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Abstract. In this work, we suggest a new feature selection technique
that lets us use the wrapper approach for finding a well suited feature
set for distinguishing experiment classes in high dimensional data sets.
Our method is based on the relevance and redundancy idea, in the sense
that a ranked-feature is chosen if additional information is gained by
adding it. This heuristic leads to considerably better accuracy results,
in comparison to the full set, and other representative feature selection
algorithms in twelve well–known data sets, coupled with notable dimen-
sionality reduction.

1 Introduction

In recent years, there has been an explosion in the rate of acquisition of data in
several domains. A typical data set may contain thousands of features. Theoret-
ically, having more features should give us more discriminating power. However,
this can cause several problems: increase computational complexity and cost;
too many redundant or irrelevant features; and estimation degradation in the
classification error.

Most of the feature selection algorithms approach the task as a search prob-
lem, where each state in the search specifies a distinct subset of the possible
attributes [1]. The search procedure is combined with a criterion in order to
evaluate the merit of each candidate subset of attributes. There are a lot of
possible combinations between each procedure search and each attribute mea-
sure [2]. Feature selection is grouped in two ways according to the attribute
evaluation measure: depending on the type (filter or wrapper techniques) or on
the way that features are evaluates (individual or subset evaluation). The filter
model relies on general characteristics of the data to evaluate and select feature
subsets without involving any mining algorithm. The wrapper model requires
one predetermined mining algorithm and uses its performance as the evaluation
criterion. It searches for features better suited to the mining algorithm, aiming to
improve mining performance, but it also is more computationally expensive [3]
than filter model. Feature ranking (FR), also called feature weighting [1, 4], as-
sesses individual features and assigns them weights according to their degrees
of relevance, while the feature subset selection (FSS) evaluates the goodness
of each found feature subset. (Unusually, some search strategies in combination
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with subset evaluation can provide a ranked list). In the FR algorithms category,
a subset of features is often selected from the top of a ranking list. This approach
is efficient for high–dimensional data due to its linear time complexity in terms
of dimensionality. In the FSS algorithms category, candidate feature subsets are
generated based on a certain search strategy. Different algorithms address theses
issues distinctively. In [2], a great number of selection methods are categorized.
We found different search strategies, namely exhaustive, heuristic and random
search, combined with several types of measures to form different algorithms.
The time complexity is exponential in terms of data dimensionality for exhaus-
tive search and quadratic for heuristic search. The complexity can be linear to
the number of iterations in a random search [5], but experiments show that in
order to find best feature subset, the number of iterations required is usually at
least quadratic to the number of features [6]. The most popular search methods
in machine learning ([7, 8]) can not be applied to these data sets due to the large
number of features. One of the few used search techniques in these domains is
sequential forward [9, 10, 11] (also called hill–climbing or greedy).

The limitations of both approaches, ranking and subset selection, clearly
suggest that we should pursue a hybrid model. Recently, a new framework for
feature selection has been used, where several above–mentioned approaches are
combined. The process of selection involves two phases due to the high number
of attributes: Algorithms begin with a phase where attributes are individually
evaluated, and provide a ranking according to a filter criterion. In the next step,
a feature subset evaluator (filter or wrapper) is applied to a fixed number of
attributes from the previous ranking (greater than a threshold value, or the first
k features) following a search strategy. The method proposed by Xing et al. [12],
the one proposed by Yu and Liu [9], and another by Guyon et al. [13] are among
the most referenced works at present following this framework.

Our paper is organized as follows. In section 2, we present the concept of
relevance and redundancy at the same time used in our wrapper approach. Al-
gorithm is described in section 3. Experimental results are shown in Section 4,
and the most interesting conclusions are summarized in section 5.

2 Wrapper Approach over Feature Ranking

Feature ranking makes use of a scoring function S(i) computed from the values
xk,i and yk (k = 1, . . . , m examples and i = 1, . . . , n features). By convention,
we assume that a high score is indicative of high relevance and that features
are sorted in decreasing order of S(i). We consider ranking criteria defined for
individual features, independently of the context of others. In feature subset se-
lection, it is a fact that two types of attributes are generally perceived as being
unnecessary: attributes that are irrelevant to the target concept, and attributes
that are redundant given other attributes. We now formally define incremental
ranked (IR) usefulness in order to devise an approach to explicitly identify rele-
vant features and do not take into account redundant features. In other words,
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learning can be achieved more efficiently and effectively with just relevant and
non–redundant features.

Definition 1. Let R be a set of M features sorted in decreasing order of S(i),
given a sample of data D, a learning algorithm L , and a subset of selected fea-
tures F , feature Fi is incrementally useful to L with respect to F if the accuracy
of the hypothesis that L produces using the group of features {Fi} ∪ F is better
significantly (denoted by �) than the accuracy achieved using just the subset of
features F , in this case Fi is added to F . Note that the process starts from the
first feature in R, and continues with the next ranked attribute.

Wrapper subset evaluates attribute sets by using a learning scheme. Five cross
validation is used to estimate the accuracy of the learning scheme for a set of
features. We conduct Student’s paired two–tailed t–test in order to evaluate the
statistical significance (at 0.1 level) of the difference between the previous best
subset and the candidate subset. This last definition allows us to select features
from the ranking, but only those that increase the classification rate significantly.
Although the size of the sample is small (5 cross validation), our search method
use a t–test. We want to obtain an heuristic not to do an accurate population
study. However, on the one hand it must be noted that it is an heuristic based on
an objective criterion, to determine the statistical significance degree of difference
between the accuracy of each subset. On the other hand, the confidence level has
been relaxed from 0.05 to 0.1 due to the small size of the sample. Statistically
significant differences at the p < 0.05 significance level would not permitted us to
add more features, because it would be difficult to obtain significant differences
between the accuracy of each subset by the test. Obviously, if the confidence
level is increased, more features can be selected, and vice versa. Then, the user
can adjust the confidence level.

3 Algorithm

There are two phases in the algorithm shown in Figure 3: Firstly, the features
are ranked according to some evaluation measure (line 1–4). In second place, we
deal with the list of attributes once, crossing the ranking from the beginning to
the last ranked feature (line 5–12).

Consider the situation depicted in Figure 2; an example of feature selection
process by IR. It shows the attributes ranked according to some evaluation mea-
sure. We obtain the classification accuracy with the first feature in the list (f5).
In the second step, we run the classifier with the first two features of the ranking
(f5,f7), and a paired t–test is performed to determine the statistical significance
degree of the differences. As it is lower than 0.1, f7 is not selected. The same oc-
curs with the two next subsets (f5,f4 and f5,f3), but feature f1 is added, because
the accuracy obtained is significatively better than that obtained with only f5,
and so on. In short, the classifier is run nine times to select, or not, the ranked
features (f5,f1,f2): once with only one feature, four times with two features, three
with three features and once with four features. The same situation occurs in
high–dimensional data.
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Input: E training, U--measure, W--classifier

Output: BestSubset

1 list l = {}
2 for each Fi ∈ F
3 S(i) = compute(fi, U)

4 position Fi into l according to S(i)
5 BestClassification = 0
6 BestSubset = ∅
7 for each Fi ∈ l
8 TempSubset = BestSubset ∪ Fi

9 TempClassification = WrapperClassification(TempSubset, W)

10 if (TempClassification � BestClassification)

11 BestSubset = TempSubset

12 BestClassification = TempClassification

Fig. 1. IR Algorithm

f5 f7 f4 f3 f1 f8 f6 f2 f9

Fig. 2. Example of feature selection process by IR

4 Experiments and Results

The aim of this section is to evaluate our approach in terms of classification accu-
racy, degree of dimensionality and speed on selected features, in order to see how
IR fare in situations where there are large numbers of features. The comparison
was performed with two representative groups of high–dimensional data sets:
Three data sets are selected from the UCI Repository1, and three selected from
the NIPS 20032 feature selection benchmark. The main characteristic of these
data sets is the great number of features. The full characteristics of all the data
sets are summarized in Table 1. In order to compare the effectiveness of feature
selection, attribute sets chosen by each technique were tested with two learn-
ing algorithms, a probabilistic (naive Bayes) and a decision tree learner (c4.5).
These two algorithms were chosen because they represent two quite different
approaches to learning.

As already mentioned, the proposed search is realized over a ranking of at-
tributes, and any evaluation measure can be used for it. In the experiments, we
use two criterions: one belongs to wrapper model and one to filter model. In the
wrapper approach, denoted by IRW , we order attributes according to their indi-

1 http://www.ics.uci.edu/ mlearn/MLRepository.html
2 http://clopinet.com/isabelle/Projects/NIPS2003/
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Table 1. Data sets

Data Acr. Feat. Inst. Classes

Musk(1) MK 166 6598 2

Arrhythmia(1) AR 279 452 16

Madelon(2) MA 500 2000 2

Multi–feature(1) MF 649 2000 10

Arcene(2) AC 10000 100 2

Dexter(2) DE 20000 300 2

Table 2. Accuracy of nb on selected features. The symbol ” +” and ”− ” respectively

identify statistically significant, at 0.1 level, wins or losses over IRW

Data Wrapper Filter Full
IRW IRF SFW CFSSF FOCUSSF

Acc Att Acc Att Acc Att Acc Att Acc Att Acc

MK 84.59 1 84.59 1 N/A 65.75− 10 83.37− 11 83.86
AR 73.01 7 73.02 8 74.35 15 69.69− 25 69.03− 21 61.74−

MA 63.00 4 62.65 3 62.75 6 60.90 6 59.15− 15 58.40−

MF 97.30 15 97.85 19 N/A 97.10 86 93.65− 7 93.35−

AC 90.00 22 93.00 19 83.00 4 N/A 60.00− 4 70.00−

DE 88.67 14 88.00 15 84.67 11 N/A 90.33 23 88.67

vidual predictive power, using as criterion the performance of the target classifier
built with a single feature. In the filter approach, a ranking is provided using
non–linear correlation measure. We choose symmetrical uncertainty (denoted by
IRF ), based on entropy and information gain concepts.

Due to the high–dimensional data, we limit our comparison to sequential for-
ward (SF) techniques (see Introduction section). We choose three representative
subset evaluation measures in combination with SF search engine. One, denoted
by SFW , uses a target learning algorithm to estimate the worth of attribute
subsets; the other two are subset search algorithms which exploit sequential for-
ward search and utilize correlation measure (variation of CFS algorithm [8]) or
consistency measure (variation of FOCUS [7]) to guide the search, denoted by
CFSSF and FOCUSSF respectively (both of them used in [9]).

The experiments are conducted using the WEKA’s implementation of all
these existing algorithms and our algorithm is also implemented in the WEKA
environment [14]. For each data set, we run CFSSF and FOCUSSF algorithms
(both of them are independent of the learning algorithm), and for each data set
and each classifier, we run the wrapper feature selection algorithms, IRW , IRF

and SFW . We record the running time and the number of selected features for
each algorithm. We then apply the two classifiers (nb and c4) on the original
data set as well as on each newly obtained data set containing only the selected
features from each algorithm and record overall accuracy by a 10–fold cross–
validation.
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Table 3. Accuracy of c4 on selected features

Data Wrapper Filter Full
IRW IRF SFW CFSSF FOCUSSF

Acc Att Acc Att Acc Att Acc Att Acc Att Acc

MK 96.83 7 96.30 7 96.44 6 95.54− 10 95.04− 11 96.88
AR 74.32 6 73.02 5 74.10 8 69.04− 25 71.67 21 64.38−

MA 83.50 9 80.20− 23 80.80− 11 74.55− 6 78.20− 15 70.35−

MF 95.70 13 94.55 10 95.70 17 94.45− 86 91.40− 7 94.75
AC 91.00 6 94.00 9 95.00 7 N/A 77.00− 4 74.00−

DE 88.00 12 88.33 17 90.33 12 N/A 89.33 23 76.00−

Tables 2 and 3 report accuracy and number of features selected from nb and c4
respectively by each feature selection algorithm and the full set. We conduct an
Students paired two–tailed t–test in order to evaluate the statistical significance
of the difference between two averaged accuracy values: one resulted from IRW

and the other resulted from one of IRF , SFW , CFSSF , FOCUSSF and the full
set. The symbol ” + ” and ” − ” respectively identify statistically significant,
at 0.1 level, wins or losses over IRW . And Table 4 records the running time for
each feature selection algorithm, showing two results for each wrapper approach,
depending on the learning algorithm chosen.

Before we compare our technique with the others. Note the similarity between
the results obtained with the two approaches of our algorithm, one based on a
ranking–wrapper (IRW ) and the other on a ranking–filter (IRF ). As we can
see from Table 2 and 3, in all the cases, except for one data set (MA) with c4
classifier, these accuracy differences are not statistically significant. the number
of attributes selected are similar but IRF is a little bit faster than IRW because
of the time needed to build the ranking for the wrapper–ranking approach.

Apart from the previous comparison, we study the behavior of IRW compar-
ing in three way: with respect to a whole set of features; with respect to another
wrapper approach; and with respect to two filter approaches.

Classification accuracies obtained with the whole feature set are statistically
lower than those obtained with our wrapper approach. As we can see from the
last column in Table 2 and 3, IRW wins in most of the cases, except in two data
sets (MK and DE) and two data sets (MK and MF) for nb and c4 respectively.
These accuracy differences are especially relevant in two data sets (AR and AC)
and four (AR, MA, AC and DE) for nb and c4 respectively. We notice that the
number of selected features is drastically low as regards the whole set.

For the two classifiers, no statistical significant differences are shown, ex-
cept for c4 in MA data set, between the accuracy of our wrapper approach and
the accuracy of the sequential forward wrapper procedure (SFW ). On the other
hand, the advantage of IRW with respect to the SFW for nb and c4 is clear.
We can observe (see Table 4) that IRW is consistently faster than SFW . The
time savings from IRW become more obvious when the computer–load neces-
sities of the mining algorithm increases. In many cases the time savings are in
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Table 4. Running time (seconds) for each feature selection algorithm

Data Wrapper Filter
nb c4

IRW IRF SFW IRW IRF SFW CFSSF FOCUSSF

MK 334 72 N/A 2400 2700 10277 10 77
AR 251 140 4089 291 245 2400 2 14
MA 156 96 825 2460 5100 18000 5 52
MF 1984 2643 N/A 6502 5280 72000 73 45
AC 1020 660 1027 1121 945 5820 N/A 35
DE 3300 2622 20280 9240 20880 86400 N/A 1320

degrees of magnitude, and in two cases, SFW did not report any results: for nb
in MF data set SFW did not produce any results after forty eight hours running
(hence, neither selected features nor accuracy results); and in MK data set for
nb classifier, results are not shown because the accuracy obtained with each in-
dividual feature is lower than without feature. These results verify the superior
computational efficiency of incremental search applied by IRW over greedy se-
quential search applied by SFW , with similar number of attributes and without
statistical significant differences.

In general, the computer–load necessities of filter procedures can be consid-
ered as negligible with respect to wrapper ones (Table 4), except for FOCUSSF

in DE data set. However, accuracies obtained with IRW are notably better for
nb and c4. Firstly, for the last two data sets (AC and DE) results were not
produced by CFSSF because the program ran out of memory after a period of
considerably long time due to its quadratic space complexity. Secondly, in the
rest of data sets, IRW either improves or maintains the accuracy of both CFSSF

and FOCUSSF . From Table 2 and 3, it can be seen that apart from the two
last data sets, IRW improves CFSSF on two and four data sets for nb and c4
respectively. And IRW improves FOCUSSF on five and four data sets and no
statistical significant differences on the rest.

5 Summary and Future Work

The success of many learning schemes, in their attempts to construct data mod-
els, hinges on the reliable identification of a small set of highly predictive at-
tributes. The inclusion of irrelevant, redundant and noisy attributes in the model
building process phase can result in poor predictive performance and increased
computation. The most popular search methods in machine learning can not be
applied to these data sets due to the large number of features. However, in this
paper, we have proposed a new feature selection technique that lets us use a
wrapper approach for finding a well suited feature set for classification. We use
the incremental ranked usefulness definition to decide at the same time, whether
a feature is relevant and non–redundant or not (non–relevant or redundant). The
technique extracts the best non–consecutive features from the ranking, trying to
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statistically avoid the influence of unnecessary attributes on the later classifica-
tion. This new heuristic, named IR, shows an excellent performance comparing
to the traditional sequential forward search technique, not only regarding the
classification accuracy with respect to filter approaches, but also the computa-
tional cost with respect to the wrapper approach. By way of comparison, a rough
estimate of the time required by the SF wrapper approach to choose this many
features is on the order of thousands of hours, assuming the method does not
get caught in a local minima first and prematurely stops adding attributes as a
result.
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