0

|yk − yl|
)mn

,

and

|K(y0, . . . , yj, . . . , ym)−K(y0, . . . , y
′
j, . . . , ym)| ≤

A|yj − y′j|
ǫ

( m
∑

k,l=0

|yk − yl|
)mn+ǫ

,

for some ǫ > 0 and all 0 ≤ j ≤ m, whenever |yj − y′j | ≤
1

2
max
0≤k≤m

|yj − yk|.

It was shown in [8] that if 1
r1
+ · · ·+ 1

rm
= 1

r
, then an m-linear Calderón-Zygmund

operator satisfies

T : Lr1(Rn)× · · · × Lrm(Rn) → Lr(Rn)

when 1 < rj < ∞ for all j = 1, · · · , m. Similarly if 1 ≤ rj ≤ ∞ for all j = 1, · · · , m,
we have

(2.2) T : L1(Rn)× · · · × L1(Rn) → L1/m,∞(Rn)

2.3. A “local mean oscillation decomposition”. The non-increasing rearrange-
ment of a measurable function f on R

n is defined by

f ∗(t) = inf{α > 0 : |{x ∈ R
n : |f(x)| < α}| < t} (0 < t < ∞).

Given a measurable function f on R
n and a cube Q, the local mean oscillation of

f on Q is defined by

ωλ(f ;Q) = inf
c∈R

(

(f − c)χQ

)∗(
λ|Q|

)

(0 < λ < 1).

By a median value of f over Q we mean a possibly nonunique, real number mf (Q)
such that

max
(

|{x ∈ Q : f(x) > mf (Q)}|, |{x ∈ Q : f(x) < mf (Q)}|
)

≤ |Q|/2.

It is easy to see that the set of all median values of f is either one point or the
closed interval. In the latter case we will assume for the definiteness that mf (Q) is
the maximal median value. Observe that it follows from the definitions that

(2.3) |mf(Q)| ≤ (fχQ)
∗(|Q|/2).
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Given a cube Q0, the dyadic local sharp maximal function m#,d
λ;Q0

f is defined by

m#,d
λ;Q0

f(x) = sup
x∈Q′∈D(Q0)

ωλ(f ;Q
′).

The following theorem was proved in [16] (its very similar version can be found
in [15]).

Theorem 2.3. Let f be a measurable function on R
n and let Q0 be a fixed cube.

Then there exists a (possibly empty) sparse family of cubes Qk
j ∈ D(Q0) such that

for a.e. x ∈ Q0,

|f(x)−mf (Q0)| ≤ 4m#,d
1

2n+2 ;Q0
f(x) + 2

∑

k,j

ω 1
2n+2

(f ;Qk
j )χQk

j
(x).

2.4. Banach function spaces. For a general account of Banach function spaces
we refer to [1, Ch. 1]. We mention only several notions which will be used below.

The associate space X ′ consists of measurable functions f for which

‖f‖X′ = sup
‖g‖X≤1

∫

Rn

|f(x)g(x)|dx < ∞.

This definition implies the following Hölder inequality:

(2.4)

∫

Rn

|f(x)g(x)|dx ≤ ‖f‖X‖g‖X′.

Further [1, p. 13],

(2.5) ‖f‖X = sup
‖g‖X′=1

∫

Rn

|f(x)g(x)|dx.

3. Proof of Theorems 1.1, 1.2 and 1.3

In the proof of Theorem 1.1 we shall use the following reverse Hölder property of
A∞ weights proved in [12]: if w ∈ A∞, then

(3.1)

(

1

|Q|

∫

Q

wr(w)

)1/r(w)

≤ 2
1

|Q|

∫

Q

w,

where r(w) = 1 + 1
τn[w]A∞

and τn = 211+n. Observe that r′(w) ≈ [w]A∞
.

Proof of Theorem 1.1. By (2.1), it suffices to prove the theorem for the dyadic max-
imal operators MDα . Since the proof is independent of the particular dyadic grid,
without loss of generality we consider Md taken with respect to the standard dyadic
grid D.

Let a = 2m(n+1). and Ωk = {x ∈ R
n : Md(~f )(x) > ak}. We have seen in

the proof of Lemma 2.2 that Ωk = ∪jQ
k
j , where the family {Qk

j} is sparse and
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ak <
∏m

i=1
1

|Qk
j |

∫

Qk
j
|fi| ≤ 2nmak. It follows that

∫

Rn

Md(~f)p ν~wdx =
∑

k

∫

Ωk\Ωk+1

Md(~f)p ν~wdx

≤ ap
∑

k,j

(

m
∏

i=1

1

|Qk
j |

∫

Qk
j

|fi|dyi

)p

ν~w(Q
k
j )

≤ ap
∑

k,j

(

m
∏

i=1

1

|Qk
j |

∫

Qk
j

|fi|w
1
pi
i w

− 1
pi

i dyi

)p

ν~w(Q
k
j )

≤ ap
∑

k,j

m
∏

i=1

(

1

|Qk
j |

∫

Qk
j

|fi|
αiw

αi
pi
i dyi

)
p
αi

(

1

|Qk
j |

∫

Qk
j

w
−

α′

i
pi

i dyi

)
p

α′

i

ν~w(Q
k
j ),

where αi = (p′iri)
′ and ri is the exponent in the sharp reverse Hölder inequality (3.1)

for the weights σi which are in A∞ for i = 1, . . . , m. Applying (3.1) for each σi, we
obtain

∫

Rn

Md(~f)p ν~wdx ≤ ap
∑

k,j

m
∏

i=1

(

1

|Qk
j |

∫

Qk
j

|fi|
αiw

αi
pi
i dyi

)
p
αi

×

(

2
1

|Qk
j |

∫

Qk
j

σi

)
p

p′
i

ν~w(Q
k
j )

≤ C[~w]A~P

∑

k,j

m
∏

i=1

(

1

|Qk
j |

∫

Qk
j

|fi|
αiw

αi
pi
i dyi

)
p
αi

|Qk
j |.

Let Ek
j be the sets associated with the family {Qk

j}. Using the properties of Ek
j

and Hölder’s inequality with the exponents pi/p, we get

∫

Rn

Md(~f)p ν~wdx ≤ 2C[~w]A~P

∑

k,j

m
∏

i=1

(

1

|Qk
j |

∫

Qk
j

|fi(yi)|
αiw

αi
pi
i dyi

)
p
αi

|Ek
j |

≤ 2C[~w]A~P

∑

k,j

∫

Ek
j

m
∏

i=1

M

(

|fi|
αiw

αi
pi
i

)
p
αi

dx

≤ 2C[~w]A~P

∫

Rn

m
∏

i=1

M

(

|fi|
αiw

αi
pi
i

)
p
αi

dx

≤ 2C[~w]A~P

m
∏

i=1

(

∫

Rn

M

(

|fi|
αiw

αi
pi
i

)

pi
αi

dx

)

p
pi

.
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From this and by the boundedness of M ,
∫

Rn

Md(~f)p ν~wdx ≤ C[~w]A~P

m
∏

i=1

(

(pi/αi)
′
)

p
pi

∥

∥

∥
|fi|

αiw
αi
pi
i

∥

∥

∥

p
αi

L
pi
αi (Rn)

≤ C[~w]A~P

m
∏

i=1

(p′ir
′
i)

p
pi ‖fi‖

p
Lpi (wi)

≤ C[~w]A~P

m
∏

i=1

([σi]A∞
)

p
pi ‖fi‖

p
Lpi(wi)

,

where in next to last inequality we have used that (pi/αi)
′ ≤ p′ir

′
i and in the last

inequality we have used that r′i ≈ [σi]A∞
, for i = 1, . . . , m. This completes the proof

of (1.4).
Let us show now the sharpness of the exponents in this inequality. Assume that

n = 1 and 0 < ε < 1. Let

wi(x) = |x|(1−ε)(pi−1) and fi(x) = x−1+εχ(0,1)(x), i = 1, . . . , m.

It is easy to check that ν~w = |x|(1−ε)(pm−1),

(3.2) [~w]A~P
= [ν~w]Apm ≈ (1/ε)mp−1 and [σi]A∞

≤
C

ε
.

Also,

(3.3)

m
∏

i=1

‖fi‖Lpi(wi) = (1/ε)1/p.

Let f = x−1+εχ(0,1)(x). Then the left-hand side of (1.4) can be bounded from
below as follows:

(3.4) ‖M(~f )‖Lp(ν~w) = ‖Mf‖mLpm(ν~w) ≥ (1/ε)m‖f‖mLpm(ν~w) = (1/ε)m+1/p.

On the other hand, by (3.2) and (3.3), the right-hand side of (1.4) is at most
(1/ε)m+1/p. Since ε is arbitrary, this shows that the exponents 1/p and 1/pi on
the right-hand side of (1.4) cannot be replaced by smaller ones. �

In order to get an upper bound for α in part (ii) of Theorem 1.2, we shall need
the following technical lemma. Its proof follows the same lines as the proof of [18,
Th. 3.6].

Lemma 3.1. Let 1 < pj < ∞, j = 1, . . . , m and 1
p
= 1

p1
+ . . .+ 1

pm
. If ~w ∈ A~P , then

[σj ]A∞
≤ C[~w]

p′j/p

A~P
.

Proof. It was shown in [18, Th. 3.6] that if ~w ∈ A~P , then σj ∈ Amp′j
. Our goal now

is to check that

(3.5) [σj ]Amp′
j
≤ [~w]

p′j/p

A~P
.
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Since [σj ]A∞
≤ C[σj ]Amp′

j

, (3.5) would imply the statement of the lemma.

Fix 1 ≤ j ≤ m, and define the numbers

qj = p
(

m− 1 +
1

pj

)

and qi =
pi

pi − 1

qj
p
, i 6= j.

Since
m
∑

i=1

1

qi
=

1

m− 1 + 1/pj

(1

p
+

m
∑

i=1,i 6=j

(1− 1/pi)
)

= 1,

using Hölder inequality, we obtain
∫

Q

w
p

pjqj

j =

∫

Q

(

m
∏

i=1

w
p

piqj

i

)(

m
∏

i=1,i 6=j

w
− p

piqj

i

)

≤
(

∫

Q

m
∏

i=1

w
p/pi
i

)1/qj
m
∏

i=1,i 6=j

(

∫

Q

w
−1/(pi−1)
i

)1/qi
.

From this,
(
∫

Q

w
1−p′j
j

)(
∫

Q

w
p

pjqj

j

)

qjpj
p(pj−1)

≤

(
∫

Q

w
1−p′j
j

)





(

∫

Q

m
∏

i=1

w
p/pi
i

)1/qj m
∏

i=1,i 6=j

(
∫

Q

w
1−p′i
i

)1/qi





qjpj
p(pj−1)

≤

(
∫

Q

w
1−p′j
j

)

[(

∫

Q

m
∏

i=1

w
p/pi
i

)

m
∏

i=1,i 6=j

(
∫

Q

w
1−p′i
i

)qj/qi
]

p′j
p

.

Since

qj
qi

=
p
(

m− 1 + 1
pj

)

pi
pi−1

p

(

m−1+ 1
pj

)

p

=
p

p′i
,

we obtain
(
∫

Q

w
1−p′j
j

)(
∫

Q

w
p

pjqj

j

)

qjpj
p(pj−1)

≤

(
∫

Q

w
1−p′j
j

)

[(

∫

Q

m
∏

i=1

w
p/pi
i

)

m
∏

i=1,i 6=j

(
∫

Q

w
1−p′i
i

)p/p′i
]

p′j
p

≤

[(

∫

Q

m
∏

i=1

w
p/pi
i

)

m
∏

i=1

(
∫

Q

w
1−p′i
i

)p/p′i
]

p′j
p

.
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Therefore,

Amp′j
(σj ;Q) =

(

1

|Q|

∫

Q

w
1−p′j
j

)(

1

|Q|

∫

Q

w
p

pjqj

j

)

qjpj
p(pj−1)

≤

[

(

1

|Q|

∫

Q

ν~w

) m
∏

i=1

(

1

|Q|

∫

Q

w
1−p′i
i

)p/p′i
]

p′j
p

= (A~P (~w;Q))p
′

j/p ,

which proves (3.5). �

Proof of Theorem 1.2. We start with part (i). Consider the example given in the
proof of Theorem 1.1. Combining (3.2), (3.3) and (3.4) with

‖M(~f )‖Lp(ν~w) ≤ C[~w]αA~P

m
∏

j=1

‖fj‖Lpj (wj),

we obtain m+ 1/p ≤ α(mp− 1) + 1/p which yields α ≥ m
mp−1

.
Further, by Theorem 1.1 and Lemma 3.1,

α ≤
1

p
+

m
∑

i=1

1

pi

p′i
p

=
1

p

(

1 +

m
∑

i=1

1

pi − 1

)

.

This completes the proof of part (i).

Suppose now that p1 = p2 = · · · = pm = r. Then p = r/m, ν~w =
(

∏m
j=1wj

)1/m

.

Denote

A~P (~w;Q) =
( 1

|Q|

∫

Q

ν~w

)

m
∏

i=1

( 1

|Q|

∫

Q

σi

)(r−1)/m

,

where σi = w1−r′

i . Set also

M~σ(~f )(x) = sup
Q∋x

m
∏

i=1

1

σi(Q)

∫

Q

|fi|.

We will follow the method of the proof of Buckley’s theorem given in [14]. By (2.1),
without loss of generality we may assume that the maximal operators considered
below are dyadic. We get

m
∏

i=1

1

|Q|

∫

Q

|fi| = A~P (~w;Q)
m

r−1

(

|Q|

ν~w(Q)

(

m
∏

i=1

1

σi(Q)

∫

Q

|fi|
)

r−1
m

)
m

r−1

.

Hence,

M(~f )(x) ≤ [~w]
m

r−1

A~P
Mν~w

(

M~σ(~f )
r−1
m ν−1

~w

)

(x)
m

r−1 .

From this, using Hölder’s inequality and the boundedness of the weighted dyadic
maximal operator with the implicit constant independent of the weight, we obtain
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‖M(~f )‖Lp(ν~w) ≤ [~w]
m

r−1

A~P
‖Mν~w

(

M~σ(~f )
r−1
m ν−1

~w

)

‖
m

r−1

Lr′(ν~w)

≤ C[~w]
m

r−1

A~P
‖M~σ(~f )‖

Lr/m(ν1−r′

~w
)

≤ C[~w]
m

r−1

A~P

m
∏

i=1

‖Mσi
(fiσ

−1
i )‖Lr(σi)

≤ C[~w]
m

r−1

A~P

m
∏

i=1

‖fi‖Lr(wi).

This proves that α ≤ m
r−1

. But if p1 = p2 = · · · = pm = r, then m
mp−1

= m
r−1

. Hence,

using part (i), we get that α = m
r−1

. �

Proof of Theorem 1.3. We start exactly as in the proof of Theorem 1.1. It suffices

to prove the main result for Md. Let Ωk = {x ∈ R
n : Md(~f )(x) > ak} = ∪jQ

k
j ,

where a = 2m(n+1). Then
∫

Rn

Md(~f)p udx ≤ ap
∑

k,j

(

m
∏

i=1

1

|Qk
j |

∫

Qk
j

|fi|v
1
pi
i v

− 1
pi

i dyi

)p

u(Qk
j ).

By the generalized Hölder inequality (2.4),

1

|Qk
j |

∫

Qk
j

|fi|v
1
pi
i v

− 1
pi

i dyi ≤ ‖fiv
1
pi
i ‖X′

i,Q
k
j
‖v

− 1
pi

i ‖Xi,Qk
j
.

Combining this with the previous estimate, using the properties of the sets Ek
j

associated with {Qk
j}, and applying Hölder’s inequality, we obtain

∫

Rn

Md(~f)p udx ≤ ap
∑

k,j

(

m
∏

i=1

‖fiv
1
pi
i ‖X′

i,Q
k
j
‖v

− 1
pi

i ‖Xi,Qk
j

)p
u(Qk

j )

|Qk
j |

|Qk
j |

≤ 2apKp
∑

k,j

(

m
∏

i=1

‖fiv
1
pi
i ‖X′

i,Q
k
j

)p

|Ek
j | ≤ 2apKp

∥

∥

∥

m
∏

i=1

MX′

i
(fiv

1/pi
i )

∥

∥

∥

p

Lp

≤ 2apKp

m
∏

i=1

‖MX′

i
(fiv

1/pi
i )‖pLpi ≤ 2apKp

m
∏

i=1

‖MX′

i
‖pLpi‖fi‖

p
Lpi(vi)

,

which completes the proof. �

4. Proof of Theorem 1.4

Theorem 3.2 from [18] says that M#
δ (T (~f ))(x) ≤ CM(~f )(x), where M# is the

standard Fefferman-Stein sharp function and M#
δ (f) = M#(|f |δ)1/δ. A simple ex-

amination of the proof of this result yields the following local mean oscillation esti-

mate for T (~f ).
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Proposition 4.1. For any cube Q ⊂ R
n,

(4.1) ωλ(T (~f );Q) ≤ c(T, λ, n)

∞
∑

l=0

1

2lǫ

m
∏

i=1

(

1

|2lQ|

∫

2lQ

|fi(y)|dy

)

.

We turn now to the proof of Theorem 1.4. Combining Proposition 4.1 and Theo-
rem 2.3 with Q0 ∈ D, we get that there exists a sparse family S = {Qk

j} ∈ D such
that for a.e. x ∈ Q0,

(4.2) |T (~f )(x)−mQ0(T (
~f ))| ≤ c

(

M(~f )(x) +

∞
∑

l=0

1

2lǫ
TS,l( ~|f | )(x)

)

,

where c = c(n, T ) and

TS,l(~f )(x) =
∑

j,k

(

m
∏

i=1

(fi)2lQk
j

)

χQk
j
(x).

By the weak type property of the m-linear Calderón-Zygmund operators (2.2),
assuming, for instance, that each fi is bounded and with compact support, we get

(T (~f ))∗(+∞) = 0. Hence, it follows from (2.3) that |mQ

(

T (~f )
)

| → 0 as |Q| → ∞.
Therefore, letting Q0 to anyone of 2n quadrants and using Fatou’s lemma and (4.2),
we obtain

‖T (~f )‖X ≤ c(n, T )
(

‖M(~f )‖X +
∞
∑

l=0

1

2lǫ
sup
S∈D

‖TS,l(~f )‖X
)

.

By Lemma 2.2,

‖M(~f )‖X ≤ c(m,n) sup
D,S

‖AD,S
~|f |‖X .

Our goal now is to show that

(4.3) sup
S∈D

‖TS,l(~f )‖X ≤ c(m,n)l sup
D,S

‖AD,S
~|f |‖X .

This estimate along with the two previous ones would complete the proof.

4.1. Several auxiliary operators. Assume that fi ≥ 0. Fix S = {Qk
j} ∈ D.

Applying Proposition 2.1, we can decompose the cubes Qk
j into 2n disjoint families

Fα such that for any Qk
j ∈ Fα there exists a cube P l,α

j,k ∈ Dα such that 2lQk
j ⊂ P l,α

j,k

and ℓP l,α
j,k

≤ 6ℓ2lQk
j
. Hence,

(4.4) TS,l(~f )(x) ≤ 6nm
2n
∑

α=1

∑

j,k:Qk
j∈Fα

(

m
∏

i=1

(fi)P l,α
j,k

)

χQk
j
(x).

Denote

Tl,α(~f )(x) =
∑

j,k

(

m
∏

i=1

(fi)P l,α
j,k

)

χQk
j
(x).
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We shall also need the following auxiliary operator

Ml,α(~f1,...,m−1, g)(x) =
∑

j,k

(

m−1
∏

i=1

(fi)P l,α
j,k

)( 1

|P l,α
j,k |

∫

Qk
j

g
)

χP l,α
j,k
(x).

This object appears naturally in the following duality relation:

(4.5)

∫

Rn

Tl,α(~f )g dx =

∫

Rn

Ml,α(~f1,...,m−1, g)fm dx.

Lemma 4.2. For any cube Q ∈ Dα,

ωλ(Ml,α(~f1,...,m−1, g);Q) ≤ c(λ,m, n)lgQ

m−1
∏

i=1

(fi)Q.

Proof. Let Q ∈ Dα and let x ∈ Q. We have

Ml,α(~f1,...,m−1, g)(x) =
∑

k,j:Pm,α
j,k ⊂Q

+
∑

k,j:Q⊆Pm,α
j,k

.

The second sum is a constant (denote it by c) for x ∈ Q, while the first sum involves
only the functions fi which are supported in Q. We get the following simple estimate:

(4.6) |Ml,α(~f1,...,m−1, g)− c|χQ(x) ≤
m−1
∏

i=1

M(fiχQ)(x)Tl(gχQ)(x),

where

Tlg(x) =
∑

j,k

( 1

|Pm,α
j,k |

∫

Qk
j

g
)

χPm,α
j,k

(x).

It was proved in [17, Lemma 3.2] that ‖Tlg‖L1,∞ ≤ c(n)l‖g‖L1. Using this esti-
mate, the weak type (1, 1) of M , and reiterating the well known property of rear-
rangements, (fg)∗(t) ≤ f ∗(t/2)g∗(t/2), t > 0, we get using (4.6)

ωλ(Ml,α(~f1,...,m−1, g);Q) ≤
(

m−1
∏

i=1

M(fiχQ)Tl(gχQ)
)∗(

λ|Q|
)

≤
m−1
∏

i=1

(

M(fiχQ)
)∗(

λ|Q|/2i
)(

Tl(gχQ)
)∗(

λ|Q|/2m−1
)

≤ c(λ,m, n)lgQ

m−1
∏

i=1

(fi)Q,

which completes the proof. �
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4.2. Proof of (4.3). By (4.4) it is enough to prove (4.3) with Tl,α(~f ), for each

α = 1, . . . , 2n, instead of TS,l(~f ) on the left-hand side. By the standard limiting

argument one can assume that the sum defining Tl,α(~f ) is finite. Then the sum

defining the corresponding operator Ml,α(~f1,...,m−1, g) in (4.5) will be finite too. This

means that the support of Ml,α(~f1,...,m−1, g) is compact. One can cover it by at most
2n cubes Qν ∈ Dα such that

m
Ml,α(~f1,...,m−1,g)

(Qν) = 0, ν = 1, · · · , 2n.

Applying Theorem 2.3 along with Lemma 4.2, we get that there exists a sparse
family Sα ∈ Dα(Qν) such that for a.e. x ∈ Qν ,

Ml,α(~f1,...,m−1, g)(x)

≤ c(m,n)l
(

MDα(~f1,...,m−1, g)(x) +
∑

Qk
j∈Sα

(

m−1
∏

i=1

(fi)Qk
j

)

gQk
j
χQk

j
(x)
)

,

where

MDα(~f1,...,m−1, g)(x) = sup
x∈Q∈Dα

m−1
∏

i=1

(fi)QgQ.

Applying to this maximal operator the same argument as in the proof of Lemma
2.2 and combining with the previous estimate, we get that there exists two sparse
families Sα,1 and Sα,2 from Dα such that for a.e. x ∈ Qν ,

Ml,α(~f1,...,m−1, g)(x) ≤ c(m,n)l

2
∑

κ=1

∑

Qk
j∈Sα,κ

(

m−1
∏

i=1

(fi)Qk
j

)

gQk
j
χQk

j
(x).

Hence, by Hölder’s inequality (2.4),

∫

Qν

Ml,α(~f1,...,m−1, g)fm dx ≤ c(m,n)l
2
∑

κ=1

∫

Rn

ADα,Sα,κ(~f )g dx

≤ 2c(m,n)l sup
D,S

‖AD,S(~f )‖X‖g‖X′.

Summing up over Qν and using (4.5), we get
∫

Rn

Tl,α(~f )g dx ≤ 2n+1c(m,n)l sup
D,S

‖AD,S(~f )‖X‖g‖X′.

By (2.5), taking here the supremum over g ≥ 0 with ‖g‖X′ = 1 gives (4.3) for

Tl,α(~f ), and therefore the proof is complete.
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5. Proof of Theorem 1.5

First, we apply Theorem 1.4 with X = Lp(ν~w) (observe that p = m+1
m

). Fix
S ∈ D . Assume that fi ≥ 0. By duality

‖AD,S(~f)‖Lp(ν~w) = sup
‖g‖

Lp′
(

ν
−1/(p−1)
~w

)

=1

∑

j,k

m
∏

i=1

(fi)Qk
j

∫

Qk
j

g.

Observe that by our choice of pi we have p/p′i = 1. Denote

A~P (~w;Q) =
( 1

|Q|

∫

Q

ν~w

)

m
∏

i=1

( 1

|Q|

∫

Q

σi

)

.

We have

∑

j,k

m
∏

i=1

(fi)Qk
j

∫

Qk
j

g

=
∑

j,k

A~P (~w;Q
k
j )
(

m
∏

i=1

1

σi(Q
k
j )

∫

Qk
j

fi

)( 1

ν~w(Q
k
j )

∫

Qk
j

g
)

|Qk
j |

≤ 2[~w]A~P

∑

j,k

∫

Ek
j

m
∏

i=1

MD

σi
(fiσ

−1
i )MD

ν~w
(gν−1

~w )dx

≤ 2[~w]A~P

∫

Rn

m
∏

i=1

MD

σi
(fiσ

−1
i )MD

ν~w
(gν−1

~w )dx.

Now we apply Hölder’s inequality:

∫

Rn

m
∏

i=1

MD

σi
(fiσ

−1
i )MD

ν~w
(gν−1

~w )dx

≤ ‖
m
∏

i=1

MD

σi
(fiσ

−1
i )‖

Lp(ν
−(p−1)
~w )

‖MD

ν~w
(gν−1

~w )‖Lp′(ν~w).

First,

‖MD

ν~w
(gν−1

~w )‖Lp′(ν~w) ≤ c‖g‖
Lp′
(

ν
−1/(p−1)
~w

) = c.

Second, we apply Hölder’s inequality with pi/p and use that p− 1 = 1
pi−1

. We get

‖
m
∏

i=1

MD

σi
(fiσ

−1
i )‖

Lp(ν
−(p−1)
~w

)
≤

m
∏

i=1

‖MD

σi
(fiσ

−1
i )‖Lpi(σi) ≤ c

m
∏

i=1

‖fi‖Lpi (wi),

and we are done.
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[13] T. Hytönen, C. Pérez and E. Rela, Sharp Reverse Hölder property for A∞ weights on spaces

of homogeneous type, J. of Functional Analysis, (to appear).
[14] A.K. Lerner An elementary approach to several results on the Hardy-Littlewood maximal

operator, Proc. Amer. Math. Soc. 136(2008), no. 8, 2829–2833.
[15] A.K. Lerner, A pointwise estimate for the local sharp maximal function with applications to

singular integrals, Bull. London Math. Soc., 42 (2010), no. 5, 843–856.
[16] A.K. Lerner, On an estimate of Calderón-Zygmund operators by dyadic positive operators,

J. Anal. Math., (to appear).
[17] A.K. Lerner, A simple proof of the A2 conjecture, Int. Math. Res. Not., 2012; doi:

10.1093/imrn/rns145.
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