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LACK OF COMPACTNESS IN TWO-SCALE CONVERGENCE∗

MARC BRIANE† AND JUAN CASADO-DÍAZ‡

Abstract. This article deals with the links between compensated compactness and two-scale
convergence. More precisely, we ask the following question: Is the div-curl compactness assumption
sufficient to pass to the limit in a product of two sequences which two-scale converge with respect to
the pair of variables (x, x/ε)? We reply in the negative. Indeed, the div-curl assumption allows us
to control oscillations which are faster than 1/ε but not the slower ones.
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1. Introduction. In order to study the asymptotic behavior of periodic prob-
lems arising in homogenization theory, Nguetseng introduced in [7] (see also Allaire [1])
the notion of two-scale convergence:

Let Ω be a bounded open subset of Rd, Y := (− 1
2 ,

1
2 )d, and let M be a positive

integer. A bounded sequence uε in L1
loc(Ω)M two-scale converges to a function û

in L1
loc(Ω × Rd)M and Y -periodic with respect to the last variable if, for any ψ ∈

C∞
c (Ω, C∞

# (Y ))M , we have

lim
ε→0

∫
Ω

uε(x)ψ
(
x,

x

ε

)
dx =

∫
Ω

∫
Y

û(x, y)ψ(x, y) dx dy.(1.1)

A compactness theorem due to Nguetseng [7] establishes that if uε is bounded in
Lp(Ω)M , then there exists a subsequence of uε which two-scale converges to û ∈
Lp(Ω;Lp

#(Y ))M .
Taking in (1.1) ψ(x, y) independent of y, we deduce that if uε two-scale converges

to û, then it converges weakly in Lp(Ω)M to u :=
∫
Y
û(x, y) dy. On the other hand, if

uε strongly converges to u in L1(Ω)M , then it also two-scale converges to u. Therefore
two-scale convergence is stronger than weak convergence and weaker than the strong
one. Moreover, it provides an expression of the limit of the product uε ψ(x, x

ε ) of (1.1)
in which each term only weakly converges.

In the periodic homogenization we usually deal with a sequence uε which is not
only bounded in Lp(Ω)M but whose some combinations of its derivatives are also
bounded. In this context, let us recall that if uε converges weakly in W 1,p(Ω)M , for
1 ≤ p < +∞, to a function u, then it converges strongly in Lp

loc(Ω)M (Lp(Ω)M if Ω
smooth) and so uε two-scale converges to u. Then we can conjecture that the classical
results of the compensated compactness theory due to Murat and Tartar (see, e.g.,
[6] and [8]), and in particular the div-curl theorem, still hold true when we replace
the weak convergence in Lp(Ω)M with two-scale convergence. In fact we have the
following result:
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Proposition 1.1. Let (Y, Y1, . . . , Yn) be (n + 1) parallelotops of Rd of Lebesgue
measure equal to 1, and let U, V be two vector-valued functions in L2(Ω;C#(Y × Y1×
· · · × Yn))d, where C#(Y × Y1 × · · · × Yn) denotes the set of the continuous functions
on (Rd)n+1 which are Y -periodic with respect to the variable y and Yk-periodic with
respect to the variable yk for any k = 1, . . . , n. Let εk = εk(ε) for k = 1, . . . , n be n
well-ordered scales such that

lim
ε→0

ε1

ε
= lim

ε→0

εk+1

εk
= 0 for any k = 1, . . . , n− 1.(1.2)

Consider the vector-valued sequences uε and vε defined by

uε(x) := U

(
x,

x

ε
,
x

ε1
, . . . ,

x

εn

)
and vε(x) := V

(
x,

x

ε
,
x

ε1
, . . . ,

x

εn

)
,(1.3)

and assume that

divuε is compact in H−1(Ω) and curl vε is compact in H−1(Ω)d×d.(1.4)

Then the two-scale limits û of uε, v̂ of vε, and ŵ of uε·?vε exist and satisfy

ŵ = û · v̂.(1.5)

Proposition 1.1 shows that the div-curl condition (1.4) implies some compactness
in the two-scale convergence process (as in the classical case) when the oscillations
of the sequences are faster than 1

ε . Unfortunately, this is not the case for general
sequences, particularly when the oscillations are slower than 1

ε . This assertion follows
from the following theorem, which is the main result of the present paper:

Theorem 1.2. Assume that d ≥ 2. Then there exist two functions U, V ∈
C∞

# (2Y )d such that the sequence uε(x) := U(xε ) is divergence-free, the sequence
vε(x) := V (xε ) is curl-free, but the two-scale limits of uε, vε, and uε · vε do not
satisfy (1.5).

The key ingredient of this counterexample is that 2-periodic functions are consid-
ered although the test functions are 1-periodic.

In order to understand the lack of compactness in two-scale convergence, let
us recall the equivalence between the two-scale convergence theory and the method
introduced by Arbogast, Douglas, and Hornung [3] to study the oscillations of a
sequence uε in L1

loc(R
d)M . Their method consists in introducing the function ûε :

Rd × Y → RM defined by

ûε(x, y) =
∑
k∈Zd

1εk+εY (x)uε(εk + εy).(1.6)

The equivalence between the two approaches is then given by the following result (see,
e.g., [5] and [4]):

Theorem 1.3. Assume that uε is bounded in Lp(Ω)M , with 1 < p < +∞. Then

ûε converges weakly to û in Lp (Ω;Lp(Y ))
M

if and only if uε two-scale converges to û.

The functions ûε(x, y) are not continuous with respect to the variable x. If a
combination of derivatives of uε is bounded, we also get a bound for the same combi-
nation of derivatives with respect to the variable y of ûε but not with respect to the
variable x. This explains the lack of compactness in two-scale convergence.
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2. Proof of the results. In this section we prove Proposition 1.1 and Theo-
rem 1.2.

Proof of Proposition 1.1. We follow the multiscale procedure of [2]. Thanks to
the separation of scales (1.2) the sequences uε, vε, and uε · vε, respectively, two-
scale converge to û :=

∫
Y1

· · ·
∫
Yn

U , v̂ :=
∫
Y1

· · ·
∫
Yn

V , and ŵ :=
∫
Y1

· · ·
∫
Yn

U · V .

Putting test functions of type εk Φ(x, x
ε ,

x
ε1
, . . . , x

εk
) from k = n to 1 in the div-curl

assumption (1.4) implies that

divyk

(∫
Yk+1

· · ·
∫
Yn

U

)
= 0 and curlyk

(∫
Yk+1

· · ·
∫
Yn

V

)
= 0 for k = 1, . . . , n,

whence, integrating by parts the product of
∫
Yk+1

· · ·
∫
Yn

U and
∫
Yk+1

· · ·
∫
Yn

V (which

is equal to the gradient in yk of a periodic function plus a function depending only
on the other variables y1, . . . , yk−1) successively from k = n to 1, yields

ŵ =

∫
Y1

· · ·
∫
Yn

U · V =

(∫
Y1

· · ·
∫
Yn

U

)
·
(∫

Y1

· · ·
∫
Yn

V

)
= û · v̂,

which implies the desired equality (1.5).
Proof of Theorem 1.2. Let us consider two vector-valued functions Φ,Ψ ∈ C∞

c (Y )d

such that div Φ = 0, curl Ψ = 0, and Φ · Ψ �= 0 (this is possible since d > 1),
which we extend to Rd by Y -periodicity. Let η : R → R be the 1-periodic function
η :=

∑
i∈Z

1(i− 1
4 ,i+

1
4 ) and let us define the following sequences

uε(x) := η
( x1

2 ε

)
Φ
(x
ε

)
and vε(x) := η

( x1

2 ε

)
Ψ
(x
ε

)
.

Since in each cube εk + εY , for k ∈ Zd, η( x1

2 ε ) is constant, and Φ(xε ), Ψ(xε ) vanish
on the boundary of εk + εY , we have uε, vε ∈ C∞(RN ), divuε = 0, and curl vε = 0
in Rd. Moreover, since η( x1

2 ε ) is constant in εk + εY for any k ∈ Zd, it is invariant by
the transformation (1.6). So we get

ûε(x, y) = η
( x1

2 ε

)
Φ(y), v̂ε(x, y) = η

( x1

2 ε

)
Ψ(y), ûε · vε(x, y) = η2

( x1

2 ε

)
Φ(y) · Ψ(y).

By Theorem 1.3 the two-scale limits û of uε, v̂ of vε, and ŵ of uε · vε are thus given
by

û(x, y) =

(∫ 1
2

− 1
2

η(s) ds

)
Φ(y) =

1

2
Φ(y), v̂(x, y) =

(∫ 1
2

− 1
2

η(s) ds

)
Ψ(y) =

1

2
Ψ(y),

and ŵ(x, y) =

(∫ 1
2

− 1
2

η2(s) ds

)
Φ(y) · Ψ(y) =

1

2
Φ(y) · Ψ(y),

whence ŵ �= û · v̂.
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