
P Systems with Antiport Rules

for Evolution Rules

Rudolf FREUND, Marion OSWALD

Faculty of Computer Science
Vienna University of Technology

Favoritenstr. 9–11, A–1040 Vienna, Austria
E-mail: {rudi,marion}@emcc.at

Abstract. We investigate a variant of evolution-communication P systems
where the computation is performed in two substeps. First, all possible an-
tiport rules are applied in a non-deterministic, maximally parallel way, moving
evolution rules across membranes. In the second substep, evolution rules are
applied to suitable objects in a maximally parallel way, too. Thus, objects can
be the subject of change, but are never moved themselves. As result of a halt-
ing computation, we consider the multiset of objects present in a designated
output membrane. When using catalytic evolution rules, we already obtain
universal computational power with only one catalyst and one membrane. For
systems without catalysts we obtain a characterization of the Parikh images
of ET0L languages.

1 Introduction

P systems were introduced in [8] as bio-inspired computing devices that work in a parallel
and distributed way (see [9] for a comprehensive overview and [11] for actual developments
in the area). In [1], a variant called evolution-communication P systems was investigated,
combining evolution and communication rules for objects. Following this idea but moving
evolution rules instead of objects, P systems with symport/antiport of rules were presented
in [2]. We here take a similar approach: starting from the initial configuration of a P system
with antiport rules for evolution rules, a transition from one configuration to the next one
is, other than in [2], performed in two substeps: in the first substep evolution rules can be
interchanged across a membrane by antiport rules (that are assigned to the membranes,
see e.g., [6]), whereas in the second substep, objects can evolve by evolution rules in a
maximally parallel manner. This means that in this model only the evolution rules but no
objects are moved. If the computation halts, i.e., neither antiport nor evolution rules can
be applied anymore, the result is given as the multiset of objects present in the output
membrane.

In the following section we first give some preliminary definitions and recall some
notions for graph-controlled grammars, the computation model we use for proving the
results elaborated in this paper; in the third section we introduce P systems with antiport
rules for evolution rules. In the fourth section we show that when using purely catalytic
evolution rules (i.e., every evolution rule involves a catalyst, as introduced in [7]), the

183

introduced systems can simulate graph-controlled grammars quite easily, which proves
their universal computational power. A characterization of Parikh sets of ET0L languages
is obtained when considering systems without catalysts, which is shown in section five
where we also give an illustrative example. A short summary and an outlook to future
research conclude the paper.

2 Preliminary Definitions

The set of non-negative integers is denoted by N. An alphabet V is a finite non-empty
set of abstract symbols. Given V , the free monoid generated by V under the operation of
concatenation is denoted by V ∗; the empty string is denoted by λ, and V ∗ \{λ} is denoted
by V +. A multiset over V is represented as string over V (and any of its permutations);
a set over V is represented as a string, too, but with each element of V occurring at most
once. By | x | we denote the length of the word x over V as well as the number of elements
in the multiset represented by x.

A graph-controlled grammar is a construct

G = (N,T, Lab, S, R, {1} , {n}) ,

where N denotes the set of non-terminals, T is the set of terminal symbols, Lab = {1, ..., n}
is the set of labels, S is the start symbol, R is a finite set of rules that can be represented
as a function from Lab to P × 2Lab × 2Lab, where P denotes the set of all context-free
productions over the set N of non-terminal symbols and the set of terminal symbols T. A
rule in R usually is written in the form

(i : p (i) , σ (i) , ϕ (i)) ,

where σ (i) is called the success field and ϕ (i) is called the failure field of the rule labelled
by i; the context-free production p (i) is of the form A (i) → w (i) , where A (i) ∈ N
and w (i) ∈ (N ∪ T)∗ . Without loss of generality we not only assume that N ∩ Lab = ∅
and that there is only one initial label (i.e., 1) and only one final label (i.e., n, with
σ (n) = ϕ (n) = ∅), but we also may assume that if a computation has reached the final
label n, then the obtained sentential form is terminal, i.e., it must not contain any non-
terminal symbol.

Finally, again without loss of generality we may also assume that in the case of a string
language, the terminal symbols are generated by G exactly in the correct sequence as they
form a terminal word. All these features of a normal form for graph-controlled grammars,
for example, follow from the constructions and results proved in [5], Theorem 6.

An ET0L system is a construct GL = (V, T, t1, ..., tn, w) where V is the alphabet, T ⊆ V
is the terminal alphabet, and we define N := V \ T ; ti, 1 ≤ i ≤ n, are lists of context-free
rules that are called tables and w ∈ V ∗ is the axiom. All tables have to fulfill the condition
that for every a ∈ V there is at least one production in ti, 1 ≤ i ≤ n.

A derivation step in the ET0L system consists of the parallel application of the rules
in one of the tables ti. The language generated by GL consists of all terminal words being
derivable from the axiom w in an arbitrary number of derivation steps using the tables ti.
The family of all languages of Parikh vectors generated by ET0L systems is denoted by
PsET0L.

184

A programmed ET0L system is a pair (GL, σ) , where GL = (V, T, t1, ..., tn, w) is an
ET0L system and σ is a function which to each table ti, 1 ≤ i ≤ n, assigns a finite subset
of the set of tables.

The language L (GL) of a programmed ET0L system GL consists of all words x which
have a derivation

w =⇒
ti1

w1 =⇒
ti2

w2 =⇒
ti3

... =⇒
tin−1

wn−1 =⇒
tin

wn = x

such that tij+1 ∈ σ
(
tij

)
for 1 ≤ j < n.

The family of all languages of Parikh vectors generated by programmed ET0L systems
is denoted by PsEpT0L.

According to Theorem 8.3 in [3], PsET0L = PsEpT0L.
For more details on formal language theory we refer to [10] and [3].

3 P Systems with Antiport Rules for Evolution Rules

A P system with antiport rules for evolution rules is a construct Π defined as follows:

Π = (O, C,R, l, µ, w1, ..., wm, R1, ..., Rm, i0) ,

where:

• O is an alphabet of objects;

• C is a set of catalysts and O ∩ C = ∅;
• R is a finite set of evolution rules;

• l : L → R is an injective labelling of the rules in R; L is called the set of labels with
L ∩ (O ∪ C) = ∅;

• µ is a membrane structure with m membranes bijectively labelled by 1, ..., m;

• wi, 1 ≤ i ≤ m, are finite multisets over O together with finite sets over L (altogether
represented as strings over O ∪ L) associated with the regions 1, ..., m of µ;

• Ri ⊆ R, 1 ≤ i ≤ m, are finite sets of antiport rules that are associated with the
membranes 1, ...,m of µ of the form (j, in; k, out) , where j, k are sets of labels of
evoution rules from R.

• i0 is the label of the output membrane.

The rules in Ri can easily be represented in a more depictive way: for (i, in; j, out) ∈ Rk

we simply write i ¿
k

j . If we list the antiport rules of Π in this depictive way, instead of

the sequence R1, ..., Rm we only include the set RA containing the list of antiport rules.
The weight of an antiport rule (i, in; j, out) is defined as max {|i| , |j|} .

In the environment we assume every label of an evolution rule to occur. The initial
configuration of such a system consists of µ as well as of w1, ..., wm. A transition from one
configuration to the next one is performed in two substeps:

185

1. The antiport rules from R1, ..., Rm (respectively RA) are applied in a non-deterministic
maximally parallel way across all membranes;

2. The evolution rules are applied to suitable objects in a non-deterministic maximally
parallel way within all membranes (using the catalysts in a multiset manner).

As long as either antiport rules or evolution rules can be applied, the system proceeds
performing these two substeps. Only if neither antiport rules nor evolution rules can
be applied anymore, we say that the systems halts and consider the multiset of objects
present in the designated output membrane in the final configuration to be the result (a
non-halting computation does not produce a result).

According to [7] (also see [4]), the P system with antiport rules for evolution rules Π
is called catalytic, if every evolution rule involves a catalyst.

The family of recursively enumerable Parikh sets generated by P system with antiport
rules for evolution rules with m membranes and k catalysts (counted in the multiset
sense over the whole system) and with the weight of the antiport rules being at most l
is denoted by PsOPAm (catk, antil) ; if only catalytic evolution rules are used, we write
PsOPAm (purecatk, antil) ; if k = 0,we simply write PsOPAm (antil) ; if one of the pa-
rameters k, l or m is not bounded, it is replaced by ∗.

4 Catalytic P Systems with Antiport Rules for Evolution
Rules

Theorem 1 Let L ⊆ Nk, k ≥ 1, be a recursively enumerable set of (vectors of) non-
negative integers. Then L can be generated by a P system with antiport rules for purely
catalytic evolution rules in one membrane using one catalyst, i.e.,

PsOPA1 (purecat1) = PsRE.

Proof. Let G = (N, T, Lab, S, RG, {1} , {n}) be a graph-controlled grammar. Then we
construct the P system with antiport rules for evolution rules Π simulating G as follows.
We start with the initial configuration containing a catalyst c, the start symbol S and an
additional object Z as well as the labels for three evolution rules r0, r, r

′, where r introduces
the trap symbol # that causes an infinite loop by r′, whereas r0 simply starts the simulation
of a derivation in G. Moreover, we define an injective mapping l : L → R so that every
production in RG has a different label in l.

c

S Z

r : cZ → c#
r′ : c# → c#
r0 : cZ → cZ

1

Figure 1: Initial configuration of Π.

186

The simulation of a derivation in G works as follows. We start from the initial con-
figuration that is illustrated in figure 1. To simulate a rule (i : p (i) , σ (i) , ϕ (i)) , where
p (i) is of the form A (i) → w (i) , A (i) ∈ N and w (i) ∈ (N ∪ T)∗ , we take the labelled
evolution rules ĩ : cA (i) → cw as well as î : cA (i) → c# and proceed as follows.

• To start a simulation we take 1̃ ¿
1

r0 as well as 1̂ ¿
1

r0 .

• To be able to communicate the correct sequence of evolution rules, we need the
following antiport rules in RA :

1. s̃ ¿
1

t̃ as well as ŝ ¿
1

rt̃ for s ∈ σ (t) \ {n} .

2. rs̃ ¿
1

t̂ as well as ŝ ¿
1

t̂ for s ∈ ϕ (t) \ {n} .

3. f ¿
1

rt̃ as well as f ¿
1

t̂ for the case that the final label n is either in σ (t) or

in ϕ (t) , where f : cZ → c.

In sum, we obtain the following P system with antiport rules for evolution rules Π :

Π = (V, {c} , R, l, [1]1, cZSrr′r0, RA, 1) ,
V = N ∪ T ∪ {Z, #} ,
R = {cZ → c#, c# → c#, cZ → cZ, cZ → c}

∪ {cA (i) → cw (i) | (i : A (i) → w (i) , σ (i) , ϕ (i)) ∈ RG} ,
l = {r : cZ → c#, r′ : c# → c#, r0 : cZ → cZ, f : cZ → c}

∪
{

ĩ : cA (i) → cw (i) , î : cA (i) → c# | (i : A (i) → w (i) , σ (i) , ϕ (i)) ∈ RG

}
,

RA =
{

1̃ ¿
1

r0 ,1̂ ¿
1

r0

}

∪
{

s̃ ¿
1

t̃,ŝ ¿
1

rt̃| s ∈ σ (t) \ {n} , t ∈ Lab

}

∪
{

rs̃ ¿
1

t̂,ŝ ¿
1

t̂| s ∈ ϕ (t) \ {n} , t ∈ Lab

}

∪
{

f ¿
1

t̂,f ¿
1

rt̃| n ∈ σ (t) ∪ ϕ (t)
}

.

The simulation of the labelled productions of G is controlled by the antiport rules
assigned to membrane 1. If we guess that the rule labelled by i is applicable, we use ĩ, in
the opposite case we take î. If we have guessed that the rule labelled by i is applicable,
then in order not to enter an infinite loop by using r : cZ → c#, ĩ has to be applied. If
î is taken in, then the trap symbol # can only be avoided if no symbol A (i) occurs in
membrane 1, but to guarantee the enforced application of î (in contrast to the case ĩ) the
rule r must not be present.

If in any moment the catalyst c is not used for ĩ or is used for î, then we immediately
introduce the trap symbol # which leads to an infinite loop (using r′ : c# → c#), hence no
result is produced. On the other hand, whenever the final label n of G occurs in either the
success or the failure field of a production having just been applied, then we can assume
that the obtained sentential form is already terminal (see section 2). Hence it is correct
to halt after the elimination of the symbol Z by applying the evolution rule cZ → c with
the result being the objects contained in membrane 1.

187

In the original variant of catalytic P systems without antiport rules for evolution rules
two catalysts in one membrane are needed if we also allow non-catalytic rules; for purely
catalytic systems only allowing for catalytic rules, three catalysts are needed as shown in
[4].

Considering strings as objects being affected by the evolution rules, we even need no
catalysts: The same proof as above with just omitting the catalyst c shows that any
recursively enumerable set of strings can be generated by a P system with antiport rules
for evolution rules working on strings in only one membrane (at each substep where the
evolution rules have to be applied, to each string only one evolution rule is applied, yet
only if no rule is applicable the string remains unchanged).

5 P systems with Antiport Rules for Evolution Rules
without Catalysts

According to the original definition in [2] we consider the evolution rules occurring in the
regions to be applied in a maximally parallel manner. Using (purely) catalytic rules, this
parallelism is reduced, but as Theorem 1 shows this reduction of the parallelism yields
maximal computational power. The importance of parallelism becomes visible when we
deal with P systems with antiport rules for evolution rules without catalysts.

In order to show the influence of parallelism we give a simple example of a P system
with antiport rules for evolution rules without catalysts:

Example 2 Consider the following P system Π :

Π = (V,R, l, [1]1, S1, RA, 1) ,
V = {S, a} ,
R = {S → SS, S → a} ,
l = {(1, S → SS) , (2, S → a)} ,

RA =
{

1 ¿
1

1,2 ¿
1

1

}
.

S 1

1

Figure 2: Initial configuration of Π.

From the initial configuration, which is also illustrated in figure 2, we start by applying
an antiport rule from RA. Taking 1 ¿

1

1 does not change the actual configuration of the

system, so that in the next substep the evolution rule S → SS can be applied. The system
can go on by repeatedly carrying out these two steps, thereby each time doubling the oc-
currences of S. If in any moment the antiport rule 2 ¿

1

1 is used instead of 1 ¿
1

1, then the

rule S → a is brought into the system. In the next step, all objects S are changed into a,
and no further rule can be applied anymore, hence the system halts.

188

Observe that a rule occurring in a region has to be applied in the maximally parallel
manner, hence, we obtain 2n, n ≥ 0, objects a in the final configuration.

For P systems with antiport rules for evolution rules without catalysts we obtain a
characterization of PsET0L, i.e.,

PsOPA∗ (anti∗) = PsET0L.

This result will be proved in the following two lemmas:

Lemma 3 PsET0L ⊆ PsOPA1 (anti∗) .

Proof. Let GL = (V, T, t1, ..., tn, w) be an ET0L system. Then we can construct a P
system with antiport rules for evolution rules Π simulating GL in the following way:

First we define two additional tables:

t0 = {X → X | X ∈ V } ,
tn+1 = {X → X | X ∈ V \ T} .

We then define R =
n+1∪
i=0

ti, which is the set of all context-free productions occurring in

the tables ti, 0 ≤ i ≤ n + 1.
Now let m be the cardinality of R and L = {0, 1, ..., m,m + 1} . Moreover we define a

bijective mapping l : L → R; hence, we can represent each table ti, 0 ≤ i ≤ n + 1, by the
corresponding word ri over L (observe that ri contains any element of L at most once and
that |ri| ≥ card(V) for 0 ≤ i ≤ n).

We now define the P system with antiport rules for evolution rules Π simulating the
ET0L system GL

Π = (V, R, l, [1]1, wr0, RA, 1) ,

with

RA =
{

ri ¿
1

r0 | 1 ≤ i ≤ n

}

∪
{

rj ¿
1

ri | 1 ≤ i, j ≤ n

}

∪
{

rn+1 ¿
1

ri | 0 ≤ i ≤ n

}
.

The label r0 is just a dummy to allow us to start with the simulation of any of the tables

from the ET0L system. The antiport rules in
{

rj ¿
1

ri | 1 ≤ i, j ≤ n

}
allow us to continue

with any arbitrary table tj after the application of the table ti. Finally, the table rn+1 com-

ing into action after the application of any of the antiport rules in
{

rn+1 ¿
1

ri | 0 ≤ i ≤ n

}

allows us to check for the appearance of non-terminal symbols from N. If the underlying
sentential form in GL is terminal, then the corresponding configuration in Π halts. Hence,
we have proved that the terminal derivations in GL exactly correspond to the halting
computations in Π, which observation concludes the proof.

Due to our definition of enforced substeps, we only need one membrane instead of two
membranes needed for the corresponding result proved in [2].

189

Example 4 Taking again the previous example, the corresponding ET0L system (with the
constraint that every table has to contain at least one rule for each symbol) would be

({S, a} , {a} , {S → SS, a → a} , {S → a, a → a}) .

According to the construction of the proof elaborated above, we would get the following P
system with antiport rules for evolution rules:

Π = (O, R, l, [1]1, S24, RA, 1) ,
O = {S, a} ,
R = {S → SS, a → a, S → a, S → S} ,
L = {1, 2, 3, 4} ,
l = {(1, S → SS) , (2, a → a) , (3, S → a) , (4, S → S)} ,

RA =
{

12 ¿
1

24,23 ¿
1

24

}

∪
{

12 ¿
1

12,23 ¿
1

12,23 ¿
1

23,12 ¿
1

23

}

∪
{

4 ¿
1

24,4 ¿
1

12,4 ¿
1

23

}
.

Lemma 5 PsOPA∗ (anti∗) ⊆ PsEpT0L.

Proof (Sketch). Let
Π = (O,R, l, µ, w1...wm, RA, i0)

be an arbitrary P system with antiport rules for evolution rules without catalysts. We
now construct a programmed ET0L system

GL = (V, T, t0, t1, ..., tn, w, σ)

with V = O ×H ∪O ∪ {#} , where H = {1, ..., m} is the set of membrane labels, T = O,
taking into accout the following observations.

• The contents of each membrane region in any configuration over Π can be represented
as a string over the alphabet O ×H. The notation (a, i) for a ∈ O, i ∈ H, indicates
that the object a occurs in membrane region i. Moreover, for each i ∈ H we define
the homomorphism hi : O → O × {i} such that hi (a) = (a, i) for all a ∈ O.

• There is only a finite number of possible distributions of the evolution rules over the
whole membrane structure.

• It is easily decidable which of these distributions of evolution rules is reachable from
the initial configuration.

• For each reachable distribution of evolution rules, it is decidable which distributions
are possible after applying the given antiport rules from Π in a maximally parallel
manner.

• For each reachable distribution d of evolution rules we now construct a table of
context-free productions td for GL in the following way:

td = t′d ∪ t′′d ∪ t̃;

190

t′d contains the context-free production hi (a) → hi (w) if and only if a → w is a rule
contained in membrane i in the current distribution of evolution rules d;

t′′d contains the rule (a, i) → (a, i) if and only if there is no production in t′d with
(a, i) on its left-hand side (this guarantees the completeness condition for the tables
in the ET0L system GL);

t̃ = {a → a | a ∈ O ∪ {#}} .

• For every reachable distribution of evolution rules d, σ′ (td) exactly contains all tables
te such that e is reachable in one step from d in Π.

• To start the simulation of Π in GL we encode the initial contents of all membrane
regions in the initial configuration and use an additional table t0 in GL with

t0 = {(a, i) → (a, i) | a ∈ O, i ∈ H} and σ (t0) = {td0}
where d0 is the distribution of the evolution rules in the initial configuration.

• For all d with σ′ (td) 6= ∅ we take σ (td) = σ′ (td) . In that way the derivation steps
in Π can be simulated in GL.

• If σ′ (td) = ∅, then this means that the distribution of the evolution rules in Π will
not be changed anymore and only evolution rules may still be working. Hence, in
that case we take σ (td) =

{
td, t

f
d

}
. At some point of the simulation we assume

that no rule from t′d can be applied anymore, i.e., the computation in Π is halting.
This halting condition for Π is checked by applying the table tfd in GL where tfd =
tf,1
d ∪ tf,2

d ∪ tf,3
d ∪ t̃ and

tf,1
d = {(a, i0) → a | a ∈ O, there is no rule for (a, i0) in t′d} ,

tf,2
d = {(X, j) → λ | X ∈ O, there is no rule for (X, j) in t′d, j ∈ H \ {i0}} ,

tf,3
d = {(X, j) → # | X ∈ O, there is a rule for (X, j) in t′d, j ∈ H} .

The tables of GL as well as σ can easily be extracted from the constructions elabo-
rated above, hence, the proof is complete.

Combining the results proved in the preceding two lemmas with Theorem 8.3 from
[3] (providing the equality PsEpT0L = PsET0L) we immediately obtain the following
theorem, i.e., a characterization of PsET0L by P systems with antiport rules for evolution
rules without catalysts, but also a normal form for this kind of P systems telling us that
one membrane is already sufficient:

Theorem 6 PsOPA1 (anti∗) = PsOPA∗ (anti∗) = PsEpT0L = PsET0L.

6 Conclusion

We have investigated P systems with antiport rules for evolution rules, where only evo-
lution rules but no objects are moved across the membranes during a computation. We
have shown that for such systems we obtain universal computational power when using
purely catalytic evolution rules even with only one catalyst in one membrane. When using
such systems without catalysts, a characterization of the family of languages generated

191

by ET0L systems is obtained, and again one membrane is already sufficient. Hence, the
results elaborated in this paper are already optimal with respect to the number of mem-
branes. The influence of the weight of the antiport rules remains as a challenging open
problem for future research.

Acknowledgements. The paper was initiated during the Brainstorming Week on
Membrane Computing taking place in Sevilla during the first week of February, 2004.
The authors appreciate interesting discussions with Matteo Cavaliere un on some topics
elaborated in this paper.

References

[1] M. Cavaliere: Evolution-Communication P Systems. In: Gh. Păun, G. Rozenberg, A.
Salomaa, C. Zandron, Eds., Membrane Computing. International Workshop, WMC-
CdeA 2002, Curtea de Argeş, Romania, August 2002, Springer-Verlag, LNCS 2597,
Berlin, 2003, 134–145.

[2] M. Cavaliere, D. Genova: P Systems with Symport/Antiport of Rules, in the present
volume.

[3] J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

[4] R. Freund, L. Kari, M. Oswald, P. Sośık: Computationally Universal P Systems
without Priorities: Two Catalysts Are Sufficient. Theoretical Computer Science, to
appear.

[5] R. Freund, C. Mart́ın-Vide, Gh. Păun: From Regulated Rewriting to Computing with
Membranes: Collapsing Hierarchies. Theoretical Computer Science, 312 (2004), 143–
188.

[6] R. Freund, M. Oswald: P Systems with Conditional Communication Rules Assigned
to Membranes. JALC, to appear.

[7] O.H. Ibarra: The Number of Membranes Matters. In A. Alhazov, C. Mart́ın-Vide,
Gh. Păun, Eds.: Preproceedings of Workshop on Membrane Computing, WMC-2003,
Tarragona, July 17-22, 2003, Rovira i Virgili Univ., Tech. Rep. No. 28, Tarragona,
2003, 273–285.

[8] Gh. Păun: Computing with Membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and TUCS Research Report 208 (1998) (http://www.tucs.fi)

[9] Gh. Păun: Membrane Computing: An Introduction. Springer-Verlag, Berlin, 2002.

[10] Rozenberg, G., Salomaa, A., Eds.: Handbook of Formal Languages. Springer-Verlag,
Berlin, Heidelberg, 1997.

[11] The P Systems Web Page: http://psystems.disco.unimib.it

192

