Comment on “Exact Results for the Lower Critical Solution in the Asymmetric Model of an Interacting Binary Mixture”

In a recent Letter, Lin and Taylor (L-T) [1] reported exact results for a square lattice gas model of an interacting binary mixture. In this model, each cell of the lattice can be occupied by a square (particle A) or by four triangles (particles B). The nearest-neighbor coupling between the A particles is e_{AA}, while the coupling between A and B particles, e_{AB} is introduced for each edge contact between the squares and triangles. This model can be considered as a generalization of the “venerable” decorated lattice model introduced three decades ago by Widom [2]. With an appropriate transformation, the partition function of this model maps onto the partition function of the two-dimensional Ising model.

L-T found that the necessary condition for the occurrence of a lower critical point (LCP) in addition to the upper critical point (UCP) is that not only $e_{AA}, 0$ and $e_{AB}, 0$ but also the ratio $s - 2e_{AA}/2e_{AB} < 0$, which implies $s > 1$ and $s < 0$.

All the lines of critical points for $e_{AA} < 0$ end at the same point. This point corresponds to the critical pressure p_{cr} and critical temperature of the pure A system.

In Fig. 1, the dashed line corresponds to the coexistence line of the A pure system. The zone between this line and the line of critical points (continuous line) is where the coexistence of the mixture occurs.

For values of $s < 0$, the line of critical points can present a nonmonotonic behavior with a maximum and then the system exhibits a LCP and an UCP for values of the pressure between this maximum and p_{cr}. For values smaller than p_{cr}, the UCP disappears and the system shows a coexistence with LCP and ending in the pure system (see Fig. 2).

Decreasing e_{AB}, the line of critical points becomes monotonic and consequently, the UCP does not appear and the system shows a single LCP for $p < p_{cr}$. The limit $e_{AB} = -\infty$ presents a straight line of critical points.

One of the authors (L. F. R.) has benefited from a stimulating correspondence with Professor Michael E. Fisher.

José M. Romero-Enrique, Inmaculada Rodríguez-Ponce, and Luis F. Rull
Departamento de Física Atómica, Molecular y Nuclear
Area de Física Teórica, Universidad de Sevilla
Aptdo 1065, Sevilla, 41080, Spain

Umberto Marini Bettolo Marconi
Dipartimento di Matematica e Fisica and INFM
via Madonna delle Carceri, Università di Camerino
62032 Camerino, Italy

Received 16 June 1997 [S0031-9007(97)04401-3]
PACS numbers: 61.25.Hq, 05.50.+q, 64.75.+g, 82.60.Lf