Density functional theory study of the nematic–isotropic transition in an hybrid cell
I. Rodríguez-Ponce, J. M. Romero-Enrique, and L. F. Rull

Citation: The Journal of Chemical Physics 122, 014903 (2005); doi: 10.1063/1.1829041
View online: http://dx.doi.org/10.1063/1.1829041
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/122/1?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
The isotropic-nematic and nematic-nematic phase transition of binary mixtures of tangent hard-sphere chain fluids: An analytical equation of state

Density-functional theory of the columnar phase of discotic Gay–Berne molecules

The nematic-isotropic phase transition in semiflexible fused hard-sphere chain fluids

Interfaces, wetting, and capillary nematization of a hard-rod fluid: Theory for the Zwanzig model

The nematic–isotropic phase transition in linear fused hard-sphere chain fluids
J. Chem. Phys. 110, 11630 (1999); 10.1063/1.479102
Density functional theory study of the nematic–isotropic transition in an hybrid cell

I. Rodríguez-Ponce
Physik Department, Technische Universität München, James-Franck-Strasse, D-85747 Munich, Germany

J. M. Romero-Enrique
Departamento de Física Atómica, Molecular y Nuclear, Area de Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, 41080 Sevilla, Spain and Department of Mathematics, Imperial College 180 Queen’s Gate, London SW7 2BZ, United Kingdom

L. F. Rull
Departamento de Física Atómica, Molecular y Nuclear, Area de Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, 41080 Sevilla, Spain

(Received 2 August 2004; accepted 13 October 2004; published online 13 December 2004)

We have employed the density functional theory formalism to investigate the nematic–isotropic capillary transitions of a nematogen confined by walls that favor antagonist orientations to the liquid crystal molecules (hybrid cell). We analyze the behavior of the capillary transition as a function of the fluid–substrate interactions and the pore width. In addition to the usual capillary transition between isotropiclike to nematiclike states, we find that this transition can be suppressed when one substrate is wet by the isotropic phase and the other by the nematic phase. Under this condition the system presents interfacelike states which allow us to continuously transform the nematiclike phase to the isotropiclike phase without undergoing a sharp phase transition. Two different mechanisms for the disappearance of the capillary transition are identified. When the director of the nematiclike state is homogeneously planar-anchored with respect to the substrates, the capillary transition ends up in a critical point. This scenario is analogous to the observed in Ising models when confined in slit pores with opposing surface fields which have critical wetting transitions. When the nematiclike state has a linearly distorted director field, the capillary transition continuously transforms in a transition between two nematiclike states. © 2005 American Institute of Physics.

[DOI: 10.1063/1.1829041]

I. INTRODUCTION

The effect of the confinement on simple fluids has been vastly investigated in the past. Most of studies are related to the effect of the confinement on the vapor–liquid transition, the so-called capillary transition. In the case of symmetric walls, where both walls attract or repel the molecules with the same strength, the capillary transition in large pores is governed by the well-known Kelvin law.1 In addition, it may appear surface phenomenology that can affect the global phase diagram. Often this surface phenomenology is related to wetting states found in the single wall cases. The latter phenomenon is related to the spreading of drops of vapor (liquid) on the surface in coexistence with the bulk liquid (vapor). The presence of these surface states can be considered in the description of the phase behavior in the confined system. The generalized Kelvin law for small pores (where surface phenomenology is more dominant) takes into account these effects so it is still possible to determine the vapor–liquid transition for small pores.5 However, the predictions of the generalized Kelvin law reveal that the wetting phenomena does not affect essentially the phase diagram of the confined problem so they are often discarded. An interesting system is the hybrid cell (also known as asymmetric cell) where one substrate or wall is repulsive and the other attractive (competing walls). In this case, the wetting properties present in the single wall cases play a crucial role in the determination of the critical point in the confined problem. Here, given a pore width, the coexistence of two confined phases characterized by distinct order parameter profiles can only occur for temperatures below T_W, which corresponds to the total wetting temperature of the single wall cases.3,4 provided the substrate–fluid interaction strengths are equal in absolute value. A very good insight in the confined phase diagram topology for the general case in which the substrate–fluid interaction strengths are neither equal nor opposing has been reported for a polymer model.5

These studies have elucidated which mechanisms are involved in the surface transitions and how the properties of the substrate can determine the phase behavior within the pore. With respect to complex fluids like liquid crystal (LC) there is an increasing interest in the understanding of the surface phenomena due to its crucial role in the advance of the LC technology. For the case of a single wall (semi-infinite problem) and symmetric pores favoring an specific orientation on the molecules, theoretical approaches6–12 as well as computer simulations13–17 reveal that the interaction wall–fluid particle can strongly affect the ordering not only close to the surface but also far from it. Additionally to finite size effects, novel phenomena often appear due to the combined presence of anchoring and orientational wetting tran-
sitions. The interplay between both surface phenomena and its dependence on wall properties have been recently studied by us employing a microscopic density functional theory (DFT) approach for a simple model of liquid crystal. The effect of confinement by symmetric walls on these surface transitions was also studied. Our findings revealed that as in the case of simple fluids, the finite-size effects for not very narrow pores on the phase diagram are not of qualitative significant importance and only the location of the capillary transitions are affected by the confinement. However, recent theoretical and simulation results for hard-sphere-cylinder models show that for very narrow symmetrical pores the NI capillary transition may end up in a critical point.

In a recent paper, we extended the study to the case with an hybrid cell where the surfaces favor antagonist orientations. This geometry has in LCs a particular interest due to the possible technological applications. This fact has stimulated an increasing interest by experimentalists and theoreticians. In particular, different nematiclike states with homogenous and linearly distorted director fields were found to coexist under confinement. In the present paper, our goal is to complete this study with the investigation of the nematic–isotropic (NI) transition within the hybrid cell. Quintana et al. investigated a similar problem employing a Landau-type theory. They claimed that the NI transition either appears unaffected and its temperature T_{NI} remains unchanged or the transition disappears. Basically what determined the existence of the transition was the value of fluid–wall interaction strength with respect to the value for the first-order wetting transition for the semi-infinite systems. For strength values below this threshold the transition occurs for all wall separations. In contrast, above the threshold, the transition disappears for large pore widths, where interface-like states appear. The disappearance of the phase transition must be understood as the gradual transformation from isotropiclike states to nematiclike states when increasing the chemical potential or decreasing the temperature, with no singularities in the free energy associated to the transition. However, for large pore widths it would be extremely difficult to distinguish this rounded transition from a true thermodynamic phase transition. The interface-like states are related to the wetting states by isotropic and nematic phase that each wall present in the semi-infinite geometry, respectively.

In this paper we address the same problem of the behavior of the NI capillary transition and its possible disappearance from a more microscopic point of view by using a DFT approach. Our paper is organized as follows: First, we briefly present our liquid crystal model in Sec. II. In Sec. III we revisit and complete the study of a substrate which favors either planar or homeotropic anchoring in contact with a nematogen fluid at its isotropic or nematic phase. In particular, the different wetting regimes are found. This phenomenology will be a crucial guide to understand the behavior of the fluid under confinement. Section IV is devoted to the study of the fluid adsorbed in a hybrid cell, paying special attention to the disappearance of the NI capillary transitions and the mechanisms involved in it. Finally we end up with our conclusions.

II. THE MODEL

The theoretical model is a standard generalized van der Waals theory based on a perturbative expansion, using a hard-sphere (HS) fluid as reference system. Details on the physical basis of the model and how to obtain its solutions numerically can be found elsewhere. Our starting point is the grand potential functional per unit system area A, $\Omega(\rho)/A$, whose functional minimum with respect to the one-particle distribution function, $\rho(\mathbf{r}, \hat{\Omega})$, which depends on both molecular positions \mathbf{r} and orientations $\hat{\Omega}$, gives the equilibrium structure of the interface. This function, $\rho(\mathbf{r}, \hat{\Omega}) = \rho(z)f(z, \hat{\Omega})$, contains a mass distribution $\rho(z)$ and an angular distribution $f(z, \hat{\Omega})$. These quantities vary locally with the distance from $z = 0$ to $z = H$, where H is the pore width. The expression for $\Omega[\rho]$, in a mean field approximation is,

$$\Omega[\rho] = F_s[\rho] + \frac{1}{2} \int \int d\mathbf{r} d' \mathbf{r}' d\hat{\Omega} d\hat{\Omega}' \rho(\mathbf{r}, \hat{\Omega})$$

$$\times \rho(\mathbf{r}', \hat{\Omega}') \cdot \nabla (\mathbf{r} - \mathbf{r}', \hat{\Omega}, \hat{\Omega}')$$

$$- \int \int d\mathbf{r} d\hat{\Omega} \rho(\mathbf{r}, \hat{\Omega}) [\mu - w(\mathbf{r}, \hat{\Omega})],$$

(1)

where μ is the chemical potential and

$$F_s[\rho] = \int d\mathbf{r} f_{hs}(\rho(\mathbf{r})) + k_B T \int d\mathbf{r} \rho(\mathbf{r}) \langle \ln(4 \pi f(z, \hat{\Omega})) \rangle$$

(2)

is the reference system free energy. In the above expression $f_{hs}(\rho(\mathbf{r}))$ is the hard-sphere free energy density of a uniform fluid with a density equal to the local density at \mathbf{r} and $\langle \cdot \cdot \cdot \rangle$ is an angular average. The attractive potential v contains anisotropic (dispersion) forces driving the liquid-crystalline behavior of the model material:

$$v(\mathbf{r}, \hat{\Omega}, \hat{\Omega}') = v_A(\mathbf{r}) + v_B(\mathbf{r}) P_2(\hat{\Omega}, \hat{\Omega}') + v_C(\mathbf{r})$$

$$\times [P_2(\hat{\Omega} \cdot \hat{\mathbf{r}}) + P_2((\hat{\Omega}' \cdot \hat{\mathbf{r}})]$$

(3)

where $\hat{\mathbf{r}} = \mathbf{r}/r$, and r is the center-of-mass distance. The functions $v_A(\mathbf{r})$, $v_B(\mathbf{r})$, $v_C(\mathbf{r})$ are the radial contribution to the potential as a result of considering dispersion-type forces. In this work we choose them to have a simple Yukawa form, i.e., $v_A(r) = -\epsilon \exp(-\lambda(r-d))/r$ for $r > d$, and $v_A(r) = 0$ otherwise, where d is the diameter of a hard sphere. The v_B and v_C terms are the responsible of the liquid-crystalline behavior of our fluid model. So, v_B determines the orientational order in bulk. The effect of v_C on the orientational ordering is more subtle, since by symmetry its contribution to the bulk nematic free energy is zero at mean-field level. However, it plays an important role in determining the orientation of the particles close to interfaces and walls. We note that a positive value of ϵC favors the molecules to orientate parallel to the nematic–vapor (NV) interface and a negative value favors the perpendicular orientation to NV interface. As this behavior is caused by the absence of orientational ordering in the vapor phase, it is also observed for
a NI interface and a nematic fluid in contact with a hard wall. This anisotropy in the orientational configuration of the nematic molecules is essential to understand the phenomenology in the problem with the walls.

The walls are modelled via the following potentials:

$$ u^{(1)}_W(z, \theta) = \begin{cases} +\infty & z < 0 \\ -\epsilon^{(1)}_W e^{-\lambda_W z - d} P_2(\cos \theta) & z > 0 \end{cases} $$

where θ is the angle between the molecula axis and the x-axis normal to the substrate. For $\epsilon^{(1)}_W > 0$, this potential favors the molecules to align perpendicularly to the surface (homeotropic anchoring). The potential corresponding to the other substrate is:

$$ u^{(2)}_W(z, \theta) = \begin{cases} +\infty & z < H \\ \epsilon^{(2)}_W e^{-\lambda_W (H - z - d)} P_2(\cos \theta) & z > H \end{cases} $$

which favors the molecules to align in a plane parallel to the surface for $\epsilon^{(2)}_W > 0$. However, this preferred alignment corresponds to a random planar anchoring, since there is not a preferred direction at the xy orientation plane. The parameters $\epsilon^{(1)}_W$ and $\epsilon^{(2)}_W$ measure the substrate–fluid interaction strength of each substrate.

In our study, we will assume that the nematic director orientation is embedded in the xz plane. The formalism permits to define the orientation distribution of the molecules referred to a laboratory reference system, described by three extrinsic order parameters,

$$ \eta(z) = \int d\phi \sin \theta d\theta f(z, \hat{\Omega}) P_2(\cos \theta), $$

$$ \nu(z) = \int d\phi \sin \theta d\theta f(z, \hat{\Omega}) \sin 2 \theta \cos \phi, $$

$$ \sigma(z) = \int d\phi \sin \theta d\theta f(z, \hat{\Omega}) \sin^2 \theta \cos 2 \phi. $$

The order also can be referred to an intrinsic reference system by three intrinsic order parameters: ψ the tilt angle defined like the angle formed by the director with the z axis, U (uniaxial order parameter) the amount of order along the director and B (biaxial order parameter) which measures the amount of order along the perpendicular directions of the director. The nematic ordering is essentially uniaxial ($B = 0$) far from the substrate. The biaxiality induced by the surfaces was already discussed in a previous paper.

These intrinsic order parameters can be obtained in terms of the set $\{\eta, \sigma, \nu\}$ by the following expressions:

$$ \tan \psi(z) = \frac{\nu(z)}{\eta(z) - \frac{\sigma(z)}{2} + \sqrt{\left(\eta(z) - \frac{\sigma(z)}{2}\right)^2 + \nu(z)^2}}, $$

$$ U(z) = \frac{\eta(z)}{4} + \frac{3}{8} \sigma(z) + \frac{3}{4} \sqrt{\left(\eta(z) - \frac{\sigma(z)}{2}\right)^2 + \nu(z)^2}. $$

$$ B(z) = \frac{3}{4} \sigma(z) - \frac{1}{2} \sqrt{\left(\eta(z) - \frac{\sigma(z)}{2}\right)^2 + \nu(z)^2}. $$

It is convenient to define the average density and order parameter for the confined system as

$$ \bar{\rho} = \frac{1}{H} \int_0^H \rho(z)dz, $$

$$ \bar{U} = \frac{1}{H} \int_0^H U(z)dz. $$

As we will also make reference to the semi-infinite problems, the adsorption in the order parameter is defined as

$$ \Gamma = \int_0^\infty (U - U_b)dz, $$

where U_b is the value of the intrinsic nematic order parameter of the bulk phase.

Numerical values for the potential parameters were taken as $\epsilon_A = 1$ (which sets the temperature scale), $\epsilon_B/\epsilon_A = 0.847$ and $\epsilon_C/\epsilon_A = 0.75$. The range parameters λ are set, in units of d (throughout we choose this unit to set the length scale), to $\lambda = 2, 4, 1.75, i = A, B, C$ respectively, and $\lambda_W = 1$. In our calculations the temperature is fixed at the value $T^* = k_BT/\epsilon_A = 0.57$, that corresponds to a typical situation in which vapor, isotropic and nematic phases can be observed. At this temperature, the isotropic–nematic coexistence occurs for a reduced chemical potential $\beta \mu = \mu / k_BT = -3.918$.

III. THE SEMI-INFINITE CASE

In order to better understanding the behavior of the fluid inside the pore, we have first considered the semi-infinite cases of the fluid in presence of a single substrate where the substrate–fluid interaction potentials given by Eq. (4) either favor homeotropic or planar alignment, i.e., $\epsilon^{(1)}_W = \epsilon^{(2)}_W > 0$ or $\epsilon^{(1)}_W < 0$, respectively. We are interested in the wetting behavior, so the system will be at bulk nematic–isotropic coexistence, unless stated otherwise. We have considered both situations in which the bulk fluid is either isotropic or nematic.

First we consider the case of a nematic bulk phase in presence of the substrate. This situation was studied for substrates that favor homeotropic anchoring in Ref. 18. We extended this analysis to substrates which favor planar alignment. For both negative and small positive values of ϵ_W the fluid far from the substrate orients parallel to the substrate. For the case in which $\epsilon_W < 0$, biaxiality is developed in a microscopic layer close to the substrate, leading to the decay of the orientational order in that area. If the substrate favors a homeotropic alignment, we observe a microscopic isotropic-like layer close to the substrate, corresponding to a partial wetting situation of the substrate–nematic interface by the isotropic phase. As ϵ_W is increased, the isotropic layer close to the substrate becomes macroscopic as the isotropic phase completely wets the nematic–substrate interface at $\epsilon_W = \epsilon^{(1)}_W$. Our calculations showed that the wetting transition is continuous. The orientation far from the substrate remains...
planar in the complete wetting case. By further increasing ϵ_W, an anchoring transition occurs for $\epsilon_W = \epsilon_W^c$, as the nematic orientation changes from planar to homeotropic far from the substrate, and the wetting becomes partial again since the isotropic–nematic interface favors a planar anchoring in our model. The anchoring transition is first order and continues in the single nematic phase region. However, the complete wetting with planar orientation state remains metastable up to ϵ_W^m. This fact will be important for the discussion of the confined cases. For the model parameters considered in this paper, $\epsilon_W^m/\epsilon_A = 0.470$, $\epsilon_W^c/\epsilon_A = 0.527$, and $\epsilon_W^H/\epsilon_A = 0.72$.

We turn to the case in which there is an isotropic phase in bulk. For small values of $|\epsilon_W|$, the inhomogeneities of the density and order parameter profiles are restricted to a microscopic layer close to the substrate. Although the fluid is isotropic far from the substrate, the anisotropic character of the substrate–fluid potential induces a random planar ordering near the substrate, i.e., the particles orientate parallel to the substrate but without any preferred direction in that orientation plane ($\psi<0$, $\sigma=\nu=0$). Such a condition can be seen as an extreme biaxial case, where $B=2U$, i.e., the highest eigenvalue of the orientational order parameter tensor is two-fold degenerate. The layer width remains microscopically finite as the NI coexistence is approached, corresponding to a partial wetting situation. For large enough values of $|\epsilon_W|$, we observe complete wetting situations. For negative values of ϵ_W and at the NI coexistence, there is a sudden change at $\epsilon_W = \epsilon_W^2$ from the previous surface state to a complete wetting state of the isotropic–substrate interface by the nematic phase. This corresponds to a first order wetting transition. For our model parameters, $\epsilon_W^2/\epsilon_A = -0.359$. Due to its first order character, there is a prewetting first-order transition for $\epsilon_W < \epsilon_W^2$ (see Fig. 1). At this transition the particles at the first layer orientates along some direction parallel to the substrate, breaking the rotational symmetry of the state (see insets of Fig. 1 for the order parameter profiles). Consequently, the prewetting transition can be seen as a two-dimensional isotropic to nematic transition at the fluid layer close to the substrate. We will denote I and I^N to the surface states with the random planar and nematic layer close to the wall, respectively. For the I^N state, there is also biaxiality near the substrate, as occurred when there was a nematic fluid in bulk. A similar behavior was found for the Zwanzig model and hard spherocylinder fluids, although their “prewetting” transition is continuous (second order for the Zwanzig model and it is expected to be Kosterlitz–Thoulesslike for the spherocylinder system). The prewetting surface nematization transition shifts towards lower chemical potentials as ϵ_W is decreased, and eventually disappears at a critical point.

For large positive values of ϵ_W, i.e., $\epsilon_W/\epsilon_A > \epsilon_W^3/\epsilon_A = 0.691$, we also found that the nematic phase completely wets the isotropic–substrate interface. We have checked indirectly this by studying the numerically obtained profiles that minimize our free energy functional. The order parameter profiles that we obtain in our numerical minimization are homogeneous along the wetting layer (see Fig. 2). This fact is due to the mismatch of anchoring conditions at the interfaces. We first note that the intrinsic order parameters are homogeneous along the wetting layer except close to the interfaces (see inset in Fig. 2). So the origin of the inhomogeneity of the extrinsic order parameters is the change of the orientation of the nematic director field along the wetting layer. As previously mentioned, the molecules align parallel to the interface between a nematic and isotropic phase. On the other hand, the molecules anchor homeotropically close to the substrate due to the strong anchoring coupling between the substrate and the fluid. As the nematic layer width diverges, it is possible to fulfill both anchoring conditions by slowly varying the nematic director from homeotropic to planar anchoring. However, any numerical calculation requires minimization in a finite range R for the z coordinate, imposing bulk isotropic conditions for $z>R$. In this situation, the nematic director profile that corresponds to the minimum of
the grand-canonical free energy is expected to be linear, as it is indeed observed by numerical minimization (see inset of Fig. 2). This fact induces a $1/R$ dependence of the apparent equilibrium excess grand-canonical free energy (or surface tension Σ) due to the elastic deformation. Such decay is much slower than the usual exponential correction when elastic deformations are not involved, and we have to consider much larger values of R to obtain reliable values of the true equilibrium free energies. As R increases, the apparent surface tension decreases and it is always larger than the complete wetting state excess free energy, that it is the sum of the surface tension Σ_{wN} corresponding to the interface between substrate and a nematic phase oriented homeotropically far away, and the surface tension Σ_{NI} between corresponding to the nematic-isotropic interface where the nematic phase is planar-anchored with respect to the interface. The latter surface tension is independent of the fluid-substrate interactions, and its value is $\beta \Sigma_{NI} l^2 = 0.0259$ for the NI coexistence at $T^* = 0.57$. Figure 3 summarizes the results of this section. We represent the cosine of the contact angle θ of a droplet of isotropic phase in coexistence with bulk the nematic phase on a planar substrate as a function of ϵ_w. The Young equation states that

$$\cos \theta = \frac{\Sigma_{wN} - \Sigma_{wI}}{\Sigma_{NI}},$$

(15)

where Σ_{wN}, Σ_{wI}, and Σ_{NI} are the surface tensions corresponding to the substrate–nematic, substrate–isotropic, and nematic–isotropic interfaces, respectively. For $\epsilon_w < \epsilon_w^d$ (including negative values), the nematic director is parallel to the substrate far from the substrate. Otherwise, the nematic director is homeotropically anchored. The complete wetting region corresponds to $\cos \theta = 1$. The curve meets the $\cos \theta = 1$ line at $\epsilon_w = \epsilon_w^0$ with no change in slope. This fact is a signature of the second-order character of the wetting transition. On the contrary, the curve departs from the $\cos \theta = 1$ line at $\epsilon_w = \epsilon_w^1$ with nonzero slope, indicating the first-order character of the dewetting transition.

Figure 3 also gives information about the wetting properties when there is an isotropic phase in bulk. By reversing the roles of the nematic and isotropic phases in Eq. (15), it is straightforward to see that the contact angle θ' of a nematic droplet on a planar substrate is related to θ via $\theta' = \pi - \theta$. Consequently, when $\cos \theta = -1$ we observe complete wetting by nematic phase of the isotropic–substrate interface. This fact is clear for $\epsilon_w < \epsilon_w^2 < 0$. However, for $\epsilon_w > \epsilon_w^3$ the apparent values of $\cos \theta$ are less than -1. As previously discussed, this is a finite-size effect of our numerical calculations and the predicted value is $\cos \theta = -1$. Nevertheless, since the nematic layer remains finite as $\epsilon_w = \epsilon_w^3$ from below, the localization of the wetting transition is quite accurate. For both wetting transitions at ϵ_w^2 and ϵ_w^3 there is a change of slope of the $\cos \theta$ curve, that it is in agreement with their first-order character.

IV. THE CONFINED CASE

We turn to the case of the fluid confined in a hybrid slit pore, where each substrate favors an antagonist anchoring, i.e., homeotropic and planar, respectively. Under confinement, it is well known that the bulk transitions have lower-dimensional counterparts that are known as capillary transitions. The thermodynamic conditions (temperature, pressure, chemical potential) for such transitions are usually shifted with respect to the bulk coexistence values. Before considering our DFT results, we consider the predictions of the Kelvin equation, which gives the leading order for the shift on chemical potential $\Delta \mu = \mu_{NI} - \mu_{N}^1$ of the capillary nematic–isotropic transition μ_{NI} with respect to the bulk value μ_{NI}^1 at large pore widths H. Thermodynamic considerations2,21,29 show that the chemical potential shift $\Delta \mu$ of a capillary transition with respect to the bulk one between the α and β phases at a given temperature obeys asymptotically

$$\Delta \mu = \frac{\Sigma_{\alpha \beta} \left(\cos \theta_1 + \cos \theta_2 \right)}{(\rho_\beta - \rho_\alpha) H}.$$

(16)

In this expression, $\Sigma_{\alpha \beta}$ is the surface tension for an α–β interface, and ρ_α and ρ_β are the bulk densities of the α and β phases, respectively. Finally, θ_1 and θ_2 are the contact angles corresponding to the droplets of α phase that nucleate on each substrate when the fluid is in bulk in the β phase, respectively. In our case, we can identify α as the isotropic phase and β as the nematic phase. It is implicitly assumed in Eq. (16) that there is a partial wetting situation for both substrates in semi-infinite geometries. However, if either there is complete wetting only at one substrate or in both but by the same phase ($\theta_1 = \theta_2 = 0$ or π), the effective pore width in Eq. (16) is reduced to $H - k l$, where k is a constant that depends on the range of the wall–fluid interactions and l is the sum of the widths of the adsorbed wetting layers. Nevertheless, this modification does not change qualitatively the
results. Its only effect is to observe the behavior predicted by the Kelvin equation at larger values of the pore width H than for a partial wetting situation.

A different situation arises when both substrates are completely wet by different phases at coexistence, i.e., $\cos \theta_1 \cos \theta_2 = -1$. Studies for symmetrically opposing surface fields Ising systems and Landau–de Gennes models of liquid crystals show that in this situation there is no capillary transition. Instead, an interfacelike state appears, where half the pore is filled with an α-like layer and the rest by β-like phase. The position of the interface between both layers is controlled by the deviation of chemical potential with respect to the coexistence value. A rounded transition from the confined α-like phase to the β-like phase (marked by the disappearance of the free energy singularities associated to a sharp capillary transition) is building up, becoming a sharp first-order transition only for $H = \infty$. When the opposing surface fields are not symmetrical (at least for nonsymmetrical), it is expected to observe a similar behavior. Mean-field calculations for a confined polymer model with asymmetrical opposing fields also support this picture.

This analysis allows us to envisage different scenarios for the confined case and large H. For simplicity, we will only consider the case $\epsilon_{W}^{(1)} = \epsilon_{W}^{(2)} = \epsilon_{W}$ in Eqs. (4) and (5). We must note that this choice does not correspond to the symmetrical opposing fields, since the effect of each substrate is qualitatively different. For large H and $\epsilon_{W}/\epsilon_{A} < 0.48$ and $\epsilon_{W}/\epsilon_{A} > 0.53$ we expect to have a nematic–isotropic capillary transition. The transition point will shift towards lower or higher chemical potentials than the corresponding to the bulk transition if $\cos \theta_1 + \cos \theta_2$ is negative or positive, respectively. This dependence of the sign of the capillary transition shift on the thermodynamic conditions of the fluid (temperature, etc.), which does not occur for simple fluids, has been observed in our model under confinement between symmetrical substrates that favor homeotropic anchoring and also in confined spherocylinder model with the Onsager approximation for a symmetrical slit pore. The other hand, if $0.48 < \epsilon_{W}/\epsilon_{A} < 0.53$, no capillary transition is expected to be obtained for any pore width.

We present now our DFT calculations. For the sake of clarity, we separate the results obtained for $\epsilon_{W} < \epsilon_{W}^{1}$ and $\epsilon_{W} > \epsilon_{W}^{1}$.

A. The case $\epsilon_{W} < \epsilon_{W}^{1}$

We performed our first DFT calculations for $\epsilon_{W}/\epsilon_{A} = 0.30$, which correspond to partial wetting situation in the semi-infinite geometry for both substrates. Figure 4 shows the behavior of the averaged intrinsic order parameter \tilde{U} as the chemical potential is varied. We see that there is a transition from an isotropiclike state (lower branch) to a nematiclike state (upper branch). The order of the transition is first-order, and it is found as the coincidence point of the grandcanonical free energies of the nematiclike and isotropiclike states. We have shown also the metastable continuations of each branch: nematiclike states on the left of the capillary NI transition and isotropiclike states on the right of the transition. Examination of the order parameter profiles show that the director field in the nematiclike state is oriented parallel throughout the pore to the substrate with an intrinsic order parameter similar to the bulk value, except in thin layers around the substrates, where the density and order parameter profiles are similar to the ones corresponding to the semi-infinite cases. In particular a very thin layer close to the $z = 0$ substrate is homeotropically anchored. This state corresponds to the S state in Ref. 22 and we will denote it by N^5. On the other hand, the isotropiclike state (which we will denote as I) develops microscopic homeotropically and random-planar layers close to the $z = 0$ and $z = H$ substrates, respectively, and the orientational ordering decays to zero in the middle region of the pore. We have also compared our DFT calculations with the Kelvin law prediction Eq. (16) (see inset in Fig. 4). Although the transition value departs from this prediction for small pore widths, for $H/d > 20$ the agreement between our numerical estimations and the Kelvin predicted value is quite reasonable. Note that the capillary NI transition is shifted to larger chemical potentials than the bulk NI transition value. However, as ϵ_{W} increases, this trend is reversed (the Kelvin law predicts the turning point to occur at $\epsilon_{W}/\epsilon_{A} = 0.329$).

As ϵ_{W} exceeds ϵ_{W}^{1}, wetting in the $z = H$ wall begins to affect the pore adsorption. For small values of H a single transition between an isotropiclike I state to a nematiclike state occurs as for $\epsilon_{W} < \epsilon_{W}^{2}$. However, as H increases the order of the “nematiclike” state decreases and the chemical potential for which this transition occurs converges to the $I \rightleftharpoons N$ transition value for the $z = H$ wall. The order-parameter profiles make clear that the “nematiclike” state corresponds to the formation of a nematic layer close to the $z = H$ substrate followed by an isotropic ordering along the pore. By analogy with the semi-infinite situation, we call N^5 to the confined state after this transition, which we can see as a reminiscence of the $I \rightleftharpoons N$ transition in the semi-infinite phenomenology.

As H increases, in addition to the $I \rightleftharpoons N$ transition, a new phase transition between the I^N to a proper nematiclike state N^5 (i.e., planar-anchored along the pore) is observed. This
transition can be regarded as the true capillary NI transition. Figure 5 shows our DFT calculations for $H = 20d$ and different values of ϵ_W. It becomes clear that the difference between the I^3 and the N^5 states at the transition decreases as ϵ_W increases, and eventually the NI capillary transition disappears in a critical point (see inset of Fig. 5). The value of ϵ_W at which the NI capillary transition disappears is lower than $\epsilon_W^{w_1}$, i.e., the confinement destabilizes the two-phase region with respect to the one-phase region. We have also studied the effect of the pore width in the NI capillary transition. We set $\epsilon_W/\epsilon_I = 0.465$, slightly below $\epsilon_W^{w_3}$. Figure 6 shows that the capillary NI transition does not exist for the smallest values of H and reappears for $H > 50d$.

The disappearance of the NI capillary transition shown by our model is not related to the critical points observed for small values of H in other models.\(^{20,21}\) Actually, those cases correspond to symmetrical slit-pores and consequently their phenomenology is not related to wetting properties of the substrates. In our model the NI capillary transition occurs at least for $H > 20d$ when the substrates at $z = 0$ and $z = H$ are the same.\(^{19}\) However we cannot rule out the possibility of critical points for very small H, but we will not consider them since the predictions of our model are not reliable in that regime.

Our DFT results about the existence of the NI capillary transition show the opposite trend to the one predicted by a Landau–de Gennes model in Ref. 25, which predicted that the confinement stabilized the two-phase region with respect to the one-phase region. Moreover for large values of H the boundary for the nonexistence region of the capillary transition was a triple point rather than a critical point. Actually the scenario shown by our DFT calculations is consistent with the phenomenology that presents a confined Ising model with opposing surface fields when the wetting transition is critical.\(^3\) This analogy can be explained heuristically. For large H and ϵ_W close to $\epsilon_W^{w_1}$, the typical configuration close to bulk coexistence corresponds to an interface state formed by an isotropic layer around the $z = 0$ and a nematic layer around the $z = H$ wall. In the first approximation the NI interface position l is given by the minimum binding potential which is the superposition of the contributions from the two semi-infinite systems.\(^3\) As there is a complete wetting situation at the $z = H$ substrate, we can consider its binding potential as an exponentially decreasing function of the interfacial position with respect to the $z = H$ wall $c \exp[-(H - l)/\xi_b^I]$, where $c > 0$ and ξ_b^I is the nematic phase correlation length at bulk NI coexistence. Note that the local minimum corresponding to the bounded state, if any, plays no role in our argument as soon as we are far enough from the first-order wetting transition corresponding to the semi-infinite case with the $z = H$ wall. On the other hand, the binding potential corresponding to the $z = 0$ substrate takes the usual form $-a \exp[-l/\xi_b^I] + b \exp[-2l/\xi_b^I]$, where $a \approx \epsilon_W^I - \epsilon_W^{w_1} > 0$, $b > 0$ and ξ_b^I is the isotropic phase correlation length at bulk NI coexistence. So, the complete binding potential for the NI interface, up to irrelevant constants, is

$$W(l) = h(H - l) - a e^{-(l/\xi_b^I)} + b e^{-(2l/\xi_b^I)} + c e^{[(H - l)/\xi_b^I]},$$ \(17\)

where $h \propto \Delta \mu$. A critical point must verify

$$h = a \frac{\frac{1}{\xi_b^I} e^{-(l/\xi_b^I)}}{\frac{2}{\xi_b^I} e^{-(2l/\xi_b^I)}} + b \frac{\frac{c}{\xi_b^I} e^{-(l/\xi_b^I)}}{\frac{c}{\xi_b^I} e^{-(2l/\xi_b^I)}} - 1,$$ \(18\)

$$0 = \frac{a}{\xi_b^I} e^{-(l/\xi_b^I)} + \frac{4b}{\xi_b^I} e^{-(2l/\xi_b^I)} + \frac{c}{\xi_b^I} e^{-(l/\xi_b^I)}.$$ \(19\)

Instead of solving simultaneously Eqs. (18) and (19), we will study the spinodal line, which is the solution of Eq. (19). We consider solutions of the form $l = \chi H + \Delta l$, where $0 < \chi < 1$ and $\Delta l \sim \xi_b^I$. Substituting this ansatz in Eq. (19), we obtain
has an unique real solution. For simplicity, we assume that $\mu = -4.7$, $\beta \mu = -4.45$, $\beta \mu = -3.95$ and $\beta \mu = -3.7$.

In order to have two solutions for Eq. (20), we need all the factors in brackets in Eq. (20) to be of the same order. Consequently we obtain that $\chi = \xi_{eb}/(2\xi_{eb}^{2} + \xi_{eb}^{2})$ and $a = a' \exp[-H/(2\xi_{eb}^{2} + \xi_{eb}^{2})]$, where $a' - b \sim c$. The value of a' for which the critical point occurs corresponds to the case where the rescaled equation

$$0 = -a' e^{-(\Delta H\xi_{eb})} + 4be^{-(2\xi_{eb}H\xi_{eb})} e^{-(2\Delta H\xi_{eb})}
+ \left(\frac{c}{(\xi_{eb}^{2})^{2}} e^{-(1-\chi)H\xi_{eb}}\right) e^{\Delta H\xi_{eb}}.$$

(20)

has an unique real solution. For simplicity, we assume that $\xi_{eb} = \xi_{eb}^{0}$, but similar results are found when both correlation lengths are different. We refrain to give explicit solutions and we just mention that indeed $a'/c \sim 1$ and the value of ΔH at the critical point is $\Delta H_{c} \sim \xi_{eb}$ for reasonable values of b and c. Consequently, the interfacial position at the critical point $l_{c} \sim H/\beta$ and the NI capillary transition shift $\xi_{eb}^{0} e^{-(\Delta H/2\xi_{eb})}$ from Eq. (18) $\Delta H \sim \exp(-2H/\beta \xi_{eb})$.

A numerical comparison of these predictions with our DFT calculations, although it would be very interesting, is extremely difficult due to the limitations of our numerical procedure and it will not be carried out in this work. However, at least qualitatively these predictions have been confirmed by the DFT calculations even for not so large values of H.

B. The case $\varepsilon_{W}>\varepsilon_{W}^{d}$

Now we turn to study the confined system for $\varepsilon_{W} > \varepsilon_{W}^{d}$. We first considered the case $\varepsilon_{W}/\varepsilon_{A} = 0.70$ and $H = 20d$. Different confined states are obtained as the chemical potential increases (see Fig. 7). The first cases Figs. 7(a) and 7(b) clearly correspond to a vaporlike and isotropiclike states, and we will denote them as V and I, respectively.

There is in both cases a homeotropically-anchored nematic layer close to the substrate at $z=0$ and a random planar layer close to the substrate at $z=H$. As the chemical potential increases, the random planar layer at $z=H$ undergoes a transition to a planar biaxial state. Again this first-order transition is a reminiscence of the $I_{N} \rightarrow I_{N}$ surface transition corresponding to the substrate at $z=H$, and we will denote both confined states I and I_{N} by analogy with the semi-infinite phenomenology. As the chemical potential is further increased, the nematic layer increases and a state in which an isotropic and a nematic layer coexist is obtained [Fig. 7(c)]. There is no phase transition between the isotropiclike I_{N} and the nematiclike N_{S} states, but a smooth transformation similar to the expected one when both substrates are completely wet by different bulk phases at coexistence. Finally, there is a transition to a new nematiclike state (the L_{s} state in Ref. 22, that we will denote as N_{S}), characterized by an almost linear distortion from homeotropic to planar configuration on the tilt angle through the pore, although the intrinsic order parameter takes essentially the bulk value except close to the substrates [see Fig. 7(d)]. This transition between the N_{S} and N_{S} state is first order and converges to the anchoring transition that is observed in the semi-infinite case with a substrate that favors a homeotropic anchoring as $H \rightarrow \infty$. A more detailed discussion about this transition can be found in Ref. 22.

For larger values of H, the capillary NI transition appears as a transition between an I_{N} state and a N_{S} state for chemical potentials smaller than the bulk NI transition value. As ε_{W} approaches ε_{W}^{d}, the range of values of H for which capillary transition does not exist is wider. For $\varepsilon_{W}/\varepsilon_{A} = 0.53$ (close to the dewetting transition point) the capillary NI transition does not appear until $H/d > 150$. Figure 8 shows the continuous change of the nematic layer as the chemical potential increases for $H = 20d$, which is analogous to the behavior observed for $\varepsilon_{W}/\varepsilon_{A} = 0.70$. Figure 9 shows how the curves of the averaged intrinsic order parameter as a
function of the chemical potential change for increasing pore widths. For the narrowest pore \((H = 10d)\), a single transition is observed between an isotropic state to an state with some nematic ordering. However, as \(H\) is increased, it becomes clear that this transition is again a reminiscence of the \(I - I^S\) transition in the semi-infinite case. The localization of this transition depends weakly on the pore width \(H\). For \(H > 13d\), the \(N^S - N^L\) transition appears at chemical potentials larger than the bulk NI coexistence value. This transition does not appear for \(H = 10d\), which is a clear indication of the existence of a critical point for the \(N^L - N^S\) transition at small values of \(H\). As \(H\) increases, the chemical potential value for \(N^L - N^S\) transition shifts to lower values. Finally, we observe that the \(\bar{U}\) curve becomes increasingly steep at the bulk NI transition as \(H \to \infty\). This fact is a consequence of the formation of interfacial-like states [as Fig. 7(e)] in the proximities of the bulk NI coexistence chemical potential.

The nonexistence of a capillary NI transition above the dewetting transition as described above is unexpected. First, the finite-width effects are much more pronounced for \(\epsilon_w > \epsilon_w^c\) than below \(\epsilon_w^c\). As a consequence, we observe significant departures from the bulk behavior for wider pores and in a larger range of \(\epsilon_w\) than when we approach the complete wetting situation from below (i.e., \(\epsilon_w < \epsilon_w^c\)). This fact suggests the emergence of a new relevant term in the free energy of the system. On the other hand, as the dewetting transition is first order, we could naively expect that under confinement and large enough \(H\) the capillary transition disappearance point is shifted to lower values of \(\epsilon_w\) (Refs. 4, 25) (recall that the role of \(\epsilon_w\) or the temperature is reversed in the dewetting transition with respect to the wetting transition). To understand this situation we recall that the confinement in a hybrid cell destabilizes the \(N^L\) with respect to the \(N^S\). A simple phenomenological argument can be used to explain this fact.\(^{22}\) For large enough values of \(H\), the excess free-energy per surface area of a \(N^S\) state is given by the sum of the surface free energies between each substrate and a nematic fluid which is planar-anchored with respect to them. The finite-width corrections are expected to decay exponentially. On the other hand, the large \(H\) behavior free energy of the \(N^L\) state is the sum of the surface tensions of the interface between the \(z = 0\) substrate and a homeotropically-anchored nematic fluid and the corresponding between the planar-anchored nematic fluid and the \(z = H\) substrate. For this state the finite-width correction is dominated by the elastic deformations contribution and decays as \(K_3 \pi^2/8H\) as \(H \to \infty\), where \(K_3\) is a Frank–Oseen elastic constant.\(^{22}\) So, for a given temperature, the \(N^S - N^L\) transition is always shifted towards higher chemical potentials than the anchoring transition, and the convergence to it for large values of \(H\) is quite slow. Although this argument implicitly assumes that the inhomogeneities are restricted to microscopic regions around each substrate, it is also valid if we allow the \(N^S\) state to develop an isotropic layer close to the \(z = 0\) substrate (as occurs close to the bulk NI coexistence). Consequently, for \(\epsilon_w^d < \epsilon_w < \epsilon_w^m\) and moderate values of \(H\), the most stable nematiclike state close to the bulk NI coexistence is \(N^S\), and therefore there is no capillary transition. As \(H\) increases, the \(N^L\) state becomes more stable than the \(N^S\) state near the NI bulk transition, and eventually the capillary transition between a \(I^N\) state and a \(N^L\) occurs.

An interesting feature of the NI capillary transition in this regime is that it is linked to the purely surface transition \(N^S - N^L\). As explained before, for small values of \(H\) there is no NI capillary transition but if \(H\) is not too small there is a \(N^S - N^L\) transition. As \(H\) increases, the chemical potential corresponding to the \(N^S - N^L\) transition shifts to smaller values, and eventually crosses the value corresponding to the bulk NI transition (see Fig. 10). When this happens, the transition is between an isotropiclike \(I^S\) state to the nematiclike \(N^L\) state: the capillary NI transition is recovered. An analogous smooth transformation from a prewetting to a capillary condensation transition was observed in mean-field calculations of a confined polymer model under asymmetrical opposing surface fields.\(^{7}\) Finally, the Kelvin relationship Eq. (16) predicts that the capillary transition value of \(\beta \mu\) approaches the bulk NI value from below. The DFT results for

![FIG. 9. Plot of the averaged intrinsic order parameter \(\bar{U}\) throughout the pore vs the reduced chemical potential \(\beta \mu\) for \(\epsilon_w^d/\epsilon_w^c = 0.53\) and \(H/d = 10, 13, 20, 30, 40,\) and 80. The discontinuities of \(\bar{U}(\beta \mu)\) correspond to the \(I^S - I^N\) (left) and \(N^S - N^L\) (right) transitions.](image-url)

![FIG. 10. Plot of the reduced chemical potential \(\beta \mu\) corresponding to the \(N^S - N^L\) transition (or the NI capillary transition, see text for explanation) as a function of the reduced inverse pore width \(d/H\) for values of \(\epsilon_w^d/\epsilon_w^c = 0.49\) (circles), 0.53 (diamonds), 0.60 (triangles up), and 0.66 (triangles down). For \(\epsilon_w^d/\epsilon_w^c = 0.49\) the transition extrapolates to the anchoring transition corresponding to the \(z = 0\) substrate (Ref. 18) as \(H \to \infty\), and to the bulk NI transition for the other cases. The continuous lines are only to guide the eye.](image-url)
large H support this prediction. So, at fixed temperature and chemical potential, and changing H, reentrance of the isotropic-like state is observed (see Fig. 10).

V. CONCLUSIONS

In this paper we have reported a DFT study of the NI capillary transition under confinement in a slit-pore where each substrate favors a different anchoring condition. We found that there is an interplay between the phenomenology found in the semi-infinite problems with the phenomenology which appeared in the confined problem. We have focused in the nonexistence of the NI capillary transition as a result of both substrates to be wet by different phases. If we approach this region from below, we observe a destabilization of the two-phase region with respect to the one-phase region. Moreover, the capillary NI transition finishes in a critical point. These findings are different from the ones reported by Quintana and Robledo and this discrepancy can be traced to the different order of the wetting transition. When we approach the nonexistence range for the NI capillary transition from above, a different mechanism is involved in the finite-size effects of the capillary NI transition. Although the wetting transition which drives the disappearance of the capillary transition is first-order, the two-phase region is still destabilized with respect to the one-phase region. The explanation for this is the existence of two nematic-like locally stable phases with a relative stability dependent on the pore width. One of them corresponds to a complete wetting situation, so links with the isotropic-like states without undergoing a phase transition. So, as H increases, the phase transition between two nematic-like states transforms continuously to the NI capillary transition. As a consequence, a reentrant behavior for the isotropic-like state is observed by varying the pore width and keeping the temperature and chemical potential constant.

Although we have restricted our study to an isotherm case, we anticipate that we would find a similar behavior if the temperature is changed instead of the value of ϵ_W. On the other hand, the condition $\epsilon_W^{(1)} = \epsilon_W^{(2)}$ is not so restrictive as soon as the wetting transition of the $z = H$ wall precedes the complete wetting at the $z = 0$ wall. If such a condition is not fulfilled, our conclusions may change.

ACKNOWLEDGMENTS

I.R.P. would like to thank Professor F. Schwabl for his help in the development of this work and Professor J. O. Indekeu for useful discussions. J.M.R.-E. also thanks Professor A. O. Parry for his interest in this work. I.R.P. note that this work has been performed under the auspices of the Sonderforschungsbereich (SFB) 563. Financial support by the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged. J.M.R.-E. and L.F.R. acknowledge financial support by Grant No. BQU2001-3615-C02-02 from MEC (Spain). Finally, J.M.R.-E. also acknowledges partial financial support from Secretaría de Estado de Educación y Universidades (Spain), co-financed by the European Social Fund, and from the European Commission under Contract No. MEIF-CT-2003-501042.

1. W. T. Thomson (Lord Kelvin), Philos. Mag. 42, 448 (1871).