LAGRANGIAN SUBMANIFOLDS IN COMPLEX SPACE FORMS SATISFYING AN IMPROVED EQUALITY INVOLVING $\delta(2, 2)$

BANG-YEN CHEN, ALICA PRIETO-MARÍN, AND XIANFENG WANG

Abstract. It was proved in [8, 9] that every Lagrangian submanifold M of a complex space form $\tilde{M}^n(4c)$ of constant holomorphic sectional curvature $4c$ satisfies the following optimal inequality:

$$\delta(2, 2) \leq \frac{25}{4} H^2 + 8c,$$

where H^2 is the squared mean curvature and $\delta(2, 2)$ is a δ-invariant on M introduced by the first author. This optimal inequality improves a special case of an earlier inequality obtained in [B.-Y. Chen, Japan. J. Math. 26 (2000), 105–127].

The main purpose of this paper is to classify Lagrangian submanifolds of $\tilde{M}^n(4c)$ satisfying the equality case of the improved inequality (A).

1. Introduction

Let \tilde{M}^n be a Kähler n-manifold with the complex structure J, a Kähler metric g and the Kähler 2-form ω. An isometric immersion $\psi : M \to \tilde{M}^n$ of a Riemannian n-manifold M into \tilde{M}^n is called Lagrangian if $\psi^* \omega = 0$.

Let $\tilde{M}^n(4c)$ denote a Kähler n-manifold with constant holomorphic sectional curvature $4c$, called a complex space form. A complete simply-connected complex space form $\tilde{M}^n(4c)$ is holomorphically isometric to the complex Euclidean n-plane \mathbb{C}^n, the complex projective n-space $CP^n(4c)$, or a complex hyperbolic n-space $CH^n(4c)$ according to $c = 0$, $c > 0$ or $c < 0$, respectively.

B.-Y. Chen introduced in 1990s new Riemannian invariants $\delta(n_1, \ldots, n_k)$. For any n-dimensional submanifold M in a real space form $R^m(c)$ of constant curvature c.
curvature c, he proved the following sharp general inequality (see [5], [7] for details):

$$
\delta(n_1, \ldots, n_k) \leq \frac{n^2(n + k - 1 - \sum n_j)}{2(n + k - \sum n_j)} H^2
+ \frac{1}{2} \left(n(n - 1) - \sum_{j=1}^k n_j(n_j - 1)\right) c. \tag{1.1}
$$

For Lagrangian submanifolds in a complex space form $\tilde{M}^n(4c)$, we have

Theorem A. Let M be an n-dimensional Lagrangian submanifold in a complex space form $\tilde{M}^n(4c)$ of constant holomorphic sectional curvature $4c$. Then inequality (1.1) holds for each k-tuple $(n_1, \ldots, n_k) \in S(n)$.

The following result from [6] extends a result in [10] on $\delta(2)$.

Theorem B. Every Lagrangian submanifold of a complex space form $\tilde{M}^n(4c)$ is minimal if it satisfies the equality case of (1.1) identically.

Theorem B was improved recently in [8], [9] to the following inequality.

Theorem C. Let M be an n-dimensional Lagrangian submanifold of $\tilde{M}^n(4c)$. Then, for an $(n_1, \ldots, n_k) \in S(n)$ with $\sum_{i=1}^k n_i < n$, we have

$$
\delta(n_1, \ldots, n_k) \leq n^2 \left\{ \left(n - \sum_{i=1}^k n_i + 3k - 1\right) - 6 \sum_{i=1}^k (2 + n_i) - 1 \right\} H^2
+ \frac{1}{2} \left(n(n - 1) - \sum_{i=1}^k n_i(n_i - 1)\right) c. \tag{1.2}
$$

The equality sign holds at a point $p \in M$ if and only if there is an orthonormal basis $\{e_1, \ldots, e_n\}$ at p such that the second fundamental form h satisfies

$$
\begin{align*}
h(e_{\alpha_i}, e_{\beta_i}) &= \sum_{i=1}^n h_{\alpha_i, \beta_i}^\gamma J e_\gamma + \frac{3 \delta_{\alpha_i, \beta_i}}{2 + n_i} \lambda J e_{N+1}, \quad \sum_{i=1}^n h_{\alpha_i, \alpha_i}^\gamma = 0, \\
h(e_{\alpha_i}, e_{\alpha_j}) &= 0, \quad i \neq j; \quad h(e_{\alpha_i}, e_{N+1}) = \frac{3 \lambda}{2 + n_i} J e_{\alpha_i}, \quad h(e_{\alpha_i}, e_u) = 0, \quad (1.3) \\
h(e_{N+1}, e_{N+1}) &= 3 \lambda J e_{N+1}, \quad h(e_{N+1}, e_u) = \lambda J e_u, \quad N = n_1 + \cdots + n_k, \\
h(e_u, e_v) &= \lambda \delta_{uv} J e_{N+1}, \quad i, j = 1, \ldots, k; \quad u, v = N + 2, \ldots, n.
\end{align*}
$$

For simplicity, we call a Lagrangian submanifold of a complex space form $\delta(n_1, \ldots, n_k)$-ideal (resp., improved $\delta(n_1, \ldots, n_k)$-ideal) if it satisfies the equality case of (1.1) (resp., the equality case of (1.2)) identically.

For $k = 2$ and $n_1 = n_2 = 2$, Theorem C reduces to the following.
Theorem D. Let M be a Lagrangian submanifold in a complex space form $	ilde{M}^5(4c)$ of constant holomorphic sectional curvature $4c$. Then we have

$$\delta(2,2) \leq \frac{25}{4}\mathcal{H}^2 + 8c. \quad (1.4)$$

If the equality sign of (1.4) holds identically, then with respect some suitable orthonormal frame $\{e_1, \ldots, e_5\}$ the second fundamental form h satisfies

$$h(e_1, e_1) = \alpha J e_1 + \beta J e_2 + \mu J e_5,$$
$$h(e_2, e_2) = -\alpha J e_1 - \beta J e_2 + \mu J e_5,$$
$$h(e_3, e_3) = \gamma J e_3 + \delta J e_4 + \mu J e_5,$$
$$h(e_4, e_4) = -\gamma J e_3 - \delta J e_4 + \mu J e_5,$$
$$h(e_5, e_5) = 4\mu J e_5,$$
$$h(e_i, e_5) = \mu J e_i, \ i \in \Delta; \ h(e_i, e_j) = 0, \ otherwise,$$

(1.5)

for some functions $\alpha, \beta, \gamma, \delta, \mu$, where $\Delta = \{1, 2, 3, 4\}$.

The classification of $\delta(2,2)$-ideal Lagrangian submanifolds in complex space forms $\tilde{M}^5(4c)$ is done in [13]. In this paper we classify improved $\delta(2,2)$-ideal Lagrangian submanifolds in $\tilde{M}^5(4c)$. The main results of this paper are stated as Theorem 6.1, Theorem 7.1 and Theorem 8.1.

2. Preliminaries

2.1. Basic formulas. Let $\tilde{M}^n(4c)$ denote a complete simply-connected Kähler n-manifold with constant holomorphic sectional curvature $4c$. Then $\tilde{M}^n(4c)$ is holomorphically isometric to the complex Euclidean n-plane \mathbb{C}^n, the complex projective n-space $CP^n(4c)$, or a complex hyperbolic n-space $CH^n(-4c)$ according to $c = 0, c > 0$ or $c < 0$.

Let M be a Lagrangian submanifold of $\tilde{M}^n(4c)$. We denote the Levi-Civita connections of M and $\tilde{M}^n(4c)$ by ∇ and $\tilde{\nabla}$, respectively. The formulas of Gauss and Weingarten are given respectively by (cf. [7])

$$\tilde{\nabla}_X Y = \nabla_X Y + h(X, Y), \quad \tilde{\nabla}_X \xi = -A_\xi X + D_X \xi,$$

(2.1)

for tangent vector fields X and Y and normal vector fields ξ, where h is the second fundamental form, A is the shape operator and D is the normal connection.

The second fundamental form and the shape operator are related by

$$\langle h(X, Y), \xi \rangle = \langle A_\xi X, Y \rangle.$$
The mean curvature vector \vec{H} of M is defined by $\vec{H} = \frac{1}{n} \text{trace } h$ and the squared mean curvature is given by $H^2 = \langle \vec{H}, \vec{H} \rangle$.

For Lagrangian submanifolds, we have (cf. [7, 12])

$$D_X JY = J \nabla_X Y, \quad (2.2)$$
$$AJX Y = -J h(X,Y) = AJY X. \quad (2.3)$$

Formula (2.3) implies that $\langle h(X,Y), JZ \rangle$ is totally symmetric.

The equations of Gauss and Codazzi are given respectively by

$$\langle R(X,Y)Z, W \rangle = \langle A_h(Y,Z)X, W \rangle - \langle A_h(X,Z)Y, W \rangle \quad (2.4)$$
$$+ c(\langle X, W \rangle \langle Y, Z \rangle - \langle X, Z \rangle \langle Y, W \rangle),$$

$$\nabla X h(Y, Z) = \nabla Y h(X, Z), \quad (2.5)$$

where R is the curvature tensor of M and ∇h is defined by

$$\nabla X h(Y, Z) = DX h(Y, Z) - h(\nabla X Y, Z) - h(Y, \nabla X Z). \quad (2.6)$$

For an orthonormal basis $\{e_1, \ldots, e_n\}$ of $T_p M$, we put

$$h^i_{jk} = \langle h(e_j, e_k), Je_i \rangle, \quad i, j, k = 1, \ldots, n.$$

It follows from (2.3) that $h^i_{jk} = h^j_{ik} = h^k_{ij}$.

2.2. δ-invariants. Let M be a Riemannian n-manifold. Denote by $K(\pi)$ the sectional curvature of a plane section $\pi \subset T_p M$, $p \in M$. For any orthonormal basis e_1, \ldots, e_n of $T_p M$, the scalar curvature τ at p is $\tau(p) = \sum_{i<j} K(e_i \wedge e_j)$.

Let L be a r-subspace of $T_p M$ with $r \geq 2$ and $\{e_1, \ldots, e_r\}$ an orthonormal basis of L. The scalar curvature $\tau(L)$ of L is defined by

$$\tau(L) = \sum_{\alpha<\beta} K(e_\alpha \wedge e_\beta), \quad 1 \leq \alpha, \beta \leq r. \quad (2.7)$$

For given integers $n \geq 3$, $k \geq 1$, we denote by $S(n, k)$ the finite set consisting of k-tuples (n_1, \ldots, n_k) of integers satisfying $2 \leq n_1, \ldots, n_k < n$ and $\sum_{j=1}^k i_j \leq n$.

Put $S(n) = \cup_{k \geq 1} S(n, k)$. For each k-tuple $(n_1, \ldots, n_k) \in S(n)$, the first author introduced in 1990s the Riemannian invariant $\delta(n_1, \ldots, n_k)$ by

$$\delta(n_1, \ldots, n_k)(p) = \tau(p) - \inf \{\tau(L_1) + \cdots + \tau(L_k)\}, \quad p \in M, \quad (2.8)$$

where L_1, \ldots, L_k run over all k mutually orthogonal subspaces of $T_p M$ such that $\dim L_j = n_j$, $j = 1, \ldots, k$ (cf. [7] for details).
2.3. **Horizontal lift of Lagrangian submanifolds.** The following link between Legendrian submanifolds and Lagrangian submanifolds is due to [16] (see also [7, pp. 247–248]).

Case (i): $CP^n(4)$. Consider Hopf’s fibration $\pi : S^{2n+1} \to CP^n(4)$. For a given point $u \in S^{2n+1}(1)$, the horizontal space at u is the orthogonal complement of i_u, $i = \sqrt{-1}$, with respect to the metric on S^{2n+1} induced from the metric on C^{n+1}. Let $\iota : N \to CP^n(4)$ be a Lagrangian isometric immersion. Then there is a covering map $\tau : \hat{N} \to N$ and a horizontal immersion $\hat{\iota} : \hat{N} \to S^{2n+1}$ such that $\iota \circ \tau = \pi \circ \hat{\iota}$. Thus each Lagrangian immersion can be lifted locally (or globally if N is simply-connected) to a Legendrian immersion of the same Riemannian manifold. In particular, a minimal Lagrangian submanifold of $CP^n(4)$ is lifted to a minimal Legendrian submanifold of the Sasakian $S^{2n+1}(1)$.

Conversely, suppose that $f : \hat{N} \to S^{2n+1}$ is a Legendrian isometric immersion. Then $\iota = \pi \circ f : N \to CP^n(4)$ is again a Lagrangian isometric immersion. Under this correspondence the second fundamental forms h_f and h_ι of f and ι satisfy $\pi^* h_f = h_\iota$. Moreover, h_f is horizontal with respect to π.

Case (ii): $CH^n(-4)$. We consider the complex number space C_1^{n+1} equipped with the pseudo-Euclidean metric: $g_0 = -dz_1d\bar{z}_1 + \sum_{j=2}^{n+1} dz_jd\bar{z}_j$.

Consider $H_2^{2n+1}(-1) = \{z \in C_1^{2n+1} : \langle z, z \rangle = -1\}$ with the canonical Sasakian structure, where $\langle \ , \ \rangle$ is the induced inner product.

Put $T'_z = \{u \in C^{n+1} : \langle u, z \rangle = 0\}$, $H_1^1 = \{\lambda \in C : \lambda\bar{\lambda} = 1\}$. Then there is an H_1^1-action on $H_1^{2n+1}(-1)$, $z \mapsto \lambda z$ and at each point $z \in H_1^{2n+1}(-1)$, the vector $\xi = -iz$ is tangent to the flow of the action. Since the metric g_0 is Hermitian, we have $\langle \xi, \xi \rangle = -1$. The quotient space $H_1^{2n+1}(-1) / \sim$, under the identification induced from the action, is the complex hyperbolic space $CH^n(-4)$ with constant holomorphic sectional curvature -4 whose complex structure J is induced from the complex structure J on C_1^{n+1} via Hopf’s fibration $\pi : H_1^{2n+1}(-1) \to CH^n(4c)$.

Just like case (i), suppose that $\iota : N \to CH^n(-4)$ is a Lagrangian immersion, then there is an isometric covering map $\tau : \hat{N} \to N$ and a Legendrian immersion $f : \hat{N} \to H_1^{2n+1}(-1)$ such that $\iota \circ \tau = \pi \circ f$. Thus every Lagrangian immersion into $CH^n(-4)$ an be lifted locally (or globally if N is
simply-connected) to a Legendrian immersion into $H^{2n+1}(1)$. In particular, Lagrangian minimal submanifolds of $CH^n(-4)$ are lifted to Legendrian minimal submanifolds of $H^{2n+1}_1(1)$. Conversely, if $f: \tilde{N} \to H^{2n+1}_1(1)$ is a Legendrian immersion, then $\iota = \pi \circ f : N \to CH^n(-4)$ is a Lagrangian immersion. Under this correspondence the second fundamental forms h_f and h_ι are related by $\pi^* h_f = h_\iota$. Also, h_f is horizontal with respect to π.

Let h be the second fundamental form of M in $S^{2n+1}(1)$ (or in $H^{2n+1}_1(1)$). Since $S^{2n+1}(1)$ and $H^{2n+1}_1(1)$ are totally umbilical with one as its mean curvature in C^{n+1} and in C^{n+1}_1, respectively, we have

\[\hat{\nabla}_X Y = \nabla_X Y + h(X, Y) - \varepsilon L, \quad (2.9) \]

where $\varepsilon = 1$ if the ambient space is C^{n+1}; and $\varepsilon = -1$ if it is C^{n+1}_1.

3. H-umbilical Lagrangian submanifolds and complex extensors

Definition 3.1. A non-totally geodesic Lagrangian submanifold of a Kähler n-manifold is called H-umbilical if its second fundamental form satisfies

\[h(e_j, e_j) = \mu Je_n, \quad h(e_j, e_n) = \mu Je_j, \quad j = 1, \ldots, n - 1, \]

\[h(e_n, e_n) = \varphi Je_n, \quad h(e_j, e_k) = 0, \quad 1 \leq j \neq k \leq n - 1, \quad (3.1) \]

for some functions μ, φ with respect to an orthonormal frame $\{e_1, \ldots, e_n\}$. If the ratio of $\varphi : \mu$ is a constant r, the H-umbilical submanifold is said to be of ratio r.

If $G : N^{n-1} \to \mathbb{E}^n$ is a hypersurface of a Euclidean n-space \mathbb{E}^n and $\gamma : I \to \mathbb{C}^*$ is a unit speed curve in $\mathbb{C}^* = \mathbb{C} - \{0\}$, then we may extend $G : N^{n-1} \to \mathbb{E}^n$ to an immersion $I \times N^{n-1} \to \mathbb{C}^n$ by $\gamma \otimes G : I \times N^{n-1} \to \mathbb{C}^n \otimes \mathbb{E}^n = \mathbb{C}^n$, where $(\gamma \otimes G)(s, p) = F(s) \otimes G(p)$ for $s \in I$, $p \in N^{n-1}$. This extension of G via tensor product \otimes is called the complex extensor of G via the generating curve γ.

H-umbilical Lagrangian submanifolds in complex space forms were classified in a series of papers by the first author (cf. [2], [3], [4]). In particular, the following two results were proved in [2].

Theorem E. Let $\iota : S^{n-1} \subset \mathbb{E}^n$ be the unit hypersphere in \mathbb{E}^n centered at the origin. Then every complex extensor of ι via a unit speed curve
\[\gamma: I \to \mathbb{C}^* \] is an H-umbilical Lagrangian submanifold of \(\mathbb{C}^n \) unless \(\gamma \) is contained in a line through the origin (which gives a totally geodesic Lagrangian submanifold).

Theorem F. Let \(M \) be an H-umbilical Lagrangian submanifold of \(\mathbb{C}^n \) with \(n \geq 3 \). Then \(M \) is either a flat space or congruent to an open part of a complex extensor of \(i: S^{n-1} \subset \mathbb{E}^n \) via a curve \(\gamma: I \to \mathbb{C}^* \).

3.2. Legendre curves

A unit speed curve \(z: I \to S^3(1) \subset \mathbb{C}^2 \) (resp., \(z: I \to H^3_1(-1) \subset \mathbb{C}^2 \)) is called Legendre if \(\langle z', iz \rangle = 0 \). It was proved in [3] that a unit speed curve \(z \) in \(S^3(1) \) (resp., in \(H^3_1(-1) \)) is Legendre if and only if it satisfies

\[z'' = i \lambda z' - z \quad \text{ (resp., } z'' = i \lambda z' + z) \quad (3.2) \]

for a real-valued function \(\lambda \). It is known in [3] that \(\lambda \) is the curvature function of \(z \) in \(S^3(1) \) (resp., in \(H^3_1(-1) \)) (see also [1, Lemmas 3.1 and 3.2]).

3.3. H-umbilical submanifolds with arbitrary ratio

We provide a general method to construct H-umbilical Lagrangian submanifolds with any given ratio in \(CP^n(4) \) via curves in \(S^2(\frac{1}{2}) \) (resp., in \(CH^n(-4) \) via curves in \(H^2(-\frac{1}{2}) \)).

Proposition 3.2. For any real number \(r \) there exist H-umbilical Lagrangian submanifolds of ratio \(r \) in \(CP^n(4) \) and in \(CH^n(-4) \).

Proof. If \(r = 2 \) this was done in [3, Theorems 5.1 and 6.1]. If \(r \neq 2 \), H-umbilical Lagrangian submanifolds of ratio \(r \) can be constructed as follows:

Case (a): \(CP^n(4) \). Let \(S^2(\frac{1}{2}) = \{ x \in \mathbb{E}^3; \langle x, x \rangle = \frac{1}{4} \} \). The Hopf fibration \(\pi \) from \(S^3(1) \) onto \(S^2(\frac{1}{2}) \equiv CP^1(4) \) is given by (cf. [1])

\[\pi(z_1, z_2) = (z_1 \bar{z}_2, \frac{1}{2}(|z_1|^2 - |z_2|^2)) \], \((z_1, z_2) \in S^3(1) \subset \mathbb{C}^2 \). \quad (3.3)

For a Legendre curve \(z \) in \(S^3(1) \), the projection \(\gamma \) is a curve in \(S^2(\frac{1}{2}) \). Conversely, each curve \(\gamma \) in \(S^2(\frac{1}{2}) \) gives rise to a horizontal lift \(\hat{\gamma} \) in \(S^3(1) \) via \(\pi \) which is unique up to a factor \(e^{i\theta}, \theta \in \mathbb{R} \). Notice that each horizontal lift of \(\gamma \) is a Legendre curve in \(S^3(1) \). Moreover, since the Hopf fibration is a Riemannian submersion, each unit speed Legendre curve \(z \) in \(S^3(1) \) is projected to a unit speed curve \(\gamma \) in \(S^2(\frac{1}{2}) \) with the same curvature.
It was known in [3] Lemma 7.2 that, for a given H-umbilical Lagrangian submanifold of ratio $r \neq 2$ in $M^n(4c)$, the function μ in (3.1) satisfies

$$\mu \mu'' - \left(\frac{r-3}{r-2}\right) \mu'^2 + (r-2)\mu^2((r-1)\mu^2 + c) = 0. \quad (3.4)$$

If μ is a non-trivial solution of (3.4) with $c = 1$, then there is a unit speed curve γ in $S^2(\frac{1}{r})$ whose curvature equals to $r\mu$. Let z be a horizontal lift of γ in $S^3(1)$. Then z is a unit speed Legendre curve satisfying $z''(x) = ir\mu z'(x) - z(x)$ (cf. [3] Theorem 4.1 or [1] Lemma 3.1).

Consider the map $\psi : M^5 \to S^{11}(1) \subset \mathbb{C}^6$ defined by

$$\psi(x, y_1, \ldots, y_5) = (z_1(x), z_2(x)y_1, \ldots, z_2(x)y_5), \quad \sum_{j=1}^5 y_j^2 = 1. \quad (3.5)$$

It follows from [3] Theorem 4.1 and Lemma 7.2 that $\pi \circ \psi$ is a H-umbilical Lagrangian submanifold of ratio r in $CP^n(4)$ such that

$$h(e_j, e_j) = \mu Je_5, \quad h(e_j, e_n) = \mu Je_j, \quad h(e_n, e_n) = r\mu Je_n, \quad h(e_j, e_k) = 0, \quad 1 \leq j \neq k \leq n-1, \quad (3.6)$$

with respect to suitable orthonormal frame $\{e_1, \ldots, e_5\}$.

Case (b): $CH^n(-4)$. For a non-trivial solution of (3.4) with $c = -1$, we can construct an H-umbilical Lagrangian submanifold of $CH^n(-4)$ via the Hopf fibration $\pi : H^3_1(-1) \to CH^1(-4) \equiv H^2(-\frac{1}{2})$ in a similar way as case (a), where

$$\pi(z_1, z_2) = (z_1 \bar{z}_2, \frac{1}{2}(|z_1|^2 + |z_2|^2)), \quad (z_1, z_2) \in H^3_1(-1) \subset \mathbb{C}^2, \quad (3.7)$$

and $H^2(-\frac{1}{2}) = \{(x_1, x_2, x_3) \in \mathbb{E}^3_1 : x_1^2 - x_2^2 - x_3^2 = \frac{1}{4}, x_1 \geq \frac{1}{2}\}$ is the model of the real projective plane of curvature $-\frac{1}{4}$.

3.4. Classification of H-umbilical submanifolds of ratio 4

The equation of Gauss and (3.1) imply that H-umbilical Lagrangian submanifolds of ratio $r \neq 4$ in complex space forms contain no open subsets of constant sectional curvature. Hence we conclude from [3] Theorems 4.1 and 7.1 and §3.3 the following results.

Lemma 3.3. An H-umbilical Lagrangian submanifold M of ratio 4 in $CP^5(4)$ is congruent to an open portion of $\pi \circ \psi$, where $\pi : S^{11}(1) \to CP^5(4)$ is Hopf’s fibration, $\psi : M \to S^{11}(1) \subset \mathbb{C}^6$ is given by

$$\psi(t, y_1, \ldots, y_5) = (z_1(t), z_2(t)y), \quad \{y \in \mathbb{E}^5 : \langle y, y \rangle = 1\}, \quad (3.8)$$
and \(z = (z_1, z_2) : I \to S^3(1) \subset \mathbb{C}^2 \) is a unit speed Legendre curve satisfying
\[z'' = 4i\mu z' - z, \text{ and } \mu \text{ is a nonzero solution of } 2\mu'' - \mu^2 + 4\mu^2(3\mu^2 + 1) = 0. \]

Let \(M \) be an \(H \)-umbilical Lagrangian submanifold in \(CH^5(-4) \) satisfying \(§3.1 \). We may assume that \(\mu \) is defined on an open interval \(I \ni 0 \). Since \(H \)-umbilical submanifolds of ratio 4 in \(CH^5(-4) \) contain no open subsets of constant curvature, Theorems 4.2 and 9.1 of [2] and results in §3.3 imply the following classification of \(H \)-umbilical submanifolds of ratio 4 in \(CH^5(-4) \).

Lemma 3.4. An \(H \)-umbilical Lagrangian submanifold \(M \) of ratio 4 in \(CH^5(-4) \) is congruent to an open part of \(\pi \circ \psi \), where \(\pi : H^6_1(-1) \to CH^5(-4) \) is Hopf’s fibration and \(\psi : M \to H^6_1(-1) \subset \mathbb{C}^6 \) is either one of

\[
\psi(t, y_1, \ldots, y_4) = (z_1(t), z_2(t)y), \quad \{ y \in E^5 : \langle y, y \rangle = 1 \}, \quad (3.9)
\]

\[
\psi(t, y_1, \ldots, y_4) = (z_1(t)y, z_2(t)), \quad \{ y \in E^5_1 : \langle y, y \rangle = -1 \}, \quad (3.10)
\]

where \(z \) is a unit speed Legendre curve in \(H^6_1(-1) \) satisfying \(z'' = 4i\mu z' + z \) and \(\mu \) is a non-trivial solution of \(2\mu'' - \mu^2 + 4\mu^2(3\mu^2 - 1) = 0 \); or \(\psi \) is

\[
\psi(t, u_1, \ldots, u_4) = \sqrt{\mu} e^{i \int_0^t \mu(\tau) dt} \left(1 + \frac{1}{2} \sum_{j=1}^4 u_j^2 - it + \frac{1}{2\mu} - \frac{1}{2\mu(0)} \right) \left(i\mu(0) - \frac{\mu'(0)}{2\mu(0)} \right) \left(\frac{1}{2} \sum_{j=1}^4 u_j^2 - it + \frac{1}{2\mu} - \frac{1}{2\mu(0)} \right), \quad u_1, \ldots, u_4
\]

\[
(3.11)
\]

where \(z = (z_1, z_2) : I \to H^6_1(-1) \subset \mathbb{C}^6 \) is a unit speed Legendre curve and \(\mu \) is a non-trivial solution of \(\mu'^2 = 4\mu^2(1 - \mu^2) \).

Example. It is easy to verify that \(\mu = \text{sech} \, 2t \) is a non-trivial solution of \(\mu'^2 = 4\mu^2(1 - \mu^2) \). Using \(\mu = \text{sech} \, 2t \), \((3.11) \) reduces to

\[
\psi(t, u_1, \ldots, u_4) = \frac{e^{i \tan^{-1}(\tanh t)}}{\sqrt{\cosh 2t}} \left(\frac{1}{2} - it + \frac{1}{2} \sum_{j=1}^4 u_j^2 + \frac{\cosh 2t}{2}, \right) \left(t - \frac{i}{2} + \frac{i}{2} \sum_{j=1}^4 u_j^2 + \frac{i \cosh 2t}{2}, u_1, \ldots, u_4 \right).
\]

\[
(3.12)
\]

It is direct to verify that \((3.12) \) satisfies \(\langle \psi, \psi \rangle = -1 \) and the composition \(\pi \circ \psi \) gives rise to an \(H \)-umbilical Lagrangian submanifold of ratio 4 in \(CH^5(-4) \).
4. Some Lemmas

We need the following lemmas for the proof of the main theorems.

Lemma 4.1. Let M be an improved $\delta(2,2)$-ideal Lagrangian submanifold of $\tilde{M}^5(4c)$. Then with respect to some orthonormal frame $\{e_1, \ldots, e_5\}$ we have

\[
\begin{align*}
 h(e_1, e_1) &= a Je_1 + \mu Je_5, \quad h(e_1, e_2) = -a Je_2, \\
 h(e_2, e_2) &= -a Je_1 + \mu Je_5, \quad h(e_3, e_3) = b Je_3 + \mu Je_5, \\
 h(e_3, e_4) &= -b Je_4, \quad h(e_4, e_4) = -b Je_3 + \mu Je_5, \\
 h(e_i, e_5) &= \mu Je_i, \quad i \in \Delta, \quad h(e_5, e_5) = 4\mu Je_5, \\
 h(e_i, e_j) &= 0, \quad \text{otherwise},
\end{align*}
\]

(4.1)

Proof. Under the hypothesis, we have (1.5) with respect to an orthonormal frame $\{e_1, \ldots, e_5\}$. Thus, after applying [6, Lemma 1] to $V = \text{Span} \{e_1, e_2\}$ and $V = \text{Span} \{e_3, e_4\}$, we obtain (4.1). □

Let us put

\[
\nabla_X e_i = \sum_{j=1}^{5} \omega^j_i(X)e_j, \quad i = 1, \ldots, 5, \quad X \in TM^5.
\]

(4.2)

Then $\omega^i_j = -\omega^j_i, \quad i, j = 1, \ldots, 5$.

If $\mu = 0$, then M is a minimal Lagrangian submanifold according [13]. Such submanifolds in complex space forms $\tilde{M}^5(4c)$ have been classified in [13].

If $a = b = 0$ and $\mu \neq 0$, then M is an H-umbilical Lagrangian submanifold with ratio 4. Therefore, from now on we assume that $a, \mu \neq 0$.

Lemma 4.2. Let M be a Lagrangian submanifold of $\tilde{M}^5(4c)$ whose second fundamental form satisfies (4.1) with $a, b, \mu \neq 0$. Then we have

\[
\begin{align*}
 \nabla_{e_1} e_1 &= \frac{e_2}{3a}e_2 - \nu e_5, \quad \nabla_{e_1} e_2 = -\frac{e_2}{3a}e_1, \quad \nabla_{e_2} e_1 = -\frac{e_1}{3a}e_2, \\
 \nabla_{e_2} e_2 &= \frac{e_3}{3a}e_1 - \nu e_5, \quad \nabla_{e_3} e_3 = \frac{e_4}{3b}e_4 - \nu e_5, \quad \nabla_{e_4} e_4 = -\frac{e_4}{3b}e_3, \\
 \nabla_{e_3} e_3 &= -\frac{e_4}{3b}e_4, \quad \nabla_{e_4} e_4 = \frac{e_3}{3b}e_3 - \nu e_5, \quad \nabla_{e_i} e_5 = \nu e_i, \quad i \in \Delta, \\
 \nabla_{e_i} e_j &= 0, \quad \text{otherwise},
\end{align*}
\]

(4.3)
with \(\nu = \frac{1}{2} e_5 (\ln \mu) = - e_5 (\ln a) = - e_5 (\ln b) \), where \(\Delta = \{1, 2, 3, 4\} \). Moreover, we have

\[
e_j \mu = 0, \quad j \in \Delta, \quad e_1 b = e_2 b = e_3 a = e_4 a = 0.
\] (4.4)

Proof. This lemma is obtained from Codazzi’s equations via Lemma 4.1 and (4.2) and long computations. \(\square \)

Lemma 4.3. Under the hypothesis of Lemma 4.2, we have

(a) \(T_0 \) is a totally geodesic distribution, i.e. \(T_0 \) is integrable whose leaves are totally geodesic submanifolds;

(b) \(T_0 \oplus T_1 \) and \(T_0 \oplus T_2 \) are totally geodesic distributions;

(c) \(T_1 \) and \(T_2 \) are spherical distributions, i.e. \(T_1, T_2 \) are integrable distributions whose leaves are totally umbilical submanifolds with parallel mean curvature vector,

where \(T_0 = \text{Span}\{e_5\}, T_1 = \text{Span}\{e_1, e_2\} \) and \(T_2 = \text{Span}\{e_3, e_4\} \).

Proof. Since the distribution \(T_0 \) is of rank one, it is integrable. Moreover, since \(\nabla_{e_5} e_5 = 0 \) by Lemma 4.2, the integral curves of \(e_5 \) are geodesics in \(M \).

Thus we have statement (a). Statement (b) follows easily from (4.3).

To prove statement (c), first we observe that \([e_1, e_2] \in T_1\) and \([e_3, e_4] \in T_2\) follow from (4.3). Thus \(T_1, T_2 \) are integrable. Also, it follows from (4.3) that the second fundamental form \(h_1 \) of a leaf \(L_1 \) of \(T_1 \) in \(M \) is given by

\[
h_1(X, Y) = - \nu g_1(X_1, Y_1) e_5, \quad X_1, Y_1 \in T L_1,
\] (4.5)

where \(g_1 \) is the metric of \(L_1 \). From (4.3) we obtain \(\nabla_{e_i} e_5 = \nu e_i, \quad i = 1, 2 \). Thus \(D^1 e_5 = D^1 e_5 = 0 \), where \(D^1 \) is the normal connection of \(L_1 \) in \(M \). It follows from Gauss’ equation and Lemma 4.1 that the curvature tensor \(R \) satisfies

\[
\langle R(e_1, e_2) e_1, e_j \rangle = 0, \quad j = 3, 4, 5.
\] (4.6)

Thus (4.6) and Lemma 4.2 imply that \(0 \equiv R(e_1, e_2) e_1 \equiv (e_2 \nu) e_5 \) (mod \(T_1 \)). Hence \(e_2 \nu = 0 \). Similarly, by considering \(R(e_2, e_1) e_2 \), we also have \(e_1 \alpha = 0 \). After combining these with \(D^1 e_5 = 0 \), we conclude that \(L_1 \) has parallel mean curvature vector in \(M \). Hence \(T_1 \) is a spherical distribution. Similarly, \(T_2 \) is also a spherical distribution. Consequently, we obtain statement (c). \(\square \)

Lemma 4.4. Under the hypothesis of Lemma 4.2, \(M \) is locally a warped product \(I \times \rho_1(t) M_1^2 \times \rho_2(t) M_2^2 \), where \(t \) is function such that \(e_5 = \partial_t \) (i.e., \(e_5 =
\[\frac{\partial}{\partial t}, \rho_1 \text{ and } \rho_2 \text{ are two positive functions in } t \text{ and } M^2_1, M^2_2 \text{ are Riemannian 2-manifolds.} \]

Proof. This lemma follows from Lemma 4.3 and a result of Hiepko [15] (see also [7, Theorem 4.4, p. 90]). \[\square \]

Lemma 3.3 and (4.4) imply that \(\mu \) depends only on \(t \). Thus \(\mu = \mu(t) \).

Lemma 4.5. Let \(M \) be a Lagrangian submanifold of \(\tilde{M}^5(4c) \) whose second fundamental form satisfies (4.1) with \(a, b, \mu \neq 0 \). Then we have \(c = -\nu^2 - \mu^2 < 0 \). Thus \(\mu \) satisfies \(\mu'(t)^2 = -4\mu^2(t)(c + \mu^2(t)) \).

Proof. Under the hypothesis, it follows from Gauss’ equation and Lemma 4.1 that \(\langle R(e_1, e_3)e_3, e_1 \rangle = c + \mu^2 \). On the other hand, the definition of curvature tensor and Lemma 4.2 imply that \(\langle R(e_1, e_3)e_3, e_1 \rangle = -\nu^2 \). Thus \(c = -\nu^2 - \mu^2 < 0 \). By combining this with the definition of \(\nu \), we obtain the lemma. \[\square \]

5. MORE LEMMAS

Next, we consider the case \(a, \mu \neq 0 \) and \(b = 0 \).
Lemma 5.1. Let M be a Lagrangian submanifold of $\tilde{M}^5(4c)$ whose second fundamental form satisfies (4.1) with $a, \mu \neq 0$ and $b = 0$. Then we have
\[
\nabla_{e_i} e_1 = e_2a/3a e_2 + e_3a/3a e_3 + e_4a/3a e_4 - \nu e_5,
\]
\[
\nabla_{e_i} e_2 = -e_2a/3a e_1 - 3\omega_1^2(e_3)e_3 - 3\omega_1^2(e_4)e_4,
\]
\[
\nabla_{e_i} e_3 = -e_3a/3a e_1 + 3\omega_1^2(e_3)e_2 + \omega_1^3(e_1)e_3,
\]
\[
\nabla_{e_i} e_4 = -e_4a/3a e_1 + 3\omega_1^2(e_4)e_2 - \omega_1^3(e_1)e_3,
\]
\[
\nabla_{e_i} e_5 = 3\omega_1^2(e_3)e_1 - e_3a/3a e_2 + \omega_1^3(e_3)e_4,
\]
\[
(5.1)
\]
\[
\nabla_{e_i} e_6 = -\omega_1^3(e_2)e_1 - e_4a/3a e_2 - \omega_1^3(e_2)e_3,
\]
\[
\nabla_{e_i} e_7 = \omega_1^3(e_3)e_2, \quad \nabla_{e_i} e_8 = -\omega_1^3(e_3)e_1,
\]
\[
\nabla_{e_i} e_9 = \omega_1^3(e_4)e_2, \quad \nabla_{e_i} e_{10} = -\omega_1^3(e_4)e_1,
\]
\[
\nabla_{e_i} e_{11} = \omega_1^3(e_5)e_2, \quad \nabla_{e_i} e_{12} = -\omega_1^3(e_5)e_1,
\]
\[
\\nabla_{e_i} e_{13} = \nu e_i, \quad i \in \Delta, \quad \nabla_{e_i} e_{14} = 0, \quad \text{otherwise}.
\]

with $\nu = 1/5 e_5(\ln \mu) = -e_5(\ln a)$. Moreover, we have
\[
e_j \mu = 0, \quad j \in \Delta = \{1, 2, 3, 4\}. \quad (5.2)
\]

Proof. Follows from Codazzi’s equations via Lemma 4.1 and 4.2.

Lemma 5.2. Under the hypothesis of Lemma 5.1, we have

(i) T_0 is a totally geodesic distribution;

(ii) T_3 is a spherical distribution,

where $T_0 = \text{Span}\{e_5\}$ and $T_3 = \text{Span}\{e_1, e_2, e_3, e_4\}$.

Proof. Clearly, T_0 is integrable. Moreover, since $\nabla_{e_5} e_5 = 0$ by Lemma 5.1, integral curves of e_5 are geodesics in M^5. Thus statement (i) follows. To prove statement (ii), we observe that the integrability of T_3 follows from (5.1). Also, (5.1) implies that the second fundamental form \hat{h} of a leaf L of T_3 in M^5 is given by $\hat{h}(X, Y) = -\nu \hat{g}(X, Y) e_5$ for $X, Y \in TL$, where \hat{g} is the
metric of \(\mathcal{L} \). Since \([e_j, e_5]\mu = 0 \) by (5.1) and \(e_j\mu = 0 \), for \(j \in \Delta \), we find \(e_i e_5\mu - e_5 e_i\mu = 2e_1\nu = 0 \). Therefore \(T_3 \) is a spherical distribution. \(\square \)

Lemma 5.3. Under the hypothesis of Lemma 5.1, \(M \) is locally a warped product \(I \times \rho(t) N^4 \), where \(t \) is function such that \(e_5 = \frac{\partial}{\partial t} \) and \(\rho \) is a positive function in \(t \) and \(N^4 \) is a Riemannian 4-manifold.

Proof. Follows from Lemma 5.2 and Hiepko’s theorem. \(\square \)

It follows from (5.2) and the definition of \(\nu \) that \(\mu = \mu(t) \) and \(\nu = \nu(t) \).

Lemma 5.4. Under the hypothesis of Lemma 5.1, we have
\[
\frac{d\nu}{dt} = -3\mu^2 - \nu^2 - c, \quad \frac{d\mu}{dt} = 2\mu\nu.
\] \((5.3) \)

Proof. From Gauss’ equation and (5.1) we find \(\langle R(e_1, e_5) e_5, e_1 \rangle = 3\mu^2 + c \). On the other hand, (5.1) of Lemma 5.1 yields \(\langle R(e_1, e_5) e_5, e_1 \rangle = -e_5\nu - \nu^2 \). Thus we find the first equation of (5.3). The second one follows immediately from the definition of \(\nu \) given in Lemma 5.1. \(\square \)

6. **Improved \(\delta(2, 2) \)-ideal Lagrangian submanifolds of \(\mathbb{C}^5 \)**

Theorem 6.1. Let \(M \) be an improved \(\delta(2, 2) \)-ideal Lagrangian submanifold in \(\mathbb{C}^5 \). Then it is one of the following Lagrangian submanifolds:

(a) a \(\delta(2, 2) \)-ideal Lagrangian minimal submanifold;

(b) an \(H \)-umbilical Lagrangian submanifold of ratio 4;

(c) a Lagrangian submanifold defined by
\[
L(\mu, u_2, \ldots, u_n) = \frac{e^{\frac{4i}{\mu} \tan^{-1}\sqrt{\mu^2/(c^2 - \mu^2)}}}{\sqrt{c^2\mu^{-1} - \mu^2 + i\mu}} \phi(u_2, \ldots, u_n),
\] \((6.1) \)

where \(c \) is a positive real number and \(\phi(u_2, \ldots, u_n) \) is a horizontal lift of a non-totally geodesic \(\delta(2) \)-ideal Lagrangian minimal immersion in \(CP^4(4) \).

Proof. Assume that \(M \) is an improved \(\delta(2, 2) \)-ideal Lagrangian submanifold in \(\mathbb{C}^5 \). Then there exists an orthonormal frame \(\{e_1, \ldots, e_5\} \) such that (4.1) holds. If \(\mu = 0 \), then \(M \) is a minimal \(\delta(2, 2) \)-ideal Lagrangian submanifold. Thus, we obtain case (a). If \(\mu \neq 0 \) and \(a = b = 0 \), we obtain case (b).

Now, let us assume \(a, \mu \neq 0 \). Then Lemma 4.5 implies \(b = 0 \). So, by Lemmas 5.1 we have (5.1) and \(e_j\mu = 0, j \in \Delta \). Further, by Lemma 5.3, \(M \)
is locally a warped product $I \times_{\rho(t)} N^4$ with $e_5 = \partial_t$. Moreover, (4.1) shows that the second fundamental form satisfies
\begin{align*}
h(e_1, e_1) &= aJe_1 + \mu Je_5, \quad h(e_1, e_2) = -aJe_2, \\
h(e_2, e_2) &= aJe_1 + \mu Je_5, \\
h(e_3, e_3) &= h(e_4, e_4) = \mu Je_5, \\
h(e_i, e_5) &= \mu Je_i, \quad i \in \Delta, \\
h(e_5, e_5) &= 4\mu Je_5, \quad h(e_i, e_j) = 0, \text{ otherwise.}
\end{align*}

(6.2)

From Lemma 5.4 we have the following differential system:
\begin{align*}
\frac{d\nu}{dt} &= -3\mu^2 - \nu^2, \quad \frac{d\mu}{dt} = 2\mu\nu.
\end{align*}

(6.3)

Let $\varphi(t)$ be a function satisfying $\frac{d\varphi}{dt} = -4\mu$. Consider the map
\begin{align*}
\phi = e^{i\varphi}e_5.
\end{align*}

(6.4)

Then $\langle \phi, \phi \rangle = 1$. It follows from $\nabla_{e_5}e_5 = 0, \frac{d\varphi}{dt} = -4\mu$ and (6.2) that $\tilde{\nabla}_{e_5}\phi = 0$, where $\tilde{\nabla}$ is the Levi-Civita connection of \mathbb{C}^5. Thus ϕ is independent of t.

Let L denote the Lagrangian immersion of M in \mathbb{C}^5. Then (6.4) yields
\begin{align*}
e_5 = L_t = e^{-i\varphi}\phi(u_1, \ldots, u_4),
\end{align*}

(6.5)

where u_1, \ldots, u_4 are local coordinates of N^4. For each $j \in \Delta$, we obtain from $\nabla_{e_j}e_5 = \nu e_j$ of Lemma 5.4 and the first equation of (6.3) that
\begin{align*}
\phi\ast(e_j) = \tilde{\nabla}_{e_j}\phi = e^{i\varphi}\nabla_{e_j}e_5 = e^{i\varphi}(\nu + i\mu)e_j.
\end{align*}

(6.6)

Thus
\begin{align*}
\tilde{\nabla}_{e_j}(\phi\ast(e_i)) &= e^{i\varphi}(\nu + i\mu)\tilde{\nabla}_{e_j}e_i.
\end{align*}

(6.7)

In view of $\nabla_{e_j}e_5 = \nu e_j$ and (6.2), we may put
\begin{align*}
\tilde{\nabla}_{e_i}e_j &= \left(\sum_{k=1}^{4} \Gamma^k_{ij} + ih^k_{ij}\right)e_k - (\nu - i\mu)\delta_{ij}e_5, \quad i, j \in \Delta,
\end{align*}

(6.8)

for some functions Γ^k_{ij}. Now, it follows from (6.4), (6.6), (6.7), and (6.8) that
\begin{align*}
\tilde{\nabla}_{e_j}(\phi\ast(e_i)) &= \sum_{\gamma=2}^{n} \left(\Gamma^k_{ij} + ih^k_{ij}\right)\phi\ast(e_k) - (\mu^2 + \nu^2)\delta_{ij}\phi \\
&= \sum_{\gamma=2}^{n} \left(\Gamma^k_{ij} + ih^k_{ij}\right)\phi\ast(e_k) - \langle \phi\ast(e_i), \phi\ast(e_j) \rangle \phi.
\end{align*}

(6.9)
Since M is a Lagrangian submanifold in \mathbb{C}^5, (6.4) and (6.6) show that $i\phi$ is perpendicular to each tangent space of M. Hence ϕ is a horizontal immersion in the unit hypersphere $S^9(1) \subset \mathbb{C}^5$. Moreover, it follows from (6.9) that the second fundamental form of ϕ is the original second fundamental form of M respect to the second factor N^4 of the warped product $I \times_{\rho(t)} N^4$. Hence, ϕ is a minimal horizontal immersion in $S^9(1)$. Therefore, ϕ is a horizontal lift of a minimal Lagrangian immersion in $\mathbb{C}P^4(4)$. Now, it follows from (6.2) that ϕ is a horizontal lift of a $\delta(2)$-ideal minimal Lagrangian submanifold of $\mathbb{C}P^4(4)$.

By direct computation we find
\[
\tilde{\nabla}_{e\alpha}(L - \frac{e_5}{\nu + i\mu}) = 0, \quad \alpha = 1, \ldots, 5.
\] (6.10)
Thus, by (6.4), up to translations the Lagrangian immersion L is
\[
L = \frac{e^{-i\varphi}}{\nu + i\mu} \phi(u_1, \ldots, u_4),
\] (6.11)
where ϕ is a horizontal minimal immersion in $S^9(1)$ and ν, φ, μ satisfy
\[
\frac{d\nu}{dt} = -3\mu^2 - \nu^2, \quad \frac{d\varphi}{dt} = -4\mu, \quad \frac{d\mu}{dt} = 2\mu\nu.
\] (6.12)

From (6.12) we find
\[
\frac{d\nu}{d\mu} + \frac{\nu}{2\mu} = -\frac{3\mu}{2\nu}.
\] (6.13)
After solving (6.13) we get $\nu = \pm \sqrt{c^2\mu^{-1} - \mu^2}$ for some real number $c > 0$. Replacing e_5 by $-e_5$ if necessary, we have
\[
\nu = \sqrt{c^2\mu^{-1} - \mu^2}.
\] (6.14)
It follows from (6.12) and (6.14) that $\varphi'(\mu) = -\frac{4}{3}i \tan^{-1}\sqrt{\mu^3/(c^2 - \mu^3)} + c_0$ for some constant c_0. Therefore, we have the theorem after applying a suitable translation in μ. \hfill \Box

Remark 6.2. Minimal $\delta(2, 2)$-ideal Lagrangian submanifolds in complex space forms \mathbb{C}^5, $\mathbb{C}P^5$ and $\mathbb{C}H^5$ are classified in [13]. Also $\delta(2)$-ideal minimal Lagrangian submanifolds in $\mathbb{C}P^4$ and $\mathbb{C}H^4$ have been classified recently in [14].
Let \(\gamma(t) \) be a unit speed curve in \(\mathbb{C}^* \). We put
\[
\gamma(t) = r(t)e^{i\theta(t)}, \quad \gamma'(t) = e^{i\zeta(t)}.
\]
(6.15)

The following result gives \(H \)-umbilical submanifolds of \(\mathbb{C}^5 \) with ratio 4.

Proposition 6.3. If \(M \) is an \(H \)-umbilical Lagrangian submanifold of \(\mathbb{C}^5 \) of ratio 4, then \(M \) is an open part of a complex extensor \(\gamma \otimes \iota \) of the unit hyper sphere \(\iota : S^4(1) \subset E^5 \) via a generating curve \(\gamma : I \to \mathbb{C}^* \) whose curvature satisfies \(\kappa = 4\theta' \).

Proof. If \(M \) is an \(H \)-umbilical Lagrangian submanifold of \(\mathbb{C}^5 \) with ratio 4, then the second fundamental form satisfies
\[
\begin{align*}
 h(e_j,e_j) &= \mu Je_5, \quad h(e_j,e_5) = \mu Je_j, \quad j \in \Delta, \\
 h(e_5,e_5) &= 4\mu Je_5, \quad h(e_j,e_k) = 0, \quad 1 \leq j \neq k \leq 4,
\end{align*}
\]
for a nonzero function \(\mu \). Thus Gauss’ equation yields \(K(e_1 \wedge e_5) = 3\mu^2 \). Hence \(M \) is non-flat. Therefore, according to Theorem F, \(M \) is an open part of a complex extensor of \(\iota : S^{n-1}(1) \subset E^n \) via a generating curve \(\gamma : I \to \mathbb{C}^* \).

It follows from [2] that the functions \(\varphi \) and \(\mu \) in (4.1) are related with the two angle functions \(\zeta \) and \(\theta \) by \(\varphi = \zeta'(t) = \kappa \) and \(\mu = \theta'(t) \). Thus whenever \(\gamma \) is a unit speed curve satisfying \(\kappa = 4\theta' \), the complex extensor \(\gamma \otimes \iota \) is an \(H \)-umbilical Lagrangian submanifold of ratio 4. Conversely, every \(H \)-umbilical Lagrangian submanifold of ratio 4 in \(\mathbb{C}^n \) can be obtained in such way. \(\square \)

7. Improved \(\delta(2,2) \)-ideal Lagrangian submanifolds of \(\mathbb{C}P^5 \)

Theorem 7.1. Let \(M \) be an improved \(\delta(2,2) \)-ideal Lagrangian submanifold in \(\mathbb{C}P^5(4) \). Then it is one of the following Lagrangian submanifolds:

1. a \(\delta(2,2) \)-ideal Lagrangian minimal submanifold;
2. an \(H \)-umbilical Lagrangian submanifold of ratio 4;
3. a Lagrangian submanifold defined by
\[
L(\mu,u_2,\ldots,u_4) = \frac{1}{c} \left(\sqrt{i\mu} e^{i\theta} \rho, e^{3i\theta} \left(\sqrt{c^2 - \mu^2 - \mu - i\mu^2} \right) \right),
\]
where \(c \) is a positive real number, \(\rho : N^4 \to S^9(1) \subset \mathbb{C}^5 \) is a horizontal lift of a non-totally geodesic \(\delta(2) \)-ideal Lagrangian minimal immersion in \(\mathbb{C}P^4(4) \), and \(\theta(\mu) \) satisfies
\[
\frac{d\theta}{d\mu} = \frac{1}{2\sqrt{c^2 \mu - \mu^2 - 1}}.
\]
(7.1)
Proof. Under the hypothesis there is an orthonormal frame \(\{ e_1, \ldots, e_5 \} \) such that (4.1) holds. If \(\mu = 0 \), then \(M \) is a \(\delta(2,2) \)-ideal Lagrangian minimal submanifold. Thus we obtain case (1). If \(\mu \neq 0 \) and \(a, b = 0 \), then \(M \) is an \(H \)-umbilical Lagrangian submanifold of ratio 4, which gives case (2).

Next, assume that \(a, \mu \neq 0 \). Then Lemma 4.5 implies \(b = 0 \). So, by Lemmas 5.1 we obtain (5.1) and (5.2). Also, in this case \(M \) is locally a warped product \(I \times \rho(t) N^4 \) with \(e_5 = \partial_t \) according to Lemma 5.3. From Lemma 4.1, we find

\[
\begin{align*}
 h(e_1, e_1) &= aJe_1 + \mu Je_5, \\
 h(e_2, e_2) &= -aJe_1 + \mu Je_5, \\
 h(e_3, e_3) &= h(e_4, e_4) = \mu Je_5, \\
 h(e_5, e_5) &= 4\mu Je_5, \\
 h(e_i, e_5) &= \mu Je_i, \quad i \in \Delta, \\
 h(e_i, e_j) &= 0, \quad \text{otherwise.}
\end{align*}
\]

(7.3)

By Lemma 5.4 we have the following ODE system:

\[
\begin{align*}
 \frac{d\nu}{dt} &= -1 - \nu^2 - 3\mu^2, \\
 \frac{d\mu}{dt} &= 2\mu\nu.
\end{align*}
\]

(7.4)

Let \(\theta(t) \) be a function on \(M \) satisfying

\[
\theta'(t) = \mu.
\]

(7.5)

Let \(L \) denote the horizontal lift in \(S^{11}(1) \subset \mathbb{C}^6 \) of the Lagrangian immersion of \(M \) in \(CP^5(4) \) via Hopf’s fibration. Consider the maps:

\[
\xi = \frac{e^{-3i\theta}(e_5 - \nu + i\mu)L}{\sqrt{1 + \mu^2 + \nu^2}}, \quad \phi = \frac{e^{-i\theta}(L + (\nu - i\mu)e_5)}{\sqrt{1 + \mu^2 + \nu^2}}.
\]

(7.6)

Then \(\langle \xi, \xi \rangle = \langle \phi, \phi \rangle = 1 \). From \(\nabla_{e_j} e_5 = \nu e_j, \quad j \in \Delta, \) and (7.4), we find \(\nabla_{e_j} \xi = 0 \). Moreover, it follows from Lemma 5.1 and (7.3) that \(\nabla_{e_5} e_5 = 4i\mu e_5 - L \). Thus we also have \(\nabla_{e_5} \xi = 0 \). Hence \(\xi \) is a constant unit vector in \(\mathbb{C}^6 \). Similarly, we also have \(\nabla_{e_5} \phi = 0 \). So \(\phi \) is independent of \(t \). Therefore, by combining (7.6) we find

\[
L = \frac{e^{i\theta}\phi - e^{3i\theta}(\nu - i\mu)\xi}{\sqrt{1 + \mu^2 + \nu^2}}.
\]

(7.7)

Since \(\phi \) is orthogonal to \(\xi, i\xi \), after choosing \(\xi = (0, \ldots, 0, 1) \in \mathbb{C}^6 \) we obtain

\[
L = \frac{1}{\sqrt{1 + \mu^2 + \nu^2}} \left(e^{i\theta}\phi, e^{3i\theta}(\nu - i\mu) \right)
\]

(7.8)
It follows from (7.4) and (7.5) that
\[
\frac{d\nu}{d\mu} = -\frac{1 + \nu^2 + 3\mu^2}{2\nu} \quad \text{and} \quad \frac{d\theta}{d\mu} = \frac{1}{2\nu},
\] (7.9)
Solving the first differential equation in (7.9) gives
\[
\nu = \pm \sqrt{c^2\mu - 1 - \mu^2}, \quad c \in \mathbb{R}^+.
\] (7.10)
By replacing \(e_5\) by \(-e_5\) if necessary, we have \(\nu = \sqrt{c^2\mu - 1 - \mu^2 - 1}\). Consequently,
\[
L = \frac{1}{c} \left(\sqrt{\mu e^{i\theta}} e^{3i\theta} (\sqrt{c^2 - \mu^2} - \mu - i\mu^2) \right),
\] (7.11)
It follows from (5.1), (7.3) and the second formula in (7.6) that
\[
\hat{\nabla}_{e_j} \phi = \frac{ce^{-i\theta}}{\sqrt{\mu}} e_j, \quad j \in \Delta.
\] (7.12)
Thus after applying (6.11) and (7.12) we derive that
\[
\hat{\nabla}_{e_i} \hat{\nabla}_{e_\alpha} \phi = \sum_{\gamma=2}^{n} \left(\Gamma_{ij}^k + ih_{ij}^k \right) \phi_k(e_{\gamma}) - \langle \phi_k(e_i), \phi_k(e_j) \rangle \phi, \quad i, j \in \Delta.
\] (7.13)
Hence \(\phi\) is a horizontal immersion in \(S^9(1)\). Moreover, it follows from (7.13) that the second fundamental form of \(\phi\) is a scalar multiple of the original second fundamental form of \(M\) restricted to the second factor of the warped product \(I \times_\rho N\). Consequently, \(\phi\) is a minimal horizontal immersion in \(S^9(1)\) of a non-totally geodesic \(\delta(2)\)-ideal Lagrangian minimal submanifold of \(CP^4(4)\).

The converse is easy to verify. \(\square\)

8. IMPROVED \(\delta(2, 2)\)-IDEAL LAGRANGIAN SUBMANIFOLDS OF \(CH^5\)

Theorem 8.1. Let \(M\) be an improved \(\delta(2, 2)\)-ideal Lagrangian submanifold in \(CH^5(-4)\). Then \(M\) is one of the following Lagrangian submanifolds:

(i) a \(\delta(2, 2)\)-ideal Lagrangian minimal submanifold;
(ii) an \(H\)-umbilical Lagrangian submanifold of ratio 4;
(iii) a Lagrangian submanifold defined by
\[
L(\mu, u_1, \ldots, u_4) = \frac{1}{c} \left(\sqrt{\mu e^{i\theta}} \phi(u_2, \ldots, u_4), e^{-i\theta} (\sqrt{\mu - \mu^3 - c^2} - i\mu^2) \right),
\] (8.1)
where c is a positive number, $\phi : N^4 \to H_1^1(-1) \subset C_1^5$ is a horizontal lift of a non-totally geodesic $\delta(2)$-ideal minimal Lagrangian immersion in $CH^4(-4)$, and $\theta(t)$ satisfies $\frac{d\theta}{dt} = \frac{1}{2}\sqrt{1 - \mu^2 - c^2\mu^{-1}}$;

(iv) a Lagrangian submanifold defined by
$$L(\mu, u_1, \ldots, u_4) = \frac{1}{c} \left(e^{-i\theta}(\sqrt{\mu - \mu^3 + c^2} - i\mu^2), \sqrt{\mu}e^{i\theta}\phi(u_2, \ldots, u_4) \right),$$

(8.2)

where c is a positive number, $\phi : N^4 \to S^9(1) \subset C^5$ is a horizontal lift of a non-totally geodesic $\delta(2)$-ideal minimal Lagrangian immersion in $CP^4(4)$, and $\theta(t)$ satisfies $\frac{d\theta}{dt} = \frac{1}{2}\sqrt{1 - \mu^2 + c^2\mu^{-1}}$;

(v) a Lagrangian submanifold defined by
$$L(t, u_1, \ldots, u_4) = \frac{1}{\cosh t - i \sinh t} \left(2t + w + i \left(\cosh 2t - \langle \psi, \psi \rangle - \frac{1}{4} \right) \right),$$
$$\psi_1, \psi_2, 2t + w + i \left(\cosh 2t - \langle \psi, \psi \rangle + \frac{1}{4} \right) \right),$$

(8.3)

where $\psi(u_1, \ldots, u_4)$ is a non-totally geodesic $\delta(2)$-ideal Lagrangian minimal immersion in C^4 and up to a constant $w(u_1, \ldots, u_4)$ is the unique solution of the PDE system: $w_{u_j} = 2 \langle \psi_{u_j}, i\psi \rangle$, $j = 1, 2, 3, 4$;

(vi) a Lagrangian submanifold defined by
$$L(t, u_1, \ldots, u_4) = \frac{1}{\cosh t - i \sinh t} \left(2t + w + i \left(\cosh 2t - \langle \psi, \psi \rangle - \frac{1}{4} \right) \right),$$
$$\psi_1, \psi_2, 2t + w + i \left(\cosh 2t - \langle \psi, \psi \rangle + \frac{1}{4} \right) \right),$$

(8.4)

where $\psi = (\psi_1, \psi_2)$ is the direct product immersion of two non-totally geodesic Lagrangian minimal immersions $\psi_\alpha : N^2_\alpha \to C^2$, $\alpha = 1, 2$, and up to a constant $w(u_1, \ldots, u_4)$ is the unique solution of the PDE system: $w_{u_j} = 2 \langle \psi_{u_j}, i\psi \rangle$, $j = 1, 2, 3, 4$.

Proof. Under the hypothesis there exists an orthonormal frame $\{e_1, \ldots, e_5\}$ such that (4.11) holds.

Case (1) $\mu = 0$. In this case, we obtain case (i) of the theorem.

Case (2): $\mu \neq 0$ and $a, b = 0$. In this case M is an H-umbilical Lagrangian submanifold with ratio 4, which gives case (ii).

Case (3): $\mu \neq 0$ and at least one of a, b is nonzero. Without loss of generality, we may assume $a \neq 0$ and $\mu > 0$. We divide this into two cases.
Case (3.a): \(a, \mu \neq 0 \) and \(b = 0\). By Lemmas 5.1 we obtain (5.1) and (5.2). Also, \(M\) is locally a warped product \(I \times \mu(t) N^4\) with \(e_5 = \partial_t\), according to Lemma 5.3. From Lemma 4.1 we find

\[
h(e_1, e_1) = aJe_1 + \mu Je_5, \quad h(e_1, e_2) = -aJe_2, \\
\]

\[
h(e_2, e_2) = -aJe_1 + \mu Je_5, \\
\]

\[
h(e_3, e_3) = h(e_4, e_4) = \mu Je_5, \quad h(e_5, e_5) = 4\mu Je_5, \\
\]

\[
h(e_i, e_5) = \mu Je_i, \quad i \in \Delta, \quad h(e_i, e_j) = 0, \text{ otherwise.} \tag{8.5}
\]

Let \(L\) be a horizontal immersion of \(M\) in \(H^{11}_{11}(-1) \subset C^6_1\) of the Lagrangian immersion of \(M\) in \(CH^5(-4)\) via Hopf's fibration and \(\theta(t)\) a function satisfying

\[
d\theta dt = \mu. \tag{8.6}
\]

From Lemma 5.4 we obtain the following ODE system:

\[
\frac{d\nu}{dt} = 1 - 3\mu^2 - \nu^2, \quad \frac{d\mu}{dt} = 2\mu\nu. \tag{8.7}
\]

It follows from (8.6) and (8.7) that

\[
\frac{d\nu}{d\mu} = \frac{1 - 3\mu^2 - \nu^2}{2\mu\nu}, \quad \frac{d\theta}{d\mu} = \frac{1}{2\nu}. \tag{8.8}
\]

Solving the first differential equation in (8.8) gives \(\nu = \pm \sqrt{1 - \mu^2 - k\mu^{-1}}\) for some real number \(k\). By replacing \(e_5\) by \(-e_5\) if necessary, we find

\[
\nu = \sqrt{1 - \mu^2 - k\mu^{-1}}, \quad \frac{d\theta}{d\mu} = \frac{1}{2\sqrt{1 - \mu^2 - k\mu^{-1}}}. \tag{8.9}
\]

It follows from (8.7) that \(\frac{d}{dt}(1 - \mu^2 - \nu^2) = -2\nu(1 - \mu^2 - \nu^2)\). Since this equation for \(y(t) = 1 - \mu^2 - \nu^2 = k\mu^{-1}\) has a unique solution for each given initial condition, each solution either vanishes identically or is nowhere zero.

Case (3.a.1): \(\mu^2 + \nu^2 < 1\). In this case, (8.9) implies \(k > 0\). Thus we may put \(k = c^2\), \(c > 0\). Consider the maps:

\[
\eta = \frac{e^{-3i\theta}(e_5 - (\nu + i\mu)L)}{\sqrt{1 - \mu^2 - \nu^2}}, \quad \phi = \frac{e^{-i\theta}((\nu - i\mu)e_5 - L)}{\sqrt{1 - \mu^2 - \nu^2}}. \tag{8.10}
\]

Then \(\langle \eta, \eta \rangle = 1\) and \(\langle \phi, \phi \rangle = -1\). From \(\nabla_{e_j} e_5 = \nu e_j, j \in \Delta\), and (8.5), we obtain \(\nabla e_5 \xi = 0\), where \(\nabla\) is the Levi-Civita connection of \(C^6_1\). Lemma 5.1 and (8.5) give \(\nabla e_5 e_5 = 4i\mu e_5 + L\). Thus we find \(\nabla e_5 \xi = 0\). So \(\eta\) is a constant.
unit vector. Also, we find $\tilde{\nabla}_e_5 \phi = 0$. Hence ϕ is independent of t. From (8.10) we get

$$L = -\frac{e^{i\theta} \phi + e^{-i\theta} (\nu - i\mu) \eta}{\sqrt{1 - \mu^2 - \nu^2}}. \quad (8.11)$$

Since ϕ is orthogonal to $\eta, i\eta$ and η is a constant unit space-like vector, we conclude from (8.9) and (8.11) that L is congruent to (8.1). Next, by applying the same method of the proof of Theorem 7.1, we conclude that ϕ is a horizontal immersion in $H_1^1(-1)$ whose second fundamental form is a scalar multiple of the original second fundamental form restricted to the second factor of $I \times \rho N$. Consequently, ϕ is a minimal horizontal immersion in $H_1^1(-1)$ of a non-totally geodesic $\delta(2)$-ideal Lagrangian minimal submanifold of $CH^4(-4)$. This gives case (iii).

Case (3.a.2): $\mu^2 + \nu^2 > 1$. In this case (8.8) implies $k < 0$. Thus we may put $k = -c^2, c > 0$. Now, we consider the maps:

$$\eta = e^{-i3\theta} (e_5 - (\nu + i\mu)L), \quad \phi = e^{-i\theta} ((\nu - i\mu)e_5 - L) \sqrt{\mu^2 + \nu^2 - 1} \quad (8.12)$$

instead. Then $\langle \phi, \phi \rangle = -\langle \eta, \eta \rangle = 1$. By applying similar arguments as case (3.a.1), we know that η is a constant time-like vector and ϕ is independent of t and orthogonal to $\eta, i\eta$. Moreover, we may prove that ϕ is a minimal Legendre immersion in $S^0(1)$. Therefore we have case (iv) after choosing $\eta = (1,0,\ldots,0)$.

Case (3.a.3): $\mu^2 + \nu^2 = 1$. In this case system (8.7) gives $\frac{d\mu}{dt} = 2(\nu^2 - 1)$ and $\mu = \pm \sqrt{1 - \nu^2}$. Solving these and applying a suitable translations in t, we find

$$\mu = \text{sech} \, 2t, \quad \nu = -\tanh \, 2t. \quad (8.13)$$

It follows from $\nabla_{e_5} e_5 = 0$, (8.5) and (8.13) that the horizontal lift L of the Lagrangian immersion of M in $CH^5(-4) \subset C_1^6$ satisfies

$$L_{tt} - 4i (\text{sech} \, 2t) L_t - L = 0. \quad (8.14)$$

Solving this second order differential equation gives

$$L = \phi(u_1, \ldots, u_4) + B(u_1, \ldots, u_4)(2t + i \cosh \, 2t) \cosh t - i \sinh t, \quad (8.15)$$

where $\phi(u_1, \ldots, u_4)$ and $B(u_1, \ldots, u_4)$ are C_1^6-valued functions.
On the other hand, it follows from Lemma 5.1, (8.5) and (8.13) that

$$L_{tu_j} = (i \, \text{sech}^2 t - \tanh^2 t)L_{u_j}, \quad j \in \Delta.$$ \hfill (8.16)

Substituting (8.15) into (8.16) shows that B is a constant vector ζ. Thus

$$L(t, u_1, \ldots, u_4) = \frac{\phi(u_1, \ldots, u_4)}{\cosh t - i \sinh t} + \frac{(2t + i \cosh 2t)}{\cosh t - i \sinh t} \zeta,$$ \hfill (8.17)

since $\langle L, L \rangle = -1$, (8.17) implies

$$- \cosh 2t = \langle \phi, \phi \rangle + \langle \phi, (4t + 2i \cosh 2t) \zeta \rangle + (4t^2 + \cosh^2(2t)) \langle \zeta, \zeta \rangle.$$ \hfill (8.18)

Since $\phi_t = 0$, by differentiating (8.18) with respect t we find

$$- \sinh 2t = 2t \langle \phi, \zeta \rangle + 2 \sinh 2t \langle \phi, i\zeta \rangle + (4t + \sinh 4t) \langle \zeta, \zeta \rangle.$$ \hfill (8.19)

We find from (8.19) at $t = 0$ that $\langle \phi, \zeta \rangle = 0$. Thus (8.19) gives

$$0 = \sinh 2t(1 + \langle \phi, i\zeta \rangle) + (4t + \sinh 4t) \langle \zeta, \zeta \rangle.$$ \hfill (8.20)

Differentiating (8.20) gives $\langle \phi, i\zeta \rangle = -\frac{1}{2} - 2 \langle \zeta, \zeta \rangle$. Thus (8.17) yields $\langle \phi, i\zeta \rangle = -\frac{1}{2}$ and $\langle \zeta, \zeta \rangle = 0$. Now, we find from (8.18) that $\langle \phi, \phi \rangle = 0$. Consequently we have

$$\langle \phi, \phi \rangle = \langle \zeta, \zeta \rangle = \langle \phi, \zeta \rangle = 0, \quad \langle \phi, i\zeta \rangle = -\frac{1}{2}.$$ \hfill (8.21)

Since ζ is a constant light-like vector, we may put

$$\zeta = (1, 0, \ldots, 0, 1), \quad \phi = (a_1 + ib_1, \ldots, a_6 + ib_6).$$ \hfill (8.22)

It follows from (8.21) and (8.22) that $a_6 = a_1$ and $b_6 = b_1 + \frac{1}{2}$. Therefore

$$\phi = (a_1 + ib_1, a_2 + ib_2, \ldots, a_1 + i(b_1 + \frac{1}{2})).$$ \hfill (8.23)

Now, by using $\langle \phi, \phi \rangle = 0$ and (8.23), we find $\psi = (a_2 + ib_2, \ldots, a_5 + ib_5)$ and $b_1 = -\frac{1}{4} - \langle \psi, \psi \rangle$. Combining these with (8.23) yields

$$\phi = \left(w - i \langle \psi, \psi \rangle - \frac{i}{4}, \psi, w - i \langle \psi, \psi \rangle + \frac{i}{4} \right)$$ \hfill (8.24)

with $w = a_1$. It follows from (8.22) and (8.24) that $\langle \phi_{u_j}, \zeta \rangle = \langle \phi_{u_j}, i\zeta \rangle = 0$. Thus, by applying $\langle L_{u_j}, iL \rangle = 0, \quad j \in \Delta$, we find from (8.17) that $\langle \phi_{u_j}, i\phi \rangle = 0$.

On the other hand, (8.24) implies that

$$\langle \phi_{u_j}, i\phi \rangle = -\frac{1}{2} w_{u_j} + \langle \psi_{u_j}, i\psi \rangle$$ \hfill (8.25)

with $w_{u_j} = \frac{\partial w}{\partial u_j}$. Therefore w satisfies the PDE system: $w_{u_j} = 2 \langle \psi_{u_j}, i\psi \rangle$. \hfill
Now, we derive from (8.17), (8.22) and (8.23) that
\[
L = \frac{1}{\cosh t - i \sinh t} \left(2t + w + i \left(\cosh 2t - \langle \psi, \psi \rangle - \frac{1}{4} \right) \right),
\]
(8.26)

It follows from (8.26) that
\[
L_{u_j} = \frac{1}{\cosh t - i \sinh t} \left(w_{u_j} - i \langle \psi, \psi \rangle_{u_j}, \psi_{u_j}, w_{u_j} - i \langle \psi, \psi \rangle_{u_j} \right).
\]
(8.27)

Thus we find \(\langle \psi_{u_j}, \psi_{u_k} \rangle = \cosh 2t \langle L_{u_j}, L_{u_k} \rangle \) which implies that \(\psi \) is an immersion in \(\mathbb{C}^4 \). Also, we find from (8.27) and \(\langle L_{u_j}, iL_{u_k} \rangle = 0 \) that \(\langle \psi_{u_j}, i\psi_{u_k} \rangle = 0 \). Thus \(\psi \) is a Lagrangian immersion. Now, by applying an argument similar to the last part of the proof of [11, Theorem 6.1], we conclude that
\[
\psi_{u_j u_k} = \sum_{i=1}^4 (\Gamma^i_{jk} + i h^i_{jk}) \phi_{u_i}, \quad j, k \in \Delta.
\]

Therefore, according to (8.5), \(\psi \) is a \(\delta(2) \)-ideal minimal Lagrangian immersion in \(\mathbb{C}^4 \). Consequently, we obtain case (v) of the theorem.

Case (3.b): \(a, b, \mu \neq 0 \). We obtain case (vi) of the theorem by applying the same argument as case (3.a.3).

Acknowledgement. The authors thank the referee and Dr. Luc Vrancken for pointing out an error in the original version of this paper.

References

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48824–1027, U.S.A.

E-mail address: bychen@math.msu.edu

DEPARTMENT OF GEOMETRY AND TOPOLOGY, UNIVERSITY OF SEVILLE, APDO. DE CORREOS 1160, 41080 - SEVILLA, SPAIN

E-mail address: aliciaprieto@us.es

SCHOOL OF MATHEMATICAL SCIENCES AND LPMC, NANKAI UNIVERSITY, TIANJIN 300071, P. R. CHINA

E-mail address: wangxianfeng@nankai.edu.cn