
Topological evaluation of volume reconstructions by voxel carving q
1077-3142/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.cviu.2013.11.005

q The research that led to this paper was supported in part by the Spanish MEC
project MTM2012-32706 and the European Commission under the Contract FP7-
ICT-287723 REVERIE.
⇑ Corresponding author. Fax: +34 954557878.

E-mail addresses: antgutdel@alum.us.es (A. Gutierrez), majiro@us.es
(M.J. Jimenez), david.monaghan@dcu.ie (D. Monaghan), noel.oconnor@dcu.ie
(N.E. O’Connor).
Antonio Gutierrez a, Maria Jose Jimenez a,⇑, David Monaghan b, Noel E. O’Connor b

a Applied Math (I) Department, University of Seville, Spain
b Insight Centre for Data Analytics, Dublin City University, Ireland
a r t i c l e i n f o

Article history:
Received 8 October 2012
Accepted 5 November 2013

Keywords:
Voxel carving
Volume reconstruction
Persistent homology
Barcodes
Evaluation
a b s t r a c t

Space or voxel carving (Broadhurst et al., 2001; Culbertson et al., 1999; Kutulakos and Seitz, 2000; Seitz
et al., 2006) is a technique for creating a three-dimensional reconstruction of an object from a series of
two-dimensional images captured from cameras placed around the object at different viewing angles.
However, little work has been done to date on evaluating the quality of space carving results. This paper
extends the work reported in (Gutierrez et al., 2012), where application of persistent homology was ini-
tially proposed as a tool for providing a topological analysis of the carving process along the sequence of
3D reconstructions with increasing number of cameras. We give now a more extensive treatment by: (1)
developing the formal framework by which persistent homology can be applied in this context; (2) com-
puting persistent homology of the 3D reconstructions of 66 new frames, including different poses, reso-
lutions and camera orders; (3) studying what information about stability, topological correctness and
influence of the camera orders in the carving performance can be drawn from the computed barcodes.
1. Introduction

Homology is topologically invariant, meaning it is a property of
an object that does not change under continuous (elastic) transfor-
mations of the object. Roughly speaking, homology characterises
‘‘holes’’ in any dimension (e.g. connected components, tunnels
and cavities in a 3D space). Homology computation can be carried
out over a combinatorial structure called cell complex, which is built
up by basic elements (cells) of different dimensions (vertices, edges,
faces, etc.). One can take advantage of the combinatorial nature of a
digital image (as a set of voxels) to compute homology by taking as
input the (algebraic) cubical complex associated to the image.
Persistent homology [5,17] studies homology classes and their
life-times (persistence) in the belief that significant topological
attributes must have a long life-time in a filtration (an increasing
nested sequence of subcomplexes). In this paper, we work upon
the previous paper of the same authors [8] to apply persistence the-
ory for the evaluation of a 3D reconstruction process, providing a
wide experimental support to the initial ideas set down there. We
want to clarify that the application described here is not the classi-
cal use of persistent homology; it is more an experimental use of it.
The reconstruction process, along increasing number of cameras,
can be modelled as a suitable input for persistent homology compu-
tation, giving the possibility of a topological understanding of the
whole process. More specifically, we analyse the persistence bar-
codes [3] which are graphical representations of pairs of birth and
death times of homology classes as a collection of horizontal line
segments (intervals) in a plane, in order to extract information
about the topological evolution of the reconstructions.

In the following section, we describe the specific context in
which we apply persistent homology computation. Section 3
describes the method used to topologically characterise the evolu-
tion of the reconstructions by voxel carving with respect to the
number of cameras used. Reports on the computations performed
as well as some conclusions are collected in Section 4. We draw
some ideas for future work in the last section.
2. Voxel carving approach and its evaluation

Space or voxel carving [1,4,10,15] is a technique for creating a
three-dimensional reconstruction of an object from a series of
two-dimensional images captured from cameras placed around
the object at different viewing angles. The technique involves cap-
turing a series of synchronised images of an object, and, by analysis
of these images and with prior knowledge of the exact three-
dimensional location of the cameras, deriving an approximation
of the shape of the object. The general voxel technique proposed
in [10] has been modified and adapted to a specific task, as fully
detailed in [12,13]. And it is in fact this specific voxel carving
technique that we are evaluating.
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In each image in the synchronised set of images, the subject of
interest is identified and then segmented from the background of
the image. Fig. 1 shows an example of a subject of interest in a
camera image and the subject segmentation or silhouette extrac-
tion, as it is more commonly known. The subject silhouette is seg-
mented from the background by an autonomous adaptive
‘‘approximate median’’ background modelling algorithm. By using
an adaptive background modelling algorithm the silhouette extrac-
tion process can be made more robust to environmental changes,
such as lighting and unwanted background objects. A 3D bounding
box is then drawn around the subject’s approximate position in 3D
space. This bounding box defines a volume that has a correspond-
ing real world three-dimensional coordinate system. This defined
volume can be seen in Fig. 2.

In the real world coordinate system the approximate subject
volume is populated with voxels, that are set at a particular dis-
tance apart or spatial resolution, i.e. if the distance between voxels
decreases then the spatial resolution increases. From experimental
observation, authors in [12] found that a three dimensional spatial
frequency of 4 cm, i.e. 15,625 samples per cubic metre, was suffi-
ciently adequate for their purposes. This is based on three pre-
mises, (1) the final reconstructions being qualitatively detailed
enough to be used as a 3D visualisation tool, (2) the final recon-
structions being detailed enough to allow to extract accurate
human biomechanical information from the resultant volumes,
and (3) based on the computational performance of a single PC this
resolution allows to run their algorithm at near to real-time. By
using the extracted silhouettes, seen in Fig. 1, from each image,
inconsistent voxels can be eliminated from the defined volume
and by iterating through each of the cameras the remaining voxels
in the volume form an approximate 3D representation of the
subject (see Fig. 3).

Voxel carving techniques are very useful for 3D reconstruction
as they can cover a very large environment, such as a tennis court,
they are non-invasive, they can be implemented with an array of
low-cost cameras and the technique itself is also cheap to compute.
However, one of the fundamental difficulties with voxel carving is
the unavailability of a ground truth from which to derive the accu-
racy of the technique. In an attempt to provide some quantitatively
evaluation of voxel carving Monaghan et al. [13] present an evalu-
ation of the technique indirectly via silhouette comparison and in
[12] present a method to quantitatively evaluate spatially carved
volumetric representations of humans using a synthetic dataset
of virtual humans in a tennis court scenario. Such quantification
is based on a calculated ground truth and on the computation of
Normalised Mean Square Error (NMSE).

From experimental observation the authors found that 50 cam-
eras surrounding a subject could be considered as the maximum
Fig. 1. A subject of interest being identified and segmented from the background of
the image.
number so that the addition of any further cameras would not pro-
vide any more accuracy to the final space carving (it should be
noted that in a real world scenario having 50 cameras is unrealistic
due to costs and physical placements of the cameras). By using the
synthetic dataset of virtual humans they created 50 virtual cam-
eras and placed them in the virtual environment surrounding a vir-
tual human. The resultant space carving produced from this ideal
setting was then considered to be the ground-truth carving. The
NMSE of any reconstruction from a camera setup with fewer than
50 cameras could then be calculated by comparing it to the
ground-truth reconstruction, which had been calculated from 50
cameras. The aim of such an evaluation is to somehow quantify
the accuracy of the 3D volume produced by the voxel carving pro-
cess with regard to the number of cameras used. This investigation
was motivated by the fact that very little work had been done to
date on evaluating the quality of space carving results. A new
insight into the voxel carving work by homologically characteris-
ing the sequence of reconstruction volumes was initiated in [8].
Given the nature of the carvings, a homology-based approach
was presented as a more appropriate mathematical quantification
than the relatively simple NMSE-based approach used previously.
3. Persistent homology for 3D reconstruction evaluation

We are concerned with the application of persistent homology
computation to provide topological evaluation of the sequence of
3D reconstructions by the voxel carving technique. We consider
the whole process of voxel carving with different numbers of cam-
eras as an object with a filtration given by the partial results with
each number of cameras. This way, the associated barcode pro-
vides a global topological description of the process, that enriches
the numerical comparison against the ground truth model.
Although the idea of using persistent homology in this context
was first proposed in [8], a more formal and detailed presentation
of the method is given in this section. Besides, a considerable
amount of experiments presented in next section, will support
the proposed method.

The input data, results of the different voxel carvings, are 3D
binary digital images or subsets of points I of Z3 considered under
the (26,6)-adjacency relation for the foreground (I) and back-
ground (Z3 n I), respectively. Due to the nature of our input data,
we focus on a special type of cell complex: cubical complex. A cubi-
cal complex Q in R3, is given by a finite collection of p-cubes such
that a 0-cube is a vertex, a 1-cube is an edge, a 2-cube is a filled
square (we call it, simply, a square) and a 3-cube is a filled cube
(resp. a cube); together with all their faces and such that the inter-
section between two of them is either empty or a face of each of
them. The cubical complex QðIÞ associated to I is given by identifi-
cation of each 3D point of I with the unit cube centered at that
point and then considering all those 3-cubes together with all their
faces (square faces, edges and vertices), such that shared faces are
considered only once. Sometimes we will refer to p-cubes with the
more general term of cells (corresponding to the more general con-
cept of cell complex, see [9]).

Given a cell complex, homology groups can be computed using
a variety of methods. Incremental Algorithm for computing AT-
model (Algebraic Topological Model) [7], computes homology
information of the cell complex by an incremental technique, con-
sidering the addition of a cell each time. Once homology of a com-
binatorial object has been computed, the same algorithm can be
used again to update homology information if new cells are added
to the existing complex. In [6], the authors revisit this algorithm
with the aim of setting its equivalence with persistent homology
computation algorithms [5,17] working over Z=2 as ground ring.
We make use of algorithm in [6] for the persistent homology



Fig. 2. (a)–(c) Shows the subject of interest in 3 different camera views with the red and blue cubes indicating the approximate volume in which the subject exists. (d) shows
the approximate volume cubes in the corresponding real world coordinate system volume, where the white dots indicate the location of the cameras and the green lines
indicate the camera viewpoint or projection direction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 3. An example of the output of the voxel carving technique when applied to one frame from a tennis match dataset (3DLife ACM Multimedia Grand Challenge 2010
Dataset) [14].
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computation (though any other algorithm for computing persistent
homology, adapted to cubical complexes, could have been applied).

Denote by Rk the 3D reconstruction (or 3D binary digital image)
obtained using k cameras, that is, R0 represents the initial 3D
bounding box, R1 the set of points obtained after the voxel carving
of R0 with one camera, and so on.

Notice that, every time a new camera is added and the corre-
sponding carving is performed, some points (if any) are removed
from the previous reconstruction, so Rk � Rkþ1. That is, we have a
nested sequence of 3D reconstructions with decreasing number
of cameras,

Rn # Rn�1 # � � �R1 # R0:

Now, associate a cubical complex to each reconstruction as ex-
plained above. The following proposition holds.

Proposition 1. Denote by Cn�k the cubical complex associated to the
reconstruction with k cameras Rk (k ¼ 0; . . . ;n). Then, the cubical
complex C ¼ fCigi¼0...n is a filtered complex with the filtration

C0 # C1 # � � �Cn�1 # Cn:

Obviously, inclusion relation between the complexes is induced
by the ones between corresponding reconstructions.

So persistent homology of the filtered complex C can be consid-
ered. Notice that Ci is obtained from Ci�1 by adding some cubes,
together with all their faces in the cubical complex. The addition
of all these cells is accomplished in an order ðc1

i ; . . . ; cmi
i Þ such that

if cj is a face of cl, then j < l. Such an ordering gives place to a new
filtration Ci:
Ci�1 # Ci�1 [ fc1
i g# � � � # Ci�1 [ fc1

i ; . . . ; cmi
i g ¼ Ci:

Persistent homology can be computed through this filtration
between Ci�1 and Ci, providing all the pairs of cells responsible for
the creation/destruction of homology classes along the process,
what allows to construct a ‘‘partial’’ barcode corresponding to the
persistent homology of the filtration Ci.

See Fig. 4 as a simple example of computation of persistent
homology and the corresponding barcode, which represents
graphically the birth and death of homology classes along the
process.

However, regarding the computation of a barcode associated to
the whole filtration C, consider the following definition:

Definition 1. Given a filtered complex C ¼ fCigi¼0...n, such that for
each index i, there is a filtration Ci of complexes C0

i ¼ Ci�1 # C1
i

# � � � # Cmi
i ¼ Ci, a simplified barcode for C with respect to the

filtrations Ci is the one computed from the barcode of C after taking
these operations, for each i:

1. All the homology classes living at time i� 1 in the filtration C
that are destroyed at a certain time j of the filtration Ci, with
j ¼ 1 . . . mi, are set to die at time i in the filtration C.

2. All the homology classes that are created at a certain time j of
the filtration Ci, with j ¼ 1 . . . mi, are set to be born at time i in
the filtration C.

3. All the homology classes that are created at a certain time j of
the filtration Ci, with j ¼ 1 . . . mi and destroyed at time l of the
filtration Ci, with l ¼ 2 . . . mi and j < l, are eliminated from the
barcode.



Fig. 4. A simple example of computation of persistent homology and the corresponding barcode. Cells are labelled with the time step at which they are added.
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Hence, in the simplified barcode, creation and destruction of
homology classes are only considered to happen between two
consecutive number of cameras and not in the increasing process
between them. So, ‘‘small’’ elements of homology, like those in
Fig. 4, are not represented. This barcode will help to visualise the
whole computation in order to easily analyze the behaviour of
the elements of homology.

Proposition 2. The simplified barcode of the filtration C ¼ fCigi¼0...n
described above with respect to the filtrations

Ci�1 # Ci�1 [ fc1
i g# � � � # Ci�1 [ fc1

i ; . . . ; cmi
i g ¼ Ci;

is independent of the order taken for the cells fc1
i ; . . . ; cmi

i g added
between each two consecutive subcomplexes Ci�1 and Ci, for i ¼ 1 . . . n.

Notice that the order in which the cells are considered to com-
pute persistent homology between two subcomplexes Ci�1 and Ci

could lead to different barcodes. By setting the times of birth or
death to the interval ends in each filtration Ci, we achieve a repre-
sentation tool (the simplified barcode) that depends exclusively on
the camera orders taken for the reconstructions.

4. Experimental results

Apart from 5 different frames (of resolution 0.040) used in [8]
for computation, we have taken as input 22 new frames extracted
from a 3D video sequence of a subject with different poses (see
Fig. 5 for some examples), including poses in which a loop was
formed by the arms of the subject (Fig. 5d), and with three different
voxel resolutions: 0.040, 0.034 and 0.027, that is, a total of 66 new
frames. By resolution 0.040, we mean that the spacing between
each voxel is 4 cm in the OX; OY and OZ directions, what means
15,625 voxels per cubic metre.
A general perception is that representation of a subject in an up-
right pose with the arms quite separated from the body produce
simpler barcodes while more complex poses (like the one in
Fig. 5b) give place to more complex homological information that
hardly find stabilization along time (number of cameras).

Fig. 6 shows a case of simple pose for which the carving process
stabilizes at 6 cameras (with a unique connected component); sev-
eral tunnels have been living from 1 to 3 cameras. That means that,
in order to produce a topologically correct model, at least 6 cam-
eras are needed in this case. However, Fig. 7 reflects a not so com-
plex pose but with the handicap of having enough proximity
between arms and body to find it difficult to stabilize. Notice the
more complex barcode associated (in which 4 connected compo-
nents and 29 tunnels are represented) and, especially, the fact that
new 1-homology classes are created with high number of cameras,
what shows inestability in the process.

Based on our experiments, we have taken different observations
with regard to the following aspects:

� Topological correctness. By this method, we can topologically
control the reconstructed models and estimate a minimum
number of cameras needed to get a topologically correct 3D
model. It also provides important feedback to the algorithm
effectively used for the carving performances.
Although all the reconstructed volumes were supposed to repre-
sent a connected object, 15 out of 66 frames stabilize towards a
model with more than one connected component. By taking an a
posteriori analysis of those models we find that more than one
0-homology classes persist when one of the following facts occur:
1. Part of the background is wrongly considered as being part of

the foreground for the reconstruction (see Fig. 5c). These
cases (4 in total) may be caused by a deficient silhouette
extraction, though this is only an assumption derived from
the visualisation.



Fig. 5. Different 3D reconstructions with 43 cameras and resolution 0.027 illustrating the variety in poses of the subject.

Fig. 6. 3D Reconstructions of resolution 0.040 using (a) and (b) 3 cameras with two different view angles, (c) 6 cameras, (d) 43 cameras, what is considered the ground-truth
model. (e) Barcode associated to the whole sequence of 3D reconstructions with increasing number of cameras (from 1 to 43).
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2. Part of the body is not reconstructed and hence, it results in a
‘‘broken’’ model (see Fig. 5e). The reason may lie in a bad
positioning of the initial bounding box as it can be supposed
from a visual inspection.

Regarding 1-homology classes, expected evolution of tunnels are
due to junctions between two parts of the body (for example, as
in Fig. 7a and b), which stabilize disappearing with appropriate
camera views (with 16 cameras in the example). However, there
are some cases of persistence of tunnels that lead to think of
numerical errors in the computations made for the carvings. A
close inspection of the representative cycles computed by the
Incremental AT-model Algorithm reveals that they are, in fact, little
tunnels formed from the surface of the model, that should not log-
ically live there (see Fig. 8a).
We also computed several frames in which a loop was formed by
the arms of the subject (like in Fig. 5d). The tunnel was correctly
detected, in about the 79 per cent of cases, with no more than 6
cameras.
As for homology classes of dimension 2, due to the nature of the
voxel carving process, only voxels on the surface of the object were
expected to be removed each time, giving place to different con-
nected componentes and tunnels, but not to cavities. However, a
high number of cavities are found in the output results (as in
Fig. 7). Technically, ‘‘small’’ cavities might occur (see Fig. 8b and
c) near the surface, since the projection of the silhouette over the



Fig. 7. 3D Reconstructions (viewed from different angles) using different number of cameras: (a) 6 cameras, (b) 14 cameras, (c) 22 cameras and (d) 43 cameras (ground-truth
model). Representative cycles of homology are highlighted. Below, barcode associated to the whole sequence of 3D reconstructions from 1 to 43 cameras.

Fig. 8. (a) A ‘‘little’’ tunnel from the surface of a reconstruction that persists until the maximum number of cameras. (b) A cavity may be produced in a reconstruction by a
missed point (�), if the 6-adjacent points (�) belong to the representation; the rest of the 26-adjacent points (}) can either belong or not to the representation. (c) Detail of a
reconstruction with a representative cycle of 2-homology highlighted.
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Fig. 9. For each resolution (column) and each dimension i (row), representation of the pairs ðni;biÞ, where ni is the number of cameras at which the corresponding Betti
number bi stabilizes.

Fig. 10. Representation of average histograms obtained from 10 different frames computed.
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volume (to determine points to be deleted) could exclude a point,
but not its 6-adjacent points. Nevertheless, the persistence or birth
of 2-homology classes at high number of cameras also point out to
the possibility of numerical errors in the specific technique used..
� Stability. By this evaluation, we can set the minimum number of

cameras needed to obtain a 3D model whose homology classes
persist until the maximum number of cameras, that is, a stable
model. Regarding 0-homology classes, graphics at first row of
Fig. 9 collects, for each resolution, the pairs ðn0; b0Þ, where n0

(horizontal axis) is the minimum number of cameras from
which b0, Betti number of dimension 0 (on the vertical axis) sta-
bilizes, or even more, no more 0-homology classes are created or
destroyed along the increasing number of cameras. On average,
b0 stabilizes at 11 cameras, with a standard deviation of 8. As for
b1, data represented in second row of Fig. 9 reflect higher disper-
sion, with a mean of 25 cameras and standard deviation of 12,
what shows higher inestability of the models with respect to
the creation/destruction of tunnels. These statistics have been
followed with low deviation in the cases of poses including a
loop, what does not seem to infere worse stability to the models.
Cavities usually live (shortly) at low dimensions, though, as it
can be appreciated in the third row of Fig. 9, several models find
also stabilization of b2 at high number of cameras, yielding to a
mean of 13 and standard deviation of 12 cameras.
� Resolution. The increase of spatial resolution implies in general a

more complex barcode in the sense of an important increase in
the number of homology classes (bars in the barcodes), mainly
of dimensions 1 and 2, living (with any persistence) along the



Fig. 11. Two barcodes associated to the reconstruction of a same frame with two different camera orders: the theoretically optimum and the sequential order.

Fig. 12. Differences with respect to the ground-truth model of reconstructions of a frame (viewed from different angles) using different number of cameras: (a) 1 cameras, (b)
3 cameras, (c) 12 cameras, (d) 32 cameras, (e) 42 cameras. Representative cycles of homology are highlighted. Below, barcodes associated to the whole sequence of differences
from 1 to 43 cameras.
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process. In fact, the mean of number of 0-homology classes in
resolutions 0.04, 0.034 and 0.027, are 4.6, 4.9 and 7, respec-
tively; for dimension 1, the averages lie around 30, 36 and 43;
for dimension 2, 10.7, 11.3 and 14.4. However, based on experi-
ence, we can assure that there is no meaningful improvement in
using higher spatial resolutions with respect to either stability
of the reconstructed models along the number of cameras or
topological correctness of the models. On the contrary, lower
resolution in general leads to a simpler barcode and hence, a
more reliable model from a topological viewpoint.
� Camera order. The outcome of the voxel carving method is

clearly dependent on the camera order taken, so an important
aspect to consider is the influence of this order in the perfor-
mance of the carvings. There are some works in the literature
([11,16], among others) that address the problem of planning
next view in a context of getting a shape from silhouette (as it
is also called the space carving method) with minimal different
views. The main idea in those papers could be interpreted in our
context as taking, each time, the camera that produces the sil-
houette that differs the most from the previous one. In the
search of a strategy for a good positioning of cameras, we used
this premise to produce what we called the optimum order.
Then, our aim was to find out if the use of the considered opti-
mum order had a direct reflection on a faster stability or higher
topological correctness of the reconstructed 3D models. We
computed voxel carving of all the 22 different frames under dif-
ferent orders of the cameras used (sequential, optimum and
other randomly chosen orders). On the base of the experiments,
the sequential order emerged as a quite worse choice than any
other order used. In most cases, this order presented a more
complex barcode (see Fig. 11 as an example of comparison) in
the sense of being less topologically correct at any time and
having worse stability of the models along time. This way, tak-
ing sequential, optimum and other 2 random orders, and the
corresponding histograms (or vectors collecting the number of
homology classes at each time), the computation of the average
histogram for each order gives an idea of the general tendency
of homological elements along time. Fig. 10 displays a graph
where these average histograms are represented, showing the
differentiated behaviour of the computation under sequential
order against others. However, random and optimum cases
are similar, what strengths the hypothesis that we can produce
moderately high quality voxel carving using only a few cameras
chosen randomly (but not sequentially).

5. Conclusions and future work

The new insight developed in this paper to evaluate a voxel
carving technique significantly enriches the evaluation made in
[12] by means of NMSE quantification. Although this is not the
standard use of persistent homology, the experimentation carried
out has provided valuable information from a topological point
of view of the reconstructions process.

We propose here different research lines for future.
Experimentation with other complexes. One could consider other

filtrations on the set of reconstructions that could allow different
computations. For example, the Differences Complex: for each
reconstruction by voxel carving and for each number of cameras
Ri, take the voxels that are left to be deleted with respect to the
ground truth (Rn), Li ¼ Ri n Rn. Consider, then the associated cubical
complexes or difference complexes, fDigi to each set of 3D points Li.
Notice that Li is a cubical complex given by the 3-cubes that belong
to Ci (cubical complex associated to Ri) but not to Ci�1 together with
all their faces (see Fig. 12a–e). Hence, a new filtration is given

Dn�1 # Dn�2 # � � � # D1 # D0;

and persistent homology can be computed. The computations made
of the corresponding simplified barcode, as defined in Section 3,
have shown a high increase in the number of homology classes with
respect to the former computations (Fig. 12), what could provide
different information about the whole process that might comple-
ment the one given by the reconstructions themselves.

Video sequences. An interesting question arises by fixing a cer-
tain number of cameras and considering the sequence of 3D recon-
structions along time in a video. Holes can be produced along time
by different movements of the body that should not be stable along
the complete scene, so the homological analysis of voxel carving
performance of video sequences could shed some light on the clas-
sification of these movements. Zigzag persistence [2] seems to be a
more appropriate context for this application.
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