
Incremental Rule Learning based on Example Nearness
from Numerical Data Streams

Francisco Ferrer–Troyano
Dept. of Computer Science

Av. Reina Mercedes S/N
41012, Seville, Spain

ferrer@lsi.us.es

Jesus S. Aguilar–Ruiz
Dept. of Computer Science

Av. Reina Mercedes S/N
41012, Seville, Spain

aguilar@lsi.us.es

Jose C. Riquelme
Dept. of Computer Science

Av. Reina Mercedes S/N
41012, Seville, Spain

riquelme@lsi.us.es

ABSTRACT
Mining data streams is a challenging task that requires on-
line systems based on incremental learning approaches. This
paper describes a classification system based on decision
rules that may store up–to–date border examples to avoid
unnecessary revisions when virtual drifts are present in data.
Consistent rules classify new test examples by covering and
inconsistent rules classify them by distance as the nearest
neighbor algorithm. In addition, the system provides an
implicit forgetting heuristic so that positive and negative
examples are removed from a rule when they are not near
one another.

1. INTRODUCTION
Classification and rule learning are important, well–studied

tasks in machine learning and data mining. In order to clas-
sify and model large–scale databases, important works have
been recently addressed to scale up inductive classifiers and
learning algorithms [3, 16]. However, a growing number of
emerging business and scientific applications, where high–
rate streams of detailed data are constantly generated, is
frequently challenging the scalability of such methods. Ex-
amples of such data streams include networks event logs,
telecommunications records, and financial and retail chain
transactions. Applications of such streams include credit
card fraud protection, target marketing, and intrusion de-
tection, for which it is not possible to collect all relevant
input data before applying the learning process. Under
these circumstances, KDD systems have to operate continu-
ously (online systems) and process each item in real–time [4].
In these environments, memory and time limitations make
multi–pass scalable algorithms unfeasible since data are re-
ceived at a higher rate than they can be repeatedly analyzed.
Furthermore, real–world data streams are not generated in
stationary environments, requiring incremental learning ap-
proaches to track trends and adapt to changes in the target
concept.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

This paper describes an incremental learning algorithm
that provides a set of decision rules induced from numerical
data streams. Our proposal extends previous work [1] by fil-
tering border examples that lie near to decision boundaries,
so that every rule may retain a particular set of positive
and negative examples. This information makes possible to
ignore false alarms with respect to virtual drifts and avoid
hasty modifications.

Paper Organization. The rest of the paper is organized
as follows. The next section outlines a background and re-
lated work of classification, incremental learning, concept
drift and data streams classification systems. In Section 3,
we motivate and describe the basis of our algorithm. Section
4 describes the data sets used in our experiments and shows
the results achieved. In Section 5 we discuss the conclusions
we reached based on the experimental results and outline
possible directions for future work.

2. BACKGROUND AND RELATED WORK
In the problem of classification, an input data set of train-

ing examples T = {e1, . . . , en} is given. Every training ex-
ample ei = (−→xi , yi) is a pair formed by a vector −→xi and a
discrete value yi, named class label and taken of a finite
set Y . Every vector −→xi has the same dimensionality, each
dimension is named attribute and each component xij is
an attribute value (numeric or symbolic). Under the as-
sumption there is an underlying mapping function f so that
y = f(−→x), the goal is to obtain a model from T that ap-

proximates f as f̂ in order to classify or decide the label
of non–labelled examples (tests), so that f̂ maximizes the
prediction accuracy.

Within incremental learning, a whole training set is not
available a priori but examples arrives over time, normally
one at a time t and not time–dependent necessarily (e.g.,
time series). Despite online learning systems continuously
review, update, and improve the model, not every online
system is based on an incremental approach. According to
the taxonomy in [13], if Tt = {(−→x , y) : y = f(−→x)} for

t =< 1, . . . ,∞ >, then now f̂t approximates f . In this
context, if an algorithm discards f̂t−1 and generates f̂t from
Ti, for i =< 1, . . . t >, then it is on–line batch or temporal
batch with full instance memory. If the algorithm modifies
f̂t using f̂t−1 and Tt, then it is purely incremental with no
instance memory. A third approach is that of systems with
partial instance memory, which select and retain a subset
of past training examples to use them in future training
episodes.

568

2005 ACM Symposium on Applied Computing

Along with the ordering effects, incremental learning from
real-world domains faces two problems known as hidden con-
text and concept drift, respectively [20]. The problem of hid-
den context is when the target concept may depend on un-
known variables, which are not given as explicit attributes.
In addition, hidden contexts may be expected to recur due
to cyclic or regular phenomena (aka recurring contexts) [5].
The problem of concept drift is when changes in the hid-
den context induce changes in the target concept. In gen-
eral, two kinds of concept drift depending on the rate of the
changes are distinguished in the literature: sudden (abrupt)
and gradual. In addition, changes in the hidden context may
change the underlying data distribution, making incremen-
tal algorithms to review the current model in every learning
episode. This latter problem is called virtual concept drift
[20]. In [14] virtual concept drift is referred to as sampling
shift, and real concept drift is referred to as concept shift.
In practice, the output model needs to be updated indepen-
dently the concept drift is real or virtual.

Above problems make incremental learning be more com-
plex than batch learning so effective learners should be able
to distinguish noise from actual concept drift and quickly
adapt the model to new target concept or recurring con-
texts. There are two common approaches that can be ap-
plied altogether to detect changes in the target concept [8].
An approach consists in repeatedly applying the learner to
a single window of training examples whose size can be dy-
namically adjusted whenever target function starts to drift.
In [10] problems with this approach are studied and an un-
supervised algorithm that uses three windows of different
sizes is proposed. Another approach is to apply weighting
for the training examples according to the time they arrive,
reducing the influence of old examples. Weighting based
approaches are partial instance memory methods.

Formally, a data stream is an ordered sequence of data
items . . . ei . . . read in increasing order of the indices i. In
practice, a data stream is an unbounded sequence of data
items liable to both noise and concept drift, and received
at a so high rate that each item can be read at most once
by a real time application [4]. Thus, data streams contexts
compel to learning systems to give approximate answers us-
ing small and constant time per example [6]. Recent works
on data streams classification has been mainly addressed by
two different approaches: decision trees [2, 6, 7] and ensem-
ble methods [9, 17, 19].

Domingos & Hulten’s VFDT and CVFDT systems [6]
build a decision tree based on Hoeffding bounds, which guar-
antee constant time and memory per example and an out-
put model asymptotically nearly identical to that given by
a batch conventional learner from enough examples. Since
VFDT and CVFDT are evaluated for data streams with
symbolic attributes, Jin & Agrawal propose in [7] a numeri-
cal interval pruning approach to reduce the processing time
for numerical attributes, without loss in accuracy. Gama et
al.’s VFDTc system [2] extends the VFDT properties in two
directions: the ability to deal with numerical attributes and
the ability to apply naive Bayes classifiers in tree leaves.

Ensemble batch learning algorithms such as Boosting and
Bagging have proven to be highly effective from disk–resident
data sets. These techniques perform repeated resampling of
the training set, making them a priori inappropriate in a
data streams environment. Despite what might be expected,
novel ensemble methods are increasingly gaining attention

because of they have proved to offer an improvement in pre-
diction accuracy. In general, every incremental ensemble
approach uses some criteria to dynamically delete, reacti-
vate, or create new ensemble learners in response to the base
models’ consistency with the current data. SEA [17] is a fast
algorithm that requires approximately constant memory. It
builds separate classifiers on sequential chunks of training
examples, combining them into a fixed–size ensemble ac-
cording to a heuristic replacement strategy. From sequen-
tial blocks as well, Wang et al. [19] propose using ensemble
of classifiers weighted based on their expected classification
accuracy on the test examples. In [9] Kolter & Maloof pro-
pose DWM, an ensemble method based on the Weighted
Majority algorithm [11].

As pointed out in [19], a drawback of decision trees is that
even a slight drift of the target function may trigger several
changes in the model and severely compromise learning ef-
ficiency. On the other hand, ensemble methods avoid ex-
pensive revisions by weighting the members but may run
the risk of building unnecessary learners when virtual drifts
are present in data. Rule sets take advantage of not be-
ing hierarchically structured, so concept descriptions can
be updated or removed when becoming out–of–date with-
out hardly affecting the learning efficiency. A decision rule
is a logic predicate of the form if antecedent then label.
The antecedent is a conjunction of conditions of the form
Attribute|=Values, and |= is a operator that states a rela-
tion between a particular attribute and values of its domain.
Within rule learning, each training example is said a max-
imally specific rule. Contrary to partitions obtained with
decision tree based approaches, the regions given by deci-
sion rules do not model the whole space. Thus, new test
examples may not satisfy - be covered by - any rule.

Fundamental incremental rule learners include STAGGER
[15] (the first system designed expressly for coping with
concept drift), the FLORA family of algorithms [20] (with
FLORA3 being the first system able to deal with recurring
contexts), and the AQ–PM family [13]. Since pure incremen-
tal rule learners take into account every training example,
many of them have not still adapted to a data streams en-
vironment, especially those featuring numerical attributes.

3. BORDER EXAMPLES INSIDE RULES
The core of our approach is that rules may be inconsis-

tent by storing positive and negative examples which are
very near one another (border examples). A rule is said
consistent when does not cover any negative (different la-
bel) example. The aim is to seize border examples up to a
threshold is reached. This threshold is given as an user pa-
rameter and sets the minimum purity of a rule. The purity
of a rule is the ratio between the number of positive exam-
ples that it covers and its support, i.e., the total number of
covered examples, positive and negative. When the thresh-
old is reached, the examples associated with the rule are
used to generate new positive and negative consistent rules.
This approach is similar to the AQ11-PM system [12, 13],
which selects positive examples from the boundaries of its
rules (hyper–rectangles) and stores them in memory. When
new examples arrive, AQ11-PM combines them with those
held in memory, applies the AQ11 algorithm to modify the
current set of rules, and selects new positive examples from
the corners, edges, or surfaces of such hyper–rectangles (ex-
treme examples).

569

 A1: (21-15)/45: 13%

 A2: (14-10)/30: 13%

A1:(17-8)/45
20%

A2:(11-8)/30
10%

45 units

15 u.

10
 u

.
21 units

14
 u

ni
ts

30

 u
ni

ts

X

Figure 1: Two rules are candidate to describe a new
example but both exceed the maximum generaliza-
tion (κ =10%) in attribute A1.

Our approach differs from AQ11-PM in that a rule stores
two positive example per negative example covered. The
stored examples are not necessary extreme and the rules are
not repaired every time they become inconsistent, reducing
the computational complexity. Since the number ne of neg-
ative examples that a rule can store increases as the number
of covered positive examples does, every time ne increases
by one unit, a new positive example is stored. Although this
approach suffers the ordering effects, it does not compromise
the learning efficiency and guarantees that an impure rule
is always modified from as positive as negative examples.

3.1 Moderate Generalization
Henceforth, the next notation is used to describe our pro-

posal. Let m be the number of numerical attributes. Let
Y = {y1, . . . , yz} be the set of class labels. Let ei = (−→xi , yi)
be the new ith training example arriving, where −→xi is a nor-
malized vector in [0, 1]m and yi is a discrete value in Y . A
decision rule r is given by a set of m closed intervals [Ijl, Iju]
(j ∈ {1, . . . , m}) which define an hyper–rectangle inside the
search space. l denotes lower bound and u upper bound.
Rules are stored in different sets according to the associated
label. Since no global training window is used but each rule
handles a different set of examples (a window per rule), ev-
ery time a new example arrives the model is updated. In
this process, one of three tasks is at least performed in the
next order:

1. Positive covering : xi is covered by a rule associated
with the same label yi.

2. Negative covering : xi is covered by a rule associated
with a different label y′ 6= yi.

3. New description : xi is not covered by any rule in
the model.

Positive covering. First, the rules associated with yi are
visited and the generalization necessary to describe the new
example xi is measured according to definition 1.

Definition 1 (Growth of a rule). Let r be a rule
in [0, 1]m formed by m closed intervals [Ijl, Iju]. Let x be a
point in [0, 1]m. The growth G(r, xi) of the rule r to cover
the point xi is defined as:

G(r, xi) =
∑m

j=1(gj − rj);
gj = uj − lj ; rj = Iju − Ijl;

uj = max(xij , Iju); lj = min(xij , Ijl);

This heuristic gives a rough estimate of the new region of
the search space that is taken, biasing in favour of the rule
that involves the smallest changes in the minimum number
of attributes. While visiting the rules associated with yi,
the one with the minimum growth is marked as candidate.
However, a rule is taken into account as a possible candi-
date only if the new example can be seized with a moderate
growth, so that: ∀j ∈ {1, . . . , m} : gj − rj ≤ κ. Figure
1 shows an example in which two rules do not satisfy this
condition using κ = 0.1. Since every example is previously
normalized in [0, 1]m, the divisor factor for the domain of
each attribute is omitted in definition 1. When the first rule
covering xi is founded - the resulting growth is therefore 0 -
its support is increased by one unit and the index of the last
covered example is updated as i. If the number of negative
examples that such a rule can store increases by one unit,
then the example is added to its window.

Negative covering. If xi is not covered by a rule asso-
ciated to yi, then the rest of rules associated with a label
y′ 6= yi are visited. If a different label rule r′ does not cover
xi, the intersection between r′ and the candidate is com-
puted. If such a intersection is not empty, the candidate is
rejected. When the first different label rule r′′ covering xi is
founded, its negative support is increased by one unit, and
xi is added to its window. If the new purity of r′′ is smaller
than the minimum given by the user, then new consistent
rules according to the examples in its window are included
in the model. r′′ is marked as unreliable so that it can not
be generalized and has not taken into account to generalize
other rules associated with a different label. In addition, its
window is reset.

New description. After above tasks, the candidate rule
is generalized if does not intersect with any other rule associ-
ated with a label y′ 6= yi. If no rule covers the new example
and there is not a candidate that can be generalized to cover
it, then a maximally specific rule to describe it is generated.

3.2 Refining and Forgetting Heuristic
The set of rules is simultaneously refined while the first

two tasks are accomplished. Before computing a rule covers
the new example, it is removed if the last extended rule
associated with the same label (the last candidate) covers
it. After computing a rule does not cover the new example,
it is removed if satisfies one of two conditions:

• It is an unreliable rule whose support is smaller than
the support of any rule generated from it.

• The number of times the rule hindered a different label
rule to be generalized is greater than its support.

Similarly to AQ-PM, our approach also involves a forgetting
mechanism that can be either explicit or implicit. Explicit
forgetting takes places when the examples are older than
an user defined threshold. Implicit forgetting is performed
by removing examples that are no longer relevant as they
do not enforce any concept description boundary. When a
negative example x in a rule r has not a same label example
as the nearest one after the number pe of positive examples
that r can store is increased two times since x was covered,
the system removes it. Analogously, a positive example is

570

removed if it has not a different label example as the nearest
after pe is increased by two units.

In worst case, a new example involves a new description,
visiting therefore every rule in each set. The computational
complexity associated with this case is O(m · s · e), with m
being the number of attributes and s as the model size or
total number of rules. e estimates the average number of
examples per rule.

Finally, to classify a new test example, the systems searches
the rules that cover it. If there are reliable and unreliable
rules covering it, the latter ones are rejected. Consistent
rules classify new test examples by covering and inconsis-
tent rules classify them by distance as the nearest neighbor
algorithm. If there is no rule covering it, the example is
classified based on the label associated with the reliable rule
that involves the minimum growth and does not intersect
with any different label rule.

4. EMPIRICAL EVALUATION
Although the STAGGER concepts [15] provide a standard

benchmark of tracking the drift from examples with sym-
bolic attributes, data streams classifiers so far lacks a stan-
dard experimental method to evaluate them with numerical
attributes. In [6, 19] both robustness and reliability of incre-
mental classifiers are evaluated using synthetic data streams
generated from a moving hyperplane. Similarly to [18], we
also evaluate our algorithm as general purpose classifier us-
ing real databases available at the UCI repository. Both ex-
periments were conducted on a PC with CPU 1.7GHz and
512 MB of RAM running Windows XP.

4.1 Real databases from the UCI repository
In this set of experiments, concept drift is not present in

data and all attributes are numerical. For the sake of com-
parison, decision lists generated by C4.5Rules are included.
For every database, 10–fold cross validation is repeated ten
times shuffling the examples so that they are ordered ran-
domly each time. Since noise is not present in data, the
minimum purity per rule is set with an user parameter from
the prediction accuracy obtained by C4.5Rules. The maxi-
mum growth is increased as prediction accuracy does, being
it fixed when the number of rules surpasses the size of the
model provided by C4.5Rules. Table 1 shows the average
values for one hundred executions. Standard deviations of
number of rules (NR), number of examples per rule (ER),
and maximum growth (MG) are omitted due to space con-
straints. Values about accuracy and number of rules that
are marked with ? or • mean an improvement or loss respec-
tively according to t–student with significance α = 0.05.

In five databases (Balance–Scale, Glass, Pima–Diabetes,
Vehicle, and Waveform) our incremental approach with im-
plicit forgetting based on example nearness involves a signifi-
cant increase with respect to prediction accuracy (PA). This
improvement excels in Pima–Diabetes database, for which
the average value in accuracy (89.49) exceeds 15 units in
comparison to C4.5Rules (73.73). In addition, model size
is significantly improved in Balance–Scale and Waveform
databases, for which the accuracy surpasses 12 and 6 units,
respectively.

On the other hand, the last row in Table 1 shows that the
number of examples stored in memory is small and a mod-
erate generalization generally improve the global accuracy
in different domains.

Table 1: Average values in prediction accuracy
(PA), number of rules (NR), examples per rule
(ER), and maximum growth (MG) from UCI
databases with numerical attributes.

C4.5Rules Implicit Forgetting by NN
Database PA NR PA ER MG
Balance S. 82.92±4.3 38.12• 95.68±1.3? 4.8 90
Breast C. 94.76±2.8 9.89 95.27±1.5 3.4 70
Glass 68.85±9.9 15.31 77.10±1.4? 3.2 85
Heart S. 77.81±8.7 17.82? 80.96±1.9 2.0 75
Ionosphere 90.71±4.9 7.45? 90.31±2.3 2.6 75
Iris 94.66±6.4 3.93 97.57±0.6 3.0 85
Pima D. 73.73±4.4 7.48? 89.49±3.4? 8.9 60
Sonar 74.31±8.9 7.22? 75.04±1.9 1.6 40
Vehicle 72.50±4.2 32.43 76.28±3.8? 2.3 55
Vowel 78.45±4.2 65.95? 77.53±3.9 2.0 100
Waveform 77.92±1.7 86.65• 84.77±7.9? 11.8 35
Wine 92.13±6.3 4.60? 95.39±0.9 2.2 80
Av. 81.56±5.6 24.73 86.28±2.6 3.9 70.8

4.2 Moving Hyperplane
In a second experiment, we create synthetic data with

drifting concepts based on a moving hyperplane as in [6,
19]. A hyperplane in m–dimensional space is denoted by
equation:

m∑
i=1

aixi = a0

First, examples are randomly generated and uniformly
distributed in multidimensional space [0, 1]m. The exam-
ples satisfying

∑m
i=1 aixi ≥ a0 are labelled as positive, and

examples satisfying
∑m

i=1 aixi < a0 as negative. Weights
ai (1 ≤ i ≤ m) are initialized by random values in the
range of [0, 1]. The value of a0 is chosen so that the hyper-
plane cuts the multi–dimensional space in two parts of the
same volume, that is, a0 = 1

2

∑m
i=1 ai. Thus, roughly half of

the examples are positive, and the other half are negative.
As in [19], concept drifts are simulated with three parame-
ters. Parameter α specifies the total number of dimensions
whose weights are involved in changing. Parameter β ∈ R
specifies the magnitude of the change (every N examples)
for weights a1, . . . , aα, and γi ∈ {−1, 1} specifies the direc-
tion of change for each weight. Each time the weights are
updated, a0 = 1

2

∑m
i=1 ai is recomputed so that the class

distribution is not disturbed. In addition, class noise is in-
troduced by randomly switching the labels of 5% of the ex-
amples. As in [19], 40% dimensions’ weights are changing at
±0.10 per 1000 examples. Tables 2 and 3 show the results
with both implicit and explicit forgetting after 50,000 ex-
amples are processed. In both cases, minimum purity is set
to 90%. Training and test examples are generated on the
fly and directly passed to the algorithm. After 900 train-
ing examples are generated, 100 test examples are used to
evaluate the algorithm. Column LT shows the time in sec-
onds spent on building the model and classifying new test
examples. Column NA indicates the number of attributes.
Since running time depends on the number of rules, this
factor is alternately limited to 50 and 100 rules per label.
Explicit forgetting heuristics provides a performance signif-
icantly higher than the implicit one. Average explicit accu-
racy is higher than 90% and average running time is higher
than 100 examples per second. However, the latter holds

571

Table 2: Prediction accuracy (PA), learning time
(LT), and number of rules (NR) using maximum
growth κ = 50%.

Explicit Forgetting Implicit Forgetting
NA PA LT NR≤ 50 PA LT NR≤ 100
10 96.36 14 10 84.61 41 153
20 93.25 63 9 67.13 107 150
30 91.04 124 3 63.17 137 125
40 89.70 221 2 59.65 383 22
50 83.88 277 4 59.50 428 9

Table 3: Prediction accuracy (PA), learning time
(LT), and number of rules (NR) with κ = 75%.

Explicit Forgetting Implicit Forgetting
NA PA LT NR≤ 100 PA LT NR≤ 50
10 98.32 20 7 87.93 35 29
20 94.57 35 12 55.61 131 27
30 89.26 53 10 53.48 124 53
40 89.19 67 7 52.25 195 65
50 87.72 77 10 51.21 246 36

solid trade–offs between predictive accuracy, learning time,
and model complexity with low dimensionality data.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we described and evaluated an incremental

rule learner with partial instance memory based on example
nearness. Inconsistent rules are built and refined simulta-
neously without adversely affecting the learning efficiency.
In addition, inconsistent rules avoid unnecessary revisions
when virtual drifts are present in data. Similarly to AQ-PM,
our proposal is not based on a window policy but examples
are rejected when they do not describe a decision bound-
ary. With this approach, the model is updated according
to the new environment’s conditions without necessity of
knowing the periodicity of changes. In addition, experimen-
tal results show an excellent performance as general purpose
multi–class learner. Our future research directions are ori-
ented to drop irrelevant dimensions, and recover dropped
attributes turned relevant later. Currently, we are also eval-
uating alternative growth measures for tackling with nom-
inal attributes in order to compare our system with others
data stream classifiers as CVFDT [6] and VFDTc [2].

6. REFERENCES
[1] F. Ferrer-Troyano, J. Aguilar-Ruiz, and J. Riquelme.

Discovering decision rules from numerical data
streams. In Proc. of the 19th ACM Symposium on
Applied Computing - SAC’04, pages 649–653.

[2] J. Gama, P. Medas, and R. Rocha. Forest trees for
on-line data. In Proc. of the 19th ACM Symposium on
Applied Computing - SAC’04, pages 632–636.

[3] J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest
– a framework for fast decision tree construction of
large datasets. In Proc. of the 24th Int. Conf. on Very
Large Data Bases – VLDB’98, pages 416–427, 1998.

[4] L. Golab and M. Ozsu. Issues in data stream
management. SIGMOD Record, 32(2):5–14, 2003.

[5] M. Harries, C. Sammut, and K. Horn. Extracting
hidden context. Machine Learning, 32(2):101–126,
1998.

[6] G. Hulten, L. Spencer, and P. Domingos. Mining
time-changing data streams. In Proc. of the 7th ACM
SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining - KDD’01, pages 97–106.

[7] R. Jin and G. Agrawal. Efficient decision tree
construction on streaming data. In Proc. of the 9th

ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining - KDD’03.

[8] R. Klinkenberg. Learning drifting concepts: example
selection vs. example weighting. Intelligent Data
Analysis, Special Issue on Incremental Learning
Systems Capable of Dealing with Concept Drift, 8(3),
2004.

[9] J. Z. Kolter and M. Maloof. Dynamic weighted
majority: A new ensemble method for tracking
concept drift. In Proc. of the 3th IEEE Int. Conf. on
Data Mining - ICDM’03, pages 123–130, 2003.

[10] M. Lazarescu, S. Venkatesh, and H. Bui. Using
multiple windows to track concept drift. Technical
report, Faculty of Computer Science, Curtin
University, 2003.

[11] N. Littlestone and M. Warmuth. The weighted
majority algorithm. Information and Computation,
108:212–261, 1994.

[12] M. Maloof. Incremental rule learning with partial
instance memory for changing concepts. In Proc. of
the 15th IEEE Int. Joint Conf. on Neural Networks -
IJCNN’03, pages 2764–2769, 2003.

[13] M. Maloof and R. Michalski. Incremental learning
with partial instance memory. Artificial Intelligence,
154:95–126, 2004.

[14] M. Salganicoff. Tolerating concept and sampling shift
in lazy learning using prediction error context
switching. AI Review, Special Issue on Lazy Learning,
11(1-5):133–155, 1997.

[15] J. Schlimmer and R. Granger. Incremental learning
from noisy data. Machine Learning, 1(3):317–354,
1986.

[16] J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A
scalable parallel classifier for data mining. In Proc. of
the 22th Int. Conf. on Very Large Databases –
VLDB’96, pages 544–555, 1996.

[17] W. Street and Y. Kim. A streaming ensemble
algorithm SEA for large-scale classification. In Proc.
of the 7th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining - KDD’01, pages 377–382.

[18] N. Syed, H. Liu, and K. Sung. Handling concept drifts
in incremental learning with support vector machines.
In Proc. of the 5th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining - KDD’99,
pages 272–276. ACM Press, 1999.

[19] H. Wang, W. Fan, P. Yu, and J. Han. Mining
concept-drifting data streams using ensemble
classifiers. In Proc. of the 9th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining -
KDD’03, pages 226–235.

[20] G. Widmer and M. Kubat. Learning in the presence of
concept drift and hidden contexts. Machine Learning,
23(1):69–101, 1996.

572

