EL NÚMERO EN ARISTÓTELES

José Miguel Gambra. Universidad Complutense

Resumen: Aristóteles pensaba que la noción de número involucra, por una parte, un fundamento real, las unidades y multitudes del mundo físico, y, por otra, unas operaciones del entendimiento: abstraer y contar. Este artículo trata de analizar cuál es el papel de estos elementos y compara esta compleja noción con otros intentos actuales de definirla.

Abstract: Aristotle thought the idea of number involves both a real basis—the units and multitudes of physical world, and two intellectual actions—namely, abstracting and counting. This paper deals with the role played by these elements, confronting this complex notion of number with more recent definitions of it.

1. Introducción

¿Sabemos los números porque contamos o usamos los números al contar? Es decir, ¿descubrimos los números como el dos o el tres en los agregados de cosas, como este grupo de dos ovejas, o estos agregados son numerados gracias a los números previamente conocidos?

Si lo primero, parece que los números designarán una propiedad de los agregados. Mas ¿cuál es tal propiedad? Evidentemente, parece que no es propiedad sólo de los elementos del agregado, pues el número de, v. gr. un rebaño de ovejas no se dice de las ovejas; ni sólo del agregado, con independencia de los elementos, pues si no tenemos en cuenta las ovejas de que consta, podremos conocer otras propiedades del rebaño, como que está aquí o allá, que es mío o que no lo es, pero no podremos conocer su número. Quizás el número designe la disposición espacial que da unidad al rebaño. Pero entonces ¿cómo podemos numararlo ilocalizable e inespacial como las ideas o los ángeles? Puede entonces que los números designen no lo que une al conjunto, sino sus partes o unidades en cuanto forman una pluralidad, de modo que el número designe una pluralidad de unidades. Pero en tal caso se abren otros interrogantes: ¿cómo concebir que la pluralidad sea una o cómo decir en plural la unidad? Concebir es tener conceptos y los conceptos son uno solo para todo lo que cae bajo ellos. El concepto de una pluralidad es uno y también el concepto de unidad, de modo que, al concebir sea la pluralidad, sea la unidad, obtenemos algo único, cuyo número es el uno. Al tener conceptos la pluralidad se esfuma en lo uno. Finalmente, dado que podemos conocer las pluralidades sin conocer su número, parece que no basta con examinar una pluralidad para saber su número, sino que es necesario además contar sus elementos, y para contar necessitamos emplear los números.

Si se considera improbable, según lo visto, que los números sean una propiedad de los agregados, o de sus elementos, que numeramos, habrá que recurrir a la
otra posibilidad: que los números se conozcan antes y fuera de lo numerado. Contar se puede concebir como un examen sucesivo, extendido en el tiempo, de las partes de una colección. Puesto que en la noción de colección o multitud no se halla el tiempo y sí en el contar por el que se otorga un número a la colección, parece probable que la noción de número tenga algo que ver con la captación del tiempo. Pero, por otra parte, al contar resulta imprescindible usar signos, sean o no palabras, escritas o habladas. Quizás, entonces, los números tengan algo que ver con las marcas por las que pueden simbolizarse o con la construcción lingüística de los numerales. Ahora bien, los símbolos y palabras numéricos, así como el tiempo, parecen elementos accesorios y secundarios de los números. ¿No debemos más bien pensar que los números pertenecen a una esfera de objetos puros, ajena al espacio, al tiempo y a cualquier contenido empírico?

Los matemáticos generalmente se han conformado con dar por sentada la noción de número; en cambio, los filósofos siempre han sentido la necesidad de ocuparse con cierto detenimiento de ese concepto elemental de la ciencia matemática y de contestar preguntas como las que hemos planteado. Pero nunca llegó a acaparar tanta atención de filósofos y matemáticos como en nuestro siglo y en el precedente. La circunstancia determinante de este hecho fue el afán reductor que se adueñó de los matemáticos a raíz de la aritmética del análisis. El descubrimiento de que todas las ramas de la matemática se fundaban sobre la ciencia de los números les empujó a ahondar en la senda de los fundamentos para hallar la fuente de donde mana toda la matemática. Y así las anteriormente importantes pero modestas nociones primeras de la aritmética, como la de número o sucesor, se convirtieron en objeto de obras enteras como ¿Qué son y qué significan los números? de Dedekind y los Fundamentos de la Aritmética de Frege.¹

La obra de Frege se desarrolla en buena medida contra el empirismo y positivismo imperantes en la filosofía europea durante gran parte del siglo pasado. Esta tendencia se engloba dentro de una corriente cultural evolucionista o historicista, que pretendía dar cuenta de cualquier hecho o conocimiento por medio de la descripción de su desarrollo. El autor contra el que más directamente debatirá Frege es Juan Stuart Mill, que representa un intento de aplicar este historicismo a la epistemología, por cuanto parece bastarle la descripción de su crecimiento y desarrollo para dar cuenta del significado y definición de las ideas, así como del fundamento de la verdad de las proposiciones e, incluso, de la validez de las deducciones.

Para Mill los nombres de números o de entidades geométricas significan una propiedad de las cosas sensibles. Los nombres de la cantidad son connotativos, es decir, denotan cosas o agregados de cosas sensibles, pero connotan uno de sus atributos o propiedades:

«Cada uno de los números, dos tres, cuatro, etc., denota fenómenos físicos y connota una propiedad física de estos fenómenos... ¿Qué es lo que connota el

¹ Dedekind R., Was sind und was sollen die Zahlen?, en Gesammelte mathematische Werke, Vieweg & Sohn, Braunschweig 1932, vol. III; Frege G., Conceptografía, Los Fundamentos de la Aritmética y otros estudios filosóficos, UNAM, México 1972.
nombre de un número? Naturalmente alguna propiedad perteneciente al agregado de cosas que designamos con ese nombre, y esa propiedad no es otra cosa que la manera característica como las partes de ese agregado están allí reunidos y en la que puede ser dividido" (Sistema de Lógica, libro III, cap. XXIV, 5).

Es decir, de la misma manera que blanco «designa todas las cosas blancas, la nieve, el papel, la espuma de mar, etc., e implica, o... connota el atributo blanca», así el nombre de un número denota un conjunto de objetos y connota el orden espacial en que están dispuestos sus elementos. El contenido significativo de los números forma parte de las cosas sensibles y es desgajado de los restantes datos de la experiencia por un proceso de abstracción o ficción por la que despojamos los objetos «de todas las propiedades que no son esenciales a nuestra investigación y, en vista de las cuales queremos considerarlo» (Ibid. libro III, Cap. V, 1 p. 247).

Contenido sensible y abstracción precisa son, pues, los ingredientes esenciales del empirismo matemático en lo que a las ideas se refiere. Esta concepción estuvo muy en boga durante el pasado siglo, no sólo entre filósofos como Stuart Mill, sino también entre matemáticos como Cantor. Este último, por ejemplo, tras decir que por conjunto se entiende «una colección que forma un todo M de objetos separados m de nuestra intuición o de nuestro pensamiento», describía así los números cardinales:

«Llamaremos con el nombre de "potencia" o "número cardinal" de M al concepto general que, por medio de nuestra facultad activa de pensar, nace del conjunto m cuando hacemos abstracción de sus elementos varios m y del orden en que se dan» (Contributions to the Founding of the Theory of Transfinite Numbers, trad. P.E.B. Jourdain, Dover, New York 1959).

Frege dedicó toda su obra a la fundamentación lógica de la aritmética. Su pretensión era mostrar que las leyes de esta ciencia son teoremas que se deducen de las leyes de la lógica o leyes completamente generales del pensamiento puro y que en ellas nada hay de intuitivo o particular. La parte destructiva de semejante diseño le inspiró las demoledoras críticas de la noción empirista de número que luego citaremos en parte. Por lo que a la parte constructiva se refiere, uno de los pasos esenciales de su proyecto consistía en la definición de los términos aritméticos, y principalmente la noción de número, por medio de los términos lógicos primitivos como los de concepto y objeto.

Frege entiende que los números no son predicados o conceptos de ninguna clase, sino objetos. No, desde luego, objetos físicos de los cuales podamos tener una representación intuitiva, sino objetos lógicos, que forman parte del pensamiento puro y son ajenos a cualquier imagen subjetiva, y también al espacio y al tiempo (Fundamentos de la Aritmética § 58-61). Por otro lado, observa que los portadores de números no son los objetos, sino los conceptos. Los juicios numéricos, en efecto, conllevan siempre una afirmación sobre un concepto, de tal
manera que, aun cuando los objetos sean los mismos, si varía el concepto bajo el cual caen, también varía el número que se les asigna. Así resulta que de los mismos objetos (un conjunto de soldados), se puede decir por igual que son cinco compañías o que son quinientos hombres (ibid. § 46-48). En los juicios numéricos, por tanto, se afirma una propiedad de segundo orden de un concepto, y no una propiedad o concepto de primer orden de sus objetos (ibid. § 53).

Esta concepción sitúa al número en el ámbito objetivo e incontaminado del pensamiento puro o de la lógica, con la pretensión, dudosamente lograda, de proseguir la senda abierta por Leibniz. La obra de Frege, aunque fracasó con estrépito, tuvo, en su vertiente estrictamente logicista, numerosos seguidores que intentaron enmendar sus fallos de modos diversos y, frecuentemente desde perspectivas filosóficas muy diferentes a la de Frege. En su vertiente crítica, la obra de Frege produjo la completa desaparición, durante décadas, de cualquier posible intento de fundar la aritmética en la experiencia o en la abstracción desde ella.

Por ello mismo las escuelas que durante la disputa sobre los fundamentos de la matemática negaron el carácter sólo lógico de los conceptos aritméticos, no por ello volvieron sus ojos hacia Mill, sino que se inspiraron en Kant para abrir una tercera vía, diferente tanto del empirismo como del logicismo.

La noción de cantidad parece, a juicio de Kant, involucrada en cualquier captación fenoménica de un objeto. Pero no depende de las sensaciones o materia del fenómeno, sino de su forma, es decir del espacio y el tiempo, que surgen no del objeto sino de la capacidad receptiva o sensibilidad, la cual ordena según ciertas relaciones la materia (Crítica de la Razón Pura, Teoría Elemental transcendental, 1ª parte, § 1). Espacio y tiempo son captados como receptáculos únicos e infinitos gracias a la intuición pura, es decir no empírica o procedente de los objetos, que tiene por objeto estas formas de la sensibilidad interna y externa. Pero si quiero representarme una parte determinada del tiempo o del espacio, he de concebirlo como una síntesis o agregación sucesiva de partes homogéneas de tiempo o espacio previamente dadas. Pues bien, al recibir las sensaciones, el espacio y el tiempo se concretan o determinan de modo que los fenómenos se capten como cantidades, es decir como agregados en una síntesis del tipo indicado, que no es sino lo que Kant llama la unidad sintética de los elementos diversos pero homogéneos (ibid., libro II, cap. II sección III, 1).

Las cantidades se hallan, pues, en todos los fenómenos, pero sólo en cuanto en ellos se determinan o restringen las intuiciones puras. De ahí la noción kantiana de número en general:

«el número... es una representación que comprende la adición sucesiva de uno a uno (homogéneos entre sí). El número no es, pues, más que la síntesis de lo diverso de una intuición homogénea en general, al introducir yo el tiempo mismo en la aprehensión de la intuición» (ibid. cap. 1).

la cual no contiene elemento empírico alguno, pero hace referencia a la experiencia en general, pues en ella se determina el tiempo puro. En efecto, el número es la unidad de agregación sucesiva de partes homogéneas y diversas que el tiempo,
El número en Aristóteles

al concretarse o determinarse, introduce en la percepción de un fenómeno cualquiera.

Intuicionistas y formalistas recurrieron, pues, a la aprioridad del tiempo kantiano para defender, por un lado, la especificidad de la matemática frente al logicismo y, por otro, su carácter no empírico frente al positivismo. Brouwer entendía que Kant había dado un paso decisivo por el camino de la separación de la matemática respecto del mundo externo, sin llegar por ello a percatarse de la naturaleza introspectiva que él mismo atribuía a esta ciencia. A su juicio, los diversos sistemas de números se conciben a partir de la captación intuitiva que la mente individual tiene de la «biunidad». Esta captación se ve precedida por la unión temporal que la conciencia, en su absoluta soledad, establece entre dos estados de sí misma, que el sujeto podía haber dejado en su situación primitiva de independencia. Luego, por abstracción de todo contenido, el sujeto capta tal unidad, que es a la vez separación, y con ello crea primero el uno y el dos y luego los números ordinales. Hilbert, por su parte, aunque su epistemología de los números es bastante pobre e insegura, también creerá que los números se conocen por una intuición a priori, pero al parecer descubierta en marcas o señales sensiblemente perceptibles y, sin embargo, ajena al espacio y al tiempo.

Las tres escuelas que contendieron en la famosa polémica de los fundamentos de la matemática, logicismo, intuicionismo y formalismo, hacia los años treinta habían fracasado de manera más o menos estrepitosa, por razones internas. Su intento de establecer programas de fundamentación, más que descubrir la naturaleza de la matemática, pretendía delimitarla y reforzarla de modo que las partes dignas de ello pudieran ser tenidas por auténticamente rigurosas. La filosofía de la matemática dejó de limitarse a contemplarla desde el exterior, para intervenir directamente en su fundamentación.

Después de la segunda guerra se sintió la necesidad de buscar nuevos caminos en filosofía de la matemática. En especial, los matemáticos empezaron por no reconocer su «quehacer» en la tendencia apriorística y axiomatizadora de las escuelas precedentes, de modo que volvieron su mirada hacia el empirismo matemático de Mill. Kalmar, por ejemplo, defendió, en el célebre congreso de 1965, que originariamente las proposiciones matemáticas eran generalizaciones inductivas de regularidades naturales, y las nociones matemáticas eran abstracciones idealizadas extraídas de los hechos empíricos.

Mucho más encarnada y real, la concepción de la matemática que de ello surge padece, sin embargo, el inconveniente de suprimir el carácter ejemplarmente riguroso que siempre se ha reconocido a la matemática. Nada tiene pues de extra-
ño que en estas circunstancias se haya renovado el interés por la matemática en Aristóteles, dado que éste, por un lado, conserva el rigor matemático y, por otro, admite que los elementos de esta ciencia tienen su origen en la abstracción e inducción.5

2. Aristóteles

Según el estagirita, la matemática, como todas las ciencias, circunscribe para su investigación un determinado género de cosas que son las que se pueden llamar «cuantas», es decir las que pertenecen al género de la cantidad. He aquí la definición o, mejor dicho, la descripción que Aristóteles da de estas cosas:

«Cuanto se llama lo divisible en sus partes integran tes, de las cuales una y otra, o cada una, es por naturaleza algo uno y algo determinado. Así pues, una multitud es algo cuanto si es numerable, y una magnitud, si es mensurable. Y se llama multitud lo potencialmente divisible en partes discontinuas y magnitud lo divisible en partes continuas» (Met. V, 13, 1020a7-11).

La cantidad —o lo que es cuanto— se divide en discreta y continua. Es cantidad continua aquélla cuyas partes tienen un límite común donde sus partes entran en contacto. La línea, el plano y el cuerpo son cantidades continuas, pues sus partes están en contacto mutuo por medio de puntos, líneas y superficies (Cat. 6, 4b38). Los puntos líneas, superficies y cuerpos se distinguen además de los números porque las partes de aquéllas tienen una posición mutua (Cat. 6, 4b15ss.). De esta cantidad continua se ocupa la geometría. La cantidad discreta es aquélla donde no hay límite común entre las partes de que se compone (Cat. 6, 4b25). El número es la cantidad discreta cuyas partes no están en una posición mutua y constituye el objeto de la aritmética.

La cantidad es uno de los accidentes de las substancias que enlazan el universo. Se trata, por tanto, de un ente, de algo que tiene existencia real en el mundo sensible, aunque esa existencia no sea separada sino en cuanto están en la substancia.6 Sin embargo, aunque todos los accidentes estén en la substancia y, si son universales, puedan decirse de ella, su modo de existencia es muy dispar. Algunos accidentes, como la acción, no suponen para su existencia ni facultades humanas

6 «Según el concepto de substancia se enuncian, en efecto, los demás entes: la cantidad, la cualidad y los demás que así se enuncian, pues todos implicarán el concepto de substancia...» (Met. IX, 1, 1045b29; Cf. Met. VII, 1, 1028a10).
de conocer ni la existencia simultánea de otros entes. Otros, como los relativos, dependen de la existencia simultánea de otros seres fuera de la substancia en que ellos se dan: no hay padre si no hay hijo. Pero no necesitan del conocimiento para existir. Finalmente otras, como las cualidades afectivas, sólo existen en cuanto son capaces de afectar a una facultad de conocimiento. Si no hubiera animal alguno, no existiría lo visible.

Pues bien, para la existencia de la especie de accidente que es el número, se requiere, como sugiere el citado texto de Met. V, 13, que se den dos condiciones: una del lado de las cosas, que es la existencia de multitudes y unidades reales, y otra por parte del conocimiento humano, la facultad intelectual de contar, como se echa de ver en este párrafo de la Física que versa sobre el tiempo:

"...pues si no puede haber nada que numere, nada habría que fuera numerable y, por consiguiente, no habría número; pues el número es lo numerado o lo numerable. Pero si nada por naturaleza puede contar más que el alma, y en el alma la inteligencia, no puede haber tiempo sin alma..." (IV, 14, 223a23).

Lo que esto quiere decir es que las multitudes y magnitudes se dice que son números (que son numerados o que pueden serlo) en cuanto son objeto del entendimiento cuando los numera. Pero no debe creerse que el entendimiento saca de sí los números y las medidas para luego ver las cosas como numeradas o numerables, sino que, a la inversa, el entendimiento conoce las multitudes y magnitudes como números y medidas. Aunque el conocimiento de los números se deba a un modo especial de considerar las cosas del mundo real, la aritmética, como toda ciencia, trata de las cosas en cuanto existen, es decir, tiene su fundamento en la estructura de la realidad:

"...puede parecer, en efecto, que la ciencia es la que mide y lo escible lo medido; pero sucede que toda ciencia es escible, mientras que todo lo escible no es ciencia, porque, en cierto modo la ciencia se mide por lo escible" (Met. X, 6, 1057a9).

3. Lo múltiple y lo uno

Empecemos, pues, por considerar el fundamento real de la numeración para luego examinar las operaciones por las que el entendimiento alcanza a conocer las multitudes como números, que son el objeto de la aritmética.

Según la descripción de Met. V, 13, la existencia de multitudes parece ser el fundamento primero de la cantidad discreta. Lo múltiple es lo contrario de lo uno, pues lo múltiple es lo mismo que lo divisible y lo uno lo mismo que lo indivisible. Por tanto lo uno y lo múltiple no pueden flarse al mismo tiempo y en el mismo sentido en el mismo sujeto.

"Pero uno y múltiple se oponen de varios modos, uno de los cuales enfrenta a uno y pluralidad como indivisible y divisible. En efecto, lo dividido y divisible se llama pluralidad y lo indivisible o indiviso "uno": (Met. X, 3, 1054 a 20; cf. Met. X, 7, 1057a12).
Y, sin embargo, en las cosas parece darse a la vez la multiplicidad y la unidad, pues vemos que un hombre es divisible en partes y pertenece a muchos géneros (como letrado y animal; Fís. 185b30); y muchas cosas como un conjunto de hombres son, a pesar de ello, indivisibles en cuanto a la especie. Según Aristóteles, la observación de la coincidencia de lo uno y de lo múltiple hizo cavilar mucho a sus predecesores en la filosofía, que intentaron comprender de formas variadas la frase «los entes son uno» (Fís. I, 2, 185a22), en cuya brevedad se sintetiza maravillosamente el problema. En efecto, aún siendo acorde con lo observado, esta proposición parece contradictoria por identificar lo divisible o múltiple (los entes en plural) con lo uno o lo indivisible. Muchos de ellos trataron de resolver la dificultad poniendo sólo uno de los términos en la realidad y considerando el otro obra del conocimiento: todos los seres son uno solo sin multiplicidad, o son múltiples sin unidad, debiéndose al conocimiento respectivamente la divisibilidad y la unidad.

Al principio de la Física Aristóteles refuta estas opiniones presocráticas: si se entiende que sólo existe actualmente lo uno, y lo múltiple sólo para alguna facultad de conocer, se cometen los errores de los eleatas o de Anaxágoras (Fís. I, 2 185b5; 3, 187a1 y I, 4, 187a26 ss.; Met. XIV, 2, 1089a1). Si, por el contrario, se concibe que sólo existe la multiplicidad en acto, y la unidad es sólo por la definición o conocimiento, se cae en los absurdos de Heráclito (Fís. I, 2, 185b19ss.).

No podemos analizar las críticas de Aristóteles a cada una de las interpretaciones univocistas de la frase «los entes son uno». En el fondo, todas vienen a decir que lo uno y lo múltiple, en un solo sentido, no pueden, por opuestos, ser a la vez; y que de nada vale recurrir a las facultades cognoscitivas de unir o separar, si en la realidad no hay fundamento para concebir de varias maneras lo uno y lo múltiple; porque el entendimiento verdadero sólo puede decir que es lo que es. Todo es uno y lo uno es múltiple —verdad es—, pero la contradicción que entre lo uno y lo múltiple se da en estas frases sólo es aparente, porque lo uno y lo múltiple se dicen de muchas maneras:

«Sobre este punto se veían [los filósofos citados] en gran apuro: reconocer que lo uno es muchos, como si no fuera posible que la misma cosa fuera una y múltiple, sin ser por ello contradictoria: en efecto hay el uno en potencia y el uno en acto» (Fís. I, 2, 186a1).

«...cada cosa, en efecto es una y tanto lo potencial como lo actual son uno en cierto modo» (Met. VIII, 6, 1045b20)

La respuesta de Aristóteles consiste, pues, en destacar la pluralidad de significados que estas palabras tienen: «uno» y «múltiple», como «ente» son términos homónimos (Met. V, 6, 1017a3); y ello por varias razones. Primero porque en cada una de las categorías o géneros la unidad es diversa:

«...el uno no es lo mismo en todos los géneros. Aquí, en efecto, es el semitono, y allí la vocal o la consonante, y el uno del peso es otro y otro el del movimiento» (Met V, 6, 1016b20; Cf. X, 1, 1054a3-12).
En segundo lugar, porque lo uno y lo múltiple pueden ser en acto o en potencia (De An. III, 6, 430b6), de modo que, por ejemplo, una línea en acto es potencialmente muchas (Met. IX, 6, 1047b33) y una pluralidad de maderas es, en potencia, una sola cosa, si se unen con pegamento (Met. V, 6, 1015b35).

Finalmente, dado que la potencia es tal por relación a un acto, lo dividido o separado y lo uno pueden ser por un acto real de la naturaleza, o del arte, o por un acto de conocimiento. Por arte es uno un haz en cuanto es atado, o las maderas encoladas de que hablábamos hace un momento. Por naturaleza es uno un cuerpo que es continuo y, por intelección, los universales, como las especies y los géneros.8

En cuanto contrariamente opuestos, unidad y pluralidad no pueden darse en el mismo sentido en el mismo sujeto, como ya se indicó. Pero vista, aunque sin agotarla, la variedad de significados de lo uno y lo múltiple, con facilidad se entiende que lo divisible pueda ser indivisible y que incluso todas las cosas puedan ser a la vez y múltiples.

Y así, lo que es en acto una sola substancia es imposible que sea en acto dos substancias.9 Pero un hombre, que es en acto una substancia es potencialmente muchos en cuanto está en varios géneros. Y si se distinguen y definen esos géneros será en acto uno por naturaleza y en acto múltiple para el entendimiento.10 Los ejemplos pueden multiplicarse: un montón de maderas, en acto múltiple para la naturaleza, es potencialmente una cosa para el arte del carpintero y para el conocimiento. Si esas maderas se encolan serán actualmente una cama, y si se piensan serán una especie de madera, sin dejar de ser una pluralidad según la naturaleza (Met. V, 6, 1016b13). Algo continuo, como un cuerpo, es uno en acto y potencialmente divisible para el arte o el conocimiento, pues cabe dividirlo realmente o según la ciencia, como hace el geómetra que halla con el pensamiento cuerpos y figuras.

Una multitud carente por completo de unidad en acto es un montón (σωμός), como pueden serlo las partes de un zapato puestas por separado. Estas cosas no son unas en acto ni por continuidad espacial, si están separadas, ni por arte puesto que no han sido cosidas, ni por especie o género, puesto que son de clases diferentes. Si por el arte del zapatero se unen serán múltiples en acto y unas en...

8 «En cuanto a lo que se dice uno por sí, unas veces se dice uno por ser continuo, por ejemplo un haz por la atadura y unas maderas por la cola» (Met. V, 6 1015b35). «Uno tiene todos estos sentidos: lo continuo por naturaleza y lo que es un todo, el individuo y el universal; y todo esto es uno por ser indivisible unas veces su movimiento, otras su intelección o enunciado» (Met. X, 1, 1052a34) «es indivisible en número lo que lo es individualmente, y en especie lo que lo es en cuanto al conocimiento y la ciencia» (ibid. 1052a32).
9 «Es imposible que una substancia esté compuesta de dos substancias presentes en ella como en entelequia; pues las cosas que son así dos en entelequia nunca son una en entelequia; pero si son dos en potencia, pueden ser una (por ejemplo, la línea doble consta de dos medias líneas en potencia, pues la entelequia separa)» (Met. VII, 13, 1039a2).
10 «Los entes son muchos sea por definición (por ejemplo: los conceptos de blanco y de letrado son diferentes y son, sin embargo la misma cosa como sujeto; el uno es pues múltiple), sea por la división como el todo y las partes» (Fis. I, 2, 185b28).
acto; si se juntan lo serán por continuidad y si se piensan como las partes de un calzado, serán unas por la intelección (Met. V, 6, 1016b13). Cuando está actualizado de alguna de estas maneras, el montón se torna un todo distinto de las partes (Met. VIII, 6, 1045a7; Met. VIII, 3, 1044a4 y XIII, 8, 1084b20). También puede probablemente calificarse de montón, de pluralidad sin unidad en acto, las enumeraciones de cosas disparatadas, como «hombre, caballo, andante», que, sin embargo, pueden tenerse por un todo con unidad si el entendimiento halla que, por ejemplo, todas ellas coinciden en ser géneros «o algo semejante» (Met. XIV, 1, 1087b19).

Lo uno y lo múltiple se dicen al menos en los sentidos enumerados arriba, y pueden darse a la vez de la manera que hemos señalado y de otras muchas que no es cosa de exponer aquí. El mundo real está compuesto de muchas cosas, cada una de las cuales es una y, al mismo tiempo, divisible, con una complejidad pareja a la variedad de significados que tienen esas palabras. Mas la riqueza significativa de estas palabras no es pura equivocidad donde se amontonen en paridad los diversos significados; es al contrario homonimia voluntaria, donde los significados se ordenan a un primero, la substancia, que es lo primero que merece el nombre de uno:

«La mayoría de los seres se dicen uno por hacer, o tener o padecer, o ser relativos a una cosa que es una, y los que primordialmente se dicen uno son aquéllos cuya substancia es una, y es una por continuidad, por especie o por enunciado» (Met. V, 6, 1016b5).

«...será primordialmente uno lo que es para las substancias causa de la unidad» (Met. X, 1, 1052a32).

La substancia primera y sus elementos, la materia y la forma son, en efecto, la causa real de la unidad, tanto de lo singular como de lo universal, sea accidental o substancial, pues ella es la única que es verdaderamente indivisa o separable:

«Si todo es cantidad o cualidad, existiendo o no la substancia, es absurdo, si ha de llamarse absurdo lo imposible. En efecto, nada es separable a no ser la substancia, pues todo se dice de la substancia como sujeto» (Fis. I, 2, 185a29).

4. El número

Hay multitudes de las cuales se dice que son números; por ejemplo, unos caballos o unos hombres de los cuales se dice que son cien (Fis. IV, 12, 220b7), o la multitud formada por hombre, caballo y dios que es un número de vivientes (Met. XIV, 1, 1087b33). Aristóteles incluye el número, al menos en uno de sus sentidos, entre las multitudes o pluralidades, de las cuales es a modo de especie:

«...la pluralidad es como el género del número, pues el número es una pluralidad medible por el uno» (Met. X, 6, 1057a3).
«...el número es una pluralidad de unidades» \(\textit{Met.} \ X, \ 1, \ 1053a30\).

La multitud es en acto muchas cosas y puede tener o no una unidad en acto, debida a la continuidad, a la naturaleza, al arte o al intelecto. Pero para que una multitud sea un número, no basta ninguno de estos modos de ser uno. El número es un todo que conlleva cierto tipo de unidad propia \(\textit{Met.} \ V, \ 26, \ 1023b36-1021a8\) y \(\textit{X}, \ 1, \ 1052a29\). Las multitudes, en principio, parece que tienen que tener algún tipo de unidad en acto para que sean números: un montón carente de unidad alguna no es un número.\(^{11}\) La unidad del número no es lo mismo que la unidad de la multitud. ¿Qué duda cabe que quien no sabe contar conoce multitudes como unas sin conocerlas por ello como números? De hecho, Aristóteles parece rechazar al menos tres posibles respuestas a semejante pregunta: la unidad numérica no es ni espacial, ni temporal, ni es la unidad del universal.

La unidad de las partes del todo numérico no esconde un orden o disposición en el espacio, pues esas partes son unidades y la unidad es lo indivisible sin posición.

«...se cuenta el uno antes que el dos y el dos antes que el tres; de este modo podrían tener cierto orden, aunque en modo alguno podría adscribirseles posición» \(\textit{Cat.} \ 6, \ 5a30\).

La idea de Mill según la cual los números se determinan por la situación relativa de sus elementos es inaceptable para Aristóteles, primero porque la transposición de las partes del todo no cambia el número \(\textit{Met.} \ V, \ 26, \ 1024a3\). Cabe además suponer que Aristóteles concluyó esto mismo de la gran amplitud que reconoció a los números, que pueden ser incluso de conceptos y por tanto ajenos al espacio. Hay multitudes que tienen una unidad en acto por continuidad espacial, lo cual no impide que pueda proceder del entendimiento y ser, por tanto, ajena al lugar.

Tampoco el orden temporal determina la unidad numérica. Al contrario el número tiene, de alguna manera, prioridad e independencia respecto del tiempo, pues el tiempo no es sino el «número del movimiento según lo anterior y posterior» \(\textit{Fís.} \ 1, \ 11, \ 219a30\). Contra esto se puede aducir el texto citado en el cual se dice que el dos es antes que el tres, etc.; así como algún otro párrafo donde se dice que la cantidad siempre tiene principio, medio y fin \(\textit{Met.} \ V, \ 26, \ 1024a1\). Pero esta objeción es, sin duda, improcedente, pues el orden a que Aristóteles se refiere en tales frases, procede del acto de contar, que como toda acción es movimiento, sometido por ello mismo al orden temporal.\(^{12}\) Multitud y número son nociones más elementales que las de tiempo y movimiento, de modo que concebir los

\(^{11}\) En ocasiones, sin embargo, parece que Aristóteles admite la posibilidad de que un montón sea tenido por número. Apostole sugiere que, en tal caso, más que un número, lo que hay es un numerar \(\textit{Met.} \ VIII, \ 4, \ 1044a4\) y \(6, \ 1045a9\).

cardinales por los ordinales y éstos por el tiempo, como hace Kant, constituyen una inversión del orden natural.

En fin, la unidad que el número tiene no se explica tampoco porque sus partes coincidan bajo un mismo universal. Las cantidades, sean números o magnitudes, y los universales convienen en ser totalidades, pero lo que les hace ser un todo, su unidad, es dispar: en el todo cuantitativo «la unidad procede de varias cosas que la constituyen», cosa que no le sucede al universal. Este, por su parte, es un todo porque contiene muchas cosas individuales de cada una de las cuales se predica, lo cual no vale para el número o la magnitud (Met. V, 26, 1023b28-32). Ser común, poderse dar en varios, es lo que hace uno al universal (Met. VII, 13, 1038b12); estar constituido por varios es lo que hace uno al número.

Freges pensaba que los números se adscriben a conceptos y que los juicios numéricos son juicios sobre conceptos. La unidad de lo numerado viene dada, según esto, por el concepto. Sin él no podemos contestar a preguntas como ¿cuál es el número de esto?, refiriéndonos a un montón de barajas, pues será necesario precisar si nos referimos al número de cartas, palos o juegos de cartas. Como veremos, esto había sido observado por Aristóteles para quienes las unidades de que se compone el número han de ser homogéneas y deben caer bajo un mismo concepto. Pero ello no implica ni que los juicios numéricos se refieran a conceptos, ni que la unidad de los números sea la unidad del concepto. Para responder a la pregunta sobre el número de algo, es verdad que no basta con señalar una multitud; pero tampoco basta con indicar un concepto, pues si así fuera tendríamos que ofrecer un concepto válido sólo para la multitud en cuestión. Es decir, deberíamos poseer conceptos de cualquier pluralidad numerable, cosa admisible para un racionalista como Freges, pero no para Aristóteles. La pregunta correcta por un número no es ¿cuál es el número de este montón?, pero tampoco ¿cuál es el número de cartas?, pues esto sólo se contestará correctamente con el número enorme de todas las cartas, y no es esto por lo que se pregunta. La pregunta correcta tendría que ser ¿cuál es el número de cartas que hay en este montón? Para que podamos investigar el número de algo, ése algo debe ser una multitud que ha de ser de una misma cosa. Ese «ser de una misma cosa», será necesario para la unidad numérica de la multitud y hará que todas sus partes caigan bajo un concepto. Pero la unidad no procede del concepto que, en el caso más frecuente, tendrá más amplitud que la multitud sometida a consideración. Para que haya número ha de haber multitud, y la multitud como tal no tiene que estar determinada por un concepto, pues cabe sólo señalarla, indicar su localización o simplemente nombrar sus elementos. Lo cual no impide que la multitud pueda ofrecerse por la mediación de un concepto, como ocurre al preguntar cuál es el número de planetas.

13 «...de las cosas que se dicen cuantas, unas se dicen del mismo modo que se dijo que era cuanto lo músico... y otras como se dicen cuantas el movimiento y el tiempo; pues también éstas se dicen cuantas y continuas, por ser divisibles aquellas cosas de las que éstas son afecciones. Pero me refiero no a lo que se mueve, sino a aquello a través de lo cual fue movido; pues, por ser cuanto esto [el espacio recorrido] también el movimiento es cuanto, y el tiempo es cuanto por serlo el movimiento» (Met. V, 13, 1029a26-32).
Ni el espacio, ni el tiempo, ni el concepto son causa de la unidad propia de los números. ¿En qué consiste, pues, semejante unidad? Para dar una idea del asunto, cabe adelantar que, al fin y al cabo, la idea esencial de Aristóteles en cuanto al número es, aunque más abstracta, análoga a lo que hacemos al medir una cosa continua; se nos ha de dar una extensión y hemos de hallar una unidad adecuada. La medida de la extensión será relativa a la unidad elegida. Pero vayamos por partes.

En Met. VIII, 4, Aristóteles compara la esencia y definición al número, y señala sus notables semejanzas: una y otro son divisibles en partes finitas indivisibles; ni al número ni a la definición cabe quitar uno solo de sus elementos sin que dejen de ser los mismos. Dos capítulos después, manteniendo la comparación, se pregunta por la unidad de ambas cosas:

«En cuanto a la dificultad mencionada acerca de las definiciones y los números ¿cuál es la causa de su unidad? Pues todo lo que tiene varias partes y no es en conjunto un montón, sino que constituye un todo distinto de las partes, tiene alguna causa» (Met. VIII, 6, 1045a7).

Y su respuesta es la siguiente:

«...si se admite nuestra distinción entre materia y forma, entre potencia y acto, dejaría de ser difícil lo que indagamos» (ibid., 1045a23).

Sin embargo, Aristóteles no está, en ese momento, interesado por los números, sino por las partes y unidad de la substancia y definición, de modo que nos deja sin saber cómo se resuelve la cuestión de la unidad del número con ayuda de la distinción entre acto y potencia. Sin embargo basta recordar la descripción de cantidad que citamos páginas atrás, para vislumbrar lo que Aristóteles quiere decir.

Una multitud es muchas cosas y una sola cosa a la vez, pero en sentidos diferentes, de modo que, en cuanto una en acto, es potencialmente muchas, y en cuanto en acto es multitud, es potencialmente una. Verbigracia, varios caballos en cuanto separados son muchos y potencialmente pueden ser uno, por ejemplo por continuidad cuando forman un rebaño, o por intelección cuando se piensan como especie, y un rebaño de caballos es uno en acto de esta forma, pero es potencialmente divisible o muchos, en cuanto los caballos se separan o en cuanto se piensan separados.

No otra cosa quiere decir Aristóteles cuando, en el párrafo sobre lo cuanto, señala que la multitud es potencialmente divisible en partes discontinuas o sin límite común. Pues al no tener límite común están divididas y son en acto múltiples y por tanto potencialmente unas. Todo esto es propio de la multitud que no sea un montón. Lo que no es propio de la multitud como tal es: 1) que las partes en que se puede dividir sean «un uno y un algo determinado», y 2) que sea susceptible de ser numerada.
Hallar ese uno determinado y contar, numerar o medir por ese uno la pluralidad, son los actos que el intelecto debe realizar para que una multitud o pluralidad sea un número (numerable o numerado). Esto es lo que viene a decir el párrafo que sigue, denso de contenido, donde además se apunta la respuesta a la pregunta sobre la unidad propia del número:

«...la pluralidad es como el género del número; pues el número es una pluralidad medible por el uno. Y uno y número se oponen, no como contrarios, sino, como dijimos, como algunas cosas relativas; pues se oponen como la medida a lo mensurable... Pluralidad ni es contrario de poco... ni tampoco de uno absolutamente, sino... en parte, porque es divisible, mientras que lo uno es indivisible y, en parte, como algo relativo, del mismo modo que la ciencia es relativa a lo escrible, si la pluralidad es un número y uno su medida» (Met. X, 6, 1057a3-17).

La primera frase dice que los números son una clase de multitud, la segunda ofrece la definición de número, con el género que es la multitud y la diferencia: ser mensurable por la unidad. Todo lo que sigue no hace sino aclarar esta definición. Pues bien, la mencionada diferencia nos da precisamente la respuesta a nuestra pregunta: lo que el entendimiento tiene que actualizar en la multitud, para ver en ella un número, es la forma relativa a la unidad que es ser medible por ella. La pluralidad en la cual se ha actualizado —o en la cual puede actualizarse— esa relación a lo uno es, pues, lo que llamamos número. Así se explica que el párrafo citado aclare que la multitud es, en parte (i.e. sin la consideración intelectual), opuesta contrariamente a lo uno y, en parte (cuando la pluralidad se convierte, por obra del entendimiento, en un número mensurable por la unidad), opuesta relativamente a lo uno. Un mismo agregado de cosas puede ser, a la par, una multitud y un número. Lo que hace que la multitud tenga la unidad propia del número es la potencia de ser medida o contada por una unidad, que puede ser actualizada por el pensamiento.

«Número» es también palabra homónima entre cuyos significados cabe distinguir, de un lado, el número aplicado y de otro el número sin más. El número aplicado a multitudes concretas es lo que Aristóteles, en la Metafísica, suele llamar número de ciertas cosas:

«...si en las afecciones, en las cualidades, en las cantidades y en el movimiento hay números y un uno determinado, en todos ellos el número será de ciertas cosas y el uno un cierto uno» (Met. X, 1, 1054a3).

En estos casos los números hacen el papel de adjetivo de las cosas de que se trate, como ocurre al hablar de diez caballos.

Pero Aristóteles, al hablar del dos y del tres, etc. (Cat. 6, 5a30), también emplea los números como substantivos prescindiendo de toda determinación o aplicación. Los números así usados son descritos como «pluralidad de unidades» (Met. X, 1, 1053a30), de modo que sus partes no son unidades de algo determina-
do, sino unidades o unos a secas, es decir de lo indivisible sin más.14 Aristóteles
designa en la Metaphysica con la denominación común de «el número» este uso
substantivo y separado de los números (Met. X, 1, 1052b33).

En la Física Aristóteles distingue, sin dar explicaciones, entre el número
numeral o numeralable y el número por medio del cual se numeria (o número
numerante). Lo múltiple, como un lapso de tiempo, un movimiento o un conjun-
to de caballos, se dice que es número numerado o numeralable en cuanto el enten-
dimiento tiene la capacidad de conocerlo como cantidad de algo determinado,
cosa que se logra con el concurso de los números sin más. Parece pues que las
expresiones de número numerante y numerado, que aparecen en la Física pero no
en la Metaphysica, vienen respectivamente a ser lo mismo que el número sin más y
el número de algo determinado, que sí aparecen en la última obra.

Esta distinción permite a Aristóteles decir que dos multitudes de cosas dife-
rentes, como caballos y perros, son idénticas en cuanto al número (numerante),
pero son diversos números (numerados o numerables), por ser diversas las cosas
de las que se dicen (Fís. IV, 14, 224a2ss.).15

Una vez expuesto qué añade el entendimiento a las multitudes para que sean
número y cómo el número se puede entender de forma abstracta o ser un núme-
ro aplicado, nos toca explicar: 1) las características propias de la relación que hay
entre el número y la unidad, 2) qué es la unidad aritmética, 3) cómo alcanza el
entendimiento esa unidad en virtud de la cual se conocen las multitudes como
números y 4) en qué consiste el acto intelectual de contar o numerar.

5. La relación entre número y unidad

La relación que existe entre número y unidad es de un tipo especial que
Aristóteles caracteriza como una relación que no es por sí.16 Esta relación se
distingue porque uno de los términos es tal por relación al otro, pero el otro es

14 «...cada número es muchos porque consta de unos» (X, 6, 1056b23).
15 Con esta distinción se resuelve la dificultad inspirada en Frege y aplicada a Aristóteles por alguno
de sus intérpretes fregeanos: si el número es la pluralidad de unidades, no sólo serán números diferentes
el 4 y el 5, sino también cuatro gatos y cuatro perros. Concebido el número como conjunto se hacen,
según los logistas, imposibles las más elementales operaciones de la aritmética. Sea que tenemos un
tres y queremos restarle uno; no podemos sustraer un uno cualquiera, sino sólo una de las unidades
concretas de ese tres. Con esto los logistas tratan de mostrar que los números tienen una especial
indole metafísica (Frege, op. cit., § 38; Mignucci, op. cit., p. 196). Pero ¿qué dificultad hay en realidad
para admitir que podemos reducir el número de bolas de un billar restando una de las tres que hay (para
lo cual habremos de coger una de esas bolas y no tirar por la ventana una peseta o restar el uno) y,
saber, a la vez, que se puede restar el uno del tres en común, sin decir de qué es el tres y el uno? Esto
es permitido por la concepción análoga del número en Aristóteles. Cualquier filosofía que vea en ello
dificultades ha perdido el contacto con los hechos más simples.
16 «En los números uno y mucho se oponen como la medida a lo mensurable, los cuales, a su vez,
se oponen como las relaciones que no son por sí» (Met. X, 6, 1056b32). No quiere esto decir que
semejante relación sea accidental en el sentido en que se dice de un hombre que es relativo porque es
siervo (Cfr. Ross, Aristote Metaphysics, I, 331).
relativo sólo en cuanto aquél es relativo a éste. Parecida relación se da, por ejemplo, entre la visión y el color, pues, en la definición de visión —conocimiento del color— entra el color, pero en la definición de color no entra la noción de visión (Met. V, 15, 1021a33). De igual manera, en la definición de número —pluralidad medida por el uno— entra la unidad, pero el uno o lo indivisible no conlleva la idea de número o de pluralidad. Unidad y color son relativos sólo en cuanto hay algo —el número y la visión— que es tal por relación a ellos. Y así ocurre que puede existir el color sin la visión y el uno sin el número. Con ello se explica que la pluralidad pueda ser por un lado opuesta contrariamente a la unidad y por otro opuesta relativamente. La unidad puede existir sin el pensamiento o si se trata, por ejemplo, de la unidad genérica, puede depender del acto intelectual de la inducción. Pero en ningún caso surge la unidad del acto de contar. Las pluralidades de cosas realmente separadas o separables por el entendimiento mantienen, fuera del acto de contar, una relación de oposición con las correspondientes unidades reales o pensadas. Sólo en cuanto son contadas, en cuanto pueden serlo, las pluralidades son números relativos a la unidad.

6. La unidad aritmética

El término «uno» (ἐν) es utilizado por Aristóteles dentro de varias expresiones, que dan a esa palabra usos dispares, generalmente reconocidos por él mismo como distintos. Aristóteles no se atiene escrupulosamente a las distinciones terminológicas que vamos a ver, de modo que, por ejemplo, alguna de estas expresiones, como τὸ ἕν, tienen varios usos. Sin embargo creo que cabe separar al menos las siguientes utilizaciones:

1) «el ser de lo uno» (τὸ ἕν ἕνας) es la expresión que Aristóteles emplea para designar la razón o significado propio de la palabra uno:

«...hay que tener en cuenta que no es lo mismo preguntar qué cosas se dicen unas (ἐν) y qué es el ser de lo uno y cuál su enunciado (λόγος). Uno, en efecto, se dice en todos los sentidos indicados, y será una toda cosa en la que se dé alguno de tales modos; pero el ser de lo uno se dará a veces en alguna de estas cosas, a veces en otra que está también más próxima a la palabra» (Met. X, 1, 1052b1).

Uno, conforme a su razón propia significa lo que es indivisible, pero ser indivisible no es una naturaleza común que se dé en muchos como un universal, pues precisamente lo indivisible es contrario a lo múltiple; ser uno es ser individuo (Met. X, 3, 1054a13). Así quizás se entienda la fórmula aristotélica que trata de explicitar la esencia de lo uno y por qué acentúa con variedad de vocablos su concreción y singularidad:

17 Lo mismo ocurre en la relación entre conocimiento y conocible: «la destrucción de lo conocible acarrea la destrucción del conocimiento, mientras que la del conocimiento no acarrea la destrucción de lo conocible» (Cat. 7, 7b27; Met. V, 15, 1021a30 y X, 6, 1054b34).
«...el ser de lo uno es el ser de lo indivisible, el ser precisamente esto y separado en particular, o en cuanto al lugar, o en cuanto a la especie o en cuanto al pensamiento o también el ser un todo indivisible» (Met. X, 1, 1052b 16).

2) Sin embargo, la individualidad tiene una cierta universalidad *sui generis* que permite hablar de ella en común y ser designada por un solo vocablo. Aristóteles suele emplear «εὐ» a secas para nombrar este uno universal, que como tal es un predicado, según reconoce Aristóteles cuando, v. gr., escribe «todo lo que no tiene división, en la medida en que no la tiene se dice uno» (Met. V, 6, 1016b3): εὐ es algo que se dice o predica, es un universal que como tal tiene la unidad «de universal en reposo, todo entero en el alma, fuera de la multiplicidad» (An. Post. II, 19, 100a3). Cuando decimos «este hombre es uno», «esta cualidad es una» o «este concepto es uno», uno se emplea como universal que es único aunque está en muchos (y de muchas maneras por ser homónimo). A veces en lugar de «εὐ» usa τὸ ἕν, como en las siguientes frases, donde señala que «uno» es un predicado tan amplio y con tantos significados como «ente»:

«el ente y el uno (τὸ ἕν) son los que más universalmente se predicarán» (Met. X, 2, 1053b20).

«el ente y el uno tienen el mismo número de significados» (ibid. 1953b25).

La variedad de los significados de «uno», que incluyen entre otros la continuidad ya espacial, ya debida al arte, así como la unidad específica y genérica, hace de él un término tan homónimo como «ente». Igual que éste, «uno» no es un género; pues el contenido significativo de «uno» sólo es ser separado e indivisible, y esta noción se extiende a cualquier categoría, a lo singular y universal, a la parte y al todo, de modo que en cada uso de «uno» la indivisibilidad no es genérica y común, sino dispar y acomodada al caso.

«...no es posible que el uno sea un género, por las mismas causas por las que no puede serlo el ente» (Met. X, 2, 1053b23).

Como «ente», también «uno» tiene entre sus significados uno primero que designa aquello por lo cual todas las demás cosas son unas:

«...la mayoría de los seres se dicen uno por hacer o tener o padecer o ser relativos a una cosa que es una, y los que primordialmente se dicen uno son aquéllos cuya substancia es una» (Met. V, 6, 1016b6).

Pues, como ya se indicó, todo lo que es uno, lo es porque la substancia, sujeto último de predicación e inherencia, es separable y una.

3) «El uno en sí» (αὐτὸ τὸ ἕν) es la expresión más precisa que usa Aristóteles para designar el uno matemático. Más frecuentemente usa la locución ya citada de τὸ ἕν. El uno en sí es aquello donde más perfectamente se cumple el ser de lo
uno, pues por un lado es singular y concreto, y por otro no envuelve ningún añadido o determinación: es lo indivisible singular considerado aparte de cualquier otra característica que pueda acompañarle en la realidad y con independencia de la universalidad que el entendimiento introduce. Y precisamente por esto el uno en sí es la medida y principio de conocimiento del número en cuanto número y principio de conocimiento de cualquier cantidad. Por ser singular se distingue del uno universal que, al ser único y común no puede ser medida. Por carecer de toda otra determinación añadida, no es el «algo uno» o uno aplicado de que ahora hablaremos, que es medida pero de cantidades de determinadas cosas.

«...el ser de lo uno es el ser de lo indivisible, el ser precisamente esto separado en particular... y, sobre todo, ser la medida primera en cada género y, en especial, de la cantidad; pues de aquí ha pasado a las demás cosas. Es medida, en efecto, aquello por lo que se conoce la cantidad; y la cantidad en cuanto cantidad se conoce por el uno (τὸ ἕν), de suerte que toda cantidad en cuanto cantidad se conoce por el uno, y aquello por lo que primariamente se conocen las cosas cuantas es el uno en sí (ἀρίθμος ἕν); por eso el uno es principio del número en cuanto número. Y éste es el motivo de que también en las demás cosas se llame medida aquello por lo que primariamente se conoce las cosas cuantas...» (Met. X, 1, 1052b16).

El uno en sí, según esto, es 1) singular, separado y concreto, y 2) medida primera por la que se conoce cualquier cantidad. Pero, además, ha de entenderse que es 3) anterior en el tiempo conforme al acto de contar y, bajo este aspecto, se llama elemento (στοιχεῖον), pues es elemento aquello «a lo cual se añade que algo procede de él como constituyente primario» (Met. X, 1, 1052b13), como le ocurre al uno a la hora de contar. Y, para terminar, el uno en sí es 4) parte del número y, en cuanto tal, se llama unidad (μονάς). «Parte», en efecto, significa «aquello en lo que puede dividirse cualquier cantidad» de modo que, por ejemplo, dos es parte de tres. Pero en sentido más estricto se llama parte a aquello en que puede dividirse una cantidad y por ella puede medirse el todo (Met. V, 25, 1023b14). A esto es precisamente a lo que Aristóteles llama unidad.

4) La expresión «τὸ ἕν», donde ἕν aparece usado de forma adjetiva o en composición suele traducirse por «un cierto uno» y quizás también podría traducirse

18 «Es evidente que el uno es cierta naturaleza en todos los géneros y que el uno en sí (ἀρίθμος τὸ ἕν) no es la naturaleza de ninguna, sino que así como en los colores el uno en sí debe ser buscado como un color (χρώματα ἕν), así en la substancia el uno en sí debe ser buscado como una substancia» (Met. X, 3, 1054a13).

19 «El uno se cuenta antes que el dos» (Cat. 6, 5a30); «el uno es anterior al dos» (Cat. 12, 14a31); «¿cómo entonces es principio el uno? Porque no es divisible, contestan. Pero también es indivisible el universal, lo parcial y el elemento, aunque de distinto modo; aquél [es principio] en cuanto al enunciado; y éstos en cuanto al tiempo» (Met. XIII, 8, 1084b13). (La traducción que ofrece García Yebra de este párrafo es, a mi juicio, incomparable).

20 «...cada una de las unidades es parte del número como materia» (Met. XIII, 8, 1084b6). «Todo número significa una cantidad y también la unidad, si no es medida, y lo indivisible en orden a la cantidad» (Met. XIV, 2, 1089b34).
por «algo uno». Este mismo uso adjetivo se emplea para designar los objetos determinados que caen bajo el uno universal, como «un hombre» (eἰς ἄνθρωπον) (Met. X, 2, 1054a17) o «una substancia» (Met. X, 2, 1054a12). «Uno», sumado de esta manera a un substantivo, no añade nota alguna al concepto designado por el substantivo, sino que sólo lo singulariza, individualiza o designa como separado:

«Que el uno significa en cierto modo lo mismo que ente es obvio, porque acompaña igualmente a todas las categorías y no está en ninguna [...] porque “un hombre” no añade nada a la predicación de “hombre” (como tampoco «ente» a la de “quididad” o a la de “cualidad” o a la de “cuento”), y porque «ser uno» (ṛ̇ Ḳ ἐν ἕνως) es lo mismo que ser individuo» (Met. X, 3, 1054a13).

Pues bien, Aristóteles usa la expresión «ṛ̇ ἐν» para designar de manera vaga o indeterminada los inferiores o casos singulares que caen bajo el universal «uno»:

«En todos estos casos es medida y principio cierto uno (ṛ̇ ἐν) e indivisible, puesto que también en las líneas usamos como indivisible el pie» (Met. X, 1, 1052b31).

Por otro lado, en lo mismo que es designado por la expresión «algo uno» o por los correspondientes ejemplos «un hombre» o «un pie» (de longitud), confluye el carácter de ser medida de un número de cosas determinadas. Una multitud de hombres se cuenta por un hombre y las longitudes por un pie. Y, de manera general, una cantidad de algo se mide o cuenta por algo uno. En este sentido, nuestra expresión se emplea como caso, precisión o determinación de «el uno mismo». Este doble papel de «ṛ̇ ἐν», como caso particular, vagamente designado, del uno universal y como medida más determinada que «el uno mismo», aparece con toda claridad en este párrafo:

«El ente se dice de tantas maneras como el uno... en los colores el uno es un color... Y lo mismo puede decirse de los demás géneros; de suerte que, si en las aficiones, en las cualidades, en las cantidades y en el movimiento hay números y algo uno, en todos ellos el número será de ciertas cosas y el uno será cierto uno» (Met. X, 2, 1053b25-1054a7).

La expresión plurivalente «el uno» se refiere, en su primera aparición, al uno universal, que es el que «se dice» o predica y, en la última, a lo mismo que «el uno en sí» dado que éste es el uno que es parte constitutiva del número.

Tenemos, pues, la distinción entre «cierto uno» y «uno en sí» que es paralela a la que existe entre el número de algo (número numerado) y el número sin más (numerante). Además, tenemos la noción universal de uno y la del «ser de lo uno». ¿Cuál de estos usos designa la medida del número? No lo es, desde luego, «el ser de lo uno» que apunta a la definición de uno y nunca se emplea en el sentido de medida del número. Tampoco el uno universal, cosa no tan evidente, ya que es el entendimiento quien numera, y lo propio del entendimiento es conocer por conceptos universales.
Pero Aristóteles no se deja seducir por semejante razonar, pues sin duda observa que las partes o elementos de una multitud son sujetos todos ellos del predicado universal «uno» que es, como tal, único y común. Y aunque cada una de las unidades de que consta el número sean ejemplo del uno universal y éste sea parte de su definición, el uno universal no es parte constitutiva de la multitud de unos o número. Aristóteles rechaza explícitamente que el uno matemático o uno por el que se mide el número, sea el uno universal. Precisamente, una de las críticas de Aristóteles contra el platonismo matemático consiste en denunciar que confunde el uno universal con el uno matemático. Dice, en efecto, que es imposible que en una misma cosa se dé a la vez ser parte, lo cual es característico del uno según el punto de vista de los matemáticos, y ser universalmente uno.

«Así pues, consideraban principio el uno en ambos sentidos [como universal y como parte]. Pero esto es absurdo; pues lo uno es como especie y como esencia y lo otro como parte y como materia... Y la causa de este error fue que adoptaron el mismo punto de vista de los matemáticos y el de los enunciados universales, de suerte que, apoyándose en aquéllos, consideraban el uno y el principio como punto (pues la unidad es punto sin posición...). Y, por investigar universalmente el uno que se predicaba, también en este sentido lo enuncianaban como parte. Pero es imposible que estas características se den en la misma cosa» (Met. XIII, 8, 1084b18-33).

Sólo queda por examinar si la medida del número es bien el «uno en sí» o uno matemático, bien lo que designamos como «cierto uno» o caso particular de lo uno. Ambos lo son, pero de números diversos y de maneras dispares. El uno en sí es medida del número a secas o número por el que se numera. También puede decirse, dado que el número sin más es la pluralidad de unidades, que la unidad (μονάς) es medida del número numerante. A su vez, la medida del número aplicado o numerado es siempre «cierto uno», o, lo que es igual, el uno de una cosa subyacente:

«...el uno significa evidentemente medida. Y en todo hay otra cosa subyacente; por ejemplo, en la armonía el semitono, y en la magnitud el dedo, el pie o algo semejante, y en los ritmos la cadencia o la sílaba; y asimismo también en la gravedad hay un peso determinado.» (Met. XIV, 1, 1087b33).

De la misma manera que el uno en sí es parte y medida del número sin más, cada una de las cosas en que se da el ser indivisible es parte y medida del número

21 Tanto el uno universal como el uno que es parte de una cantidad coinciden en ser partes. Pero lo son de maneras diversas: el universal es parte como elemento constitutivo de la definición de las cosas de las cuales se predica. La parte de la cantidad es tal como materia, pues con ella se componen los todos que son las cantidades. Para ilustrar este doble sentido del ser parte, Aristóteles recurre al siguiente ejemplo de la geometría: el ángulo recto es parte del agudo en cuanto entra en su definición, pero el agudo es parte del recto en cuanto la suma de varios agudos es un recto (Met. XIII 8, 1084b9).
de esas mismas cosas. Esta semejanza, sin embargo, no es completa; las cantidades de cosas determinadas han de cumplir la exigencia de la homogeneidad: «es necesario que la medida sea siempre común a lo que ha de medirse» (Met. XIV, 1, 1088a7). Es decir, el uno por el que se miden las cantidades ha de ser de las mismas cosas que lo medido, de modo que los hombres no se cuentan por millas o las longitudes por kilos, sino las hombres por un hombre y las longitudes por millas o pulgadas. Para contar una multitud es imprescindible saber de qué es esa multitud. Hay que conocer un género común a todas las cosas que forman el todo.

Probablemente, Aristóteles destaca esta condición porque una multitud cualquiera es a la vez una y en ella se dan muchas unidades y multitudes. Para contar un rebaño de caballos, no basta la noción de caballo, común a los elementos del rebaño, ni la de individuo o parte, porque no sabríamos qué partes contar, si cabezas, patas, crines, tejidos, colores o especies de animales. El número de unidades será diferente en cada caso. Hace falta tomar como unidad «un caballo» o «un color»; sólo respecto de cosas como éstas la multitud tendrá un número determinado, sólo con la noción de cosas como éstas podrá emprenderse la tarea de contar o numerar la pluralidad.

Mas para el número sin más no rige la exigencia de homogeneidad, pues los números (numerantes) no se miden por un número sino por el uno o la unidad. En esto difiere la medida del número sin más del número aplicado:

«La medida es siempre del mismo género; en efecto la de magnitudes es una magnitud y, en particular, la de la longitud una longitud, la de la voz otra voz, la de un peso un peso... pero no la de números es un número; sin embargo, habría que admitirlo si hubiera equivalencia; pero este juicio no sería equivalente, sino que sería como si se juzgara que la medida de unidades son unidades pero no una unidad; pues el número es una pluralidad de unidades» (Met. X, 1, 1053a25).

La razón que aduce Aristóteles para establecer esta diferencia es que el uno en sí o unidad es absolutamente indivisible, de manera que no es en modo alguno multitud o número. Porque, como sabemos, el uno en sí es lo indivisible concreto, sin más determinaciones. Lo que es «algo uno», puede a su vez ser múltiple en cuanto ese algo sea potencialmente múltiple. Por ejemplo, un pie de longitud es potencialmente divisible o múltiple. Pero el uno en sí, al ser la indivisibilidad separada de cualquiera de las cosas en que puede hallarse, es imposible que pueda dividirse, porque lo indivisible es contrario a lo divisible:

«no todo lo que es uno es número; por ejemplo si es indivisible» (Met. X, 6, 1057a6).

Este carácter especial del uno matemático o uno en sí, va unido en la mente de Aristóteles a su carácter de principio por el que se conoce toda cantidad:
«es razonable que el uno no sea número, pues tampoco la medida es medidas, sino que son principio tanto la medida como el uno» (Met. XIV, 1 1088a6).

Tanto el «cierto uno» como el «uno en sí» son principio de conocimiento de la cantidad, pues sólo teniendo presente el uno singular adecuado a lo que ha de medirse cabe contararlo o medirlo. Las unidades de algo determinado que no sean absolutamente indivisibles, como las longitudes, que son medidas por pies o estadios, son divisibles de manera derivada o secundaria. El pie, por ejemplo, es indivisible por relación a la sensación, pues se trata de una cantidad que se determina fácilmente por los sentidos, pero no es absolutamente indivisible. En tal caso una cantidad se mide por otra cantidad, dado que ésta puede, a su vez, dividirse en partes. De este modo «un cierto uno» o uno determinado es principio de conocimiento de cierto número o cantidad. Mas esto ocurre de manera derivada o por imitación de lo que sucede al conocer el número o la pluralidad medida por el uno absolutamente indivisible. El uno en sí es principio de conocimiento del número numerante, pero además es principio para conocer cualquier otra unidad de algo determinado, ya que cualquier cosa que sea una, es decir, que sea «un algo», es tal porque es considerada como si fuera indivisible, como si fuera un caso determinado del uno en sí (vid. supra las nociones de «algo uno» y de «uno en sí»).

Para que podamos considerar como medida algo que no es de suyo indivisible, ha de tomarse como uno o indivisible, lo cual supone que hemos de conocer lo que es completamente indivisible. Esto, como pronto veremos, se alcanza por abstracción, cuyo último resultado es la indivisibilidad o unidad absoluta. Esta indivisibilidad absoluta y singular no es sino la unidad aritmética o uno en sí, por el cual se mide el número o se conoce la cantidad discreta como tal. Ahora bien, esta cantidad no es conocida por otra cantidad, ni siquiera tomada como una, sino por algo que carece de partes determinadas porque es absolutamente uno.

22 «Pero no todo es indivisible del mismo modo, por ejemplo, el pie y la unidad numérica; ésta, en efecto, lo es totalmente, mientras que aquél debe ser incluido entre las cosas indivisibles en cuanto a la sensación... pues probablemente todo lo continuo es divisible» (Met. X, 1, 1053a22; Cfr. ibíd. 1052b31).

23 «Así pues, aquello a lo que parece que no se le puede quitar ni añadir nada es la medida exacta (por eso la del número es la más exacta; pues la unidad es considerada como absolutamente indivisible); y en las demás cosas imitamos esto; pues una adición o substracción hecha a un estadio o a un talento o a cualquier otra cosa notablemente grande, puede pasar inadvertida más fácilmente que si se hace a una cosa menor» (Met. X, 1, 1052b35).

24 «...el ser de lo uno es el ser de lo indivisible... y la cantidad en cuanto cantidad se conoce por el uno, de suerte que toda cantidad se conoce en cuanto cantidad por el uno, y aquello por lo que primeramente se conocen las cosas cuantadas es el uno en sí. Por ello el uno es principio del número en cuanto número» (Met. X, 1, 1052b16-24).

25 «...el uno es en sumo grado la medida, principalmente de la cantidad y en segundo lugar de la cualidad. Y será tal, en primer lugar, si es indivisible cuantitativamente, y, en segundo lugar, indivisible cualitativamente. Justamente por eso el uno es indivisible o absolutamente o en cuanto uno» (Met. X, 1, 1053b3).
Por ello afirma Aristóteles que la unidad o uno en sí no es número sino principio del número.\footnote{De ahí que el primer número no sea el uno sino el dos: uno significa «medida de alguna pluralidad» y número «pluralidad medida»... (por eso es razonable que el uno no sea número, pues tampoco la medida es medida, sino que es principio tanto la medida como el uno) (Met. XIII, 8, 1088a5; cf. Met. X, 1, 1053 a27). En un sentido absoluto dos son pocos; pues es la primera pluralidad que tiene inferioridad (Met. X, 6, 1056b27).}

7. \textit{La abstracción}

El uno que es principio del número es el uno matemático, o uno individual que, versátil como el ser, ha de hacerse homogéneo a lo medido, de modo que unas veces es el «uno en sí» y otras «algo uno». Las multitudes serán, pues, conocidas como números cuando el alma alcance a conocer semejantes unidades y las use para contar las multitudes. Pero ni los sentidos ofrecen lo indivisible, ya que todo lo sensible se ofrece siempre como divisible y plural, ni de la inducción puede resultar la unidad singular, sino sólo el uno universal, que no es medida. ¿Cómo, pues, concibe el entendimiento lo indivisible singular, a partir del cual se mide la multitud?

El camino de la ciencia, esto es, el paso de lo más conocido para nosotros a lo más conocido para la naturaleza, engloba indudablemente el acceso a lo universal y a los principios más generales a partir de lo particular (Fís. I, 5, 189a2). Pero, al mismo tiempo, ese camino consiste también en distinguir o analizar en sus partes lo que se ofrece unido en las cosas sensibles como mezclado en un todo.\footnote{«Ahora bien, lo que para nosotros es primero manifiesto y claro son los conjuntos más mezclados; a partir de esto se hacen después más conocidos los elementos y los principios se desprenden por análisis de aquéllos. Por ellos hay que ir de las cosas generales a las particulares; pues el todo es más conocible según la sensación, y lo universal es una especie de todo: encierra una pluralidad que constituyen algo así como sus partes» (Fís. I, 1, 184a2). Lo universal aquí se refiere al todo compuesto que se nos ofrece en el conocimiento de las cosas sensibles (Cfr. Mansion, S., \textit{Etudes Aristotéliciennes}, J. Follon ed., Institut Supérieur de Philosophie, Louvain la Neuve, p. 218).}

Estos dos caminos —el de la universalización y el del análisis— se pueden identificar respectivamente con la inducción (ἐπαγωγή), al menos en uno de los sentidos en que Aristóteles usa esta palabra, y con la abstracción (ισχοίρεσις).

La inducción es una operación mental que conduce desde lo singular y sensible hasta lo universal (An. Post. II, 19, 100b3). Se trata de un proceso unificador que da por resultado un todo universal existente sólo en el alma y que abarca la multiplicidad de las cosas en las que el universal se da singularizado (An. Post. II, 19, 100a3). Por esta operación alcanza el entendimiento nociones cada vez más universales, de modo que tras las especies llega a los géneros y, finalmente, a las nociones completamente abstractas como la de ente.\footnote{«...cuando una de las cosas específicamente indiferenciadas se detiene en el alma, nos hallamos ante una primera noción universal... Luego, entre estas primeras nociones universales, se produce una nueva parada en el alma, hasta que se detiene finalmente en nociones verdaderamente universales: así, tal especie de animal es una etapa hacia el género animal, y esta última noción es ella misma una etapa...}}
La abstracción, por su parte, es un proceso que permite separar intelectualmente los aspectos de las cosas que en la realidad no están separados (De An. III, 8, 432a3). Gracias a ella se logra distinguir los diversos géneros de las cosas que constituyen la realidad y que se nos ofrecen unidos en el conocimiento sensible. Y así el entendimiento distingue en este hombre entre lo que es, su movimiento, sus relaciones, su color y su dureza, su extensión y su unidad. Lo cual, a su vez, le permite fijarse sólo en uno de estos aspectos (Met. XIII, 3, 1078a 21-26). Por virtud, pues, de la abstracción se especifican las ciencias, puesto que cada ciencia versa sobre un género determinado de objetos.

En resumen, la inducción explica la unidad en la multiplicidad propia de los conceptos, que no es la unidad que tienen las cosas en la realidad. La abstracción, por su lado, provoca una separación entre los diversos géneros de aspectos de las cosas, que no es la separación que tienen las cosas entre sí.

La matemática es la ciencia que, por antonomasia, se alcanza por abstracción. La mayoría de las veces que Aristóteles emplea el término «abstracción», hace referencia al objeto de la matemática. Esta ciencia, en efecto, se caracteriza por estudiar los objetos como separados de la materia sensible, aunque no existan separados de ella. Para ello elimina todas las cualidades sensibles de las cosas, como son el peso, la dureza y el calor y el movimiento. De este modo se queda sólo con la cantidad continua o discreta, que son tratadas —como si fueran inmutables— respectivamente por la geometría y la aritmética.

La física, en cambio, por versar sobre las cosas que se mueven en cuanto que se mueven, no prescinde de la materia sensible, puesto que la idea de movimiento involucra la de potencia o materia (Met. VII, 10, 1036a9). Aunque matemática y física coincidan en tratar de cosas que no existen separadas de la materia, en la segunda no se da la completa separación de la materia característica de los objetos de la matemática. Por su parte, la metafísica trata de cosas que pueden existir fuera de la materia y, por tanto, tampoco proceden de la abstracción propia de la

una notación más amplia» (An. Post. II, 19, 100a 15).

29 «Pero lo que se llaman abstracciones, son pensadas de la misma manera que lo chato: la nariz chata, en cuanto tal, se piensa sin separarla de la materia; pero si se considera la concavidad y se piensa en acto, el pensamiento excluye la carne en que se da la concavidad; de esa manera los objetos matemáticos, aunque no separados, son pensados como separados, en cuanto se piensan aquéllas [las abstracciones]» (De An. III, 7, 431b13).

30 «Es una la ciencia que abarca un solo género, es decir todas las cosas que caen bajo los primeros elementos de un género [...] y sus propiedades esenciales» (An. Post. I, 28, 87a37; Cfr. Ibid. I, 7).

31 «...el matemático realiza su investigación en torno a los productos de la abstracción (investiga, en efecto, eliminando previamente todas las cualidades sensibles, como el peso, la levedad, la dureza y su contrario, y también el calor y la fraldad y las demás contrariedades sensibles, y sólo deja la cantidad y la continuidad, de unas en una dimensión, de otras en dos y de otras en tres, y considera las afecciones de estas cosas en su calidad de cuantas y de continuas, y no en ningún otro sentido, y de unas considera las posiciones reciprocas y lo que corresponde a éstas, de otras la commensurabilidad o la incommensurabilidad, de otras las relaciones proporcionales y, sin embargo, decimos que hay una sola ciencia de todas estas cosas, la geometría» (Met. XI, 3, 1061a28-1061b3; Cfr. De An. III, 431b13; Fis. II, 3, 193b33; Met. VI, 1, 1026a7 y XI, 7, 1064a31).
matemática; sólo la matemática trata como ajenas a la materia y al movimiento objetos que nunca existen sin la materia. Sólo la matemática alcanza un objeto completamente separado de la materia (a diferencia de la física) sin que ese objeto exista separadamente (a diferencia de la metafísica), sino por un acto intelectual de separación. Por ello Aristóteles considera que lo más propiamente abstracto son las cosas de la matemática y que los objetos matemáticos se conocen por abstracción, mientras que el objeto de otras ciencias se conoce más bien por experiencia.

Pues bien, la respuesta a la pregunta sobre la manera en que el entendimiento alcanza la unidad matemática se halla precisamente en la abstracción. Gracias a ella llega el entendimiento a considerar como indivisas o unas cosas como este hombre, prescindiendo de toda otra determinación (Met. XIII, 3, 1078a21-26).

El proceso abstractivo va, paso a paso, despojando de determinaciones las cosas del mundo sensible para terminar en la consideración completamente separada de esas cosas en cuanto indivisibles o unas sin más añadidos. El término de la abstracción es, pues, la unidad absoluta o uno en sí del que antes hablamos, el cual recibe también el nombre de «punto sin posición», precisamente por obtenerse al suprimir la posición del punto, de modo que elimina el carácter esencialmente espacial del mismo:

«Pues así como hay muchos enunciados que consideran las cosas excluyvamente en cuanto se mueven, sin preocuparse de qué es cada una de tales cosas ni de sus accidentes, y de aquí no se sigue necesariamente que haya algo que se mueva separado de las cosas sensibles o que haya en éstas cierta naturaleza determinada y aparte, así también acerca de las cosas que se mueven habrá enunciados y ciencias, pero no en cuanto se mueven, sino tan solo en cuanto cuerpos, y, nuevamente, o bien sólo en cuanto superficies o sólo en cuanto longitudes, o en cuanto indivisibles dotados de posición, o sólo en cuanto indivisibles» (Met. XIII, 1077b23-30).

Sobre esta labor precisiva o abstractiva que aboca en la intelección del uno en sí conviene hacer dos observaciones:

12 «En cuanto a las determinaciones inseparables de hecho de la materia, pero que se consideran separadamente de su pertenencia a tal cuerpo dado y por abstracción, pertenecen a la matemática» (De An. I, 1, 403b15).

13 «La experiencia requiere mucho tiempo y si uno investiga por qué un muchacho puede llegar a ser matemático, pero no sabio ni físico, la respuesta es ésta: los objetos matemáticos existen por abstracción, mientras que los objetos de otras ciencias existen por experiencia» (Et. Nic. VI, 1042a16). Verdad es, con todo, que la inducción y la experiencia, es decir el examen de las cosas sensibles y sus semjanzas mutuas, acompañan también a la abstracción, de modo que ni la abstracción ni la inducción son procesos que puedan darse con completa independencia: «Es imposible adquirir los conocimientos universales más que por inducción, puesto que, incluso los que se llaman resultados de la abstracción, no pueden hacerse accesibles mas que por inducción, en cuanto que a cada género pertenecen, por naturaleza propia de cada uno, propiedades que pueden tratarse como separadas incluso si de hecho no lo son» (An. Post. I, 18, 81b2).
1) La unidad, el uno en sí o punto sin posición es principio del conocimiento del número sin más o número numerante. Mostrar cómo ese uno es el resultado final de la abstracción desde lo sensible sirve a la vez para deshacer el malentendido que puede haber producido el papel esencial que el uno en sí tiene para el conocimiento del número aplicado. Podría parecer que el uno en sí y el número numerante son un producto del entendimiento que luego se emplea para numerar las cosas del mundo sensible y producir así el número numerado. Mas tal cosa no es verdad, pues primero el uno en sí y, por ello, el número numerante, proceden de llevar la abstracción a su término, hasta prescindir de la posición del punto. Tienen, por consiguiente, su fundamento en uno de los variados aspectos de la realidad y, concretamente en el carácter de separabilidad absoluta que sólo la substancia posee. La indivisibilidad, según ya se indicó, es concebible para el entendimiento porque el mundo está compuesto de substancias que existen completamente separadas y son por ello absolutamente unas.34

2) Por otro lado, es muy importante recalcar que la abstracción no consiste en unificar bajo conceptos las cosas sensibles, sino en considerar sus aspectos por separado. A partir de «este hombre» no se obtiene por abstracción su especie, el género animal o cualquier otro universal, sino sólo este hombre en cuanto sólido o en cuanto indiviso. Por obra de la abstracción, se obtienen cosas que carecen de las determinaciones sensibles que en la realidad les acompañan, pero no carecen de singularidad como las cosas universales.35

Que el producto de la sola abstracción no sea universal sino todavía singular, es cosa que puede parecer obscura conforme a la idea hoy común de la abstracción. Se cree, en efecto, que lo abstracto es, por ello mismo, universal, y que la eliminación de las cualidades y determinaciones sensibles implica que el resultado de la abstracción es cada vez más común.36 Creo, no obstante, que hay suficientes

34 «Es substancia el sujeto, en un sentido la materia... en otro el enunciado y la forma [...] y, en tercer lugar el compuesto de ambos, el único del que hay generación y corrupción y es separable absolutamente» (Met. VIII, 1, 1042a27). La individualidad (ròδε) corresponde sólo a las substancias (Met. VII, 4, 1030a6). Nótese cómo Aristóteles, por un lado, dice que la substancia tiene como propiedad ser algo individual o determinado, un ròδε rí (cf. Cat. 5, 3b10) y, de manera paralela, en la definición de lo cuanto, dice que la cantidad está esencialmente compuesta de partes que son igualmente singulares o determinadas.

35 L. E. Palacios ha tenido el mérito de destacar que Aristóteles y Santo Tomás observan esta peculiaridad de la abstracción matemática, cosa que olvidan los tratadistas escolásticos posteriores: «...los objetos matemáticos son separados de la materia sensible, pero no de la materia singular, contra el esquema tradicional divulgado por los tratadistas escolásticos que, en adelante, deberían corregirse de acuerdo con estas consideraciones» (Filosofía del saber, Gredos, Madrid 1962, p. 212).

36 La idea según la cual el producto de la abstracción es siempre universal explica una de las críticas de Frege contra la posibilidad de que «uno» se alcance de esa manera. Si «uno» fuera un predicado común obtenido por abstracción de las cosas, como lo es «sabio», debería emplearse como los conceptos universales, que pueden decirse a la vez de varias cosas. Si Tales es sabio y Solón es sabio, entonces Solón y Tales son sabios. Pero de Tales es uno y Solón es uno no puede inferirse que Solón y Tales sean uno (Fundamentos de la Aritmética § 29). Por ello mismo, si «uno» fuera un predicado, desaparecería la posibilidad de la suma y con ella de la multiplicidad: un concepto sumado a ese concepto da por resultado ese concepto, y así uno y uno serían uno, de la misma manera que oro y oro.
razones para defender que Aristóteles no pensaba así, aunque no se planteara la cuestión de manera completamente explícita.\footnote{El error contra el que explícitamente combate Aristóteles con su teoría de la abstracción matemática es el platonismo y su pretensión de que existan entidades matemáticas separadas de la materia.}

Una importante razón se encuentra en la ya citada descripción de la cantidad que es el objeto de la matemática: es cuanto lo que consta de partes integrantes que son algo determinado y singular. Considerar las cosas desde el punto de vista de su división o composición de partes individuales es lo propio de la matemática. No sólo la aritmética adopta esta perspectiva, sino también la geometría, que se ocupa, por ejemplo, de cómo los círculos constan de semicírculos\footnote{La definición del círculo no contiene como partes los semicírculos, sino los conceptos genéricos y diferenciales. De lo que sí son partes los semicírculos es del círculo singular e individual, de la misma manera que el concepto de hombre no se divide en carne y huesos, pero sí el hombre individual. Si la abstracción sólo nos proporcionara el círculo universal no podríamos concebirlo como compuesto de semicírculos (Mét. VII, 10, 1035a14-35b2 y V, 25, 1023b12 ss.).} o cómo el ángulo recto se constituye de partes concretas que son ángulos agudos. Pero estas cosas individuales, el uno que es elemento del número, las figuras geométricas en cuanto conjuntos o en cuanto compuestas de otras, son producto de la exclusión abstractiva del matemático.\footnote{"...la matemática trata con un objeto abstracto y la física con uno concreto. Hay muchos atributos necesariamente presentes en los cuerpos físicos que son necesariamente excluidos por la indivisibilidad" (De Caelo III, 1, 229 a14).} Es claro, pues, que la abstracción matemática no hace precisión de la individualidad.

Otra razón puede encontrarse en la noción aristotélica de materia inteligible, pues creo que nace principalmente para dar cuenta de la singularidad de las cosas matemáticas. Aristóteles se niega a aceptar que la matemática verse sobre seres de existencia separada, como pretendían los platónicos. Al contrario, la matemática trata sobre cosas cuyo único ser, fuera del entendimiento, es la de las cosas materiales del mundo físico. Ahora bien, puesto que los números y dimensiones no son ellos mismos objeto de sensación, es necesario reconocer al entendimiento la capacidad analítica de eliminar o prescindir de los aspectos no cuantitativos que aparecen en las sensaciones, empezando por la materia sensible (las cualidades sensibles). Con ello parece que se elimina toda singularidad de sus resultados, dado que la materia es el principio de individuación. Sin embargo, como se ha visto, el conocimiento de la cantidad por obra de la medida exige que las cosas sean conocidas en sus partes singulares y concretas. De ahí la necesidad que experimenta Aristóteles de admitir, por analogía con la materia que individualiza las cosas del mundo físico, otra materia, no sensible sino inteligible, que individualice los objetos matemáticos en su estado de abstracción. Esto puede colegirse del texto que sigue, donde Aristóteles explica que hay una materia en las cosas no sensibles porque son singulares o determinadas (tónos τόν).}
¿Tendrán materia también algunas cosas no sensibles? Tiene, en efecto, materia todo lo que no es esencia ni especie en sí y por sí, sino algo determinado. Por consiguiente estas cosas [los semicírculos] no serán partes del círculo universal, pero sí de los círculos particulares, según quedó dicho antes. La materia, en efecto, es sensible e inteligible." (Met. VII, 11, 1037a21).

8. Contar

Hasta aquí sólo nos hemos fijado en la abstracción del uno. Pero ésta no es sino la operación que conduce al principio del número y necesita ser completada por otra operación esencial a la aritmética, el contar o numerar.

Poco dijo Aristóteles sobre el acto de contar, como si fuera algo demasiado obvio. Reuniendo en una sola fórmula las diversas alusiones que ofrece, quizás ésta podría ser una buena descripción: Contar es un movimiento del intelecto que considera, en instantes separados, las partes individuales y homogéneas de un todo finito, empezando arbitrariamente por una de ellas y prosiguiendo hasta haberlas agotado.

Creo que la operación de contar puede entenderse mejor a partir de la de medir, ya que ésta se realiza sobre cosas continuas, más próximas a la sensación. (De hecho, varios de los textos empleados para la definición ofrecida, se refieren a la medición). Medir se realiza sobre una magnitud finita (por ejemplo una longitud), tomando una unidad homogénea con lo que se ha de medir (si es una longitud se toma una longitud), que sea fácilmente determinable, y recorriendo paso a paso o transportando la medida a lo largo del todo hasta agotarlo. Como podrá notarse, numerar o contar es análogo a medir. Pero contar es un proceso más abstracto y difícil de concebir, pues en él se prescinde de la posición de las partes, y ese componente espacial es lo que hace más intuitivo y comprensible el...

40 Las mejores definiciones de «numerar» se hallan en el opúsculo «Sobre las líneas indivisibles», dudosamente escrito por Aristóteles, aunque de seguro perteneciente a su escuela.

41 «...contar es el pensamiento que toca lo que es uno a uno» (Linf. ind. 968b2). «Además, el pensamiento que toca lo infinito que es uno a uno no es contar, si es que alguien piensa que el pensamiento puede tocar de esta manera una serie infinita. Quizás esta suposición es en sí misma imposible; porque el movimiento de la mente no se produce como el movimiento de los cuerpos que se desplazan sobre una materia continua... Incluso si su movimiento pudiera ser de esta clase, eso no es contar. Pues contar implica una serie de pausas» (Ibid. 969a32). «El número no será infinito en cuanto separado abstractamente; en efecto, el número es lo que es numerado o numerable; si lo numerado puede ser de hecho contado, entonces el infinito podría ser recorrido» (Fis. III, 5, 204b7). «En cuanto a lo indivisible, puesto que se toma en dos sentidos (en potencia y en acto), nada impide pensar lo indivisible cuando se piensa la longitud (pues es indivisible en acto... pero pensando separadamente cada una de las mitades, el espíritu entonces divide el tiempo» (De An. III, 6, 430b6). «...contamos como más de uno o los que no son continuos o aquello cuya especie no es una o cuyo enunciado no es uno» (Met. V, 6, 1016b10). «...pero el nombre de elemento significa que se le añade accidentalmente el hecho de que algo procede de él como constituyente primario. Eso mismo se le aplica a la causa y al uno» (Met. X, 1, 1052b13). «Si al número se le quita o añade alguno de los elementos de que consta, ya no es el mismo número» (Met. VIII, 4, 1043b36).
acto de medir o transportar una medida a lo largo de una longitud. De ahí la curiosa expresión aristotélica que, aproximadamente, llama al contar «tocar con el pensamiento» las partes homogéneas con una unidad.\(^{42}\)

El proceso intelectual de contar una multitud no supone, como podría pensarse, un conocimiento previo de los números numerantes. Parece, en efecto, que el contar como tal sólo es el examen separado de las partes de un todo finito y homogéneo. Aunque Aristóteles es en ello poco explícito, el contar en apariencia colabora con la abstracción en la formación de los números matemáticos, de manera que, al recorrer una multitud tomando como patrón un elemento determinado de ella, se alcanza un número que será el número de esa multitud. Hay, pues, una especie de reciprocidad en el conocimiento del número numerante y del número numerado o multitud:

«...medimos el número por lo numerado, por ejemplo el número de caballos por un caballo; en efecto por el número conocemos la multitud de caballos y, recíprocamente, por un caballo conocemos el número de caballos» (Fis. IV, 12, 220b15).

Russell cree que la numeración infinita ha de conocerse antes de contar.\(^{43}\) La necesidad de una numeración infinita (y del procedimiento recursivo por el que suele expresarse) es, desde luego, innecesaria para contar números finitos. De hecho, la numeración fue en principio limitada, como se hace patente al observar que el método recursivo en la expresión verbal de los números empieza a usarse, según los idiomas, a partir de números diferentes.\(^{44}\) Pero tampoco ha de conocerse una numeración ni siquiera finita para contar. Podemos imaginarnos a un hombre inculto tratando de medir un campo con una vara: lo importante es la unidad, la vara, y la extensión (multitud a medir), el campo. Según vaya midiendo usará los dedos, inventará palabras o hará marcas, que luego empleará para contar, por ejemplo, los árboles que puede plantar en el campo. Al contar lo múltiple, con ayuda de la unidad, se hallan los números y, gracias a los números, se cuenta.

9. Conclusión

Los números no son sin más propiedades de las cosas, ni tampoco los halla el entendimiento fuera de los seres del mundo físico, sea en una intuición a priori, sea en las nociones del pensamiento puro. El número, como toda la matemática, se funda en la realidad, en la existencia real de unidades y multitudes, pero sin las operaciones de abstraer el uno y de contar no habría números.

\(^{42}\) Probablemente la numeración difiere de la medición porque se aplica a lo múltiple en acto, con partes separadas o no continuas, en las cuales no hay orden espacial. En la medición la unidad es arbitraria, pues el todo está ordenado espacialmente; en el número la separación de la unidad se funda en una separación real, pero el orden de las partes es arbitrario.

\(^{44}\) En español a partir del dieciseis y en francés desde el dieciséis, pues el dieciseis se dice «seize».
Mas no porque intervenga la abstracción en la formación del número y en la abstracción de la unidad puede decirse que la aritmética se apoye en la psicología, como pretendía la crítica fregeana del psicologismo. Para Aristóteles, la existencia y la definición de la unidad forman parte de los primeros principios de la matemática (An. Post. I, 1, 71a14), pero en la definición de unidad y de número, como pluralidad mensurable por la unidad, no introduce en la matemática la noción de abstracción. Donde sí aparece es en la metafísica, que es la encargada de estudiar la naturaleza de los números y de los demás objetos de la matemática.

«...puede uno preguntarse cuál es la ciencia a la que le corresponde estudiar los problemas relativos a la materia de las cosas matemáticas. Pues ni le corresponde a la física... ni tampoco a la que estudia la demostración y la ciencia, pues realiza su investigación en torno a este mismo género. Queda pues que sea la filosofía propuesta la que realiza la indagación acerca de ellas» (Met. XI, 1, 1059a15-22).

No atañe a Aristóteles la crítica fregeana al psicologismo: No hay intromisión ni de la metafísica, ni de la psicología en la matemática. El matemático puede, como acostumbra, estudiar las propiedades de la unidad y de los números sin conocer su naturaleza. Y la filosofía se limita a estudiar el ser y la naturaleza de las cosas de que trata el matemático, sin la pretensión —carácterística de las escuelas que discutieron sobre los fundamentos de la matemática— de reforzar, limitar o transformar tal disciplina.

La nada simplista concepción del número en Aristóteles nos permite vislumbrar un horizonte donde se satisfacen los requerimientos recientes de unión entre la matemática y sus aplicaciones empíricas, salvando airosamente sus peligros. Pues de una parte evita las críticas de Frege al empirismo sin, por ello, hacer de esa la matemática un saber culturalmente relativo. Pero, no nos engañemos, este horizonte es muy diferente al que enmarca la reciente filosofía de la matemática: sin la existencia de las cosas absolutamente separadas e indivisibles que son las substancias y, sin la facultad precisa de abstraer la esencia de substancias y accidentes, perdería todo su sentido la noción aristotélica de número y, en general, toda su concepción de la ciencia quedaría sin cimientos.

* * *

José Miguel Gamba
Dpto. de Lógica y Fª de la Ciencia
Facultad de Filosofía
Universidad Complutense
28040 Madrid