KATZ-RADON TRANSFORM OF ℓ-ADIC REPRESENTATIONS

ANTONIO ROJAS-LEÓN

Abstract. We prove a simple explicit formula for the local Katz-Radon transform of an ℓ-adic representation of the Galois group of the fraction field of a strictly henselian discrete valuation ring with positive residual characteristic, which can be defined as the local additive convolution with a fixed tame character. The formula is similar to one proved by D. Arinkin in the \mathcal{D}-module setting, and answers a question posed by N. Katz.

1. Introduction

In [10, 3.4.1], N. Katz defines some functors on the category of continuous ℓ-adic representations of the inertia groups I_0 and I_∞ of the projective line over \bar{k} at 0 and infinity, where \bar{k} is the algebraic closure of a finite field of characteristic p and ℓ is a prime different from p. These functors arise during his study of middle convolution of sheaves on the affine line and, roughly speaking, correspond to locally convolving a representation with a fixed tame character L_χ of I_0 or I_∞. They are defined using G. Laumon’s local Fourier transform functors, and in fact correspond to taking the tensor product with the conjugate tame character $L_{\bar{\chi}}$ on the other side of the equivalence of categories given by these functors. Katz asks [10, 3.4.1] whether there is a simple expression for the functors defined in this way.

Recently, D. Arinkin [1] has studied the analog of Katz’s functor in \mathcal{D}-module theory: if K is a field of characteristic 0, $K((x))$ is the field of Laurent series over K and \mathcal{D}_x the ring of differential operators with coefficients in $K((x))$, the local Katz-Radon transform for a given $\chi \in K - \mathbb{Z}$ is an equivalence of categories $\rho_\chi : \mathcal{D}_x\text{-mod} \to \mathcal{D}_x\text{-mod}$, originally defined in [3]. Arinkin proves the simple formula [1 Theorem C]

$$\rho_\chi(F) \cong F \otimes K^{\chi_1 + 1}$$

for any $F \in \mathcal{D}_x\text{-mod}$ with a single slope μ, where K^μ is the Kummer \mathcal{D}_x-module of rank 1 generated by e, on which the derivative acts by

$$\frac{d}{dx} e = \frac{\mu}{x} e.$$

In this article we will prove a similar formula in the ℓ-adic case. More precisely, for a fixed tame ℓ-adic character L_χ and an ℓ-adic representation F of I_0, let

$$\rho_\chi(F) := FT^{\psi}_{(0,\infty)}(L_\chi \otimes FT^{\psi}_{(0,\infty)} F)$$

where $FT^{\psi}_{(0,\infty)}$ denotes Laumon’s local Fourier transform functor. If F has a single slope $a = c/d$ (with c, d relatively prime positive integers), we will prove that there is an isomorphism of I_0-representations

$$\rho_\chi(F) \cong F \otimes L_\chi^{\otimes (a+1)}$$

Mathematics Subject Classification: 14F20, 11F85, 11S99
Partially supported by P08-FQM-03894 (Junta de Andalucía), MTM2010-19298 and FEDER.
where $L^\otimes(a+1)$ is any d-th root of the character $L^\otimes(c+d)$.

For a large class of representations \mathcal{F} of I_0 (in particular for many of those who appear in applications), the isomorphism can be proven via the explicit formulas for the local Fourier transforms given by L. Fu [3] and A. Abbes and T. Saito [2]. In this article we take a different approach that works for any \mathcal{F}, and is independent of any explicit expression for the local Fourier transforms.

2. The Katz-Radon transform

Fix a finite field k of characteristic $p > 0$ and an algebraic closure \bar{k}. Let \mathbb{P}^1_k be the projective line over \bar{k} and, for every $t \in \mathbb{P}^1(\bar{k}) = \bar{k} \cup \{\infty\}$, denote by I_t its inertia group at t: for $t \neq \infty$, if $x - t$ denotes a local coordinate at t, it is the Galois group of the fraction field of the henselization of the local ring $\bar{k}[x]_{(x-t)}$. We have an exact sequence [8, 1.0]

$$0 \to P_t \to I_t \to \prod_{\ell \neq p} \mathbb{Z}_\ell(1) \to 0$$

for every $t \in \mathbb{P}^1(\bar{k})$, where P_t is the only p-Sylow subgroup of I_t. Moreover, there is a canonical filtration of I_t by the higher ramification groups

$$I_t^{(r)} \supseteq I_t^{(s)} \text{ for } 0 \leq r < s \in \mathbb{R}$$

which are normal in I_t.

Fix a prime $\ell \neq p$, and denote by \mathcal{R}_t the abelian category of continuous ℓ-adic representations of I_t (i.e. continuous representations $\mathcal{F} : I_t \to \text{GL}_n(\mathbb{Q}_\ell)$, whose image is in $\text{GL}_n(E_\lambda)$ for some finite extension E_λ of \mathbb{Q}_ℓ). For every irreducible $\mathcal{F} \in \mathcal{R}_t$, the slope of \mathcal{F} is $\inf\{r \geq 0|\mathcal{F}_{I_t^{(r)}} \text{ is trivial}\}$. It is a non-negative rational number. In general, the slopes of \mathcal{F} are the slopes of the irreducible components of \mathcal{F}. For every \mathcal{F} there is a canonical direct sum decomposition [8, Lemma 1.8]

$$\mathcal{F} \cong \bigoplus_{r \geq 0} \mathcal{F}^r$$

with \mathcal{F}^r having a single slope r. The slope 0 (tame) part will be denoted by \mathcal{F}^t. \mathcal{F} is said to be tame (respectively totally wild) if $\mathcal{F} = \mathcal{F}^t$ (resp. $\mathcal{F}^t = 0$).

For every $r \geq 0$ let \mathcal{R}^r_t denote the full subcategory of \mathcal{R}_t consisting of representations with a single slope r. We have a decomposition

$$\mathcal{R}_t = \bigoplus_{r \geq 0} \mathcal{R}^r_t$$

in the sense that every $\mathcal{F} \in \mathcal{R}_t$ has a decomposition [1] and $\text{Hom}_{\mathcal{R}_t}(\mathcal{F}, \mathcal{G}) = 0$ if $\mathcal{F} \in \mathcal{R}^r_t$, $\mathcal{G} \in \mathcal{R}^s_t$ and $r \neq s$ [8, Proposition 1.1].

Let $k' \subseteq \bar{k}$ be a finite extension of k, and $\chi : k'^\times \to \hat{\mathbb{Q}}^\times_\ell$ a multiplicative character. By [4, 1.4-1.8] there is an associated smooth Kummer sheaf L_χ on $\mathbb{G}_{m,k}$, which is a tame character of I_0 (and of I_∞) of the same order as χ. If $k'' \subseteq k'$ is another extension, the sheaves defined by χ and $\chi \circ \text{Nm}_{k''/k'} : k''^\times \to \hat{\mathbb{Q}}^\times_\ell$ are isomorphic.

Moreover, every tame character of I_0 (and of I_∞) can be obtained in this way. Whenever we speak about a tame character of I_0, we will implicitly assume that we have made a choice of such a finite extension of k and of a character.
Fix a non-trivial additive character \(\psi : k \to \bar{Q}_p^\times \). The local Fourier transform functors, defined by G. Laumon in [11], give equivalences of categories
\[
\text{FT}^\psi_{(0,\infty)} : \mathcal{R}_0 \to \mathcal{R}_{<1}^{<1},
\]
\[
\text{FT}^\psi_{(\infty,0)} : \mathcal{R}_{>1}^{>1} \to \mathcal{R}_\infty^{<1}
\]
and
\[
\text{FT}^\psi_{(\infty,0)} : \mathcal{R}_{<1}^{<1} \to \mathcal{R}_0
\]
(where \(\mathcal{R}_{<1}^{<1} = \bigoplus_{r<1} \mathcal{R}_r^{<1} \) and \(\mathcal{R}_{>1}^{>1} = \bigoplus_{r>1} \mathcal{R}_r^{>1} \)) that describe the relationship between the local monodromies of an \(\ell \)-adic sheaf on \(\mathbb{A}^1_k \) and its Fourier transform with respect to \(\psi \). The Katz-Radon transform is defined in terms of them.

Definition 2.1. Fix a tame character \(\mathcal{L}_\chi \) of \(I_0 \). The (local) Katz-Radon transform (with respect to \(\mathcal{L}_\chi \)) is the functor \(\rho_\chi : \mathcal{R}_0 \to \mathcal{R}_0 \) given by
\[
\rho_\chi(\mathcal{F}) = \text{FT}^{-1}_{(0,\infty)}(\text{FT}^\psi_{(0,\infty)} \mathcal{L}_\chi \otimes \text{FT}^\psi_{(0,\infty)} \mathcal{F}) = \text{FT}^{-1}_{(0,\infty)}(\mathcal{L}_\chi \otimes \text{FT}^\psi_{(0,\infty)} \mathcal{F}).
\]

The Katz-Radon transform is an auto-equivalence of the category \(\mathcal{R}_0 \) (since it is a composition of three equivalences of categories). It preserves dimensions and slopes, and for tame \(\mathcal{F} \) it is given by \(\rho_\chi(\mathcal{F}) = \mathcal{F} \otimes \mathcal{L}_\chi \) [10, 3.4.1]. For totally wild \(\mathcal{F} \), it can be interpreted as the “local additive convolution” of \(\mathcal{F} \) and \(\mathcal{L}_\chi \) [10, 3.4.3]: if we extend \(\mathcal{F} \) to a smooth sheaf on \(\mathbb{G}_{m,k} \), tamely ramified at infinity, then \(\rho_\chi(\mathcal{F}) \) is the wild part of the local monodromy at 0 of \(\mathcal{F} \otimes \mathcal{L}_\chi \), where
\[
\mathcal{F} \otimes \mathcal{L}_\chi = \mathcal{R}^1 \sigma_!(\mathcal{F} \boxtimes \mathcal{L}_\chi)
\]
and \(\sigma : \mathbb{A}^2_k \to \mathbb{A}^1_k \) denotes the addition map (in [10], the “middle convolution” is used instead, but that one differs from the one used here only by Artin-Shreier components, which are smooth at 0 and therefore do not affect the local monodromy). Notice that, in particular, \(\rho_\chi \) is independent of the choice of the additive character \(\psi \).

More intrinsically, it can be described in terms of vanishing cycles functors [11, 2.7.2]: If \(X = \mathbb{A}^2_{m,(1,1)} \) (respectively \(S = \mathbb{A}^1_{m,(1)} \)) denotes the henselization of \(\mathbb{A}^2_k \) at \((0,0) \) (resp. the henselization of \(\mathbb{A}^1_k \) at 0) then \(\rho_\chi(\mathcal{F}) \cong \mathcal{R}^1 \Phi(\sigma, \mathcal{F} \boxtimes \mathcal{L}_\chi)_{(0,0)} \), where \(\mathcal{R} \Phi(\sigma, \mathcal{F} \boxtimes \mathcal{L}_\chi) \) is the vanishing cycles complex for the addition map \(\sigma : X \to S \) with respect to the sheaf \(\mathcal{F} \boxtimes \mathcal{L}_\chi \) on \(X \).

Similarly, it also has an interpretation as a “local multiplicative convolution” [12, Corollary 5.6]: If \(X = \mathbb{G}^2_{m,(1,1)} \) (respectively \(S = \mathbb{G}_{m,(1)} \)) denotes the henselization of \(\mathbb{G}_{m,k} \) at \((1,1) \) (resp. the henselization of \(\mathbb{G}_{m,k} \) at 1) then \(\rho_\chi(\mathcal{F}) \cong \mathcal{R}^1 \Phi(\mu, \mathcal{F} \boxtimes \mathcal{L}_\chi)(1,1) \), where \(\mathcal{R} \Phi(\mu, \mathcal{F} \boxtimes \mathcal{L}_\chi) \) is the vanishing cycles complex for the multiplication map \(\mu : X \to S \) with respect to the sheaf \(\mathcal{F} \boxtimes \mathcal{L}_\chi \) on \(X \), and \(\mathcal{F} \) and \(\mathcal{L}_\chi \) are viewed as representations of \(I_1 \) via the isomorphism \(I_0 \cong I_1 \) that maps the uniformizer \(x \) at 0 to the uniformizer \(x-1 \) at 1.

The main result of this article is the following simple expression for \(\rho_\chi \):

Theorem 2.2. Let \(\mathcal{F} \in \mathcal{R}_0 \) be totally wild with a single slope \(a > 0 \). Write \(a = c/d \), where \(c \) and \(d \) are relatively prime positive integers. Let \(\mathcal{L}_\eta \) be any tame character of \(I_0 \) such that \(\mathcal{L}_\eta^{\otimes d} = \mathcal{L}_\chi^{\otimes (c+d)} \). Then
\[
\rho_\chi(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_\eta.
\]
Lemma 3.2. Let \(\sigma \) where \(n \) and \(\tau \) where \(r \). We have
\[
\rho_\chi(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_\chi^{(\sigma+1)}
\]
where \(\mathcal{L}_\chi^{(\sigma+1)} \) stands for “any character that can reasonably be called \(\mathcal{L}_\chi^{(\sigma+1)} \).”

By the decomposition \(\mathcal{R}_0 = \bigoplus_{r \geq 0} \mathcal{R}_0^r \), this determines \(\rho_\chi(\mathcal{F}) \) for any \(\mathcal{F} \in \mathcal{R}_0 \), thus answering the question posed by N. Katz in [10, 3.4.1].

A question that remains open is the following: in the article we prove that \(\rho_\chi(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_n \), independently for any \(\mathcal{F} \) with slope \(a \). So the functors \(\mathcal{R}_0^0 \to \mathcal{R}_0^0 \) given by \(\rho_\chi \) and \((-) \otimes \mathcal{L}_n \) map any \(\mathcal{F} \) to isomorphic objects. Is there an actual isomorphism of functors between them? In the affirmative case, is there a simple way to construct it?

3. Proof of the main theorem

In this section we will prove theorem 2.2. We will start with the case where \(\mathcal{F} \in \mathcal{R}_0 \) is irreducible.

Lemma 3.1. Let \(\mathcal{F} \in \mathcal{R}_0 \). Then \(\mathcal{F}^I \neq 0 \) if and only if there exists \(\epsilon > 0 \) such that for every \(\mathcal{G} \in \mathcal{R}_0 \) with a single slope \(b \in (0, \epsilon) \) we have
\[
\text{Swan}(\mathcal{F} \otimes \mathcal{G}) > \text{Swan}(\mathcal{F}) \dim(\mathcal{G}).
\]

Proof. Suppose that \(\mathcal{F}^I \neq 0 \), and let \(a_0 = 0 < a_1 < \cdots < a_r \) be the slopes of \(\mathcal{F} \), with multiplicities \(n_0, n_1, \ldots, n_r \). Then \(\text{Swan}(\mathcal{F}) = \sum n_i a_i \). Let \(\epsilon = a_1 \). Then for every \(\mathcal{G} \in \mathcal{R}_0 \) with a single slope \(b \in (0, \epsilon) \) the tensor product \(\mathcal{F} \otimes \mathcal{G} \) has slopes \(b < a_1 < \cdots < a_r \) with multiplicities \(n_0 m, n_1 m, \ldots, n_r m \) where \(m = \dim(\mathcal{G}) \) by [S] Lemma 1.3. Therefore
\[
\text{Swan}(\mathcal{F} \otimes \mathcal{G}) = n_0 mb + \sum_{i=1}^r n_i ma_i > \sum_{i=1}^r n_i ma_i = \text{Swan}(\mathcal{F}) \dim(\mathcal{G}).
\]
Conversely, suppose that \(\mathcal{F}^I = 0 \), and let \(a_1 < \cdots < a_r \) be the slopes of \(\mathcal{F} \). Then for every \(\mathcal{G} \in \mathcal{R}_0 \) with a single slope \(b \in (0, a_1) \) the tensor product \(\mathcal{F} \otimes \mathcal{G} \) has the same slopes as \(\mathcal{F} \) by [S] Lemma 1.3, and in particular \(\text{Swan}(\mathcal{F} \otimes \mathcal{G}) = \text{Swan}(\mathcal{F}) \dim(\mathcal{G}) \). This proves the lemma, since for every \(\epsilon > 0 \) there exist representations in \(\mathcal{R}_0 \) with slope \(b \in (0, \epsilon) \) (for instance, one may take \([n_1, \mathcal{H}] \), where \(\mathcal{H} \in \mathcal{R}_0 \) has slope \(a > 0 \) and \(n \) is a prime to \(p \) integer greater than \(a/\epsilon \) [S 1.13.2]).

For any two objects \(K, L \in \mathcal{D}_c^0(\mathbb{A}_k^1, \bar{\mathbb{Q}}_\ell) \), we will denote by \(K \ast L \in \mathcal{D}_c^0(\mathbb{A}_k^1, \bar{\mathbb{Q}}_\ell) \) their additive convolution:
\[
K \ast L = \text{R}\sigma_1(\text{K} \boxtimes \text{L})
\]
where \(\sigma : \mathbb{A}_k^2 \to \mathbb{A}_k^1 \) is the addition map.

Lemma 3.2. Let \(K, L, M \in \mathcal{D}_c^0(\mathbb{A}_k^1, \bar{\mathbb{Q}}_\ell) \). Then
\[
\text{R}\Gamma_c(\mathbb{A}_k, (K \ast L) \otimes M) \cong \text{R}\Gamma_c(\mathbb{A}_k, K \otimes ((\tau_{-1} \ast L) \ast M))
\]
where \(\tau_{-1} : \mathbb{A}_k^1 \to \mathbb{A}_k^1 \) is the additive inversion.

Proof. We have
\[
\text{R}\Gamma_c(\mathbb{A}_k, (K \ast L) \otimes M) = \text{R}\Gamma_c(\mathbb{A}_k, \text{R}\sigma_1(\text{K} \boxtimes \text{L}) \otimes M) = \text{R}\Gamma_c(\mathbb{A}_k, \text{R}\sigma((\text{K} \boxtimes \text{L}) \otimes \sigma^* M)) = \text{R}\Gamma_c(\mathbb{A}_k, (\text{K} \boxtimes \text{L}) \otimes \sigma^* M)
\]
by the projection formula. If \(\pi_1, \pi_2 : \mathcal{A}_k^2 \to \mathcal{A}_k^1 \) are the projections then
\[
\text{RG}_c(\mathcal{A}_k^2, (K \boxtimes L) \otimes \sigma^* M) = \text{RG}_c(\mathcal{A}_k^2, \pi_1^* K \otimes \pi_2^* L \otimes \sigma^* M).
\]
Consider the automorphism \(\phi : \mathcal{A}_k^2 \to \mathcal{A}_k^2 \) given by \((x, y) \mapsto (x + y, -y)\). Then \(\sigma = \pi_1 \circ \phi, \pi_1 = \sigma \circ \phi \) and \(\tau_{-1} \circ \pi_2 = \pi_2 \circ \phi \). It follows that
\[
\text{RG}_c(\mathcal{A}_k^2, \pi_1^* K \otimes \pi_2^* L \otimes \sigma^* M) \cong \text{RG}_c(\mathcal{A}_k^2, \phi^* \pi_1^* K \otimes \phi^* \pi_2^* L \otimes \phi^* \sigma^* M) = \\
\cong \text{RG}_c(\mathcal{A}_k^2, \sigma^* K \otimes \pi_2^* \tau_{-1} L \otimes \pi_1^* M) = \text{RG}_c(\mathcal{A}_k^2, \text{RG}(\sigma^* K \otimes \pi_2^* \tau_{-1} L \otimes \pi_1^* M)) \cong \\
\cong \text{RG}_c(\mathcal{A}_k^2, K \otimes \text{RG}(\tau_{-1} L \otimes M)) = \text{RG}_c(\mathcal{A}_k^2, K \otimes ((\tau_{-1} L) * M)).
\]

\[\square\]

If \(\mathcal{F} \) is a smooth \(\mathbb{Q}_p \)-sheaf on \(G_{m,k} \) which is totally wild at 0, then for every \(t \in \bar{k} \) the sheaf \(\mathcal{F} \otimes \mathcal{L}_\chi(t-x) \) (extended by zero to \(\mathcal{A}_k^1 \)) is totally wild at 0 and has no punctual sections (where \(\mathcal{L}_\chi(t-x) \) is the pull-back of the Kummer sheaf \(\mathcal{L}_\chi \) under the map \(x \mapsto t-x \)), so its only non-zero cohomology group with compact support is \(H_1^1 \). We conclude that the only non-zero cohomology sheaf of \(\mathcal{F}[0] * \mathcal{L}_\chi[0] \in D^b_c(\mathcal{A}_k^1, \mathbb{Q}_p) \) is \(H_1^1 = R^1\sigma(\mathcal{F} \otimes \mathcal{L}_\chi) \). We will denote this sheaf by \(\mathcal{F} * \mathcal{L}_\chi \).

Lemma 3.3. Let \(\mathcal{F}, \mathcal{G} \in \mathcal{R}_0 \). Then
\[
\text{Swan}(\rho(x) (\mathcal{F} \otimes \mathcal{G})) = \text{Swan}(\mathcal{F} \otimes \mathcal{G}).
\]

Proof. By additivity of the Swan conductor, we may assume that \(\mathcal{F} \) is irreducible, and in particular that it has a single slope \(a \geq 0 \). If \(a = 0 \) then \(\rho(x) (\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_\chi \), so the equality is clear. Suppose that \(a > 0 \). By [7, Theorem 1.5.6], \(\mathcal{F} \) and \(\mathcal{G} \) can be extended to smooth sheaves on \(G_{m,k} \), namely ramified at infinity, which we will also denote by \(\mathcal{F} \) and \(\mathcal{G} \). Let \(\mathcal{F} \) and \(\mathcal{G} \) be also their extensions by zero to \(\mathcal{A}_k^1 \).

Using the compatibility between Fourier transform with respect to \(\psi \) and convolution [11, Proposition 1.2.2.7], we have
\[
\mathcal{F} * \mathcal{L}_\chi = \text{FT}^\psi(\text{FT}^\psi \mathcal{F} \otimes \text{FT}^\psi \mathcal{L}_\chi) = \text{FT}^\psi(\text{FT}^\psi \mathcal{F} \otimes \mathcal{L}_\chi),
\]
where \(\text{FT}^\psi \mathcal{F} \) denotes the “naive” Fourier transform in the sense of [8, 8.2], that is, the \((-1)\)-th cohomology sheaf of the Fourier transform of \(\mathcal{F}[1] \in D^b_c(\mathcal{A}_k^1, \mathbb{Q}_p) \) (which is its only non-zero cohomology sheaf, since \(\mathcal{F} \) is totally wild at zero and therefore it is Fourier [8, Lemma 8.3.1]).

Let \(n \) be the rank of \(\mathcal{F} \), and denote by \(\mathcal{F}(\infty) \in \mathcal{R}_\infty \) its local monodromy at infinity, which is a tame representation of \(I_\infty \). By Ogg-Shafarevic [3, Exposé X, Corollaire 7.12], \(\text{FT}^\psi \mathcal{F} \) is smooth on \(G_{m,k} \) of rank \(na + n = n(a+1) \). By Laumon’s local Fourier transform theory [9, Theorem 13], \(\text{FT}^\psi \mathcal{F} \) has a single slope \(\frac{a}{a+1} \) at infinity, with multiplicity \(n(a+1) \), and its monodromy at 0 has a trivial part of dimension \(na \) and its quotient is the dual \(\mathcal{F}_\infty(\infty) \) of \(\mathcal{F}_\infty \). Then \(\text{FT}^\psi \mathcal{F} \otimes \mathcal{L}_\chi \) also has a single slope \(\frac{a}{a+1} \) at infinity with multiplicity \(n(a+1) \), and its monodromy \(\mathcal{M} \) at 0 sits in an exact sequence
\[
0 \to \mathcal{L}_\chi^{na} \to \mathcal{M} \to \mathcal{F}_\infty(\infty) \otimes \mathcal{L}_\chi \to 0.
\]
Its inverse Fourier transform, by Ogg-Shafarevic, is smooth of rank \(n(a+1) \) on \(G_{m,k} \), and by local Fourier transform its wild part at 0 has slope \(a \) with multiplicity \(n \).
In fact, this wild part is simply $\rho_\chi(\mathcal{F})$ by the additive convolution interpretation of ρ_χ. Its monodromy at infinity sits in an exact sequence
\begin{equation}
0 \rightarrow \mathcal{L}_\chi^{\otimes n} \rightarrow (\mathcal{F} \ast \mathcal{L}_\chi)(\infty) \rightarrow \mathcal{F}(\infty) \otimes \mathcal{L}_\chi \rightarrow 0
\end{equation}

obtained from (3) by local Fourier transform.

So $\mathcal{F} \ast \mathcal{L}_\chi$ has rank $n(a + 1)$ on $\mathbb{G}_{m,k}$, and its monodromy at 0 is the direct sum of $\rho_\chi(\mathcal{F})$ and a constant part of dimension $na = \text{Swan}(\mathcal{F})$. So

$$\text{Swan}_0((\mathcal{F} \ast \mathcal{L}_\chi) \otimes \mathcal{G}) = \text{Swan}(\rho_\chi(\mathcal{F}) \otimes \mathcal{G}) + \text{Swan}(\mathcal{F})\text{Swan}(\mathcal{G}).$$

In particular, by Ogg-Shafarevic, the Euler characteristic of the sheaf $(\mathcal{F} \ast \mathcal{L}_\chi) \otimes \mathcal{G}$ (extended by zero to A^1_k) is $-\text{Swan}(\rho_\chi(\mathcal{F}) \otimes \mathcal{G}) - \text{Swan}(\mathcal{F})\text{Swan}(\mathcal{G})$. Using lemma \ref{lem:3.2} proper base change, and the fact that $\chi(G_m \otimes K \otimes \mathcal{L}_\chi) = \chi(G_m \otimes K)$ for any object $K \in D^b(G_m,k,\mathbb{Q}_\ell)$, we get

\begin{align*}
\text{Swan}(\rho_\chi(\mathcal{F}) \otimes \mathcal{G}) + \text{Swan}(\mathcal{F})\text{Swan}(\mathcal{G}) & = \chi(A^1_k, (\mathcal{F}[1] \ast \mathcal{L}_\chi[1]) \otimes \mathcal{G}) = \\
& = \chi(A^1_k, \mathcal{L}_\chi \otimes (\tau_1^* \mathcal{F}[1] \ast \mathcal{G}[1])) = \chi(G_m,k, \tau_1^* \mathcal{F}[1] \ast \mathcal{G}[1]) = \\
& = \chi(A^1_k, \tau_1^* \mathcal{F}[1] \ast \mathcal{G}[1]) - \text{rank}_0(\tau_1^* \mathcal{F}[1] \ast \mathcal{G}[1]) = \\
& = \chi(A^1_k, \mathcal{F}[1]\chi(A^1_k, \mathcal{G}[1]) - \chi(A^1_k, \mathcal{F}[1] \otimes \mathcal{G}[1]) = \\
& = \text{Swan}(\mathcal{F})\text{Swan}(\mathcal{G}) + \text{Swan}(\mathcal{F} \otimes \mathcal{G})
\end{align*}

where rank$_0$ of a derived category object denotes the alternating sum of the ranks at 0 of its cohomology sheaves, so Swan$(\rho_\chi(\mathcal{F}) \otimes \mathcal{G}) = \text{Swan}(\mathcal{F} \otimes \mathcal{G})$.

\begin{proposition}
Let $\mathcal{F} \in \mathcal{R}_0$ be totally wild and irreducible. Then there exists a tame character \mathcal{L}_η of I_0 such that $\rho_\chi(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_\eta$.
\end{proposition}

\begin{proof}
Let $\widehat{\mathcal{F}}$ be the dual representation. We claim that the tame part of $\rho_\chi(\mathcal{F}) \otimes \widehat{\mathcal{F}}$ is non-zero. By lemma \ref{lem:3.1} it suffices to show that there is an $\epsilon > 0$ such that, for any $\mathcal{G} \in \mathcal{R}_0$ with slope $b \in (0, \epsilon)$, $\text{Swan}(\rho_\chi(\mathcal{F}) \otimes \widehat{\mathcal{F}} \otimes \mathcal{G}) > \text{Swan}(\rho_\chi(\mathcal{F}) \otimes \widehat{\mathcal{F}}) \dim(\mathcal{G})$.

But by lemma \ref{lem:3.3} we have

$$\text{Swan}(\rho_\chi(\mathcal{F}) \otimes \widehat{\mathcal{F}} \otimes \mathcal{G}) = \text{Swan}(\mathcal{F} \otimes \widehat{\mathcal{F}} \otimes \mathcal{G})$$

and

$$\text{Swan}(\rho_\chi(\mathcal{F}) \otimes \widehat{\mathcal{F}}) = \text{Swan}(\mathcal{F} \otimes \widehat{\mathcal{F}})$$

and, since $\widehat{\mathcal{F}}$ is the dual of \mathcal{F}, the tensor product $\mathcal{F} \otimes \widehat{\mathcal{F}}$ has a trivial quotient and, in particular, has non-trivial tame part. By lemma \ref{lem:3.1} there exists $\epsilon > 0$ such that, for any $\mathcal{G} \in \mathcal{R}_0$ with slope $b \in (0, \epsilon)$, $\text{Swan}(\mathcal{F} \otimes \widehat{\mathcal{F}} \otimes \mathcal{G}) > \text{Swan}(\mathcal{F} \otimes \widehat{\mathcal{F}}) \dim(\mathcal{G})$.

Since the tame part of $\rho_\chi(\mathcal{F}) \otimes \widehat{\mathcal{F}}$ is non-zero and it is a direct summand, it contains a tame character \mathcal{L}_η of I_0 as a subrepresentation. Then

$$\rho_\chi(\mathcal{F}) \otimes \widehat{\mathcal{F}} \otimes \mathcal{L}_\eta = \rho_\chi(\mathcal{F}) \otimes \mathcal{F} \otimes \mathcal{L}_\eta = \text{Hom}(\mathcal{F} \otimes \mathcal{L}_\eta, \rho_\chi(\mathcal{F}))$$

contains a trivial subrepresentation, so $\text{Hom}_{I_0}(\mathcal{F} \otimes \mathcal{L}_\eta, \rho_\chi(\mathcal{F})) \neq 0$. Since both $\rho_\chi(\mathcal{F})$ and $\mathcal{F} \otimes \mathcal{L}_\eta$ are irreducible, any non-zero I_0-equivariant map $\mathcal{F} \otimes \mathcal{L}_\eta \rightarrow \rho_\chi(\mathcal{F})$ must be an isomorphism. \qedhere

\begin{proposition}
Let $\mathcal{F} \in \mathcal{R}_0$ be totally wild and irreducible of dimension n and slope a, and let \mathcal{L}_η be a tame character of I_0 such that $\rho_\chi(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_\eta$. Then $\mathcal{L}_\eta^{\otimes n} \cong \mathcal{L}_\chi^{\otimes n(a+1)}$.
\end{proposition}
Proof. Extend \(F \) to a smooth \(\ell \)-adic sheaf on \(\mathbb{G}_{m, \bar{k}} \), tamely ramified at infinity, also denoted by \(F \). Let \(F \) also denote its extension by zero to \(\bar{k}_1 \). By the proof of lemma 3.3, the sheaf \(F * L_\chi \) is smooth on \(\mathbb{G}_{m, \bar{k}} \), its monodromy at 0 is the direct sum of \(\rho_\chi(F) \cong F \otimes L_\eta \) and a trivial part of dimension \(na \), and its monodromy at infinity sits in the exact sequence (4). Its determinant is then a smooth sheaf of tame fundamental group of rank 1 on \(\mathbb{G}_{m, \bar{k}} \), whose monodromy at 0 is \(\det(F) \otimes L_\eta^{\otimes n} \), and whose monodromy at \(\infty \) is \(\det(F(\infty)) \otimes L_\chi^{\otimes(n+1)} \).

Then \(\det(F) \otimes L_\eta^{\otimes n} \otimes \det(F * L_\chi) \) is a rank 1 smooth sheaf on \(\mathbb{G}_{m, \bar{k}} \), with trivial monodromy at 0 and tamely ramified at infinity. Since the tame fundamental group of \(\bar{k}_1 \) is trivial, we conclude that

\[\det(F * L_\chi) \cong \det(F) \otimes L_\eta^{\otimes n} \]

as sheaves on \(\mathbb{G}_{m, \bar{k}} \). Comparing their monodromies at infinity gives the desired isomorphism.

It remains to show that any such \(L_\eta \) works.

Lemma 3.6. Let \(F \in R_0 \) be irreducible of dimension \(n \), and let \(L_\eta \) be a tame character of \(I_0 \) such that \(L_\eta^{\otimes n} \) is trivial. Then \(F \otimes L_\eta \cong F \).

Proof. Write \(n = n_0 p^a \), where \(\alpha \geq 0 \) and \(n_0 \) is prime to \(p \). Since the \(p \)-th power operation permutes the tame characters of \(I_0 \) preserving their order, \(L_\eta^{\otimes n_0} \) must be the trivial character. Now by [8, 1.14.2], \(F \) is induced from a \(p^a \)-dimensional representation \(G \) of \(I_0(n_0) \), the unique open subgroup of \(I_0 \) of index \(n_0 \). Then

\[F \otimes L_\eta = \left(\text{Ind}_{I_0(n_0)}^{I_0} G \right) \otimes L_\eta \cong \text{Ind}_{I_0(n_0)}^{I_0} (G \otimes \text{Res}^{I_0}_{I_0(n_0)} L_\eta) = \text{Ind}_{I_0(n_0)}^{I_0} (G) = F \]

since the restriction of \(L_\eta \) to \(I_0(n_0) \) is trivial.

We can now finish the proof of theorem 2.2 for irreducible representations.

Proposition 3.7. Let \(F \in R_0 \) be irreducible of slope \(a > 0 \). Write \(a = c/d \), where \(c \) and \(d \) are relatively prime positive integers. Let \(L_\eta \) be any tame character of \(I_0 \) such that \(L_\eta^{\otimes d} = L_\chi^{\otimes(c+d)} \). Then

\[\rho_\chi(F) \cong F \otimes L_\eta. \]

Proof. Let \(n \) be the dimension of \(F \). By propositions 3.4 and 3.5, there exists a tame character \(L_\eta' \) of \(I_0 \) such that \(\rho_\chi(F) \cong F \otimes L_\eta' \), and \(L_\eta^{n_0} \cong L_\chi^{n_0(a+1)} \). Since the Swan conductor \(na = nc/d \) of \(F \) is an integer, \(n \) must be divisible by \(d \). Then

\[(L_\eta' \otimes L_\eta)^{\otimes n} = L_\eta'^{\otimes n} \otimes L_\eta^{\otimes d(n/d)} = L_\chi^{\otimes(n(a+1))} \otimes L_\chi^{\otimes(c+d)(n/d)} = L_\chi^{\otimes(n(a+1))} \otimes L_\chi^{\otimes(n(a+1))} = 1 \]

so, by lemma 3.6

\[\rho_\chi(F) \cong F \otimes L_\eta' \cong (F \otimes L_\eta') \otimes (L_\eta' \otimes L_\eta) = F \otimes L_\eta. \]

Proof of theorem 2.2. The functors \(R_0^0 \to R_0^0 \) given by \(F \mapsto \rho_\chi(F) \) and \(F \mapsto F \otimes L_\eta \) are equivalences of categories, so they preserve direct sums. It is enough then to prove the isomorphism for indecomposable representations.
So let $\mathcal{F} \in \mathcal{R}_m$ be indecomposable of length m. Then by [10] Lemma 3.1.6, Lemma 3.1.7(3)] there exist an irreducible $\mathcal{F}_0 \in \mathcal{R}_m$ and a (necessarily tame) indecomposable unipotent $\mathcal{U}_m \in \mathcal{R}_m$ of dimension m such that $\mathcal{F} = \mathcal{F}_0 \oplus \mathcal{U}_m$. Since \mathcal{F} is a successive extension of m copies of \mathcal{F}_0, by exactness $\rho_\chi(\mathcal{F})$ is a successive extension of m copies of $\rho_\chi(\mathcal{F}_0) \cong \mathcal{F}_0 \otimes \mathcal{L}_\eta$, which is irreducible. By [10] Lemma 3.1.7(2)], there is a unipotent $\mathcal{U} \in \mathcal{R}_m$ of dimension m such that $\rho_\chi(\mathcal{F}) \cong \mathcal{F}_0 \otimes \mathcal{L}_\eta \otimes \mathcal{U}$.

Since ρ_χ is an equivalence of categories, $\rho_\chi(\mathcal{F})$ must be indecomposable, so \mathcal{U} itself must be indecomposable. Therefore $\mathcal{U} \cong \mathcal{U}_m$ and

$$\rho_\chi(\mathcal{F}) \cong \mathcal{F}_0 \otimes \mathcal{L}_\eta \otimes \mathcal{U}_m \cong \mathcal{F} \otimes \mathcal{L}_\eta.$$

□

4. Some variants

We will consider now representations of the inertia group I_∞ at infinity. For any $\mathcal{F} \in \mathcal{R}_\infty$ of slope > 1, we can take its local Fourier transform $\text{FT}^\psi_{(\infty, \infty)} \mathcal{F}$, which is again in the same category. In [10] 3.4.4, N. Katz asks about a simple formula for

$$\rho_\chi'(\mathcal{F}) := \text{FT}^\psi_{(\infty, \infty)}(\mathcal{L}_\chi \otimes \text{FT}^\psi_{(\infty, \infty)} \mathcal{F}),$$

which is an auto-equivalence of the category of continuous ℓ-adic representations of \mathcal{R}_∞ with slopes > 1. It can be interpreted as the wild part of the monodromy at infinity of the (additive) convolution $\mathcal{F} \ast \mathcal{L}_\chi$ [10] 3.4.6], where \mathcal{F} is any extension of the representation \mathcal{F} to a smooth sheaf on $\mathbb{G}_{m, k}$ tamely ramified at 0. In this section we will prove

Theorem 4.1. Let $\mathcal{F} \in \mathcal{R}_\infty$ be totally wild with a single slope $a > 1$. Write $a = c/d$, where c and d are relatively prime positive integers. Let \mathcal{L}_η be any tame character of I_∞ such that $\mathcal{L}_\eta^{\otimes d} = \mathcal{L}_\chi^{\otimes (c-d)}$. Then

$$\rho_\chi'(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_\eta.$$

In other words, we have the formula

$$\rho_\chi'(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_\chi^{\otimes (a-1)}$$

where $\mathcal{L}_\chi^{\otimes (a-1)}$ stands for “any character that can reasonably be called $\mathcal{L}_\chi^{\otimes (a-1)}$.”

The proof is very similar to the one for ρ_χ. Since every representation in \mathcal{R}_∞ is a direct sum of representations with single slopes, we can assume that \mathcal{F} has a single slope a.

Lemma 4.2. Let $\mathcal{F}, \mathcal{G} \in \mathcal{R}_\infty$ be totally wild, with \mathcal{F} having all slopes > 1. Then

$$\text{Swan}(\rho_\chi'(\mathcal{F}) \otimes \mathcal{G}) = \text{Swan}(\mathcal{F} \otimes \mathcal{G}).$$

Proof. We can assume that \mathcal{F} has a single slope $a > 1$. Extend \mathcal{F} and \mathcal{G} to smooth sheaves on $\mathbb{G}_{m, \bar{k}}$, tamely ramified at 0, which we will also denote by \mathcal{F} and \mathcal{G} (as well as their extensions by zero to \mathbb{A}_k^1).

Let n be the rank of \mathcal{F}, and denote by $\mathcal{F}(0)$ its local monodromy at 0, which is a tame representation of I_0. Since all slopes of \mathcal{F} at infinity are > 1, it is a Fourier sheaf [3] Lemma 8.3.1, so its Fourier transform is a single sheaf that we will denote by $\text{FT}^\psi \mathcal{F}$. By Ogg-Shafarevic, $\text{FT}^\psi \mathcal{F}$ is smooth on $\mathbb{G}_{m, \bar{k}}$ of rank na. By Laumon’s local Fourier transform theory [9] Remark 9], it has a single positive slope $\frac{a}{a-1}$ at infinity with multiplicity $n(a-1)$ and tame part isomorphic to $\mathcal{F}(0)$,
and it is unramified at 0. Then FT$^\psi$ \mathcal{F} \otimes \mathcal{L}_χ also has a single slope $\frac{a}{a-1}$ at infinity with multiplicity $n(a-1)$, tame part isomorphic to \mathcal{L}_χ \otimes $\mathcal{F}(0)$, and its monodromy at 0 is a direct sum of na copies of \mathcal{L}_χ.

Its inverse Fourier transform, by Ogg-Shafarevic, is smooth of rank $n(a-1)\frac{a}{a-1} + n = n(a+1)$ on $\mathbb{G}_{m,k}$, and by local Fourier transform its monodromy at infinity is the direct sum of $\rho'_\chi(\mathcal{F})$ and $na = \text{Swan}(\mathcal{F})$ copies of \mathcal{L}_χ. At 0 is has trivial part of rank na, while quotient isomorphic to \mathcal{L}_χ \otimes $\mathcal{F}(0)$. So

$$\text{Swan}_\infty((\mathcal{F} \ast \mathcal{L}_\chi) \otimes \mathcal{G}) = \text{Swan}(\rho'_\chi(\mathcal{F}) \otimes \mathcal{G}) + \text{Swan}(\mathcal{F})\text{Swan}(\mathcal{G}).$$

We conclude exactly as in lemma 3.3.

Using lemma 3.1 as in proposition 3.4 we deduce

Proposition 4.3. Let $\mathcal{F} \in \mathcal{R}_\infty$ be irreducible with slope > 1. Then there exists a tame character \mathcal{L}_η of I_∞ such that $\rho'_\chi(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_\eta$.

Proposition 4.4. Let $\mathcal{F} \in \mathcal{R}_\infty$ be irreducible of dimension n and slope $a > 1$, and let \mathcal{L}_η be a tame character of I_∞ such that $\rho'_\chi(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_\eta$. Then $\mathcal{L}_\eta^{\otimes n} \cong \mathcal{L}_\chi^{\otimes n(a-1)}$.

Proof. Extend \mathcal{F} to a smooth ℓ-adic sheaf on $\mathbb{G}_{m,k}$, tamely ramified at 0, also denoted by \mathcal{F}, and let \mathcal{F} also denote its extension by zero to \mathbb{A}^1_k. By the proof of lemma 4.2, the sheaf $\mathcal{F} \ast \mathcal{L}_\chi$ is smooth on $\mathbb{G}_{m,k}$, its monodromy at infinity is the direct sum of $\rho'_\chi(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_\eta$ and na copies of \mathcal{L}_χ, and its monodromy at 0 has trivial part of dimension na with quotient isomorphic to $\mathcal{L}_\chi \otimes \mathcal{F}(0)$. Its determinant is then a smooth sheaf of rank 1 on $\mathbb{G}_{m,k}$, whose monodromy at infinity is $\text{det}(\mathcal{F}) \otimes \mathcal{L}_\eta^{\otimes n} \otimes \mathcal{L}_\chi^{\otimes na}$, and whose monodromy at 0 is $\text{det}(\mathcal{F}(0)) \otimes \mathcal{L}_\chi^{\otimes n}$.

We conclude, as in proposition 3.5 that

$$\text{det}(\mathcal{F} \ast \mathcal{L}_\chi) \cong \text{det}(\mathcal{F}) \otimes \mathcal{L}_\eta^{\otimes n} \otimes \mathcal{L}_\chi^{\otimes na}$$

as sheaves on $\mathbb{G}_{m,k}$. Comparing their monodromies at 0 gives the desired isomorphism.

The remainder of the proof of theorem 4.1 is identical to the one for ρ_χ.

We have a third variant, for representations $\mathcal{F} \in \mathcal{R}_\infty$ with slopes < 1:

$$\rho''_\chi(\mathcal{F}) := \text{FT}_{(\infty,0)}^{\psi,-1}(\mathcal{L}_\chi \otimes \text{FT}_{(\infty,0)}^{\psi}(\mathcal{F})),$$

which is again an auto-equivalence of the category of continuous ℓ-adic representations of \mathcal{R}_∞ with slopes < 1. As in the ρ_χ case we have $\rho''_\chi(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_\chi$ for \mathcal{F} tame. The corresponding formula for wild \mathcal{F} is

Theorem 4.5. Let $\mathcal{F} \in \mathcal{R}_\infty$ be totally wild with a single slope $a < 1$. Write $a = \frac{c}{d}$, where c and d are relatively prime positive integers. Let \mathcal{L}_η be any tame character of I_∞ such that $\mathcal{L}_\eta^{\otimes d} = \mathcal{L}_\chi^{\otimes (d-c)}$. Then

$$\rho''_\chi(\mathcal{F}) \cong \mathcal{F} \otimes \mathcal{L}_\eta.$$

Proof. Let $\mathcal{G} := \text{FT}_{(\infty,0)}^{\psi}(\mathcal{F}) \in \mathcal{R}_0$, which has slope $\frac{a}{1-a} = \frac{c}{d-c}$ [9, Theorem 13]. The statement is then equivalent to

$$\text{FT}_{(\infty,0)}^{\psi,-1}(\mathcal{L}_\chi \otimes \mathcal{G}) \cong \mathcal{L}_\eta \otimes \text{FT}_{(\infty,0)}^{\psi,-1}(\mathcal{G})$$

or

$$\text{FT}_{(\infty,0)}^{\psi}(\mathcal{L}_\eta \otimes \text{FT}_{(\infty,0)}^{\psi,-1}(\mathcal{G})) \cong \mathcal{G} \otimes \mathcal{L}_\chi.$$
But the left hand side is just $\rho_{\overline{\eta}}(\mathcal{G})$, since the inverse of $\text{FT}^{\psi}_{(\infty,0)}$ is $\text{FT}^{\overline{\psi}}_{(0,\infty)}$ with respect to the conjugate additive character, and ρ_{χ} does not depend on the choice of the non-trivial additive character ψ. So the isomorphism follows from theorem 2.2.

\section*{Funding}

This work was partially supported by P08-FQM-03894 (Junta de Andalucía), MTM2010-19298 and FEDER

\section*{References}

\textsc{Departamento de Álgebra, Universidad de Sevilla, Apdo 1160, 41080 Sevilla, Spain.}, \textsc{E-mail: arojas@us.es}