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Abstract

An optimal error estimate of the numerical velocity, pressure and angular veloc-
ity, is proved for the fully discrete penalty finite element method of the micropolar
equations, when the parameters e, At and h are sufficiently small. In order to obtain
above we present the time discretization of the penalty micropolar equation which is
based on the backward Euler scheme; the spatial discretization of the time discretized
penalty Micropolar equation is based on a finite elements space pair (Hp, L) which
satisfies some approximate assumption.

1 Introduction

The equations that describes the motion of a viscous incompressible micropolar fluids in a
bounded domain Q C R?, with boundary 99 smooth a time interval [0,7], 0 < T < +o00
are given by (see [4])

u; —viAu+ (u-V)u+ Vp =24, rot w+f,

div u =0,
(P)=<¢ wi+Lw+ (u-V)wW+4u,w =2u, rot u+g,
u(z,t) =0, w(z,t) =0 on 002 x (0,7),

u(z,0) =a(z), w(z,0)=Db(x) in Q,

where Lw = —1vo Aw — 13V divw, with v1 =y~ py, v = cq + g, V3 = o+ ¢4 — Ca-
The functions u, w and p denote the velocity vector, the angular velocity vector of
rotation of particles, and the pressure of the fluid, respectively. The functions f and
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g denote external sources of linear and angular momentum, respectively. The positive
constants p, i, g, ¢ and ¢q are viscosities and cg+cq > ¢4. Also, a, b are given functions
in Q.
The penalty method applied to (P) is to approximate (u, p, w) by (ue, p, we) satisfying
the following penalty micropolar equations:
o — v Au. + B(ue,u.) + Vpe = 2u,rot we + f
div u, + = p, =0,
41
(P)e = owe + Lw, + B(ue,we) + 4pu,we = 2p,rotue + g,
uc(z,t) =0, We(z,t) =0 on Sr,
u(z,0) = a(x), we(zr,0)=Db(z) in £,

where B(u,w) = (u-V)w + 3( div u) w is the modified bilinear term introduced by
Temam [7] and it is well known that lim._,o(ue, pe, we) = (u,p, w) with error bound

[u—ucllz2orm) + W = Wel L2011y + [P — PellL20,7522) < C e,

where C > 0 is a general positive constant depending on the data v1,19,v3,a,b,f, g, T

2 Preliminaries

By simplicity we denote L* = L*(Q), H™ = H™(Q) and LF(H™) = L*(0, T; H™(Q)). For
the mathematical setting of (P), to consider the following function spaces

B={ae X [qde=0} V= {veH)®): divv-0}
Q

We define Au = —Au and A.u = —Au—%v div u, which are positive self-adjoint opera-
tors associated with the micropolar and penalty micropolar fluid equations, and they are
defined from D(A) = H? N H} onto L2. Also, for all u,v,w € H(l) are well defined

1
(AV2u, AV%v) = (Vu,Vv)+ =(divu,divv),
€
(LY*w, L'V?v) = 1y (Vw,VV) 4 13 (divw, divv).
Moreover, by Shen [6] there exists a constant My > 0 such that if eMy < 1, then
IAV]| < Mol Avll, Vv < MollAYPv], ([Vw] < vt LY 2w, (1)

We define the following trilinear forms on H{ x Hj x H}
1 1
b(u,v,w) = <B(uvv)vW>ngHg = 5((u : V)v,w)—i((u -V)w,v),

Y u,v,w € H}, and satisfies the property b(u, v,w) = —b(u, w, v).

We make the following assumption on the prescribed data a, b, f and g.

(A1) The initial velocity a € D(A) NV, the initial angular velocity b € H>NH}, and
the external forces f, g € Wh(L?).
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With the above notation, the variational formulation of the micropolar equations (P)
is given by: Find u, w € L>®(L?) N L?(H}) and p € L2(L3) such that

(u,v) + 11 (Vu,Vv) — (divv,p) + (divu, q) + b(u, u,v)
=2u, (rotw,v) + (f,v), VveH} qe L}
(PV) =< (wi,z)+ (LYV2w, LV?2) + 4, (w, z) + b(u, w, z)
=2, (rotu,z) + (g,2z), VzecH],
u(0) = a, w(0)=b in €,

and the penalty micropolar variational formulation of (P). is defined as follows: Find
u., w. € L2(L%) N L*(HY) and p. € L?(L3) such that
(9re, V) 41 (V 1, V'V) = (div v, pe) + (divue, @) + = (pe,q)
1
+b(ue, ue, v) = 2y (rot we,v) + (£,v), VveH], ge L3
(PV)e = (OyWe,z) + (Ll/2 we, L1/? z) + 4uy(we, z) + b(ue, we, z)
=2, (rotue,z) + (g,z), V ze H,
u(0) = a, we(0)=b in Q.

Rather than assuming that the data are small, we make the existence of the solution on
some interval [0,7) an assumption

(A2) The solution (u, p, w) of problem (PV) exists on [0,7), and u,w € L>(H!).
(A3) The solution (uc, pe, we) of problem (PV), exists on [0,7), and u., w. € L>(H').

3 Time discretization and regularity
For the problem (PV), we consider the time discretization by the backward Euler scheme
(diul,v) + 11 (Vul,Vv) — (divv,pl) + (divul, q) + Vi(p?,q)
1
. +b(ul,u, v) = 2, (rot w?,v) + (F(t,),v), Vv € HY, q € L2,
(PV)e = (dyw™, z) + (LY?w™, L2 2) + 4, (w?, z) + b(u?, w”, z)
=2, (rotul,z) + (g(tn), z), Yz € Hj,
u? = a, =0 w'=b in Q,

for all 1 < n < N |, where t, = nAt and 0 < At < 1 is the time step size, ty = T,

(u?, p?, w?) is an approximation of (u,pe, we) at time ¢,, and dyul? = L (u? — u?~1) for

1 <n <N, with du?, dyw? € L2

We can refer to Shen [5] for the proof of the following result.
Theorem 3.1 Suppose that (Al), (A2), (A3) and eMy < 1 are valid. The following
error estimate holds

TtV 0ltm) = V0| 47 (1) [V (1) = V w2
ALY 7t plta) ~ LI < O + AF) )
n=1

for all1 < m < N. Where My is given in (1), 7(t) = min{¢,1}, and C > 0, is a general
positive constant depending on the data vy, vo, v3, £, g, Q, T.
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In order to obtain the error bound of the finite element solution related to the problem
(PV)?, we are going to provide with some regularity results for the solutions of (PV)Z.

Theorem 3.2 Suppose that (A1), (A3) and e My < 1 are valid. There is a constant
M > 0 such that if At M <1, then

m
1AL a2+ (I w2+ Aty (Al |+ | w2 P + [p2]7p) < C. 3)

n=1

m
lAea? |® + I LWl + D21 + ALY (A2 deu? | + IV dew?|?) < C, (4)

n=1
ALY 7 (tn)([Acdia?||* + | Ldew?|?) < C, (5)
n=1

forall 1<m < N.

The proof of the Theorem 3.2 can be done without no difficulty.

4 Finite element penalty method

To avoid technical difficulties, the bounded domain €2 is assumed to be a polyhedron. Let
7, = {K} be a discretization of mesh size h, 0 < h < 1 of the polyhedral domain  into
closed subsets K, and the family 7, satisfies the usual regularity assumptions.

For each h, let Hj, and Ly, be the finite dimensional spaces to be used for approximating
the “velocity space” H(l) and the “pressure space” Lg, respectively. The spaces Hj and
Ly, satisfy several approximations properties and one compatibility condition (see Girault
and Raviart [2], Ciarlet [1], Heywood and Rannacher [3]), thus the continuous and discrete
spaces are relate by the following hypotheses:

(S1) There exists a continuous mapping 7, : H? N H} — Hj, such that

(i) (qn,div(v —r,v)) =0, VYqn€ Ly, VveH*NH],
(i) |V —rav| + ||V —rav]g < CRE||V| g2, Vv e H?NH].

(S2) The orthogonal projection operator j; : L3()) — Ly, satisfies
lg = jnall < Chllallgr. YgeBH'NLE
(S3) (Inf-sup condition) There exists a constant 3 > 0, independent of h, such that

(gn, div vs)
sup ——=——

> Bllanll, Van € Ly.
vaeH, [IVVa]|

Also, it is true the inverse inequality ||V v,| < Ch~Y|vp|, Vvi € Hy,.

Now, we define (uly,pl,wr ) as the finite element approximations of (u?,p?, w¢),

4
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which satisfied the following penalty finite element system

(dt Ll?h, Vh) + 1 (v u?h) VVh) - (diVVh,p?h)

. €
+(divuly,, qn) + ;l(p?ha qn) + b(ug,, ug,, va)

PV ={ = 2 py (rot wly,v) + (£(tn),va), YV vy € Hy, qn € Ly,

(dtW?h, zp) + (Ll/z Wi L2 zp) + 4Hr(wghv zp) + b(u?hv Wehs Zp)
= 2y (rotugy, zp) + (8(tn),2n) V zn € Hy,

ugh =a, pgh =0, wgh =b in

We write the following theorem, in which we obtain similar results that in [8].
Theorem 4.1 Assume that (S1)-(S3) and that the hypotheses of the Theorem 3.2 are
valid. Then it holds that

m
i |1? + Wk ]1® + At (1Y ug, |+ 1V wi,[1?) < C, (6)

n=1

m
IV uZh|? + 1L Wil + At (lldeags|* + [[dewy 1)

n=1
<C+Ch3ALY [PV E N+ 1V 0"1%) + [V ad [P + 10"1)]  (7)
n=1

forall 1<m < N and &" =up —uly, "=w!-w}.

5 Optimal error analysis

We establish the optimal error for u(t,) — uly,, w(t,) — w0, and p(t,) — pl},. With this
purpose, and since u(t,) —ul, = (u(t,) —u?) + (u? —u?) , firstly we are going to do
estimates for the error €”, é” = p’ — pl and om.

Lemma 5.1 Under the hypothesis of Theorem 4.1, it is holds the error estimate

&%+ 17112 + At Y (IVE™|? + 1LY 6™|%) < C b2, (8)

n=1
for all 1< m < N.

Proof. Denoting ej = (I —rp)ug, 0 = (I —rp)wg, § = (I — pp)p?, " = rpuy —
uly, &" = ppp? —pl, and 0" = rpywl —wl,  we have €" = e} ", 0" = 0 +0", " = I +E".

From (S1)-ii and considering (1) and (3), we obtain

m
lef 12+ 16511° + C A (IV efl® + L2 63]1%) < O b2, (9)
n=1
Then, taking into account (9), to prove (8) it is enough to show

le™ |12+ 116712 + At Y (IV e [* + IL26" %) < C K2, (10)

n=1
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Subtracting (PV)7, from (PV)? with v = v), = 2e"At,q = q, =2&"At and z = z), =
20" At, using (S1), (1), (4), definition of d;u™ and the Holder and Young’s inequalities,
we obtain

™1 — fle"™ M1+ 16711 — 116712 + At (u ||V & * + || L1267 1?)
< ALC K (|V dpaf |* + || LY 2dew?|[?) + At O B2 (| AuZ | + [[p2 |7 + | Lwe|P)
FALC R (|V uly | + IV ug|* + [|LV2wl ) + At C dn ([l + [6711%), (1)

where d,, = C(v1,v2)(|[Vu?||* + |V w?||*) and At is chosen such that 2A¢ Y™ | d, < C.

Then, summing (11) from 1 to m, by using Theorem 3.2 and Theorem 4.1, and the
discrete Gronwall’s Lemma, is followed (10).

Remark 1. From Theorem 3.2, Theorem 4.1 and Lemma 5.1, we can conclude
IVug >+ [Ver|> <Ch™l, @7 < Cle™(|[VeEm| < Chl2. (12)

Lemma 5.2 Under the hypotheses of Theorem 4.1 is true
m
IV (" = ) [* + [ LY (" — wf) [P+ Aty [|pl = plyl* < OB, (13)
n=1

for all 1< m < N.

Proof. We will consider to the notations done in the proof of the Lemma 5.1.
Subtracting (PV)?7, from (PV)? with v = v,z = z;, and ¢ = g5, we obtain

~n ~n . n : ~Nn € ~n
(d€",vy) + 11 (VE™, Vvy) — (divvy, £") + (divde€”, gn) + V—l(dtf N
+b(&™, ", vy) + b(u”, &, vy,) — b(E™, &, vi,) = 2 iy (rot 0™, vy,), (14)
(d0", zp,) + (L2 0™, LY? ) + 430,07, z3,) + b(&", W™, z,)
+b(u”, 0", z) — b(E", 0", z1,) = 2 i, (rot &, z,). (15)
Now, we observe that [|d;¢"|[> = ||di¢y|1* + ||di¢"|1* + 2(d:¢}t, dig™), and then
2AL||dd" | = At dd" [P + Atlldeg”|* + 281 (e, deo"). (16)

Considering inequality (16) and setting v, = 2Atde", q, = 2At £z, = 2Atd,0" in
(14)-(15), we have
AL ([ d&"||* + [l dee™ (1) + At (|de™ (> + 6™ *) + 1 (| V &> = [V &)
H[LYEOMP 1L 20 + V%(\IS”H2 — €M) + A (16717 = 16" 7H1%)
< —2At (dey, de”™) — 2At (d 0y, d0") — 2Atb(e", ul', die") — 2At b(ul,e", d,e")
F2ALD(E, &, dye") — 2ALb(E", W, dyf") — 2Atb(u”, 0", d,6™)
+2Atb(e", 0", di0") + 4 At pu,.(rot 0", di€™) + 4AL - (rot €7, d6™). (17)
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Now, by using the Hélder and Young’s inequalities, Theorem 3.2 and (12), we obtain
the following inequalities
1 1
2 (dyefy, die™) + 2(dibly, d46™) < C'||dyef || + 3 dee™||* + 5 6™ 1%, (18)
2b(e",ul’, die") + 2b(ul, ", die") 4+ 4 pr(rot 0", de")
- 1
SCVE+IV ) + 5 e, (19)

2b(e",&", die") < C[[e"| s [|V &"[[([|dsepl| Lo + [ldse™[| o)
< ORIV E IV deef]| + b dee])

1
< CHPPV &2+ Ch|[V dieft|* + 5 lldie?, (20)

2b(&", w", d;0") 4+ 2b(u”, 0", dy0") + 4 p,(rot &, dy0")
S C(IVE |+ 11V 8" (2) + [ld6™ 1%, (21)

20(", 0", d8") < O (|[8" | sV "] + IV € 116™ | o) (e | o + 16" || o)

< ORIV O+ V&IV debi | + b6 )
_ 1
< CHPR([V P + V& ?) + ChIV bR + 5 [lded"|. (22)

The fact that h? < C At < C 7(t,) together (S1)-(ii), implies
IV diefp | + IV dibp > < C7(t) (|Adpa?|® + || L dew?||?). (23)

Then, carrying (18)-(22) in (17), and taking into account (S1)-(ii) and (23), we get

At ~n ~n ~n— m nn—
< @2+ o (IV &P = [V &%) + L2072 — | LH20m 1)
€ én cn— an on—
+-(lIg 12 = €™ M) + 4 e (16717 = (167 1%)
< ChPAL(|V dea? |+ [ L2 dew? ) + C Ath=22 (|7 67 + [V &%)
O At h7(t) (|Ada? P + L dew?]?). (24)

Thus, summing (24) from 1 to m and by using Theorem 3.2 and Lemma 5.1, we obtain

IV &%+ L2072 + At Y [|dee"||* < O h'72. (25)

n=1

To pressure, again subtracting (PV)?, from (PV)? with v = v}, and ¢ = ¢, and by
inf-sup condition, we deduce
n (le Vh, gn) ~n ~n n an
1€7]] < Vil < C ||| + C IV &+ C &1 + C | L1267
+C Ve [(IIVulll + [V udl), (26)
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and by Remark 1, from (26) we have
16717 < C (1" |* + IV &2 + R 117 + L2 + 2™V &"2). (27)

Then, since
At ||pf — plll> < C AL (IERI1P + 11€711%),

by (S2) together Lemma 5.1, (27) and (25), we conclude
ALY o2 = pll* < Chl2
n=1
and Lemma 5.2 is complete.

Finally, from Theorem 3.1, Lemma 5.2 and the triangles inequality, we establish the
following result

Theorem 5.3 Under the hypotheses of Theorem 4.1 is hold the following optimal error
estimate

T2tV (tm) = )|+ 72 () [ LY (w(tn) — wii) 12

HALY () |[p(tn) — PIIIP < C (€ + AL + 1/?),
n=1
for all 1< m < N.
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