
AAECC (2012) 23:17–28
DOI 10.1007/s00200-012-0169-5

ORIGINAL PAPER

Searching high order invariants in computer imagery

A. Berciano · H. Molina-Abril · P. Real

Received: 18 February 2011 / Revised: 11 November 2011 / Accepted: 12 November 2011 /
Published online: 28 March 2012
© Springer-Verlag 2012

Abstract In this paper, we present a direct computational application of Homo-
logical Perturbation Theory (HPT, for short) to computer imagery. More precisely,
the formulas of the A∞–coalgebra maps Δ2 and Δ3 using the notion of AT-model
of a digital image, and the HPT technique are implemented. The method has been
tested on some specific examples, showing the usefulness of this computational tool
for distinguishing 3D digital images.

Keywords Digital image · Homological perturbation theory ·
Topological invariant · A∞-coalgebra

1 Introduction

In a classical way, it is common to define algebraic topology as a branch of mathemat-
ics which uses algebraic tools to study properties of topological spaces. However, over
the last two decades new lines of research focusing on algorithms and applications of
algebraic topology have emerged.

Among these new areas, computer imagery and pattern recognition applications
have started using topological features, in order to enrich the existing methods and

A. Berciano (B)
Didáctica de la Matemática y de las Ciencias Experimentales, University of the Basque Country,
Bilbao, Spain
e-mail: ainhoa.berciano@ehu.es

H. Molina-Abril · P. Real
Applied Math Department I, University of Seville, Seville, Spain
e-mail: habril@us.es

P. Real
e-mail: real@us.es

123

18 A. Berciano et al.

develop new ones. These applications need to face two main problems when deal-
ing with algebraic topology: the requirement of sophisticated computations and the
difficulty in obtaining explicit results.

Our purpose is to have at hand algorithms and software allowing to perform exper-
iments and to obtain explicit results, which would be an useful tool in the context of
digital imagery.

Different computer programs implementing algebraic homological procedures have
been lately developed. For instance, the Kenzo system ([6]) can be used to study highly
sophisticated algebraic structures coming from iterated loop spaces, using symbolic
computation. Some others dealing with images and numerical computation, exclu-
sively compute homology groups and Betti numbers (see for example [4,5]).

In order to go further, the first candidates for maps of higher complexity on homol-
ogy are those extracted from an A∞–coalgebra structure ([12]), which is a differential
graded module M endowed with an infinite family of morphisms (Δ1,Δ2,Δ3, . . . ,)
satisfying some relationships.

In this paper we present a software that computes some explicit structural compo-
nents of an A∞–(co)algebra deduced from a contraction, which is a special type of
homotopy equivalence. This new tool enables researchers to experiment with these
components, providing a base to support new research lines in computational algebraic
topology and image analysis.

The paper is organized as follows: in Sect. 2 we review the preliminaries and estab-
lish our notation. The software tool is presented in Sect. 3. In Sect. 4, initial experiments
performed on 3D digital images are shown, with the results given by the maps Δ2 and
Δ3. In the last section we discuss and comment on future work.

2 Preliminaries

In this section we will introduce the required concepts we need for the following sec-
tions. First, we will start introducing some algebraic aspects, to later on, continue with
some topological notions.

Throughout this paper Λ will be a commutative ring and, in the examples, we will
set Λ = Z2. All the some basic definitions contained in the following paragraphs can
be found in ([14,17]).

A differential graded module (DG-module) is a graded module M together with a
square zero morphism d : M → M of degree −1.

Given a DG-module (M, dM), the suspension of M is the DG-module (s M, ds M),
where (s M)n = Mn−1 and ds M = −dM . Dually, the desuspension of M is the
DG-module (s−1 M, ds−1 M) given by (s−1 M)n = Mn+1 with differential −dM .
A morphism of degree i of graded modules f : M → N induces a morphism of
suspensions s f : s M → s N defined by s f = (−1)i f and dually of desuspen-
sions s−1 f : s−1 M → s−1 N . The tensor module of M is the differential graded
module T M = ⊕

n≥0 M⊗n whose (tensor) differential dt is the linear extension of d.

A morphism f : M → N of DG-modules induces a morphism T f : T M → T N via
T f |M⊗n = f ⊗n .

A differential graded coalgebra (DGC) is a DG-module (C, dC) endowed with a
coassociative coproduct Δ and a counit ε such that dC is a coderivation of Δ [14].

123

Searching high order invariants 19

Given a simply connected DGC, C , the reduced cobar construction of C is the
differential graded algebra (DGA) Ω̄(C) = T s−1 (C) with the concatenation product
and differential dΩ = dt + dc, where dt is as above and

dc =
n∑

i=1

(−1)i−11⊗i−1 ⊗ Δ ⊗ 1⊗n−i .

An A∞-coalgebra is a graded module M together with a family of maps Δi : M →
M⊗i of degree i − 2 such that for all i ≥ 1

i∑

n=1

i−n∑

k=0

(−1)n+k+nk(1⊗i−n−k ⊗ Δn ⊗ 1k)Δi−n+1 = 0.

To see how is possible to compute A∞-coalgebras, it is required to introduce
two important tools of homological algebra: (1) the notion of contraction, which
is a special type of homotopy equivalence between differential graded modules
and (2) the homological perturbation theory, that is a particularly useful way to
obtain relatively small differential modules representing a given chain homotopy type
(see [3]).

More explicitly, a contraction c : {N , M, f, g, φ} between the DG-modules
(N , dN) and (M, dM) consists in a triple of morphisms { f, g, φ} where f : N → M
and g : M → N are of degree zero and φ : N → N is a homotopy operator of degree
+1 that satisfy the following conditions:

f g = 1M , φdN + dN φ + g f = 1N f φ = 0, φg = 0, φφ = 0.

A contraction c : {N , M, f, g, φ} between DG-modules induces the following
contractions of desuspensions and tensor modules [9,10]:

– The desuspension contraction of c, s−1c : {s−1 N , s−1 M, s−1 f, s−1g, s−1φ}.
– The tensor module contraction, T (c) : {T (N), T (M), T (f), T (g), T (φ)},

where

T (φ)|T n(N) = φ[⊗n] =
n−1∑

i=0

1⊗i ⊗ φ ⊗ (g f)⊗n−i−1.

A morphism of graded modules f : N → N is called pointwise nilpotent whenever
for all x ∈ N , x �= 0, there exists a positive integer n such that f n(x) = 0. A pertur-
bation of a DG-module N consists in a morphism of graded modules δ : N → N of
degree −1, such that (dN + δ)2 = 0.

In the framework of homological perturbation theory, the Basic Perturbation
Lemma (BPL) [3] is an algorithm whose input is a contraction c : {N , M, f, g, φ}
and a perturbation datum δ of c and whose output is a new contraction cδ . The only
requirement is that the composition φδ must be pointwise nilpotent so that the sums
involved in the formulas are finite for each element of N :

123

20 A. Berciano et al.

Input: c : (N , dN)

φ

�� f
��
(M, dM)

g
�� + perturbation δ

Output: cδ : (N , dN + δ)

φδ

�� fδ ��
(M, dM + dδ)

gδ

��

where fδ, gδ, φδ, dδ are given by the formulas:

dδ = f δ
∑

i≥0
(−1)i (φδ)i g; fδ = f

(

1 − δ
∑

i≥0
(−1)i (φδ)i φ

)

;

gδ = ∑

i≥0
(−1)i (φδ)i g; φδ = ∑

i≥0
(−1)i (φδ)i φ.

Taking into account the previous conditions, perturbation theory gives a theoretic
algorithm for computing the structural components of an A∞–coalgebra (see [1,2,10,
11]).

The procedure by which one obtains an A∞-coalgebra structure on a small
DG-module of a contraction, known as Tensor Trick (see [10]), follows these steps:

– As initial data, let C be a DGC and c : {C, M, f, g, φ} be a contraction.
– Form the tensor module contraction on the desuspension

T s−1(c) : {T s−1(C), T s−1(M), T s−1(f), T s−1(g), T s−1(φ)}.

– Using the cosimplicial differential as a perturbation data of T s−1(c), apply the
BPL and obtain a new contraction

cb(c) : {Ω(C), Ω̃(M), cb(f), cb(g), cb(φ)};

where Ω̃(M) = T s−1(M) with the differential dT s−1 + dδ .
– Finally, the induced A∞-coalgebra structure on M can be extracted from the tilde

cobar differential dδ on Ω̃(M) and, for i ≥ 2, its explicit formula is given by (see
[11]):

Δi = (−1)[i/2]+i+1 f ⊗iΔ[i]φ[⊗(i−1)] · · ·φ[⊗2]Δ[2]g,

where

Δ[k] =
k−2∑

i=0

(−1)i 1⊗i ⊗ Δ ⊗ 1⊗k−i−2.

These maps Δi : M → M⊗i , of degree i − 2, will be the candidates to obtain a
new invariant which allows us to distinguish different images in a computational way.
More precisely, to start with this family of maps, our point of view will be to focus

123

Searching high order invariants 21

on the explicit formulas of Δ2 and Δ3 acting on the representative generator(s) of the
second group of the Homology of the digital images we want to study.

But, for this purpose, we need to introduce more definitions related with topology,
more concretely, the notion of simplicial set, K , appears; where ∂i will be the face
operators of it (see [15]).

Given a simplicial set K , a q–chain is a formal sum of cells of dimension q of K ,
K (q). The q–chains form the qth chain group of K , denoted by Cq(K) The boundary
of a q–cell, dq , is an alternate formal sum of the (q − 1)–cells belonging to it. By
linearity, dq can be extended to q–chains. The collection of boundary operators con-

nect the chain groups Cq(K) into the simplicial complex C(K) : . . .
d2−→ C1(K)

d1−→
C0(K)

d0−→ 0.
Furthermore,the simplicial complex C(K) of a simplicial set K , has a coalgebra

structure defined by the Alexander Whitney diagonal AW : C(K) → C(K) ⊗ C(K)

defined over the simplices as

AW (s) =
n∑

i=0

∂i+1 · · · ∂ns ⊗ ∂0 · · · ∂i−1s,

where ∂i are the face operators acting on the simplex s for all simplex (see [13]).
In a more general framework, a chain complex C is a sequence of abelian groups

Cq connected by homomorphisms dq , such that for all q, dqdq+1 = 0 (a particular
example of a DG-module). The set of all the homomorphisms dq is called the differ-
ential of C. A q–chain a ∈ Cq is called a q–cycle if dq(a) = 0. If a = dq+1(a′) for
some a′ ∈ Cq+1 then a is called a q–boundary. Denote the groups of q–cycles and
q–boundaries by Zq and Bq respectively. We say that a is a representative q–cycle of
a homology generator α if α = a + Bq . Define the qth homology group, Hq(C), to
be the quotient group Zq/Bq , denoted by Hq(C). The qth Betti number βq is the rank
of Hq(C). Intuitively, given for instance a 3D image, β0 is the number of components
of connected pieces, β1 is the number of independent “holes” and β2 is the number of
“cavities”.

Finally, the last definition we need is the notion of {AT-model}: an AT-model ([7])
for a cell complex K is an algebraic set (K , h, f, g, φ), where:

– K is the cell complex.
– h is a set of generators of a chain complex H isomorphic to the homology of K .
– { f, g, φ} is a contraction from C(K) to H.

So, summarizing, taking into account all the information above, if we have a cell
complex K , and we are able to construct the AT-model associated to it, we will be able
to induce an A∞-coalgebra structure on its homology using the BPL and the natural
coalgebra structure of C(K). So theoretically, it is possible to compute the maps of
this structure, and in this paper we present an explicit algorithm which computes the
first two maps: Δ2 and Δ3.

123

22 A. Berciano et al.

3 Algorithm for computing the Δ maps

In this section an algorithm to compute the previously described maps is presented.
Let us recall that the aim of this project is to analyze binary digital images within an
algebraic topological framework. Homology groups and Betti numbers are a powerful
tool used to differentiate digital object. But there exist multiple examples, where this
information is not enough to distinguish them.

In order to progress in the analysis of digital objects by using topological infor-
mation, we develop here an algorithm to compute the maps Δ2 and Δ3 acting on the
representative generator(s) of the digital images. The algorithm has been implemented
and some examples are shown.

The pseudocode of the algorithm is the following:

Require: Binary digital image I
1: S = EmptySimplicialComplex()

2: s = EmptySeto f Simplexes()
3: for every unit cube C ∈ I do
4: s = LookU pT able(C)

5: for every simplex σ ∈ s do
6: if σ 	 S then
7: S = S + σ

8: end if
9: end for
10: end for
11: (f, g, φ, h) = AT Model(S)

12: for every 2-dimensional element csi ∈ h do
13: Δ2i = f (AW (g(csi)))

14: Δ3i = f ((Δ2φ ⊗ 1 + 1 ⊗ Δ2φ)Δ2g(csi))

15: end for
16: return Δ2, Δ3

Given a binary digital image, the algorithm involves three steps:

(i) First, the simplicial complex K associated to the input image is built.
(ii) Then, we obtain the AT-model for the complex K .

(iii) Finally, the Δ maps on the representative homology generators are computed.

3.1 Step 1: Building the simplicial complex

We use the algorithm proposed in [16] to construct the simplicial complex associated
to the input image.

Given a binary raster image, the method subdivides the matrix into unit cubes
(2 × 2 × 2 for a 3D image). A 3D–tetrahedrization of any configuration of mutually
26–adjacent black voxels is stored in a look-up table. The union of such configurations
provides a coherent simplicial complex at global level (see Fig. 1).

123

Searching high order invariants 23

Fig. 1 a A 3D binary digital image and b the corresponding simplicial complex

(a) (b)

Fig. 2 a A simplicial complex K and b one possible AT-model for K (where g is the inclusion map).
The elements in h are colored in red. (Color figure online)

3.2 Step 2: Obtaining the AT-model

As we defined before, we need to work with AT-models. An example of AT-model for
a simple complex is shown in Fig. 2.

The AT-model for the previously obtained simplicial complex is computed using
the algorithm described in [8] (see Fig. 3). The input of the algorithm is a sorted
set {σ1, . . . , σm} of all the simplexes of K . Then a set of generators h, and a chain
contraction (f, g, φ) of C(K) to H are computed. Initially, h is empty. At the i th
step of the algorithm, the simplex σi is added to the subcomplex {σ1, . . . , σi−1} and a
homology class is created or destroyed. If f (∂(σi)) = 0 then σi “creates” a homology
class. Otherwise, σi “destroys” one homology class “involved” in the expression of
f (∂(σi)). The time complexity of the algorithm is at most O(m3).

3.3 Step 3: Computing the Δ maps

The maps Δ2 and Δ3 are computed following the formulas presented in Sect. 2.
Let h = {c1, . . . , cr } and (f, g, φ) be the output of the AT-model Algorithm applied

to K . Let {cs1 , . . . , cst } be the 2–dimensional elements of h. If this set is empty then
there are no cavities for which we can compute the Δ maps. Otherwise, the rep-
resentative 2-cycles in K that correspond to the generators of H2(K) are computed
using g. In particular, each g(csi) = ∑

c̄i j is a sum of elementary 2–simplexes enclos-
ing at least one cavity in K .

Taking into account the explicit formula of the Alexander Whitney diagonal defined
before, we apply it over the 2-simplexes, obtaining a sum of tensor products AW (c̄i j) =

123

24 A. Berciano et al.

Fig. 3 The output of the homology computation process: representative homology generators are colored
in red (1–cycles) and blue (2–cycles), and an output file containing the Betti numbers and the value of the
morphisms f , g and φ for every cell. (Color figure online)

Fig. 4 The “non-trivial” part of the AW applied to a triangle as a 2-simplex

Table 1 Computations for the simplicial complex of a torus where η represents the homology generator
in H0, α1 and α2 the two homology generators in H1, and γ the homology generator in H2

Representative homology generators for the complex “torus”:
H0 = {η} , H1 = {α1, α2}, H2 = {γ }
Δ2 and Δ3 on the representative generator of the second group:

Δ2(γ) = (η ⊗ γ) + (γ ⊗ η) + (α1 ⊗ α2) + (α2 ⊗ α1)

Δ3(γ) = (α2 ⊗ α1 ⊗ α2) + (α1 ⊗ α2 ⊗ α2) + (α2 ⊗ α1 ⊗ α1) + (α1 ⊗ α2 ⊗ α1)

∑
ai j ⊗ bi j , where each ai j and bi j is a simplex of dimension less or equal to 2. But,

with the purpose to obtain something non trivial, we are only concerned with the sum
of the tensor products where the dimension of both ai j and bi j is equal to 1 (Fig. 4).

Finally, we apply the map f to these pairs of chains, and in this way we obtain a
description of the Δ2 in terms of 1–dimensional elements of h.

Similar procedure is performed to compute the Δ3 map. An example of the com-
putations for the simplicial complex of a torus is shown in Table 1.

123

Searching high order invariants 25

Table 2 Running time in
milliseconds of the computation
of Δ3 on the H2 generators of
different simplicial complexes

Complex Number of simplexes Time (ms)

Sphere 2, 834 85

Torus 3, 856 2, 349

2–genus torus 6, 541 6, 478

Fig. 5 a A torus of genus 2 and b a sphere with 2 edges

Table 3 Representative
homology generators of the
simplicial complexes
in Fig. 5a, b

Complex H0 H1 H2

Torus of genus 2 {η} {α1, α2} {γ }
Sphere with two edges {η} {α1, α2} {γ }

4 Implementation and examples

For optimal effectiveness and flexibility, the C++ programming language has been used
for the implementation. The computations are nowadays restricted to Z2 coefficients.

The input of the program is a set of 2D binary images that compose the volume we
want to study. Several file types are accepted (.jpg, .png, .bmp, …).

The first step consists of acquiring the simplicial complex K associated to the input
image. Each black pixel in the image, will correspond to a 0–simplex of the final
complex. Then a list of simplexes and their boundaries is obtained.

In the second step, the value of f , g and φ for each simplex of the complex are
computed. A list of generators is stored in h.

Then for each element in h, the maps Δ2 and Δ3 are computed. Either an empty
list is obtained, or a list containing a sum of tensor products of elements in h.

Some examples of the running time in a Intel Core i5 CPU 760, 2.8 GHz, 8 Gb
RAM, are shown in Table 2.

We show now some examples where these maps are useful for image comparison.

Example 1 A torus of genus 2 and an sphere with 2 edges (see Fig. 5 and Table 3).

Using the information in Table 3, that are the Betti numbers corresponding to the
two complexes in Fig. 5, we are not able to distinguish between them. Both examples
have one generator in H0, two in H1 and one in H2.

We compute now the morphisms Δ2 and Δ3 (see Table 4).

123

26 A. Berciano et al.

Table 4 Δ2 and Δ3 computed on the H2 generators of Fig. 5a, b

Δ2 Δ3

(a) γ (η ⊗ γ) + (γ ⊗ η) + (α1 ⊗ α2)

+ (α2 ⊗ α1)

(α2 ⊗α1 ⊗α2)+ (α1 ⊗α2 ⊗α2)

+(α2⊗α1⊗α1)+(α1⊗α2⊗α1)

(b) γ (η ⊗ γ) + (γ ⊗ η) 0

Fig. 6 a A torus of genus 2 with an attached sphere, and b two connected torus

Table 5 Representative
homology generators of the
simplicial complexes in
Fig. 6a, b

Complex H0 H1 H2

Torus of genus 2 with {η} {α1, α2, α3, α4} {γ1, γ2}
an attached sphere

Two connected torus {η} {α1, α2, α3, α4} {γ1, γ2}

In Table 4, Δ3 expresses the geometrical relation between the generators of dimen-
sion one and the generators of dimension two of Fig. 5. It is clear that in the case of
the torus (Fig. 5a), the cavity of dimension two can be generated by the two generators
of dimension one, but this is not possible in the case of the sphere with two edges
(Fig. 5b).

Example 2 A torus of genus 2 with an attached sphere, and two connected torus (see
Fig. 6 and Table 5).

As we can see in Table 5, Betti numbers are the same for both images in Fig. 6.
In Table 6, the morphisms Δ2 and Δ3 are shown.

From a geometrical point of view, the results given by the morphisms Δ2 and Δ3
can be explained taking into account the way to generate the 2–cycle of the objects
using a representative of the cavities of dimension one. That is, in Fig. 6a the cavity
of dimension one of the torus of genus 2 (γ1) can be generated as a revolution surface

123

Searching high order invariants 27

Table 6 Δ2 and Δ3 computed on the H2 generators of Figs. 6a, 5b

Δ2 Δ3
(a) γ1 (η ⊗ γ1) + (γ1 ⊗ η) + (α1 ⊗ α2)

+(α2⊗α1)+(α3⊗α4)+(α4⊗α3)

(α1 ⊗ α1 ⊗ α2) + (α1 ⊗ α2 ⊗ α1)

+ (α1 ⊗ α2 ⊗ α2) + (α2 ⊗ α1 ⊗ α1)

+ (α3 ⊗ α3 ⊗ α4) + (α3 ⊗ α4 ⊗ α3)

+ (α4 ⊗ α1 ⊗ α2) + (α4 ⊗ α2 ⊗ α1)

+ (α4 ⊗ α2 ⊗ α2) + (α4 ⊗ α3 ⊗ α3)

+ (α4 ⊗ α3 ⊗ α4)

(a) γ2 (η ⊗ γ2) + (γ2 ⊗ η) 0

(b) γ1 (η ⊗ γ1) + (γ1 ⊗ η) + (α1 ⊗ α2)

+ (α2 ⊗ α1)

(α1 ⊗ α1 ⊗ α2) + (α1 ⊗ α2 ⊗ α1)

+(α2 ⊗α1 ⊗α1)+(α2 ⊗α1 ⊗α2)

(b) γ2 (η ⊗ γ2) + (γ2 ⊗ η) + (α4 ⊗ α3)

+ (α3 ⊗ α4)

(α4 ⊗ α3 ⊗ α3) + (α4 ⊗ α3 ⊗ α4)

+ (α3 ⊗ α3 ⊗ α4) + (α3 ⊗ α4 ⊗ α3)

of the 1-dimension cycles (generators of the torus), but the cavity of dimension two
of the sphere (γ2) can not be generated in the same way. Therefore, a trivial result is
obtained when Δ2 and Δ3 are computed on it. In the same way, it is simple to explain
the non trivial result of Δ2 and Δ3 over the cavities of dimension two in Fig. 6b.

5 Conclusions and future work

Homology is a topological tool which does not give on its own a complete topological
answer to classification, matching and recognition tasks in structural pattern recogni-
tion for 3D and 4D objects. Alexander-Whitney coproduct in homology and derived
higher maps are used here for revealing new relations between homology generators in
3D binary voxel-based digital volumes. The experiments performed with the proposed
homological method have demonstrated that the maps Δ2 and Δ3 allow to distinguish
volumes having the same homology groups. There are some interesting questions:
(a) Can we guarantee the same information of Δ2 and Δ3 for 3D objects working with
integer coefficients?; (b) Does the map Δ3 provide new important information in 4D
ambiance? (c) Is in fact the map Δ3 the one that measures the lack of associativity of
Δ2? And what about the associativity of Δ3? (d) Is “acceptable” the cost involved in
the computation of the maps Δ3 and Δ4 for a more general 4D digital image?

In a near future, we intend to deal with these questions as well as with homology
classification tasks for 3D and 4D geometric objects based on this new technique.

References

1. Berciano, A.: A computational aproach of a∞-(co)algebras. Int. J. Comput. Math. 87(4), 935–953
(2010)

2. Berciano, A., Rubio, J., Sergeraert, F.: A case study of a∞-structures. Georgian Math. J. 17, 57–77
(2010)

3. Brown, R.: The twisted eilenberg-zilber theorem. In: In Simposio di Topologia (Messina, 1964),
Edizioni Oderisi, Gubbio (1965)

4. Plex: Simplicial complexes in Matlab. http://comptop.stanford.edu/programs/plex/
5. Computational Homology Project. http://chomp.rutgers.edu/
6. Dousson, X., Rubio, J., Sergeraert, F., Siret, Y.: The kenzo program. http://www.fourier.ujfgrenoble.

fr/sergeraert/ (1999)

123

http://comptop.stanford.edu/programs/plex/
http://chomp.rutgers.edu/
http://www.fourier.ujfgrenoble.fr/sergeraert/
http://www.fourier.ujfgrenoble.fr/sergeraert/

28 A. Berciano et al.

7. González-Díaz, R., Ion, A., Iglesias-Ham, M., Kropatsch, W.G.: Irregular graph pyramids and represen-
tative cocycles of cohomology generators. 7th IAPR-TC-15 Workshop on Graph-based Representations
in Pattern Recognition, Venice (Italy) (2009) (to appear in LNCS)

8. González-Díaz, R., Medrano, B., Sánchez Peláez, J., Real, P.: Simplicial perturbation techniques and
effective homology. CASC, LNCS 4194, 166–177 (2006)

9. Gugenheim, V.K.A.M., Lambe, L.A.: Perturbation theory in differential homological algebra I. Ill. J.
Math. 33(4), 566–582 (1989)

10. Gugenheim, V.K.A.M., Lambe, L.A., Stasheff, J.D.: Perturbation theory in differential homological
algebra II. Ill. J. Math. 35(3), 357–373 (1991)

11. Jimenez, M.J., Real, P.: Rectifications of a∞–algebras. Commun. Algebra 35(1532–4125),
2731–2743 (2007)

12. Kadeishvili, T.: On the homology theory of fibrations. Russ. Math. Surv. 35(3), 231–238 (1980)
13. Kozlov, D.: Combinatorial Algebraic Topology. Springer, Germany (2008)
14. Mac Lane, S.: Homology Classics in Mathematics. Springer, Berlin (1995)
15. May, P.: Simplicial Sets in Algebraic Topology. University of Chicago, Chicago (1967)
16. Molina-Abril, H., Real, P.: Advanced homology computation of digital volumes via cell com-

plexes. SSPR 2008, LNCS 5342, 361–371 (2008)
17. Weibel, C.A.: An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics

38. Cambridge University Press, Cambridge (1994)

123

	Searching high order invariants in computer imagery
	Abstract
	1 Introduction
	2 Preliminaries
	3 Algorithm for computing the maps
	3.1 Step 1: Building the simplicial complex
	3.2 Step 2: Obtaining the AT-model
	3.3 Step 3: Computing the maps

	4 Implementation and examples
	5 Conclusions and future work
	References

