
First Steps Towards a Geometry of Computation

Michael Muskulus1, Robert Brijder2

1 Mathematical Institute
Leiden University
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
E-mail: muskulus@math.leidenuniv.nl

2 Leiden Institute of Advanced Computer Science (LIACS)
Leiden University
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
E-mail: rbrijder@liacs.nl

Summary. We introduce a geometrical3 setting which seems promising for the study
of computation in multiset rewriting systems, but could also be applied to register ma-
chines and other models of computation. This approach will be applied here to membrane
systems (also known as P systems) without dynamical membrane creation. We discuss
the rôle of maximum parallelism and further simplify our model by considering only one
membrane and sequential application of rules, thereby arriving at asynchronous multiset
rewriting systems (AMR systems). Considering only one membrane is no restriction, as
each static membrane system has an equivalent AMR system. It is further shown that
AMR systems without a priority relation on the rules are equivalent to Petri Nets. For
these systems we introduce the notion of asymptotically exact computation, which allows
for stochastic appearance checking in a priori bounded (for some complexity measure)
computations. The geometrical analogy in the lattice Nd

0, d ∈ N, is developed, in which a
computation corresponds to a trajectory of a random walk on the directed graph induced
by the possible rule applications. Eventually this leads to symbolic dynamics on the par-
tition generated by shifted positive cones C+

p , p ∈ Nd
0, which are associated with the

rewriting rules, and their intersections. Complexity measures are introduced and we con-
sider non–halting, loop–free computations and the conditions imposed on the rewriting
rules. Eventually, two models of information processing, control by demand and control by
availability are discussed and we end with a discussion of possible future developments.

1 Introduction

There are many questions in biology that could benefit from a computer science
theoretical treatment or a more mathematical approach. Computational biology
[26] being a prominent example, there are also systems biology [33, 57] and artifical

3 We should remark here that our use of the term “geometry of computation” has no
connections with the more algebraically oriented work of Y. Lafont and F. Lamarche.

198 M. Muskulus, R. Brijder

chemistry [58, 25] that are amenable to such an analysis. The growing field of
natural computing [39, 8] studies biologically inspired models of computation [19].

In this work we propose a simple mathematical framework in which it might
be possible to investigate some of these systems. It is based on multiset rewriting
[9, 60, 42], as this captures essential features necessary for modelling molecular
biology [27]: parallelism and non–determinism [2, 52].

Membrane systems (also known as P systems) were introduced by Gheorghe
Păun [46] as a computational model of biochemical processing in cells, making use
of a hierarchical structure of membranes and maximal parallel multiset rewriting
(see below for formal definitions). They are a well researched model with numerous
proposed variants (for the latest developments see [63]).

In our interdisciplinary effort to establish some link between computer science,
biology, chemistry and mathematics, we will use a simplified version of membrane
systems as our basic object of research. Standard membrane systems use the con-
cept of maximal parallelism: The evolution of the system is governed by a global
clock and in each timestep all the rewriting rules, that can be used, have to be used.
The biological motivation for this is mass–action kinetics [61], but the strict form
of maximal parallelism is unnatural biologically. Recently it has also been argued
[3, 29] that mass–action kinetics is an unrealistic idealization itself (in molecular
biology). Maximal parallelism is a source of computational power, as it allows for
appearance checking [23]: testing whether there is a copy of an object inside a
membrane.

Relaxing maximal parallelism is possible in a variety of ways. In non–syn-
chronized P systems (Section 3.4.5 in [47]) some of the applicable rules can be
used in parallel at each timestep, but are not forced to do so. In sequential P sys-
tems [28] exactly one rule is executed at each timestep, randomly chosen from the
set of applicable rules. It has been shown [47] that non–synchronized P systems
only generate number sets of context–free languages and are therefore not compu-
tationally complete. Completeness is achieved by the use of a priority relation on
the rules, though. Sequential P systems can generate languages of partially blind
counter automata [30] or of matrix grammars without appearance checking [28].

There are variants of these models, in which maximal parallelism is not aban-
doned, but rules are given execution times: timed P systems [18] assign a fixed
integer duration to each rule, clock–free P systems [18] assign a random integer
duration to each rule application (of another or of the same rule). Timed (respec-
tively clock–free) P systems are called time–free (respectively clock–free) if their
output (the language generated by the system [30]) is always the same, no mat-
ter how these durations are chosen. These notions correspond to the distinction
between physical parallelism and logical parallelism, as pointed out by Banâtre
and Métayer [9]: Physical parallelism refers to the underlying implementation of
a computational process, whereas logical parallelism refers to the possibility of
describing this process as several independent tasks. Clock–free systems and, to a
lesser extent, also time–free systems have to rely only on logical parallelism and
need to structure the computational process accordingly. This seems a natural

First Steps Towards a Geometry of Computation 199

condition for modelling biological phenomena, as this implies robustness [10, 57]
against random perturbations.

We propose a further simplification by studying sequential but non–determinis-
tic systems that always produce the same output, calling these asynchronous mul-
tiset rewriting systems (AMR systems4). The loss in computational power can be
partially compensated by the notion of stochastic appearance checking, in which
a number of checks are made for the existence of an object. The probability of
a correct computation can be regulated by increasing the number of checks, but
a correct computation cannot be guaranteed anymore. Although this probability
can be made arbitrarily close to unity, leading to the concept of asymptotically ex-
act computation, this can only be done for bounded (in some complexity measure
[12, 21]) computations. Still it seems to be a useful concept, achieving computa-
tional (quasi–) power with minimal effort, as is typical in biology. Furthermore, it
could lead to intriguing biological considerations.

Considering the objective of making the computation amenable to analysis,
there are at least two possibilities. One is to consider dependencies of rules among
each other, leading to the notion of dependency graph [21]; the other is to consider
the computational tree, tracing the system’s configurations and all possible rule
applications. So far, this has been mostly neglected in the literature on P systems
(with the exception of [22]). The linearity of multisets, which has its analog in a
similar linearity of rules, leads us to consider a linear space as the configuration
space of the system. Introducing a numbering of the objects, this corresponds to a
subset S of the regular lattice Nd

0, where d ∈ N is the number of different objects.
In this way, at present only P systems with static membrane structure can be
modelled, but it might be possible to overcome this difficulty by considering the
Banach space N∞ of multisets over an infinite alphabet of objects and with an
infinite number of potential rules. A different possibility would be to use a finite
number of types of membranes [20].

The paper proceeds as follows: In Section 2 we define standard symbol–object
P systems and AMR systems. In Section 3 we investigate the power of maximal
parallelism and comment on how to circumvent it. The equivalence of static P
systems with AMR systems, and the equivalence of the latter with Petri Nets is
shown. Section 4 introduces the geometrical setting. Section 5 is concerned with
appearance checking and complexity measures. Eventually, we arrive at a natural
symbolic dynamics in Section 6. Section 7 contains some thoughts about the flow
of control. Finally, we conclude with a discussion.

2 Membrane and Rewriting Systems

We begin by defining standard symbol–object P systems in a formal way. They
are based on a hierarchical membrane structure (from [47]):

4 The name AMR system has been preferred over the more economical seeming MR
system, as this term already has an established meaning [54].

200 M. Muskulus, R. Brijder

Definition 1 (Membrane structure). A membrane structure µ is a rooted tree,
where the nodes V (µ) are called membranes, the root V0(µ) = µ0 is called the skin
membrane, and the leaves Ve(µ) are called elementary membranes.

The contents of the membranes are characterized by multisets of objects.

Definition 2 (Multiset [60, 42]). A multiset over a finite, non–empty set O is
a mapping p : O → N0 which assigns to each object o ∈ O a positive multiplicity
p(o) ∈ N0.

Definition 3 (Generalized Multiset). A generalized multiset over a finite,
non–empty set O is a mapping p : O → Z which assigns to each object o ∈ O
an integer “multiplicity” p(o) ∈ Z.

where we have used the following convention:

Convention 1 N0 = {0, 1, 2, . . . }.
We will sometimes write 〈O, p〉 for the multiset p over O, and M(O) for the

set of all multisets over O.

Definition 4 (Operations on multisets). Given two multisets 〈O, p〉, 〈O, q〉,
we define the following operations:

• The sum 〈O, p〉+ 〈O, q〉 is defined elementwise:

(p + q)(a) := p(a) + q(a), ∀a ∈ O

• The union 〈O, p〉 t 〈O, q〉 is defined as the elementwise maximum:

(p t q)(a) := max (p(a), q(a)) , ∀a ∈ O

• The intersection 〈O, p〉 u 〈O, q〉 is defined as the elementwise minimum:

(p u q)(a) := min (p(a), q(a)) , ∀a ∈ O

Definition 5 (Partial order on multisets). We define a partial order < on
multisets such that

〈O, p〉 < 〈O, q〉
if and only if

p(a) < q(a), ∀a ∈ O.

This extends in the obvious way to the order relations ≤, >, ≥.

Definition 6 (Numbering). A numbering of a set O is an injective function
c : O → N where N = {1, 2, . . . , d}, d = |O|.

First Steps Towards a Geometry of Computation 201

Using a numbering we can identify 〈O, p〉 with a vector p in some lattice Nd,
d = |O|. Generalized multisets will appear in the treatment of rules, and they
correspond to elements of the integer lattice Zd.

The configuration of a standard symbol–object P system is characterized by
the underlying cell:

Definition 7 (Cell). A cell is a pair (µ, M), where µ is a membrane structure,
and M : V (µ) → M(O) is a mapping assigning to each membrane the multiset of
its contents in the set O.

The basic computational step consists in the application of rules.

Definition 8 (Evolution rule). An evolution rule associated with a membrane
m is a triple r = (dr, vr, δr), where

1. dr is a multiset over O of necessary reactants.
2. vr : Vc(µ,m) ∪ {here, out} → M(O) is a function assigning to each membrane

reachable from m the products appearing in it after the application of the rule.
Vc(µ,m) denotes the child membranes of m, and the special labels here and
out are shortcuts for the actual membrane m and its parent in the membrane
structure µ.

3. δr ∈ {δ,¬δ} symbolizes membrane dissolution (δ) or keeping the membrane
(¬δ).

The availability of reactants is a necessary condition for the application of rules.
The difference in existence or non–existence of an object allows for branching in
the computational process. The evolution can be further regulated by a priority
relation on the (collection of) rules:

Definition 9 (Collection of Rules). A collection of rules is a function R :
V (µ) → 2L which assigns to each membrane m ∈ V (µ) its associated rules, written
as a set over the space of rules L.

Remark 1 (Space of rules). The space of rules L is the space of rule triples, as
given above. In the case of AMR systems (see below), the space of rules simplifies
to some integer lattice Zd.

Remark 2 (Rule multiplicities). Considering collections of rules as multisets allows
for rule multiplicities: Some rule can occur more than once. This viewpoint is
beneficial for a stochastic treatment, where probabilities of rule applications de-
pend on the rules’ multiplicities. It is also the starting point for considerations of
dynamical rule creation [5].

Definition 10 (Priority relation). A priority relation over a collection of evo-
lution rules R is a function σ with domain V (µ) such that for every membrane
m ∈ V (µ), σ(m) is a strict partial order over the multiset of rules R(m) in this
membrane.

202 M. Muskulus, R. Brijder

We are now ready to give the definition of a standard symbol–object P system.
We will not use priorities in the following, therefore they have been excluded from
the definition:

Definition 11 (Symbol–object P system). A standard symbol–object P sys-
tem is a 4–tuple Π = (O, C0, R, i0), where:

• O is a non–empty, finite set of objects.
• C0 = (µ0,M0) is the initial cell.
• R is a set of evolution rules associated with C0.
• i0 is a node of the rooted tree µ0, called the output membrane of Π.

Convention 2 (P system) In the following we will use the abbreviation P sys-
tem to refer to the standard symbol–object P system just defined.

From now on, we are mostly interested in static P systems:

Definition 12 (Static P system). A P system is called static, when the mem-
brane structure does not change during the evolution.

Is the membrane structure necessary? It is helpful for modelling issues, but
as long as we have a static P system, we can always write these systems as an
equivalent multiset rewriting system without any spatial structure, i.e., with just
one membrane, by enlarging the object alphabet and the rules, as shown in Prop. 1
below.

With this in mind, we define in the following our main model of interest, the so–
called asynchronous multiset rewriting system (AMR system). Using a numbering
as before, we give the definition directly in the geometrical setting of some lattice
Nd.

Definition 13 (Dimension). The dimension of an AMR system, denoted by d
in the following, is the number of different objects used: d = card(O), where O =
{1, 2, . . . , d}.

Retaining only rules without membrane dissolution, we arrive at:

Definition 14 (Simple rule). A simple rule is a tuple (qr, pr), where

1. qr is a multiset over O of reactants,
2. pr is a multiset over O of products,

and can be identified with a point r = pr − qr in the integer lattice Zd, where d is
the dimension of the system.

The configuration of an AMR system is completely characterized by the mul-
tiset C : O → N of its object contents.

Definition 15 (Configuration). The configuration space S of an AMR system
is the space of multisets M(O) over the set of objects O and will be identified with
the lattice of non–negative integers Nd

0, where d is the dimension of the system.

First Steps Towards a Geometry of Computation 203

The application of a simple rule then simply amounts to vector addition: The
configuration multiset C will be transformed via

C ⇒ C ′ = C + (pr − qr).

This is similar to a vector addition system [32, 53], the important difference
being that in an AMR system the rules are conditional and can only be applied
if the necessary reactants are available. The enhanced notion of a vector addition
system with states [32] is equivalent to our model (as are Petri Nets, see below);
but this will loose the geometrical intuition we want to develop — and which might
lead to some new results.

As an enhancement to the model we can consider (generalized) inhibitors [14]:

Definition 16 (Enhanced rule). An enhanced rule is a triple r = (q, b, p), where

1. q is a multiset of necessary reactants. The rule is only applicable in a config-
uration C if q ≤ C (in the multiset sense).

2. b is a multiset of inhibitors. The rule is only applicable in a configuration C
if C(o) < b(o) for at least one object o ∈ O, i.e., if q � C.

3. p is a multiset of products which will be added to the configuration C after
application of the rule.

Such an inhibiting rule can also be written as

q → p|¬b,

and we will denote the left–hand–side (right–hand–side) of it by r− (respectively
r+), i.e., r− = q, r+ = p.

The static description of our model can be given now; the dynamic scheme will
be given in the next section:

Definition 17 (Asynchronous multiset rewriting system (AMR system),
part 1). An AMR system is a 3–tuple Π = (d, C,R), where:

• d ∈ N is the dimension of the system.
• C ∈ S is the initial configuration of the system.
• R is a multiset of enhanced rules.

Remark 3 (Priority relation). As an enhancement of the model, we could consider
AMR systems with a priority relation on the rules, in analogy with P systems.

Now we can state:

Proposition 1 (Flattening the hierarchy). For each static P system Π there
exists an equivalent AMR system Π ′.

204 M. Muskulus, R. Brijder

Proof. For each object a ∈ O in Π define the objects ai, i ∈ {1, . . . , n}, in Π ′,
where n is the number of membranes. Define the rules in Π ′ by substituting the
appropriate reactants for the rules in Π: A rule r = (dr, vr,¬δ) in a membrane m
with reactant multiplicities dr(a) = j leads to the reactant multiplicities qr

′(am) :=
j in Π ′. The products will be mapped analogously: vr(k)(a) = j to pr

′(ak) := j,
and vr(here)(a) = j will be mapped to pr

′(am) := j, and similar for the parent
membrane. We have thus constructed the rule r′ = (qr, ∅, pr) in Π ′ equivalent to
r in Π.

Proceeding in this way, we have established a one–to–one correspondence be-
tween the same symbol a in different membranes mi, mj and different symbols ai,
aj in one membrane, exhibiting a kind of duality between membranes and rules.
Configurations will be mapped in the obvious way, too. Concerning the inhibitors:
standard P systems do not use them, so we do not need to map them. P systems
with inhibitors [14] can be mapped analogously, though.

Given that each AMR system (without inhibitors) is a special P system, we
have thus proved the equivalence of P systems and AMR systems. ¤

Remark 4 (Functoriality). The above equivalence can be made more precise in the
context of category theory [38] as a functor from the category of P system con-
figurations into the category of the corresponding configurations of the equivalent
AMR system.

Remark 5 (Non–Uniqueness). The equivalent AMR system is only determined up
to permutations of the representatives of objects in different membranes.

3 Parallelism and Synchronization

We now turn our attention to the application of the rules. This will be done
in a non–deterministic, maximal parallel way, using a global clock with discrete
timesteps. In membrane systems, this is defined as follows:

Definition 18 (Maximal parallel (P system case)). At each timestep, all
the objects in all the membranes evolve in a maximal parallel way, i.e., for each
membrane m we have a multiset 〈L,Am〉 over the space of rules L, such that it
is applicable and maximal. A multiset of rules is applicable, if the union of the
reactants of all the rules in it (counted with multiplicities) is contained in the
membrane (as described by the cell). A multiset of rules is maximal, if there does
not exist an applicable multiset of rules 〈L,A′m〉 which is strictly larger (in the
multiset sense).

We have a similar notion for AMR systems:

Definition 19 (Maximal parallel (AMR system case)). At each timestep,
the AMR system’s configuration C changes by addition of a vector c ∈ Zd which ful-
fills the following condition: there exists a finite sequence of rules s = (r1, . . . , rn),

First Steps Towards a Geometry of Computation 205

ri = (qi, bi, pi), which is applicable and maximal. A sequence of rules is appli-
cable if the sum of its reactants is contained in the multiset describing the sys-
tem’s configuration, and all of the rules are applicable (i.e., not inhibited). The
sequence of rules is maximal, if there does not exist any larger applicable se-
quence (r1, . . . , rn, . . . , rn+k). The change in the configuration will be described
by c =

∑
i ri =

∑
i(pi − qi).

This choice of dynamic scheme corresponds to the following algorithm:

i) Start by choosing one rule that is possible to apply randomly.
ii) Remove all the reactants and continue, until no more rules are applicable.
iii) Add all the products and move on to the next timestep.

The notions given above are equivalent under the above identification between
static P systems and AMR systems:

Proposition 2 (Equivalence of Maximal Parallelism). A maximal parallel
application of rules in a static symbol object P system Π corresponds to a maximal
parallel application of rules in the equivalent AMR system Π ′.

Proof. We have to establish an one–to–one correspondence between maximal par-
allel applications of rules, i.e., of a collection of applicable and maximal multisets
{〈L,Am〉}m∈V (µ) in Π to an equivalent maximal parallel application of rules in Π ′.
Define a sequence of rules s = (r′1, . . . , r

′
n) in the ARM system Π ′ such that for each

rule r in some (Am)m∈V (µ) in Π with positive multiplicity
∑

m∈V (µ) Am(r) = j,
j > 0, the corresponding rule r′ in Π ′ occurs exactly j times in s. The order of
rules in the sequence is insignificant.

(i) The sequence is applicable: Since the union of reactants is contained in the
configuration S of Π, the equivalent configuration S ′ in Π ′ contains the equivalent
objects. Concerning inhibitors: if none of the rules were inhibited in Π, they will
also not be inhibited in Π ′.

(ii) The sequence is maximal. If this were not the case, say we have a larger
applicable sequence s′ = (r′1, . . . , r

′
n, . . . , r′n+k) in Π ′, the reactants of rule r′n+1 are

contained in S ′. Thus the corresponding reactants of rule rn+1 in Π are contained
in S. The rule is also not inhibited in Π, and this leads to some larger, applicable
multiset 〈L,A′m〉, for some m, in the collection, which is a contradiction.

The other direction is proved analogously. ¤

As explained in the introduction, this dynamic scheme is biologically problem-
atic. The following alternatives have therefore been proposed:

Definition 20 (Non–synchronized P system [47]). A non–synchronized P
system is a P system in which for each object a ∈ O there exists the trivial rule
a → a in each region.

Now, because of non–deterministic choice, at each timestep a submultiset of all
possible rules will be applied, i.e., the application of rules is not necessarily maximal

206 M. Muskulus, R. Brijder

anymore. More precisely: for each rule application r =
∑

i ri in a non–synchronized
P system there exists a corresponding maximal parallel rule application r′ =

∑
i r′i

such that for each ri there exists a unique corresponding r′j = ri for all i.
As proved in Section 3.4.5 of [47], the resulting model is only capable of gener-

ating the number sets of context–free languages [30] when priorities are not used.
The use of priorities gives full computational power, though.

Another possibility to abandon maximum parallelism is to consider sequential
systems:

Definition 21 (Sequential P system [28]). A sequential P system is a P system
in which at each timestep exactly one rule, chosen non–deterministically from all
the applicable ones, is applied.

Proposition 3 (Equivalence of Sequential and Non–synchronized AMR
systems). The notion of sequential and non–synchronized systems is the same for
AMR systems without inhibitors (at the level of the output language).

Proof. Consider a sequential application of rules (r1, . . . , rn). The same sequence
can happen in a non–synchronized system in the possible case that only one rule is
chosen at each timestep. Vice versa, if in one timestep we have an application of a
set {r1, . . . , rm} of rules simultaneously in a non–synchronized system, this means
that all the necessary reactants for the rules do exist. Sequential application of
the same rules, in any order, is possible, since removing the reactants for any rule
still leaves the necessary reactants for the other rules. It is only the availability of
products that is delayed in comparison with the non–synchronized case.

We thus see that both systems generate the same language of possible outputs.
¤

Remark 6 (Parallelism at the level of rules). We can see from this proof, that rules
corresponding to essentially parallel tasks can be applied in any order (cf. logical
parallelism [9]). Essentially sequential tasks, i.e., tasks needing re–synchronization,
can only be applied in a specific order. The prime mechanism for synchronization
therefore is the production of objects that hitherto did not exist in the system and
now allow a certain transition.

We now complete our definition of AMR systems by the appropriate dynamical
scheme:

Definition 22 (Asynchronous multiset rewriting system (AMR system),
part 2). The computation in a AMR system proceeds by successive sequential
state transitions in which in each configuration of the system one of the applicable
enhanced rules is chosen in a non–deterministic, i.e., random, way.

The AMR system is a special case of the more general Abstract Rewriting
System on Multisets [59]. We think of the computation in an AMR system as a
random walk on the directed graph induced by the structure of the rules.

First Steps Towards a Geometry of Computation 207

Note that in such a system there is no notion of external, i.e., physical, time.
“Time” can only be used internally, i.e., as a logical means to structure and syn-
chronize the computation and refers only to the number of rule applications sep-
arating two configurations. This is similar to the notion of time complexity in the
analysis of asynchronous distributed systems [6].

Finally, we show the fact that AMR systems without inhibitors and priorities
are equivalent to Petri Nets [43]. The relationship between P systems and Petri
Nets has already been commented on in [52], but in the simplified setting of AMR
systems this equivalence is much more natural.

Proposition 4 (Equivalence of AMR systems and Petri Nets). For each
AMR system without inhibitors we can construct a naturally corresponding Petri
Net and vice versa.

Proof. Starting from an AMR system, for each of the objects we define a place,
i.e., a node in the graph defining the structure of the Petri Net we are about
to construct. For each of the rules, we construct a transition, i.e., a node in the
graph, connected to places by directed edges such that the in–places (edges leading
to this transition) correspond to the reactants and the out–places (edges leading
away from this transition) correspond to the products. We assign weights to these
edges which give the multiplicities of needed reactants or created products of the
corresponding objects. A marking of this Petri Net, i.e., an assignment of non–
negative integers to the places, corresponds to a configuration of the AMR system
in the obvious way.

Analogously, we can construct an AMR system from a Petri Net. ¤

Corollary 1 (Power of AMR systems) AMR systems without inhibitors are
able to generate the context–sensitive languages as their Szilard language [55],
i.e., the language generated by a labelling of the rules (see below), as this is shown
for Petri Nets in [51].

ARM systems with inhibitors, corresponding to extended Petri Nets, have the
full modelling power of the Turing machine [51].

4 The Geometrical Setting

As seen above, configurations C of an AMR system correspond to points C =
(C1, . . . , Cd) in some lattice Nd, with d the dimension of the system. Simple rules
r = (q, p), with p = (p1, . . . , pd) ∈ Nd

0, q = (q1, . . . , qd) ∈ Nd
0, correspond to points

q − p = (q1 − p1, . . . , qd − pd) in the lattice Zd.

Definition 23 (Width). The width of an AMR system, denoted by w in the
following, is the number of rules present.

We define a number of norms on the lattice Zd:

208 M. Muskulus, R. Brijder

Definition 24 (p–Norm). The p–norm of an element C = (C1, . . . , Cd) ∈ C is
defined to be

‖C‖p =

(
d∑

i=1

|Ci|p
) 1

p

.

The familiar Euclidean norm ‖·‖2 is a special case. Further examples for norms
are Manhattan distance [48] and the Maximum–Norm ‖C‖∞ = maxi |Ci|.
Definition 25 (Weight). Define the in–weight |r−| and the out–weight |r+| of
a rule r = (q, b, p) to be

|r−| =
d∑

i=1

qi, |r+| =
d∑

i=1

pi.

These correspond to the 1–norm on r− = q and r+ = p, respectively.
Define the weight of a rule to be

|r| = max (|r+|, |r−|) .

Definition 26 (Length). Define the length of a rule r = (q, b, p) to be ‖p − q‖,
where ‖·‖ is a norm on the lattice Zd.

We now introduce the main geometric idea. It is based on concepts from convex
analysis [13, 44].

Definition 27 (Cone). Define

C+
q := {p ∈ C, | p ≥ q},

where p ≥ q iff pi ≥ qi for all i ∈ {1, . . . , d}, to be a (positive, shifted) cone in
configuration space.

Definition 28 (Basic Cone of Applicability). Define

C+
(r) := C+

r− = {p ∈ C, | p ≥ r−},

to be the basic cone of applicability of the simple rule r = (q, p). For an enhanced
rule r = (q, b, p) we define similarly

C+
(r) := C+

q ∩ (
C+

b

)C
,

where C denotes the complement (see below). These cones, shifted to the origin,
will be convex sets.

First Steps Towards a Geometry of Computation 209

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

#b

#a

-

-

-

6 6 6

r−

s−

(r− t s−)

C+
(r) C+

(r∩s)

C+
(s)

•

• •

@@ @
@

@
@

@
@

@

@
@

@
@

@

@
@

@
@

@
@

@
@

@
@

@
@

@

@
@

@
@

@
@

@
@
@

@
@

@
@

@
@

@
@

@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

@
@

@
@

@
@

@
@

@
@

@

@
@

@
@

@
@
@
@@

@@ @
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@
@
@@

@@ @
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@
@
@@¡¡

¡
¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡¡¡
¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡

¡¡
¡
¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡

¡¡¡
¡
¡

¡
¡

¡
¡

¡¡
¡
¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡

¡¡¡
¡
¡

¡
¡

¡
¡

¡¡
¡
¡
¡
¡¡

¡¡
¡
¡
¡
¡¡

Fig. 1. Depicted are two basic cones C+
(r), C+

(s) for a two–dimensional system, correspond-

ing to rules r, s with reactants r− = ab3, s− = a4b2 and no inhibition. Their intersection
C+

(r∩s) := C+
(r) ∩ C+

(s) is also shown.

Points in these cones correspond bijectively to system states in which a cer-
tain rule can be applied (notwithstanding some other rules that might also be
applicable), i.e., they define bounds in configuration space, see Fig. 1.

The intersections and complements of these cones partition configuration space,
leading to a natural symbolic dynamics, as shown below.

Remark 7 (Intersection). Intersection C+
(r) ∩ C+

(s) of two basic cones amounts to

C+
(r∩ s) = C+

(r− t s−) = {p ∈ C | p ≥ (r− t s−)},

in the case of simple rules.

The cone C+
(r∩ s) thus describes the part of configuration space in which both

rules r and s are applicable.

Remark 8 (Complement). The complement of a cone C+
(r) ⊆ C is defined as

(C+
(r))

C = S − C+
(r), and for a simple rule r this corresponds to bounding from

above in at least one dimension (inhibition):

(C+
(r))

C = {p ∈ S | pi < qi, for some i}.

This is not the same as C−(r) := {p ∈ C | p < r−}.

210 M. Muskulus, R. Brijder

Definition 29 (Cone of Applicability). Define a cone of applicability to be
any subset of configuration space that is attainable by finite intersection of basic
cones

⋂
i∈S C+

(ri)
, S ⊆ {1, . . . , w}, where w is the weight of the system.

There are at most 2w different cones of applicability, corresponding to all pos-
sible intersections.

Definition 30 (Generalized Cone). Define a generalized cone to be any subset
of configuration space that is attainable by a finite intersection of basic cones or
their complements:

S =
⋂

i∈A

C+
(ri)

⋂

j∈B

(
C+

(rj)

)C
,

where A,B ⊆ {1, . . . , w}.
Considering AMR system computations, we would like to understand the be-

havior of AMR systems with input/output. Therefore we provide:

Definition 31 (Asynchronous multiset rewriting system (AMR system)
with input/output). Define two different objects to encode the input, respectively
the output, of the system. The input objects must not be products of any rule of the
system, and the output objects must not be reactants of any rule. This corresponds
to the familiar construction of Turing machines with read–only input tape and
write–only output tape used in defining Logspace/Logtime complexity classes
[30]. The configuration space S can then be treated as a product:

S = Si × So × Sc,

where Si, So are the one–dimensional input, resp. output, space, and Sc is the
(d − 2) dimensional internal configuration space. The internal dimension of the
system is dc = d− 2.

We can now characterize certain regions in configuration space:

Definition 32 (Halting state). The space of halting states is defined as

C0 =

(
w⋃

i=1

C+
(ri)

)C

,

where w is the weight of the system corresponds to the subset of configuration space
in which no rule is applicable at all.

It is bounded in all dimensions that involve non–cooperative rules, i.e., rules
with only one object a ∈ O as necessary reactant. In general, it will be potentially
unbounded.

Using just communicative rules [45], i.e., rules in which the total number of
objects is conserved, the set of halting states will of course be bounded, as well as
any computation.

First Steps Towards a Geometry of Computation 211

5 Appearance Checking and Complexity Measures

5.1 Appearance Checking

Appearance checking refers to the task of determining if a certain object is present
or not, and is the basis for control–flow branching. This is a non–trivial task in
AMR systems. Checking for the existence of an object is easy if it exists, because we
might have some rule that is then enabled. If none such object exists, though, there
is no guaranteed way to arrive at a correct decision in finite time. We demonstrate
this with the following example:

Example 1. Construct an AMR system that is able to detect whether an object
a is given in the input or not. The input, or the initial state, will also contain a
control object i0. The output should consist of either an object y (for “yes”) or an
object n (for “no”).

If inhibitors (or priorities) are used, appearance checking is trivial. The follow-
ing rules check for the existence of object a, when the control object i0 is present.

ai0 → y, i0 → n|¬a

Without inhibitors, one possibility is using a stochastic cascade as follows:

i0 → i1t1,

ai1 → y,

t1 → t2,

. . .

tn−1 → tn,

tni1 → n.

Assuming independent, equal probabilities for each rule, the probability for
failure is P (n|a) = (1/2)n+1 and can be made arbitrarily close to zero.

The probability of failure of the whole computation though depends (above all)
on the number of times appearance checking is used. Clearly, if this number cannot
be bounded, we cannot design a system such that it has a guaranteed minimum
probability of success. We therefore turn to the issue of complexity measures.

5.2 Complexity Measures

The abstract theory of complexity [12] defines a complexity measure via the Blum
axioms. We need to modify these in order to accommodate the non–deterministic
setting.

Definition 33 (Complexity Measure). A complexity measure for an AMR sys-
tem is a partial function Θ : S → N on the space of configurations S that satisfies
the following two axioms:

212 M. Muskulus, R. Brijder

i) Θ(C) is defined if all possible computations starting with the configuration
C ∈ S are halting, and undefined if at least one of those computations is
non–halting.

ii) The predicate Θ(C) ≤ y is recursive, i.e., computable.

The computability of bounds of complexity measures is achieved by the finite-
ness of the system states in a bounded computation.

In our geometric setting the most natural complexity measures are derived
from the above given norms.

Definition 34 (‖·‖–MAXSIZE).
Define ‖·‖–MAXSIZE(C) to be the maximum of the norm ‖·‖ during the compu-
tation starting at C.

Definition 35 (MAXTIME/MINTIME). Define MAXTIME(C)/MINTIME(C)
to be the maximal/minimal number of rule applications needed from configuration
C until a halting configuration is reached.

Remark 9 (Descriptional complexity). Apart from complexity measures for com-
putations [50], there is also interest in descriptional complexity, i.e., complexity
intrinsic to the system and its structure. Seeing computations basically as a way
of compressing information, we arrive at the notion of Kolmogorov complexity [36]
or the related Minimum Description Length principle [11]. We hope to return to
these issues in forthcoming work.

Remark 10 (The number of objects needed). In a recent paper [48] it was noted
that three different objects are enough to give a P system computational com-
pleteness In a way, this result seems to miss the point of descriptional complexity:
The number of objects alone does not give enough information about the com-
plexity of a standard P system, as the objects can have different effects in different
membranes. Instead, one should either consider the potential dimension of the
system, i.e., the number of different objects times the number of membranes, or
investigate uniform P systems as defined below.

Definition 36 (Uniform P system). An uniform P system is a P system in
which the rules in each membrane are the same.

Question 1. What is the computational power of uniform P systems and what is
the minimum number of objects needed to achieve universality?

6 Symbolic Dynamics

The only necessity for a symbolic dynamics [37] is a (topological) partition of
configuration space into disjoint sets.

First Steps Towards a Geometry of Computation 213

Definition 37 (Natural partition). We define the natural partition P induced
by the rules as the partition defined by all possible intersections of the basic cones
in the following way: Define

C+
(i1,...,im), 1 ≤ ij ≤ k, ∀j,

to be the cone
C+

(ri1∩···∩rim)

of applicability of the rules ri1 , . . . , rim
. There are at most 2k distinct basic cones.

Take P0 to be the set containing them. Some cones are included in other cones.
Removing all overlaps by “clipping” the larger sets (in the inclusion ordering) we
arrive at the desired partition P. The set of halting states C0 is included in this
construction as the cone of applicability of no rule.

The symbolic dynamics on this partition is similar, but not quite the same, as
the Szilard language [20, 55] of the system. The latter corresponds to a symbolic
dynamics in which each rule is assigned a symbol and consecutive rule applications
generate a string. The symbolic dynamics we propose has a more geometric origin
and will generate a string in the following way: Each region of configuration space
is assigned a symbol and each time a rule is applied the symbol corresponding to
the region in which the system resides presently is output.

Maybe we can even combine these two approaches; together with the rule
dependency graph [21], we have a lot of information to base our analysis on.

The basic problem with the computational tree is its size. In non–deterministic
systems it can be infinite and still encode many useful properties of the system. We
therefore need to find a way to reduce its complexity. The concept of coverability
tree [43] from the theory of Petri nets [51] might hint at a method to achieve this.

Coming back to the dependency graph: we notice that in a cone C+
(r∩s) with

two possible rule applications, the rules can be either independent of each other,
or be dependent of each other. The first case corresponds to the possibility of
parallel application of the rules — in our sequential setting this means that the
order of rule applications is unimportant: the rules commute. The second case is
more complicated and we hope to comment on it in future work.

A simple condition on the rules is the following:

Definition 38 (Balanced rule). A rule (q, b, p) is balanced, if at least one entry
in its corresponding vector p− q is negative.

A rule that is not balanced will be called exploding, since it potentially leads to
an unbounded, non–halting evolution of the system. A balanced rule on the other
hand leaves every cone in a finite time, but interacting balanced rules can lead to
zig–zag, re–entry and other higher order effects.

Checking the balance of all rules involves checking all possible non–negative,
integer linear combinations of rules, leading to restricted linear systems of equa-
tions, a topic we would like to analyze in future work. Loop–free computations

214 M. Muskulus, R. Brijder

have to fulfill some of these balance conditions in order to be halting. Strict con-
ditions for the termination [24] of AMR systems might then be possible to derive.
The theory of non–negative matrices [56] might be a useful tool in this analysis.

7 Control

In what way is information processed in our computational model? Following [34]
we consider control by demand and control by availability.

Definition 39 (Control by Demand). In the control by demand mode, con-
trol is mediated through the use of special control objects. If present, a certain
computation will be initiated and eventually carried out (in parallel with all other
computational tasks running). Either the system halts after this, or new control
objects are introduced, which signal the end of the requested processing.

This way of controlling a computation is familiar from most programming
languages,, for example in the calling of subroutines. Its most striking feature
is the distinction between data and control objects: Input data is sent into the
system, but only after a control object is sent, will the processing start.

Definition 40 (Control by Availability). In the control by availability mode
there are no control objects. Data, i.e., objects created in the course of the com-
putation, or given as initial input, is (potentially) processed as soon as it arrives
in the system. In this way, the system “passes the data through” from one com-
putational part to the next as in a FIFO queue (possibly splitting the data stream
a → bc, or synchronizing it ab → c).

This reminds of the functioning of Petri nets [43], of the way transcription of
RNA takes place in parallel in the cell by multiple copies of RNA polymerase [4],
or of models of neuronal processing [35]. In the latter, though, it can be argued
that timing information is essential [1, 31].

Example 2 (Moving an object). We illustrate these concepts by the simple example
of moving an input. Given an input an, n ∈ N, the system should “compute” the
output bn.

• In control by availability mode, this is an easy task. The rule a → b takes care
of it: As long as an object a is present, it will at some time be moved to an
object b.

• In control by demand mode this is a non–trivial task, because the computation
needs to “know” when it is finished in order to be able to pass the control on.
We see the need for appearance checking again.

Summarizing, control by demand computations synchronize after completing
subtasks with a kind of “handshake” that is passed on. Control by availability
computations, on the other hand, do not synchronize explicitly. We therefore think
that this model of “pass–through” computation captures the essence of biological
computations better than the first one.

First Steps Towards a Geometry of Computation 215

8 Discussion

We have introduced in this paper a geometric setting for the analysis of multiset
rewriting systems. To simplify the analysis, we introduced asynchronous multiset
rewriting systems (AMR systems) and showed how their configurations correspond
to elements of a vector space and their evolution rules to vector addition.

This model is equivalent to vector addition systems (with states) and to Petri
Nets, but the geometric view we have developed is new and interesting. Due to its
simplicity, the model is amenable to analysis by geometrical, analytical and prob-
abilistic methods; for example the theory of (Discrete) Convex Analysis [44] might
find an application here. In this paper we have just given the basic definitions, but
we hope to come back to most of these issues in forthcoming work.

The many connections with other areas of science are intriguing and we hope
to gain in understanding from research in this area. Due to the closeness of our
model with the theory of Petri nets [43] and Discrete Event Systems [7], we hope
to arrive at some new insights in these areas; and eventually also into biological
computation and control [57].

Acknowledgments

This research has been supported by the Nederlandse Organisatie voor Weten-
schappelijk Onderzoek (NWO) under grant 635.100.006 in the Computational Life
Sciences (CLS) programme. We would also like to thank the European Science
Foundation (ESF) for inviting us to the Workshop EW04-134 on Cellular Com-
puting (Complexity Aspects), Sevilla, 2005, during which the main ideas of this
paper have been developed. We thank all the participants for stimulating discus-
sions, as well as G. Rozenberg, S.M. Verduyn–Lunel and H.J. Hoogeboom for their
support.

References

1. M. Abeles: Time is precious. Science, 304 (2004), 523–524.
2. R. Adar, et. al: Stochastic computing with biomolecular automata. Proc. Natl. Acad.

Sci. USA, 101, 27 (2004), 9960–9965.
3. P.S. Agutter, P.C. Malone, D.N. Wheatley: Diffusion theory in biology. A relic of

mechanistic materialism. Journal of the History of Biology, 33 (2000), 71–111.
4. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Molecular Biology

of the Cell. 4th edition, Garland Science, New York, 2002.
5. F. Arroyo, A. Baranda, J. Castellanos, Gh. Păun: Membrane computing: The power

of (rule) creation. J. Universal Computer Sci, 8, 3 (2002), 369–381.
6. H. Attiya, J. Welch: Distributed Computing. Fundamentals, Simulations and Ad-

vanced Topics. Wiley, second ed., 2004.
7. F. Baccelli, G. Cohen, G.J. Olsen, J.-P. Quadrat: Synchronization and Linearity. An

Algebra for Discrete Event Systems. Wiley Series in Probability and Mathematical
Statistics, 1992.

216 M. Muskulus, R. Brijder

8. D.H. Ballard: An Introduction to Natural Computing. MIT Press, 1997.
9. J.-P. Banâtre, D. Le Métayer: Programming by multiset transformation. Comm. of

the ACM, 36, 1 (1993), 98–111.
10. N. Barkai, S. Leibler: Robustness in simple biochemical networks. Nature, 387 (1997),

913–917.
11. A. Barron, J. Rissanen, B. Yu: The minimum description length principle in coding

and modeling. IEEE Trans. Information Theory, 44, 6 (1998), 2743–2760.
12. M. Blum: A machine-independent theory of the complexity of recursive functions.

Journal of the ACM, 14, 2 (1967), 322–336.
13. J.M. Borwein, A.S. Lewis: Convex Analysis and Nonlinear Optimization. Vol. 3 of

CMS Books in Mathematics, Springer-Verlag, Berlin, 2000.
14. P. Bottoni, C. Mart́ın-Vide, Gh. Păun, G. Rozenberg: Membrane systems with pro-

moters/inhibitors. Acta Informatica, 38, 10 (2002), 695–720 .
15. W. Brauer, W. Reising, G. Rozenberg, eds.: Petri Nets. Applications and Relation-

ships to Other Models of Concurrency. LNCS 255, Springer-Verlag, Berlin, 1986.
16. C.S. Calude, Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Multiset Processing. Math-

ematical, Computer Science, Molecular Computing Points of View, LNCS 2235,
Springer-Verlag, Berlin, 2001.

17. M. Cavaliere, C. Mart́ın-Vide, Gh. Păun, Proceedings of the Brainstorming Week on
Membrane Computing; Tarragona, February 2003. Technical Report 26/03, Rovira i
Virgili University, Tarragona, 2003.

18. M. Cavaliere, D. Sburlan: Time-independent P systems. In [40], 239–258.
19. J. Chen, D.H. Wood: Computation with biomolecules. Proc. Natl. Acad. Sci. USA,

97, 4 (2000), 1328–1330.
20. G. Ciobanu, Gh. Păun, Gh. Ştefănescu: Sevilla carpets associated with P systems.

In [17], 135–140.
21. A. Cordón-Franco, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez:

Weak metrics on configurations of a P system. In [49], 139–151.
22. A. Cordón-Franco, M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez:

Exploring computation trees associated with P systems. In [41], 196–204.
23. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer-

Verlag, Berlin, 1989.
24. J. Dershowitz, Z. Manna: Proving termination with multiset orderings. Comm. of

the ACM, 22, 8 (1979), 465–476.
25. P. Dittrich, J. Ziegler, W. Banzhaf: Artificial chemistries – a review. Artificial Life,

7, 3 (2001), 225–275.
26. J. Doyle: Beyond the spherical cow. Nature, 411 (2001), 151–152.
27. M.J. Fischer, G. Malcolm, R.C. Paton: Spatio-logical processes in intracellular sig-

nalling. BioSystems, 55, 1-3 (2000), 83–92.
28. R. Freund: Asynchronous P systems and P systems working in the sequential mode.

In [40], 36–62.
29. P.J. Halling: Do the laws of chemistry apply to living clls? Trends in Biochemical

Sciences, 14, 8 (1989), 317–318.
30. J.E. Hopcroft, R. Motwani, J.D. Ullman: Introduction to Automata Theory, Lan-

guages, and Computation. Addison-Wesley, 2000.
31. J.J. Hopfield: Encoding for computations. Recognizing brief dynamical patterns by

exploiting effects of weak rhythms on action-potential firing. Proc. Natl. Acad. Sci.
USA, 101, 16 (2004), 5255–6260.

First Steps Towards a Geometry of Computation 217

32. O.H. Ibarra, Z. Dang, O. Egecioglu: Catalytic membrane systems, semilinear sets,
and vector addition systems. Theoretical Computer Sci., 312, 2-3 (2004), 378–400.

33. H. Kitano: Computational systems biology. Nature, 420 (2002), 206–210.
34. W. Kluge: Reduction, data flow and control flow models of computation. In [15].
35. C. Koch: Computation and the single neuron. Nature, 385 (1997), 207–210.
36. M. Li, P. Vitányi: An Introduction to Kolmogorov Complexity and Its Applications.

Springer-Verlag, Berlin, 1993.
37. D. Lind, B. Marcus: Symbolic Dynamics and Coding. Cambridge Univ. Press., 1995.
38. S. MacLane: Categories for the Working Mathematician. Vol. 5 of GTM, Springer-

Verlag, Berlin, second edition, 1998.
39. B.J. MacLennan: Natural computation and non-Turing models of computation. The-

oretical Computer Sci., 317, 1-3 (2004), 115–145.
40. G. Mauri, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa, eds.: Membrane

Computing, International Workshop, WMC5, Milano, Italy, 2004, Selected Papers.
LNCS 3365, Springer-Verlag, Berlin, 2005.

41. G. Mauri, Gh. Păun, C. Zandron, eds.: Pre-proceedings of Fifth Workshop in Mem-
brane Computing, WMC5. Milano, 2004.

42. G.P. Monro: The concept of multiset. Zeitschrift für Mathematische Logik und Grund-
lagen der Mathematik, 33, 2 (1987), 171–178.

43. T. Murata: Petri nets. Properties, analysis and applications. Proc. Inst. Electr. Eng.,
77, 4 (1989), 451–580.

44. K. Murota: Discrete Convex Analysis. Monographs on Discrete Mathematics and
Applications, SIAM, 2003.

45. A. Păun, Gh. Păun: The power of communication: P systems with symport/antiport.
New Generation Computing, 20, 3 (2002), 295–306.

46. Gh. Păun: Computing with membranes. J. Computer and System Sciences, 61, 1
(2000), 108–143.

47. Gh. Păun: Membrane Computing. An Introduction. Springer-Verlag, Berlin, 2002.
48. Gh. Păun, J. Pazos, M.J. Pérez-Jiménez, A. Rodŕıguez-Patón: Symport/antiport P

systems with three objects are universal. Fundamenta Informaticae, 64, 1–4 (2005),
353–367.

49. Gh. Păun, A. Riscos-Núñez, A. Romero-Jiménez, F. Sancho-Caparrini, eds.: Proceed-
ings of the Second Brainstorming Week on Membrane Computing, Sevilla, February
2004. Technical Report 01/04 of Research Group on Natural Computing, Sevilla
University, Spain, 2004.

50. M.J. Pérez-Jiménez: An approach to computational complexity in membrane com-
puting. In [40], 85–109.

51. J.L. Petersen. Petri Nets Theory and the Modeling of Systems. Prentice-Hall, 1981.
52. Z. Qi, J. You, H. Mao: P systems and Petri nets. In Membrane Computing. Intern.

Workshop, WMC2003, Tarragona, LNCS 2933, Springer-Verlag, Berlin, 2004, 286–
303.

53. C. Reutenauer: The Mathematics of Petri Nets. Prentice-Hall, 1990.
54. R. Rosen: A relational theory of biological systems. Bull. Math. Biophysics, 20 (1958),

245–260.
55. A. Salomaa: Formal Languages. Academic Press, 1973.
56. E. Seneta: Non-negative Matrices and Markov Chains. Springer Series in Statistics,

second edition, 1981.
57. E.D. Sontag: Some new directions in control theory inspired by systems biology. IEE

Journal of Systems Biology, 1, 1 (2004), 9–18.

218 M. Muskulus, R. Brijder

58. P. Speroni di Fenizio, P. Dittrich: Artificial chemistry’s global dynamic. Movements
in the lattice of organization. Journal of Three Dimensional Images, 16, 4 (2002),
160–163.

59. Y. Suzuki, Y. Fujiwara, J. Takabayashi, H. Tanaka: Artificial life applications of a
class of P systems: Abstract rewriting systems on multisets. In [16], 299–346.

60. A. Syropoulos: Mathematics of multisets. In [16], 347–358.
61. O. Temkin, A. Zeigarnik, D. Bonchev: Chemical Reaction Networks. A Graph-

Theoretical Approach. CRC Press, 1996.
62. M. Walicki, S. Medal: Algebraic approaches to nondeterminism. An overview. ACM

Computing Surveys, 29, 1 (1997), 30–81.
63. The P Systems Web Page: http://psystems.disco.unimib.it.

