
Fast Feature Selection by Means of Projections�

Roberto Ruiz, José C. Riquelme, and Jesús S. Aguilar-Ruiz

Departamento de Lenguajes y Sistemas, Universidad de Sevilla,
Avda. Reina Mercedes S/N. 41012 Sevilla, España,

{rruiz,riquelme,aguilar}@lsi.us.es

Abstract. The attribute selection techniques for supervised learning,
used in the preprocessing phase to emphasize the most relevant at-
tributes, allow making models of classification simpler and easy to under-
stand. The algorithm (SOAP: Selection of Attributes by Projection) has
some interesting characteristics: lower computational cost (O(m n log n)
m attributes and n examples in the data set) with respect to other typi-
cal algorithms due to the absence of distance and statistical calculations;
its applicability to any labelled data set, that is to say, it can contain
continuous and discrete variables, with no need for transformation. The
performance of SOAP is analyzed in two ways: percentage of reduction
and classification. SOAP has been compared to CFS [4] and ReliefF [6].
The results are generated by C4.5 before and after the application of the
algorithms.

1 Introduction

The data mining researchers, especially those dedicated to the study of algo-
rithms that produce knowledge in some of the usual representations (decision
lists, decision trees, association rules, etc.), usually make their tests on standard
and accessible databases (most of them of small size). The purpose is to indepen-
dently verify and validate the results of their algorithms. Nevertheless, these al-
gorithms are modified to solve specific problems, for example real databases that
contain much more information (number of examples) than standard databases
used in training. To accomplish the final tests on these real databases with tens
of attributes and thousands of examples is a task that takes a lot of time and
memory size.

It is advisable to apply to the database preprocessing techniques to reduce
the number of attributes or the number of examples in such a way as to decrease
the computational time cost. These preprocessing techniques are fundamentally
oriented to either of the next goals: feature selection (eliminating non-relevant
attributes) and editing (reduction of the number of examples by eliminating
some of them or calculating prototypes [1]). Our algorithm belongs to the first
group.

� This work has been supported by the Spanish Research Agency CICYT under grant
TIC2001-1143-C03-02.

P.W.H. Chung, C.J. Hinde, M. Ali (Eds.): IEA/AIE 2003, LNAI 2718, pp. 461–470, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

462 R. Ruiz, J.C. Riquelme, and J.S. Aguilar-Ruiz

In this paper we present a new method of attribute selection, called SOAP
(Selection of Attributes by Projection), which has some important characteris-
tics:

– Considerable reduction of the number of attributes.
– Lower computational time O(m n log n) than other algorithms.
– Absence of distance and statistical calculations: correlation, information

gain, etc.
– Conservation of the error rates of the classification systems.

The hypothesis on which the heuristic is based is: “place the best attributes
with the smallest number of label changes”. The next section discusses related
work. Section 3 describes the SOAP algorithm. Section 4 presents the results.
Which deal with several databases from the UCI Repository [3]. The last section
summarizes the findings.

2 Related Work

Algorithms that perform feature selection as a preprocessing step prior to learn-
ing can generally be placed into one of two broad categories: wrappers, Ko-
havi [7], which employs a statistical re-sampling technique (such as cross vali-
dation) using the actual target learning algorithm to estimate the accuracy of
feature subsets. This approach has proved to be useful but is very slow to execute
because the learning algorithm is called upon repeatedly. Another option called
filter, operates independently of any learning algorithm. Undesirable features
are filtered out of the data before induction begins. Filters use heuristics based
on general the characteristics of the data to evaluate the merit of feature sub-
sets. As a consequence, filter methods are generally much faster than wrapper
methods, and, as such, are more practical for use on data of high dimension-
ality. FOCUS [2], LVF [14] use class consistency as an evaluation meter. One
method for discretization called Chi2 [13]. Relief [6] works by randomly sam-
pling an instance from the data, and then locating its nearest neighbour from
the same and opposite class. Relief was originally defined for two-class problems
and was later expanded as ReliefF [8] to handle noise and multi-class data sets,
and RReliefF [12] handles regression problems. Other authors suggest Neuronal
Networks for an attribute selector. In addition, learning procedures can be used
to select attributes, like ID3 [10], FRINGE [9] and C4.5 [11]. Methods based on
the correlation like CFS [4], etc.

3 SOAP: Selection of Attributes by Projection

3.1 Description

To describe the algorithm we will use the well-known data set IRIS, because of
the easy interpretation of their two-dimensional projections.

Fast Feature Selection by Means of Projections 463

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5

0 2 4 6 8 10

sepallength

se
pa

lw
id

th

(a) (b)

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5

0 0,5 1 1,5 2 2,5 3

petalwidth

se
pa

lw
id

th

(c)

0

1

2

3

4

5

6

7

8

0 0,5 1 1,5 2 2,5 3

petalwidth

pe
ta

lle
ng

th

setosa versicolor virginica

Fig. 1. Representation of Attributes (a) Sepalwidth-Sepallength and (b) Sepalwidth-
Petalwidth (c) Pepallength-Petalwidth

Three projections of IRIS have been made in two-dimensional graphs. In
Figure 1(a) it is possible to observe that if the projection of the examples is
made on the abscissas or ordinate axis we can not obtain intervals where any
class is a majority, only can be seen the intervals [4.3,4.8] of Sepallength for the
Setosa class or [7.1,8.0] for Virginica. In Figure 1(b) for the Sepalwidth parameter
in the ordinate axis clear intervals are not appraised either. Nevertheless, for the
Petalwidth attribute is possible to appreciate some intervals where the class
is unique: [0,0.6] for Setosa, [1.0,1.3] for Versicolor and [1.8,2.5] for Virginica.
Finally in Figure 1(c), it is possible to appreciate the class divisions, which are
almost clear in both attributes. This is because when projecting the examples
on each attribute the number of label changes is minimum. For example, it is
possible to verify that for Petallength the first label change takes place for value
3 (setosa to Versicolor), the second in 4.5 (Versicolor to Virginica). there are
other changes later in 4.8, 4,9, 5,0 and the last one is in 5.1.

SOAP is based on this principle: to count the label changes, produced when
crossing the projections of each example in each dimension. If the attributes are
in ascending order according to the number of label changes, we will have a list
that defines the priority of selection, from greater to smaller importance. SOAP
presumes to eliminate the basic redundancy between attributes, that is to say,
the attributes with interdependence have been eliminated. Finally, to choose the
more advisable number of features, we define a reduction factor, RF, in order to
take the subset from attributes formed by the first of the aforementioned list.

464 R. Ruiz, J.C. Riquelme, and J.S. Aguilar-Ruiz

Before formally exposing the algorithm, we will explain with more details the
main idea. We considered the situation depicted in Figure 1(b): the projection
of the examples on the abscissas axis produces a ordered sequence of intervals
(some of then can be a single point) which have assigned a single label or a
set of them: [0,0.6] Se, [1.0,1.3] Ve, [1.4,1.4] Ve-Vi, [1.5,1.5] Ve-Vi, [1.6,1.6] Ve-
Vi, [1.7,1.7] Ve-Vi, [1.8,1.8] Ve-Vi, [1.9,2.5] Vi. If we apply the same idea with
the projection on the ordinate axis, we calculate the partitions of the ordered
sequences: Ve, R, R, Ve, R, R, R, R, R, R, R, R, R, R, Se, R, Se, R, Se, where
R is a combination of two or three labels. We can observe that we obtain almost
one subsequence of the same value with different classes for each value from the
ordered projection. That is to say, projections on the ordinate axis provide much
less information that on the abscissas axis.

In the intervals with multiple labels we will consider the worst case, that
being the maximum number of label changes possible for a same value.

The number of label changes obtained by the algorithm in the projection of
each dimension is: Petalwidth 16, Petallength 19, Sepallenth 87 and Sepalwidth
120. In this way, we can achieve a ranking with the best attributes from the point
of view of the classification. This result agrees with what is common knowledge in
data mining, which states that the width and length of petals are more important
than those related to sepals.

3.2 Definitions

Definition 1: Let the attribute Ai be a continuous or discrete variable that
takes values in Ii = [mini, maxi]. Then, A is the attributes space defined as
A = I1 × I2 × . . . × Im, where m is the number of attributes.

Definition 2: An example e ∈ E is a tuple formed by the Cartesian product
of the value sets of each attribute and the set C of labels. We define the
operations att and lab to access the attribute and its label (or class): att: E x
N → A and lab: E → C, where N is the set of natural numbers.

Definition 3: Let the universe U be a sequence of example from E. We will
say that a database with n examples, each of them with m attributes and
one class, forms a particular universe. Then U=<u[1],...,u[n]> and as the
database is a sequence, the access to an example is achieved by means of its
position. Likewise, the access to j-th attribute of the i-th example is made
by att(u[i],j), and for identifying its label lab(u[i]).

Definition 4: An ordered projected sequence is a sequence formed by the pro-
jection of the universe onto the i-th attribute. This sequence is sorted out
in ascending order and it contains the value of the projected attribute. For
example, in Figure 1(c) for Petalwidth attribute we have 0.1,0.2,0.3,. . .

Definition 5: A partition in constant subsequences is the set of subsequences
formed from the ordered projected sequence of an attribute in such a way
as to maintain the projection order. All the examples belonging to a sub-
sequence have the same class and every two consecutive subsequences are dis-
jointed with respect to the class. For Petalwidth in Iris, we observe
[0.1,0.6][1.0,1.3]. . . , subsequences with different class.

Fast Feature Selection by Means of Projections 465

Definition 6: A subsequence of the same value is the sequence composed of
the examples with identical value from the i-th attribute within the ordered
projected sequence. This situation can be originated in continuous variables,
and it will be the way to deal with the discrete variables. In Figure 1(c) for
Petalwidth, we have [1] a subsequence of the same value, one, with the same
label, and for value [1.5] we have a subsequence with different label.

3.3 Algorithm

The algorithm is very simple and fast, see Fig. 4. It has the capacity to operate
with continuous and discrete variables as well as with databases which have two
classes or multiple classes. In the ascending-order-task for each attribute, the
QuickSort [5] algorithm is used. This algorithm is O(n log n), on average. Once
ordered by an attribute, we can count the label changes throughout the ordered
projected sequence. NumberChanges in Fig. 5, considers whether we deal with
different values from an attribute, or with a subsequence of the same value (this
situation can be originated in continuous and discrete variables). In the first
case, it compares the present label with that of the following value. Whereas in
the second case, where the subsequence is of the same value, it counts as many
label changes as are possible (function ChangesSameValue).

The k first attribute which NLC (number of label changes) under NLClim
will be selected. NLClim is calculated applying the follow equation:

NLClim = NLCmin + (NLCmax − NLCmin) ∗ RF (1)

RF: reduction factor.

Main Algorithm

Input: E training (N examples, M attributes)
Output: E reduced (N examples, K attributes)
for each attribute i with i in {1..M}

QuickSort(E,i)
NLCi = NumberChanges(E,i)

NLC Attribute Ranking
Select the K first

NumberChanges function

Input: E training, i
Output: Number of Label Changes (NLC)
for each example ej in E with j in {1..N}

if att(u[j],i) in subsequence of the same value
NLC += ChangesSameValue()

else
if lab(u[j]) <> lastLabel)

NLC++

After applying QuickSort, we might have repeated values with the same
or different class. For this reason, the algorithm firstly sorts by value and, in

466 R. Ruiz, J.C. Riquelme, and J.S. Aguilar-Ruiz

 3 3 3 3 3 3 3 3

A B B A A C B B

values

classes

changes

B A B B A C B A

3 3 3 3 3 3 3 3 values

classes

changes

Fig. 2. Subsequence of the same value (a) two changes (b) seven changes

values3 3 33 3 333 3 3 33 3 333
classes

changes

A A AA A BBA A B AA B AAA

Fig. 3. Example

case of equality, it will look for the worst of the all possible cases (function
ChangesSameValue).

We could find the situation as depicted in Figure 2(a). The examples sharing
the same value for an attribute are ordered by class. The label changes obtained
are two. The next execution of the algorithm may find another situation, with
a different number of label changes. The solution to this problem consists of
finding the worst case. The heuristic is applied to obtain the maximum number
of label changes within the interval containing repeated values. In this way, the
ChangesSameValue method would produce the output shown in Figure 2(b),
seven changes. This can be obtained with low cost. It can be deduced counting
the class’ elements

In Figure 2(a) we can observe a subsequence of the same value with eight
elements: three elements are class A, four class B and one C. Applying formula
2 there is no relative frequency greater than half of the elements. Then, the
maximum number of label changes is nelem-1, seven. In Figure 2(b) we verify it.

From Figure 3 it can be seen that the function ChangesSameValue will return
four label changes, because a relative frequency greater than nelem/2 exists (class
A). Then, the result is (8-6)*2=4. In this way, we always will find the maximum
number of label changes within the interval containing repeated values.

This algorithm allows working with discrete variables. We consider each pro-
jection of this attribute like a subsequence of the same value.

4 Experiments

In order to compare the effectiveness of SOAP as a feature selector for com-
mon machine learning algorithms, experiments were performed using sixteen
standard data sets from the UCI repository [4]. The data sets and their charac-
teristics are summarized in Table 3. The percentage of correct classification with
C4.5, averaged over ten ten-fold cross-validation runs, were calculated for each

Fast Feature Selection by Means of Projections 467

algorithm-data set combination before and after feature selection by SOAP (RF
0.35), CFS and ReliefF (threshold 0.05). For each train-test split, the dimension-
ality was reduced by each feature selector before being passed to the learning
algorithms. The same fold were used for each feature selector-learning scheme
combination.

To perform the experiment with CFS and ReliefF we used theWeka1 (Waikato
Environment for Knowledge Analysis) implementation.

Table 1 shows the average number of features selected and the percentage of
the original features retained. SOAP is a specially selective algorithm compared
with CFS and RLF. If SOAP and CFS are compared, only in one dataset (labor)
is the number of characteristics significantly greater than those selected by CFS.
In six data sets there are no significant differences, and in nine, the number of
features is significantly smaller than CFS. Compare to RLF, only in glass2 and
diabetes, SOAP obtains more parameters in the reduction process (threshold
0.05 is not sufficient). It can be seen (by looking at the fourth column) that
SOAP retained 23,7% of the attributes on average.

Table 1. Number of selected features and the percentage of the original features re-
tained

Data Soap CFS RLF
Set Atts Atts(%)Atts(%)Atts(%)
autos 25 2.9(11.8) 5.3(21.3)10.9(43.7)
breast-c 9 1.5(16.7) 4.1(45.9) 3.7(41.6)
breast-w 9 5.2(57.6) 9.0(99.7) 8.1(89.4)
diabetes 8 2.8(34.9) 3.1(38.9) 0.0(0.0)
glass2 9 3.2(35.7) 4.0(43.9) 0.3(3.6)
heart-c 13 6.3(48.2) 6.4(49.1) 6.9(53.4)
heart-stat 13 5.4(41.8) 6.3(48.2) 6.3(48.2)
hepatitis 19 2.6(13.6) 8.7(45.6)13.3(70.0)
horse-c.OR. 27 2.3(8.6) 2.0(7.4) 2.3(8.6)
hypothyroid 29 1.7(5.7) 1.0(3.4) 5.2(18.0)
iris 4 2.0(50.0) 1.9(48.3) 4.0(100.0)
labor 16 4.3(27.0) 3.3(20.8) 8.8(55.3)
lymph 18 1.8(9.9) 8.9(49.2)11.8(65.8)
sick 29 1.0(3.4) 1.0(3.4) 7.1(24.5)
sonar 60 3.0(5.0)17.8(29.7) 3.9(6.5)
vote 16 1.6(10.0) 1.0(6.3)15.5(96.9)
Average 19.0 3.0(23.7) 5.2(35.1) 6.8(45.3)

Table 2 shows the results for attribute selection with C4.5 and compares the
size (number of nodes) of the trees produced by each attribute selection scheme
against the size of the trees produced by C4.5 with no attribute selection. Smaller
trees are preferred as they are easier to interpret, but accuracy is generally
degraded. The table shows how often each method performs significantly better
1 http://www.cs.waikato.ac.nz/ ml

468 R. Ruiz, J.C. Riquelme, and J.S. Aguilar-Ruiz

Table 2. Result of attribute selection with C4.5. Accuracy and size of trees. ◦ , •
Statistically significant improvement or degradation (p=0.05)

Data Soap CFS RLF
Set Ac. Size Ac. Size Ac. Size Ac. Size
autos 82.54 63.32 73.37 • 45.84 ◦ 74.54 • 55.66 ◦ 74.15 • 85.74 •
breast-c 74.37 12.34 70.24 • 6.61 ◦ 72.90 18.94 • 70.42 • 11.31
breast-w 95.01 24.96 94.64 21.28 ◦ 95.02 24.68 95.02 24.68
diabetes 74.64 42.06 74.14 7.78 ◦ 74.36 14.68 ◦ 65.10 • 1.00 ◦
glass2 78.71 24.00 78.96 14.88 ◦ 79.82 14.06 ◦ 53.50 • 1.70 ◦
heart-c 76.83 43.87 77.06 34.02 ◦ 77.16 29.35 ◦ 79.60 ◦ 28.72 ◦
heart-stat 78.11 34.58 80.67 ◦ 19.50 ◦ 80.63 ◦ 23.84 ◦ 82.33 ◦ 14.78 ◦
hepatitis 78.97 17.06 80.19 5.62 ◦ 81.68 ◦ 8.68 ◦ 80.45 11.26 ◦
horse-c.OR. 66.30 1.00 66.30 1.00 66.30 1.00 66.28 1.36 •
hypothyroid 99.54 27.84 95.02 • 4.30 ◦ 96.64 • 5.90 ◦ 93.52 • 12.52 ◦
iris 94.27 8.18 94.40 8.12 94.13 7.98 94.40 8.16
labor 80.70 6.93 78.25 3.76 ◦ 80.35 6.44 80.00 5.88 ◦
lymph 77.36 28.05 72.84 • 7.34 ◦ 75.95 20.32 ◦ 74.66 24.10 ◦
sick 98.66 49.02 93.88 • 1.00 ◦ 96.32 • 5.00 ◦ 93.88 • 1.00 ◦
sonar 74.28 27.98 70.05 • 7.00 ◦ 74.38 28.18 70.19 • 9.74 ◦
vote 96.53 10.64 95.63 • 3.00 ◦ 95.63 • 3.00 ◦ 96.53 10.64
Average 82.93 26.36 80.98 11.94 82.24 16.73 79.38 15.79

(denoted by ◦) or worse (denoted by •) than when performing no feature selection
(column 2 and 3). Throughout we speak of results being significantly different
if the difference is statistically at the 5% level according to a paired two-sided t
test. Each pair of points consisting of the estimates obtained in one of the ten,
ten-fold cross-validation runs, for before and after feature selection. For SOAP,
feature selection degrades performance on seven datasets, improves on one and
it is equal on eight. The reason for why the algorithm is not as accurate is the
number of attribute selected, less than three feature. Five of these seven datasets
obtain a percentage less than 10% of the original features. The results are similar
to ReliefF and a little worse than those provided by CFS. Analyzing the datasets
in which SOAP lost to CFS, we can observe breast-c, lymph and sonar, where
the number of feature selected by SOAP is 25% of CFS (breast-c 4,1 to 1,5 with
SOAP, lymph 8,9-1,8 and sonar 17,8-3). Nevertheless the accuracy reduction is
small: breast-c 72,9 (CFS) to 70,24 with SOAP, lymph 75,95-72,84 and sonar
74,38-70,05.

It is interesting to compare the speed of the attribute selection techniques. We
measured the time taken in milliseconds to select the final subset of attributes.
SOAP is an algorithm with a very short computation time. The results shown in
Table 3 confirm the expectations. SOAP takes 400 milliseconds2 in reducing 16
datasets whereas CFS takes 853 seconds and RLF more than 3 minutes. In gen-
eral, SOAP is faster than the other methods and it is independent of the classes

2 This is a rough measure. Obtaining true cpu time from within a Java program is
quite difficult.

Fast Feature Selection by Means of Projections 469

Table 3. Data sets. Time in milliseconds

Data Soap CFS RLF
Set Instances Atts Classes t-ms t-ms t-ms
autos 205 25 7 15 50 403
breast-c 286 9 2 4 6 174
breast-w 699 9 2 6 35 1670
diabetes 768 8 2 6 39 1779
glass2 163 9 2 2 9 96
heart-c 303 13 5 6 10 368
heart-stat 270 13 2 4 12 365
hepatitis 155 19 2 4 9 135
horse-c.OR. 368 27 2 16 43 941
hypothyroid 3772 29 4 180 281 94991
iris 150 4 3 3 3 44
labor 57 16 2 1 3 21
lymph 148 18 4 3 7 109
sick 3772 29 2 120 252 93539
sonar 208 60 2 21 90 920
vote 435 16 2 9 4 651
Sum 400 853 196206

number. Also it is possible to be observed that ReliefF is affected very negatively
by the number of instances in the dataset, it can be seen in “hypothyroid” and
“sick”. Eventhough these two datasets were eliminated, SOAP is more than 3
times faster than CFS, and more than 75 times than ReliefF.

Figure 4 summarizes the power of our algorithm, SOAP. It diminishes, in a
significant percentage, the number of attributes, obtaining simple classification
models, with a computational time lower than that of the other methods and
with a similar average accuracy.

0 10 20 30 40 50 60 70 80 90

C4.5-Ac.

t-ms/100

C4.5-Tam.

Nº Att

Data CFS RLF SOAP

Fig. 4. Summary

470 R. Ruiz, J.C. Riquelme, and J.S. Aguilar-Ruiz

5 Conclusions

In this paper we present a deterministic attribute selection algorithm. It is a
very efficient and simple method used in the preprocessing phase A consider-
able reduction of the number of attributes is produced in comparison to other
techniques. It does not need distance nor statistical calculations, which could be
very costly in time (correlation, gain of information, etc.). The computational
cost is lower than other methods O(m n log n).

References

1. Aguilar-Ruiz, Jesús S., Riquelme, José C. and Toro, Miguel. Data Set Editing by
Ordered Projection. Intelligent Data Analysis Journal. Vol. 5, nō5, pp. 1-13, IOS
Press (2001).

2. Almuallim, H. and Dietterich, T.G. Learning boolean concepts in the presence of
many irrelevant features. Artificial Intelligence, 69(1-2):279-305 (1994).

3. Blake, C. and Merz, E. K. UCI Repository of machine learning databases (1998).
4. Hall M.A. Correlation-based feature selection for machine learning. PhD thesis,

Department of Computer Science, University of Waikato, Hamilton, New Zealand
(1998).

5. Hoare, C. A. R. QuickSort. Computer Journal, 5(1):10-15 (1962).
6. Kira, K. and Rendell, L. A practical approach to feature selection. In Proceedings

of the Ninth International Conference on Machine Learning. pp. 249-256, Morgan
Kaufmann (1992).

7. Kohavi, R. and John, G. H. Wrappers for feature subset selection. Artificial Intel-
ligence, 97, 273-324 (1997).

8. Kononenko, I. Estimating attibutes: Analisys and extensions of relief. In Pro-
ceedings of the Seventh European Conference on Machine Learning. pp. 171-182,
Springer-Verlag (1994).

9. Pagallo, G. and Haussler, D. Boolean feature discovery in empirical learning. Ma-
chine Learning, 5, 71-99 (1990).

10. Quinlan, J. Induction of decision trees. Machine Learning, 1(1), 81-106 (1986).
11. Quinlan, J. C4.5: Programs for machine learning. Morgan Kaufmann (1993).
12. Robnik-Šikonja, M. And Kononenko, I. An adaption of relief for attribute estima-

tion in regression. In Proceedings of the Fourteenth International Conference on
Machine Learning. pp. 296-304, Morgan Kaufmann (1997).

13. Setiono, R., and Liu, H. Chi2: Feature selection and discretization of numeric
attributes. In Proceedings of the Seventh IEEE International Conference on Tools
with Artificial Intelligence (1995).

14. Setiono, R., and Liu, H. A probabilistic approach to feature selection-a filter so-
lution. In Proceedings of International Conference on Machine Learning, 319-327
(1996).

	1 Introduction
	2 Related Work
	3 SOAP: Selection of Attributes by Projection
	3.1 Description
	3.2 Definitions
	3.3 Algorithm

	4 Experiments
	5 Conclusions
	References

