Agrupamiento borroso paralelo de partes y máquinas para Fabricación Celular

D. Dobado-Berrojo, S. Lozano, F. Guerrero, L. Onieva y J. Larrañeta
Dpto. Organización Industrial y Gestión de Empresas, Escuela Superior de Ingenieros, Universidad de Sevilla

E-mail: ddobado@cica.es

ABSTRACT: In this work some deficiencies of using Fuzzy c-means (FCM) for grouping parts into part families in cellular manufacturing are discussed and an extension of the algorithm to overcome them is proposed. The modified FCM (MFCM) algorithm groups components and machines conjointly and unlike FCM gives rise to a crisp assignment directly.

Palabras y frases clave: FUZZY CLUSTERING, CELLULAR MANUFACTURING

Clasificación AMS: 90C70

1. Introducción

En este trabajo se va a aplicar el enfoque del agrupamiento borroso al problema de formación de células de fabricación a partir de la matriz de incidencia binaria parte-máquinas. Este enfoque ya ha sido utilizado previamente (Xu and Wang, 1989; Chu and Hayya, 1991; Gindy and Case, 1995) aplicando el algoritmo FCM, el cual calcula las funciones de pertenencia de partes a familias que minimizan la suma de distancias de cada parte al centroide de cada familia ponderadas con las funciones de pertenencia elevadas a un exponente f. A partir de las funciones de pertenencia finales las partes se asignan a aquella familia para la cual su función de pertenencia es máxima. La agrupación de máquinas se realiza en base a los centroides de las familias. Este procedimiento de asignación de partes a familias presenta tres deficiencias:

a) la asignación de partes a familias se realiza de forma independiente sin tener en cuenta las pertenencias de otras partes y puede hacer perder información concerniente a la imprecisión de la formación de familias;

b) el algoritmo FCM se puede aplicar en un mismo problema trabajando con funciones de pertenencia de partes a familias o bien con funciones de pertenencia de máquinas a células, pudiéndose obtener agrupaciones diferentes en cada caso;

c) falta en el algoritmo una interpretación económica de la función de error. Además, el valor que se asigna al factor de exponenciación de las funciones de pertenencia es arbitrario, siendo la solución obtenida sensible a dicho valor.

2. Algoritmo MFCM

Para superar estas deficiencias se propone un algoritmo FCM modificado (MFCM) que básicamente consiste en aplicar el FCM de forma paralela a las funciones de pertenencia de partes a familias y a las funciones de pertenencias de células a máquinas al mismo tiempo que se va haciendo un enfriamiento (annealing) sobre el parámetro f.

Sea n el número de partes, m el número de máquinas, c el número de células, $U_{(cxn)}$ la matriz de funciones de pertenencia de cada parte k a cada familia j, u_{jk} y $U_{(mxc)}$ la matriz de funciones de pertenencia de cada máquina i a cada célula j, u'_{ji}. Se tiene que:

\begin{align*}
0 \leq u_{jk} \leq 1, \quad j=1,2,...,c; \quad k=1,2,...,n & \quad (1) \\
0 \leq u'_{ji} \leq 1, \quad j=1,2,...,c; \quad i=1,2,...,m & \quad (3) \\
\sum_{j=1}^{c} u_{jk} = 1, \quad k=1,2,...,n & \quad (2) \\
\sum_{j=1}^{c} u'_{ji} = 1, \quad i=1,2,...,m & \quad (4)
\end{align*}
Asimismo, sea $V_{(nxc)}$ la matriz de participación de cada máquina i en el proceso de las partes de cada familia j v_{ij} y V' (nxc) la matriz de requerimiento de cada parte k del conjunto de máquinas de cada célula j v'_{kj}.

El algoritmo MFCM consta de los siguientes pasos:

1. Inicializar f, f_0.
2. Inicializar de forma aleatoria la matriz de pertenencias de partes U_0 satisfaciendo (1) y (2).
3. Aplicar el algoritmo FCM a partes a partir de U_0 durante un número de iteraciones T

$$u_{jk} = \frac{1}{\sum_{l=1}^{c} \left(\frac{d_{jk}}{d_{lk}} \right)^2} \left(f - 1 \right)$$

$$j = 1,2,...c; \quad k = 1,2,...n$$

(5)

do donde d_{jk} es la distancia euclidiana de la parte k al centroide de la familia j.

4. Calcular U'_0, matriz inicial de pertenencias de máquinas a células normalizando los centroides V obtenidos al final del paso anterior:

$$u'_{ji} = \frac{v'_{ij}}{\sum_{i=1}^{c} v'_{il}} \quad j = 1,2,...c; \quad i = 1,2,...m$$

(6)

5. Aplicar el algoritmo FCM a máquinas a partir de U'_0 durante T iteraciones (análogamente a 3).

6. Calcular U'_0, matriz inicial de pertenencias de partes a familias a partir de V' (análogamente a 4):

$$u_{jk} = \frac{v'_{kj}}{\sum_{l=1}^{c} v'_{kl}} \quad j = 1,2,...c; \quad k = 1,2,...n$$

(7)

7. Disminuir f, se ha escogido una progresión geométrica que hace tender f a la unidad:

$$f_t = 1 + (f_0 - 1) \cdot \alpha^{t-1} \quad t = 1,2,...; \quad 0 < \alpha < 1$$

(8)

8. Repetir los pasos 3-7 hasta alcanzar un número máximo de ciclos P o hasta conseguir matrices U y U' binarias con el nivel de precisión requerido. En concreto, al final de cada ciclo se comprueba si

$$\sum_{k=1}^{n} \sum_{j=1}^{m} u_{jk} (1 - u_{jk}) \leq \varepsilon$$

(9)

Dado que al tender f a la unidad en el proceso de enfriamiento las funciones de pertenencia se vuelven binarias y sí en vez de los centroides de las familias se usan sus correspondientes prototipos normalizados dados por las pertenencias de máquinas a células calculadas según (6), entonces es posible hacer una interpretación económica de la función de error del algoritmo FCM. En ese caso el cuadrado de la distancia de cada parte al prototipo de su familia es igual al número de huecos (voids) más el número de elementos excepcionales (movimientos intercelulares) a que da lugar la agrupación.

3. Resultados

El algoritmo MFCM se ha aplicado a una batería de problemas de la bibliografía y sus resultados se han comparado con los del algoritmo FCM y con los de las heurísticas Grafix y Zodiac. Las agrupaciones obtenidas con MFCM mejoran en la mayoría de los casos las de los otros métodos.

4. Bibliografía

Haiping, X. And Hsu-Pin, W., “Part Family Formation for GT Applications Based on Fuzzy Mathematics”, International Journal of Production Research, 27, 9 (89) 1637-1651