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Abstract. We obtain a result of existence of solutions to the 2D-Navier-

Stokes model with delays, when the forcing term containing the delay is sub-
linear and only continuous. As a consequence of the continuity assumption

the uniqueness of solutions does not hold in general. We use then the theory

of multi-valued dynamical system to establish the existence of attractors for
our problem in several senses and establish relations among them.

1. Introduction and statement of the problem. The Navier-Stokes equations
govern the motion of usual fluids like water, air, oil, etc. These equations have been
the object of numerous works [14, 22] and references cited therein.

On other hand, delay terms appear naturally for instance as effects in wind
tunnels experiments (cf. [15]). Very recently, Caraballo & Real [8, 9, 10] developed a
full theory of existence, stability of solutions and global attractors for Navier-Stokes
models including some hereditary characteristics in several ways (fixed, variable and
distributed delays) for bounded domains and with uniqueness of solutions. This
study has continued by some other authors, e.g. [21] for the study of exponential
decay of solutions, or [11] for the existence of solutions and [16] for the existence of
attractors for some delayed version on unbounded domains.

Nevertheless, in all the above cited cases, uniqueness of solutions allow to ap-
ply the classical results of Dynamical Systems, while the case of non-uniqueness or
unknown, as the celebrated problem for dimension three, requires a different treat-
ment. In this sense, we may cite the results by Ball [2] for the 3D deterministic
case, or [18] for the 3D stochastic case.

However, even without going to such complicated situation of dimension three,
the case of a 2D-model with force term that is only continuous (and therefore with
the same problem of uniqueness for the solutions) does not seem to be treated.
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More exactly, we aim to consider in an arbitrary interval [τ,+∞) ⊂ R the fol-
lowing functional Navier-Stokes problem:

∂u

∂t
− ν∆u + (u · ∇)u +∇p = f(t, u(t− ρ(t))) in (τ,+∞)× Ω,

div u = 0 in (τ,+∞)× Ω,
u = 0 on (τ,+∞)× ∂Ω,
u(τ, x) = u0(x), x ∈ Ω,
u(τ + t, x) = φ(t, x), t ∈ (−h, 0), x ∈ Ω,

(1)

where the set Ω ⊂ R2 is open, bounded and connected, ν > 0 is the kinematic vis-
cosity, u is the velocity field of the fluid, p is the pressure, u0 is the initial velocity
field, f is the external force term and contains some memory effects during a fixed
interval of time of length h > 0, being ρ an adequate given delay function, and φ
the initial datum on the interval (−h, 0).

The goal of this paper is to study existence of solutions and of attractors for
such model. The structure of the paper is the following. In this section we intro-
duce some abstract functional spaces, necessary for the variational statement of the
problem. In Section 2 we prove our first main result on existence of at least one
solution for (1) using a compactness method. In Section 3 we recall some recent
abstract results on existence of pullback attractors, which will be applied to our
case in Section 4 combining again the compactness method with suitable decaying
energy functionals. These results will provide attractors in several senses, roughly
speaking in phase-spaces of continuous and of some Lp̃ functions taking values in
a Hilbert space, and for both the universe of fixed bounded sets (of the respective
cited phase-spaces) and in a universe defined by a tempered growth condition. The
relation among all of them is also established.

To start, we consider the following usual abstract spaces:

V =
{

u ∈ (C∞0 (Ω))2 : div u = 0
}

,

H = the closure of V in (L2(Ω))2 with the norm |·| , and inner product (·, ·) where
for u, v ∈ (L2(Ω))2,

(u, v) =
2∑

j=1

∫
Ω

uj(x)vj(x)dx,

V = the closure of V in (H1
0 (Ω))2 with the norm ‖·‖ associated to the inner product

((·, ·)), where for u, v ∈ (H1
0 (Ω))2,

((u, v)) =
2∑

i,j=1

∫
Ω

∂uj

∂xi

∂vj

∂xi
dx.

It follows that V ⊂ H ≡ H ′ ⊂ V ′, where the injections are dense and compact.
We will use ‖·‖∗ for the norm in V ′ and 〈·, ·〉 for the duality 〈V ′, V 〉 .

Define the operator A : V → V ′ as

〈Au, v〉 := ((u, v)) ∀u, v ∈ V.
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Define the trilinear form b on V × V × V by

b(u, v, w) =
2∑

i,j=1

∫
Ω

ui
∂vj

∂xi
wjdx ∀u, v, w ∈ V,

and the operator B : V × V → V ′ as

〈B(u, v), w〉 = b(u, v, w) ∀u, v, w ∈ V.

Some useful properties concerning the form b and the operator B, that we will use
in the next sections, are the following,

b(u, v, w) = −b(u, w, v) ∀u, v, w ∈ V,

b(u, v, v) = 0 ∀u, v ∈ V. (2)

On the other hand, using that ‖u‖(L4(Ω))2 ≤ C|u|1/2‖u‖1/2, we also have the esti-
mate

|b(u, v, w)| = | − b(u, w, v)|
≤ ‖u‖(L4(Ω))2‖w‖‖v‖(L4(Ω))2

≤ C‖u‖1/2|u|1/2‖w‖‖v‖1/2|v|1/2 ∀u, v, w ∈ V,

so it yields

‖B(u, v)‖∗ ≤ C‖u‖1/2|u|1/2‖v‖1/2|v|1/2 ∀u, v ∈ V. (3)

Now, let us establish some assumptions for (1).
We assume that the given delay function satisfies ρ ∈ C1([0,+∞); [0, h]), and

there exists a constant ρ∗ satisfying

ρ′(t) ≤ ρ∗ < 1 ∀ t ≥ 0. (4)

Moreover, we assume that f : [τ,+∞)×H → H satisfies the following assumptions:
(c1): f(·, v) : [τ,+∞) → H is measurable for all v ∈ H,
(c2): f(t, ·) : H → H is continuous for all t ≥ τ,
(c3): There exist functions α, β : [τ,+∞) → [0,+∞), with α ∈ Lp(τ, T ) and

β ∈ L1(τ, T ) for all T > τ, for some 1 ≤ p ≤ +∞, such that for any v ∈ H,

|f(t, v)|2 ≤ α(t)|v|2 + β(t), ∀t ≥ τ.

Let us also assume that the initial data satisfy the following condition
(c4): φ ∈ L2p′(−h, 0;H), u0 ∈ H.

Now we consider the functional formulation of problem (1), namely

u(t)+
∫ t

τ

(νAu(s)+B(u(s), u(s)))ds = u0+
∫ t

τ

f(s, u(s− ρ(s)))ds, ∀ t ≥ τ,

u(τ + t) = φ(t), a.e. t ∈ (−h, 0). (5)

2. Existence of solution.

Definition 1. A solution of (1) is a function

u ∈ L2p′(τ − h, T ;H) ∩ L2(τ, T ;V ) ∩ L∞(τ, T ;H) for all T > τ ,

such that u(τ + t) coincides with φ(t) in (−h, 0) and satisfies the equation from (5)
in V ′, for all t ≥ τ.
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Remark 1. Observe that if u is a solution of (5) then in particular Au+B(u, u) ∈
L2(τ, T ;V ′) for all T > τ . Moreover, if we define α̃(t) = g ◦ θ−1(t), where θ :
[τ,+∞) → [−ρ(τ),+∞) is the differentiable and nonnegative strictly increasing
function given by θ(s) = s− ρ(s), we obtain∫ T

τ

|f(t, u(t− ρ(t)))|2dt

≤
∫ T

τ

α(t)|u(t− ρ(t))|2dt +
∫ T

τ

β(t)dt

≤ 1
1− ρ∗

∫ T−ρ(T )

τ−ρ(τ)

α̃(t)|u(t)|2dt +
∫ T

τ

β(t)dt

≤ 1
1− ρ∗

(∫ 0

−ρ(τ)

α̃(t + τ)|φ(t)|2dt +
∫ T

τ

α̃(t)|u(t)|2dt

)
+
∫ T

τ

β(t)dt,

and therefore, taking into account that α̃ ∈ Lp(−ρ(τ), T ) for all T > τ , we have
that f(t, u(t− ρ(t))) belongs to L2(τ, T ;H) for all T > τ .

Therefore, from (5) we deduce that the derivative u′ belongs to L2(τ, T ;V ′) for
all T > τ , and this fact and u ∈ L2(τ, T ;V ) for all T > τ imply that

u ∈ C([τ,+∞);H),

and satisfies the energy equality

d

dt
|u(t)|2 + 2ν〈Au(t), u(t)〉 = 2(f(t, u(t− ρ(t))), u(t)),

in the distributions sense on (τ,+∞).

Theorem 1. Under the assumptions above, there exists a solution u to problem
(5).

Proof. We prove our result by a Faedo-Galerkin scheme and compactness method.
Without loss of generality in the sequel we assume that τ = 0. For a different value
τ we only have to proceed by translation.

Step 1. The approximating sequence. Consider the Hilbert basis of H
formed by the eigenfunctions {vk}k≥1 of A, i.e. Avk = λkvk (with {λk}k≥1 ⊂
(0,+∞)). Indeed, these elements allow to define the operator Pmv =

∑m
j=1(vk, v)vk,

which is the orthogonal projection of H and of V in Vm :=span[v1, . . . , vm] with
their respective norms.

Denote um(t) =
∑m

k=1 γmk(t)vk, where γmk(t) = (um(t), vk), k = 1, 2, ...,m, are
unknown real functions satisfying the finite-dimensional problem

(um(t), vk) + ν

∫ t

0

〈Aum(s), vk〉ds +
∫ t

0

〈B(um(s), um(s)), vk〉ds

= (u0, vk) +
∫ t

0

(f(s, um(s− ρ(s))), vk)ds, t ≥ 0, ∀ 1 ≤ k ≤ m,

um(t) = φm(t), a.e. t ∈ (−h, 0),

(6)

with φm(t) = Pmφ(t).
For the (local) well-posedness of this finite-dimensional delay problem see [12,

Sec.2.6, p.58]. Next step will provide estimates which imply that the solutions are
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well-defined in the whole [0,+∞).

Step 2. Estimates for the approximating sequence. By (6), we have

d

dt
(um(t), vk) + ν〈Aum(t), vk〉+ 〈B(um(t), um(t)), vk〉

= (f(t, um(t− ρ(t))), vk) a.e. t > 0, for all 1 ≤ k ≤ m. (7)

Multiplying (7) by (um(t), vk), summing from k = 1 to k = m, and using (2), we
easily obtain

d

dt
|um(t)|2 + 2ν‖um(t)‖2 = 2(f(t, um(t− ρ(t))), um(t)) a.e. t > 0. (8)

Now observe that by (c3) and the Young inequality,

2(f(t, um(t− ρ(t))), um(t))
≤ 2|f(t, um(t− ρ(t)))||um(t)|
≤ 2(α1/2(t)|um(t− ρ(t))|+ β1/2(t))|um(t)|

≤ ν(1− ρ∗)|um(t− ρ(t))|2 +
(

1 +
α(t)

ν(1− ρ∗)

)
|um(t)|2 + β(t).

Using this inequality in (8), and observing that∫ t

0

|um(s− ρ(s))|2ds ≤ 1
1− ρ∗

∫ t−ρ(t)

−ρ(0)

|um(s)|2ds

≤ 1
1− ρ∗

(∫ 0

−h

|φ(s)|2ds +
∫ t

0

|um(s)|2ds

)
,

we obtain

|um(t)|2 + 2ν

∫ t

0

‖um(s)‖2ds

≤ |u0|2 +
∫ T

0

β(s)ds + ν

∫ 0

−h

|φ(s)|2ds +
∫ t

0

(
1 + ν +

α(s)
ν(1− ρ∗)

)
|um(s)|2ds,

for all 0 ≤ t ≤ T .
From this inequality and Gronwall lemma one has that

{um} is bounded in L2(0, T ;V ) ∩ L∞(0, T ;H) for any T > 0. (9)

Finally, taking into account (9), from Remark 1 and the fact that, by the choice
of the basis, ‖Pm‖L(V ) ≤ 1 for all m ≥ 1, we deduce that {(um)′} is bounded in
L2(0, T ;V ′).

Step 3. Passing to the limit.
From the above estimates, the compactness of the injection of V in H, and the

Aubin theorem (see [14] or [20] or [1]) we obtain that there exist a subsequence of
um (that we relabel the same) and a function u ∈ L2p′(−h, T ;H) ∩ L∞(0, T ;H) ∩
L2(0, T ;V ) for all T > 0, with u = φ in (−h, 0), and the derivative u′ ∈ L2(0, T ;V ′)
for all T > 0, such that, among other things,

um ⇀ u weakly in L2(0, T ;V ), for all T > 0, (10)

um → u in L2p′(−h, 0;H) and in L2(0, T ;H), for all T > 0,



6 P. MARÍN-RUBIO & J. REAL

and
um(t) → u(t), in H a.e. t > −h. (11)

By (10), it is evident that Aum ⇀ Au weakly in L2(0, T ;V ′).
On the other hand, reasoning as in [14, p.76], we have that

〈B(um(t), um(t)), vk〉 ⇀ 〈B(u(t), u(t)), vk〉 weakly in L2(0, T ), ∀ k ≥ 1.

Finally, observe that by (11), (c2) and (4), for any T > 0

f(t, um(t− ρ(t))) → f(t, u(t− ρ(t))) in H a.e. in (0, T ), (12)

and as {um} is bounded in L∞(0, T ;H), by (c3) we have

|f(t, um(t− ρ(t)))|2 ≤

{
α(t)C2 + β(t) if t− ρ(t) > 0,

α(t)|φ(t− ρ(t))|2 + β(t) if t− ρ(t) < 0,
(13)

with C = sup
m≥1

‖um‖L∞(0,T ;H).

From (12) and (13) we obtain that

f(t, um(t− ρ(t))) → f(t, u(t− ρ(t))) in L2(0, T ;H).

It is now easy to pass to the limit and to prove that u is a solution of (5).

Remark 2. The uniqueness of u is not guaranteed unless we assume additional
assumptions on f . For example, in Theorem 1, if we assume that f satisfies (c1),
(c3), (c4), and it exists γ : [0,+∞) → [0,+∞) such that γ ∈ L1(0, T ) for all T > 0
and

(c5) for all R > 0 exists L(R) > 0 such that if |u| ≤ R, |v| ≤ R, then

|f(t, u)− f(t, v)| ≤ L(R)γ1/2(t)|u− v| ∀ t ≥ 0,

then we can assure the uniqueness of solution to problem (5).

3. Recent abstract results on pullback attractors. In order to analyze the
existence of pullback attractors for our model, we need to recall briefly some results
on the abstract theory.

The results in this section are a combination of two difficulties (involved in our
model). On the one hand, we aim to study non-autonomous dynamical systems
as they appear in [5, 17], but in these references the framework is single-valued
(uniqueness of solution holds). On the other hand, some classical multi-valued
results on dynamical systems (see e.g. [19]) are stated in an autonomous framework.
We recall that some sort of results for the combination of these ingredients appear
in [6, 7] but not completely adapted to the sharp conditions involving a family
depending on time. Our results here are related to those in [3], although the
presentation there is random instead of deterministic (which is our case); some of
them, but for a universe without relating it with that of fixed bounded sets, are
also exposed in [4]. Since proofs are very similar to those in [17], for the sake of
brevity we omit them.

Consider a metric space (X, d) and denote by P(X) the class of nonempty subsets
of X. As usual, let us denote by dist(C1, C2) the Hausdorff semidistance between
C1 and C2, i.e.

dist(C1, C2) = sup
x∈C1

inf
y∈C2

d(x, y) for C1, C2 ⊂ X.
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Definition 2. A multi-valued process U is a family of mappings U(t, τ) : X →
P(X) for any pair τ ≤ t of real numbers, such that it satisfies

U(t, τ)x ⊂ U(t, r)U(r, τ)x, ∀x ∈ X,∀τ ≤ r ≤ t.

If the above relation is not only an inclusion but an equality, we say that the
multi-valued process is strict.

Remark 3. In our model, the multi-valued process will be strict. The case of only
an inclusion in Definition 2 is useful, for instance, when dealing with 3D-Navier-
Stokes equations, e.g. cf. [13].

Consider given a family D̂0 = {D0(t) : t ∈ R} ⊂ P(X).

Definition 3. A multi-valued process U is D̂0−asymptotically compact if for any
t ∈ R, any sequences {τn} with τn → −∞, {xn} with xn ∈ D0(τn), and {ξn} with
ξn ∈ U(t, τn)xn, the sequence {ξn} is relatively compact in X.

Denote

Λ(D̂0, t) :=
⋂
s≤t

⋃
τ≤s

U(t, τ)D0(τ), ∀t ∈ R. (14)

Proposition 1. If U is a multi-valued process D̂0−asymptotically compact, then
the sets Λ(D̂0, t) defined by (14) are nonempty compact subsets of X.

Moreover, Λ(D̂0, t) attracts in a pullback sense to D̂0 at time t, i.e.

lim
τ→−∞

dist(U(t, τ)D0(τ),Λ(D̂0, t)) = 0.

Indeed, it is the minimal closed set with this property.

Definition 4. The family D̂0 = {D0(t) : t ∈ R} is said pullback-absorbing for a
multi-valued process U if for every t ∈ R and every bounded subset B of X, there
exists τ(t, B) ≤ t such that

U(t, τ)B ⊂ D0(t), ∀τ ≤ τ(t, B).

Proposition 2. Consider a multi-valued process U and a family D̂0 = {D0(t) :
t ∈ R} which is pullback-absorbing for U. Assume also that U is D̂0−asymptotically
compact. Then for any bounded set B of X it holds that

lim
τ→−∞

dist(U(t, τ)B,Λ(D̂0, t)) = 0.

Definition 5. Let be given a multi-valued process U. A family A = {A(t) : t ∈
R} ⊂ P(X) is said to be a pullback attractor for U if t ∈ R the set A(t) is compact
and attracts at time t to every bounded set B of X in pullback sense, i.e.

lim
τ→−∞

dist(U(t, τ)B,A(t)) = 0.

It is clear that with the above weak definition of a pullback attractor, it has not
to be unique. However, it can be considered unique in the sense of minimal, i.e.
the minimal closed family with such property. In this way, we have the following
result.
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Theorem 2. Consider a multi-valued process U and a family D̂0 which is pullback
absorbing for U, and assume that U is D̂0−asymptotically compact. Then, for any
bounded subset B of X and any t ∈ R, the set

Λ(B, t) =
⋂
s≤t

⋃
τ≤s

U(t, τ)B

is a nonempty compact subset contained in Λ(D̂0, t), which attracts to B in a pull-
back sense. Indeed, it is the minimal closed set with this property.

Moreover,

A(t) =
⋃

B bounded

Λ(B, t)

is a pullback attractor (contained in Λ(D̂0, t)).

Corollary 1. Under the assumptions of Theorem 2, if there exists a time T ∈ R
such that ∪t≤T D0(t) is bounded, then

A(t) =
⋃

B bounded

Λ(B, t) = Λ(D̂0, t) ∀t ≤ T.

If we introduce a continuity assumption, we are able to precise an additional
property. Namely, while in the single-valued case the continuity of the flow provides
(non-autonomous) invariance, in the multi-valued case, the most natural notion of
continuity, upper semi continuity, provides negatively invariance of the omega limit
sets and the attractor. Concretely, we have the following

Definition 6. A multi-valued process U on X is said upper semi continuous (u.s.c.
for short) if for all t ≥ τ, the mapping U(t, τ) is u.s.c. from X into P(X), i.e., given a
converging sequence xn → x in X, for any sequence {yn} such that yn ∈ U(t, τ)xn

for all n, there exists a subsequence of {yn} converging in X to an element of
U(t, τ)x.

Proposition 3. Consider a family D̂0 and a multi-valued process U which is
D̂0−asymptotically compact and u.s.c. Then, the family {Λ(D̂0, t) : t ∈ R} is
negatively invariant, i.e.

Λ(D̂0, t) ⊂ U(t, τ)Λ(D̂0, τ) ∀t ≥ τ.

For any bounded set B of X, the family {Λ(B, t) : t ∈ R} is also negatively
invariant. Finally, the family

A(t) =
⋃

Bbounded

Λ(B, t)

is also negatively invariant.

Now we briefly recall the analogous concept to assure the existence of attractor
in a given universe. Let us consider D a class of sets parameterized in time, D̂ =
{D(t) : t ∈ R} ⊂ P(X).

Definition 7. A multi-valued process U is pullback D−asymptotically compact
if for any t ∈ R, any D̂ ∈ D, any sequences {τn} with τn ≤ t and τn → −∞,
{xn} with xn ∈ D(τn), and {ξn} with ξn ∈ U(t, τn)xn, this last sequence {ξn} is
relatively compact.
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Proposition 4. Let be given a universe D. If U is a multi-valued process D−asymp-
totically compact, then for any D̂ ∈ D and any t ∈ R, the set Λ(D̂, t) is a nonempty
compact set of X that attracts to D̂ at time t in a pullback sense. Indeed it is
the minimal closed set with such property. If U is also strong-weak u.s.c., then
{Λ(D̂, t) : t ∈ R} is negatively invariant.

Definition 8. A family D̂0 = {D0(t) : t ∈ R} is said pullback D−absorbing for
U if for any t ∈ R and any D̂ ∈ D, there exists τ(D̂, t) ≤ t such that

U(t, τ)D(τ) ⊂ D0(t) ∀τ ≤ τ(D̂, t).

This definition may help to weaken the assumptions of the above proposition as
we show now (although in applications there is usually no difference on obtaining
D̂0−asymptotic compactness and D−asymptotic compactness when D̂0 ∈ D).

Theorem 3. Assume that D̂0 is pullback D−absorbing for a multi-valued process
U, which is also D̂0−asymptotically compact. Then all thesis in Proposition 4 hold.

Moreover, the family AD = {AD(t) : t ∈ R} given by AD(t) = Λ(D̂0, t) satisfies
the following properties:

1. For each t ∈ R, the set AD(t) is compact.
2. AD attracts pullback to any D̂ ∈ D.
3. If U is u.s.c., AD is negatively invariant.
4. AD(t) =

⋃
D̂∈D Λ(D̂, t).

5. If D̂0 ∈ D, AD is the minimal family of closed sets that attracts pullback to
elements of D.

6. If D̂0 ∈ D, each D0(t) is closed and the universe D is inclusion-closed, then
AD ∈ D and it is the only family of D satisfying properties 1, 2 and 3 above.

Corollary 2. Assume that D̂0 is pullback D−absorbing for a multi-valued process
U, which is also D̂0−asymptotically compact. If D contains the families of fixed
bounded sets, then A = {A(t) : t ∈ R} with

A(t) =
⋃

B bounded

Λ(B, t)

is well-defined, it is the minimal pullback attractor of bounded sets, and A(t) ⊂
AD(t) for all t ∈ R.

Corollary 3. Under the assumptions of Corollary 2, if there exists T ∈ R such
that ∪t≤T D0(t) is bounded, then A(t) = AD(t) for all t ≤ T.

4. Existence of attractors. Our goal in this section is to analyze the asymptotic
behaviour of the problem (1). As long as the delay operator may contain explicit
terms depending on time, we will seek for conditions to assure the existence of
pullback attractors.

We carry at the same time the analysis in two senses, according to the abstract
theory introduced in Section 3. The first one is devoted to pullback attractors of
fixed bounded sets, which is the most usual framework, but with the peculiarity
that uniqueness is unknown and so the approach is multi-valued. Second aspect is
concerned with how to extend the previous results to the more recent framework of
pullback attractors in a universe of families of time dependent sets with a tempered
growth condition.
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First at all, we have to extend the assumptions given in Section 1, which roughly
speaking are now assumed to be satisfied in any interval of the form [τ,+∞) (since
we need now to be able to take limits when τ → −∞).

Hereafter we assume the following assumptions for f :
(c1’): f(·, v) : R → H is measurable for all v ∈ H,
(c2’): f(t, ·) : H → H is continuous for all t ∈ R,
(c3’): There exist nonnegative functions α, β : R → [0,+∞), with α ∈ Lp

loc(R)
for some 1 ≤ p ≤ +∞, and β ∈ L1

loc(R) such that for any v ∈ H,

|f(t, v)|2 ≤ α(t)|v|2 + β(t), ∀t ≥ τ.

We have different options for constructing a multi-valued semiflow, for instance
M2p′

H = H × L2p′(−h, 0;H) and CH = C([−h, 0];H) are valid choices as phase-
spaces.

Denote D(τ, u0, φ) the set of global solutions of (1) in [τ,+∞) with initial datum
(u0, φ) ∈ M2p′

H .

Then, after Theorem 1 we may define two processes, (M2p′

H , {U(·, ·)}) as

U(t, τ)(u0, φ) = {ut : u ∈ D(τ, u0, φ)}, ∀ (u0, φ) ∈ M2p′

H ,

and (CH , {U(·, ·)}) as

U(t, τ)φ = {ut : u ∈ D(τ, φ(0), φ)} ∀φ ∈ CH .

Indeed, thanks to the regularity of the problem, the asymptotic behaviour of both
processes will be the same, as we will see below.

From now on, for any δ > 0, we denote

κδ(t, s) = (νλ1 − δ)(t− s)− eνλ1h

νλ1(1− ρ∗)

∫ t

s

α(σ)dσ ∀ t, s ∈ R. (15)

It is easy to see that

−κδ(t, s) = κδ(0, t)− κδ(0, s) ∀ t, s ∈ R, (16)

and if 0 < δ < νλ1, then

κδ(0, r) ≤ κδ(0, t) + (νλ1 − δ)h ∀r ∈ [t− h, t]. (17)

Lemma 1. Under the assumptions (c1’)-(c3’), for any δ > 0, any (u0, φ) ∈ M2p′

H

and any u ∈ D(τ, u0, φ), it hold

|u(t)|2 ≤
(
|u0|2 + νλ1

∫ 0

−h

eνλ1s|φ(s)|2ds

)
e−κδ(t,τ) + δ−1

∫ t

τ

e−κδ(t,s)β(s)ds. (18)

and

ν

∫ t

τ

eνλ1s‖u(s)‖2ds

≤
{(

|u0|2 + νλ1

∫ 0

−h

eνλ1s‖φ(s)‖2ds

)
e−κδ(0,τ) + δ−1

∫ t

τ

e−κδ(0,s)β(s)ds

}
×
[
eνλ1t+κδ(0,t) + νλ1δ

−1 + νλ1

∫ t

0

eνλ1s+κδ(0,s) ds

]
, (19)

for all t ≥ τ.
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Proof. Consider u ∈ D(τ, u0, φ). By the energy equality and the Poincaré inequality,
we deduce that

d

dt
|u(t)|2 + νλ1|u(t)|2 + ν‖u(t)‖2 ≤ 2(f(t, u(t− ρ(t))), u(t)).

So, using the Young inequality we arrive to

d

dt
(eνλ1t|u(t)|2) + νeνλ1t‖u(t)‖2

≤ 2eνλ1t|f(t, u(t− ρ(t)))||u(t)|
≤ 2eνλ1t(α1/2(t)|u(t− ρ(t))|+ β1/2(t))|u(t)|
≤ C−1

∗ eνλ1t|u(t− ρ(t))|2 + (C∗α(t) + δ) eνλ1t|u(t)|2

+δ−1eνλ1tβ(t), (20)

where for short we have denoted

C∗ =
eνλ1h

νλ1(1− ρ∗)
.

Taking into account that

∫ t

τ

eνλ1s|u(s− ρ(s))|2ds

≤ eνλ1h

1− ρ∗

∫ t

τ−h

eνλ1r|u(r)|2dr

=
eνλ1h

1− ρ∗

(
eνλ1τ

∫ 0

−h

eνλ1r|φ(r)|2dr +
∫ t

τ

eνλ1r|u(r)|2dr

)
,

integrating (20) in [τ, t], we obtain

eνλ1t|u(t)|2 + ν

∫ t

τ

eνλ1s‖u(s)‖2ds

≤ eνλ1τCτ +
∫ t

τ

(C∗α(r) + δ + νλ1)eνλ1r|u(r)|2dr

+δ−1

∫ t

τ

eνλ1rβ(r)dr, (21)

where again for short we have denoted

Cτ = |u0|2 + νλ1

∫ 0

−h

eνλ1r|φ(r)|2dr.

Applying the Poincaré inequality and the Gronwall lemma, we may conclude that
(18) holds.
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For the proof of (19), observe that using (18) in (21), we also deduce that

ν

∫ t

τ

eνλ1s‖u(s)‖2ds

≤ eνλ1τCτ + δ−1

∫ t

τ

eνλ1sβ(s)ds (22)

+
∫ t

τ

(C∗α(s) + δ + νλ1)

×
[
Cτeνλ1τe

∫ s
τ
(C∗α(r)+δ)dr + δ−1

∫ s

τ

eνλ1r+
∫ s

r
(C∗α(σ)+δ)dσβ(r)dr

]
ds.

Now, observe that∫ t

τ

(C∗α(s) + δ)e
∫ s

τ
(C∗α(r)+δ)dr ds = e

∫ t
τ
(C∗α(r)+δ)dr − 1, (23)

and

eνλ1τ

∫ t

τ

e
∫ s

τ
(C∗α(r)+δ)dr ds

= e−κδ(0,τ)

∫ t

τ

eδs+C∗
∫ s
0 α(r)dr ds

≤ e−κδ(0,τ)

[∫ 0

−∞
eδs+C∗

∫ s
0 α(r)dr ds +

∫ t

0

eδs+C∗
∫ s
0 α(r)dr ds

]
≤ e−κδ(0,τ)

[∫ 0

−∞
eδs ds +

∫ t

0

eδs+C∗
∫ s
0 α(r)dr ds

]
= e−κδ(0,τ)

[
δ−1 +

∫ t

0

eνλ1s+κδ(0,s) ds

]
. (24)

On the other hand, applying the Fubini theorem and integrating, we have

∫ t

τ

(C∗α(s) + δ + νλ1)
[∫ s

τ

eνλ1r+
∫ s

r
(C∗α(σ)+δ)dσβ(r)dr

]
ds

=
∫ t

τ

(C∗α(s) + δ + νλ1)e
∫ s
0 (C∗α(σ)+δ)dσ

[∫ s

τ

e−κδ(0,r)β(r)dr

]
ds

=
∫ t

τ

e−κδ(0,r)β(r)
[∫ t

r

(C∗α(s) + δ + νλ1)e
∫ s
0 (C∗α(σ)+δ)dσds

]
dr

=
∫ t

τ

e−κδ(0,r)β(r)
[
e
∫ t
0 (C∗α(σ)+δ)dσ − e

∫ r
0 (C∗α(σ)+δ)dσ

+νλ1

∫ t

r

e
∫ s
0 (C∗α(σ)+δ)dσds

]
dr. (25)

Finally, observe that

∫ t

r

e
∫ s
0 (C∗α(σ)+δ)dσds ≤

∫ t

−∞
e
∫ s
0 (C∗α(σ)+δ)dσds

≤ δ−1 +
∫ t

0

e
∫ s
0 (C∗α(σ)+δ)dσds. (26)
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From (22)-(26) we deduce (19).

Hereafter we assume that

lim sup
t→−∞

1
t

∫ t

0

α(r)dr = ᾱ ∈ [0,+∞), (27)

and there exists δ > 0 such that

ᾱeνλ1h

νλ1(1− ρ∗)
+ δ < νλ1, (28)

and β satisfies ∫ 0

−∞
e−κδ(0,s)β(s)ds < +∞, (29)

where κδ(t, s) is the function given by (15).

Remark 4. (i) Sufficient conditions to assure (27) and (28) for some δ > 0, are
α ∈ L∞(−∞, 0) and

−νλ1 +
eνλ1h

νλ1(1− ρ∗)
‖α‖L∞(−∞,0) < 0.

(ii) Another different sufficient condition, just using Young inequality, to assure
(27) and (28) for some δ > 0, is that α ∈ Lq(−∞, 0) for some q ∈ [1,+∞). In this
case, ᾱ = 0.

After the above assumptions, we introduce the definition of the two natural
tempered universes that will play an essential role in the following.

Definition 9 (Tempered universes). Let Rδ be the set of all functions r : R →
[0,+∞) such that

lim
t→−∞

e−κδ(0,t)r2(t) = 0.

We will denote by Dδ

M2p′
H

the class of all families D̂ = {D(t) : t ∈ R} ⊂ P(M2p′

H )

such that D(t) ⊂ B
M2p′

H

(0, rD̂(t)), for some rD̂ ∈ Rδ.

Analogously, we will denote by Dδ
CH

the class of all families D̂ = {D(t) : t ∈
R} ⊂ P(CH) such that D(t) ⊂ B

M2p′
H

(0, rD̂(t)), for some rD̂ ∈ Rδ.

Remark 5. Notice that Dδ
CH

⊂ Dδ

M2p′
H

and that both are inclusion-closed. More-

over, thanks to (27) and (28), for any fixed bounded set B0 ⊂ M2p′

H , the family
B̂ = {B(t) ≡ B0 : t ∈ R} is contained in Dδ

M2p′
H

and analogous observation w.r.t.

Dδ
CH

if B0 ⊂ CH . In other words, the universe of fixed bounded sets is contained in
the universes Dδ

CH
and Dδ

M2p′
H

, and so the results that hold for these two tempered

universes also hold for the universe of fixed bounded sets.

Proposition 5. Under the assumptions (c1’)-(c3’), assume that also (27)-(29)
hold. Then, for any family B̂ = {B(t) : t ∈ R} ∈ Dδ

M2p′
H

and any t ∈ R, there

exists τ(B̂, t) ≤ t such that any function u ∈ D(τ, u0, φ), with τ ≤ τ(B̂, t) and
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(u0, φ) ∈ B(τ), satisfies that |u(t)| ≤ RH(t), where RH(·) is the positive continuous
function given by

R2
H(t) = 1 + δ−1

∫ t

−∞
e−κδ(t,s)β(s)ds ∀ t ∈ R.

Proof. The result is a consequence of the definition ofDδ

M2p′
H

, Lemma 1 and (16).

Corollary 4. Under the assumptions of Proposition 5, consider the family D̂0 =
{D0(t) : t ∈ R} ⊂ P(CH) given by

D0(t) = BCH
(0, R̃H(t)) and R̃H(t) = max

r∈[t−h,t]
RH(r) ∀ t ∈ R.

Then, D̂0 ∈ Dδ
CH

and it is Dδ

M2p′
H

−pullback absorbing for the process (M2p′

H , U),

and therefore Dδ
CH
−pullback absorbing for (CH , U), and also when considering the

universe of fixed bounded sets.

Proof. It is an immediate consequence of Proposition 5 and (17).

Proposition 6. Under the assumptions of Proposition 5, the processes (M2p′

H , U)
and (CH , U) are D̂0−asymptotically compact.

Proof. Fix a value t0 ∈ R and consider a sequence {τn} ⊂ (−∞, t0 − 2h] with
τn → −∞, and a sequence {un} with un ∈ D(τn, φn(0), φn) and φn ∈ D0(τn). We
will see that {un

t0} is relatively compact in CH , so the result will be proved.
By Lemma 1, and since by (3) one has that

‖(un)′‖∗ ≤ ν‖un‖+ ‖b(un, un, ·)‖∗ + λ
−1/2
1 |f(t, un(t− ρ(t)))|,

we obtain uniform estimates, independently of n, for {un} and {(un)′} in suitable
spaces such that there exists u ∈ L∞(t0 − 2h, t0;H) ∩ L2(t0 − 2h, t0;V ) with u′ ∈
L2(t0 − h, t0;V ′), and a subsequence, relabelled the same, such that the following
convergences hold:

un ∗
⇀ u weakly-star in L∞(t0 − 2h, t0;H),

un ⇀ u weakly in L2(t0 − 2h, t0;V ),
(un)′ ⇀ u weakly in L2(t0 − h, t0;V ′),
un → u strongly in L2(t0 − 2h, t0;H),
un(s) → u(s) strongly in H a.e. s ∈ (t0 − 2h, t0).

(30)

By the assumptions on f, analogously as in Theorem 1, we also have that

f(s, un(s− ρ(s)) → f(s, u(s− ρ(s)) strongly in H a.e. s ∈ (t0 − h, t0),

and by the uniform estimate in L∞(t0 − 2h, t0;H), and the Lebesgue theorem,

f(s, un(s− ρ(s))) → f(s, u(s− ρ(s))) strongly in L2(t0 − h, t0;H).

Then we can deduce that u ∈ C([t0 − h, t0];H) and

u(t) +
∫ t

t0−h

(νAu(s) + B(u(s), u(s))) ds

= u(t0 − h) +
∫ t

t0−h

f(s, u(s− ρ(s))) ds, ∀ t ∈ [t0 − h, t0].
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On other hand, the uniform estimate of {(un)′} in L2(t0 − h, t0;V ′) means that
{un} is equi-continuous in V ′ in the interval [t0−h, t0], and since {un} is uniformly
bounded in L∞(t0 − h, t0;H) (indeed in C([t0 − h, t0];H)), by the Ascoli-Arzelà
theorem, in particular, we conclude that

un → u strongly in C([t0 − h, t0];V ′). (31)

Again from the uniform bound for {un} in C([t0 − h, t0];H), we know that

un(s) ⇀ u(s) weakly in H ∀s ∈ [t0 − h, t0],

where we have used (31) to identify the weak limit. Indeed, using the same argument
we have a stronger property:

un(sn) ⇀ u(s) weakly in H, ∀{sn} ⊂ [t0 − h, t0] : sn → s ∈ [t0 − h, t0]. (32)

Our goal is to show that

un → u strongly in C([t0 − h, t0];H).

Using that u ∈ C([t0−h, t0];H), if the above convergence does not hold, then there
would exist a value ε > 0, a sequence (relabelled the same) {tn} ⊂ [t0 − h, t0],
and t∗ ∈ [t0 − h, t0] with tn → t∗ such that ‖un(tn) − u(t∗)‖ ≥ ε for all n ≥ 1.
However, we will see that un(tn) → u(t∗) in H. To prove this last claim, since we
have (32), we only need the convergence of the norms above, i.e. |un(tn)| → |u(t∗)|
as n → +∞.

Observe that by (32) we know that

|u(t∗)| ≤ lim inf
n→+∞

|un(tn)|.

So, we have to prove that

lim sup
n→+∞

|un(tn)| ≤ |u(t∗)|. (33)

To check this, we use an energy method (cf. e.g. [13]).
From the energy equality, we have that

1
2
|z(t)|2 + ν

∫ t

s

‖z(r)‖2dr (34)

=
1
2
|z(s)|2 +

∫ t

s

(f(r, z(r − ρ(r))), z(r))dr, ∀ t0 − h ≤ s ≤ t ≤ t0,

where z can be u or any un.
Consider now the continuous functions defined for t ∈ [t0 − h, t0] :

J(t) =
1
2
|u(t)|2 −

∫ t

t0−h

(f(r, u(r − ρ(r))), u(r))dr,

Jn(t) =
1
2
|un(t)|2 −

∫ t

t0−h

(f(r, un(r − ρ(r))), un(r))dr.

From the equality (34), it is clear that J and Jn are non-increasing functions.
Moreover, by the convergences (30) above, we have that

Jn(t) → J(t) a.e. t ∈ (t0 − h, t0). (35)

We are now ready to prove that (33) holds.
Assume that t∗ > t0 − h. This is not a restriction, because if necessary we can

modify all the argument to an interval [t0 − h − 1, t0]. Now, consider a sequence
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{t̃k} ⊂ (t0 − h, t∗), with t̃k → t∗, such that (35) holds for t = t̃k. Fix an arbitrarily
small value ε > 0. By continuity of J,

∃kε : |J(t̃k)− J(t∗)| < ε/2, ∀k ≥ kε.

Take now n(kε) such that

tn ≥ t̃kε
and |Jn(t̃kε

)− J(t̃kε
)| < ε/2 ∀n ≥ n(kε).

Then, we conclude that for n ≥ n(kε)

Jn(tn)− J(t∗) ≤ |Jn(t̃kε)− J(t̃kε)|+ |J(t̃kε)− J(t∗)| < ε.

This gives (33) as desired.

Proposition 7. Under the assumptions of Proposition 5, the processes (M2p′

H , U)
and (CH , U) are Dδ

M2p′
H

−asymptotically compact and Dδ
CH
−asymptotically compact

respectively.

Proof. The ideas used in the proof of Proposition 6 are valid for any family in
Dδ

M2p′
H

, so the result follows.

Proposition 8. Under the assumptions of Proposition 5, the processes (M2p′

H , U)
and (CH , U) are upper semi continuous and U(t, τ) : M2p′

H → P(M2p′

H ) and U(t, τ) :
CH → P(CH) have compact values in their respective topologies.

Proof. Observe that in order to apply the theoretical results of Section 3 we only
need u.s.c. of the process U.

Indeed, the u.s.c. of (M2p′

H , U) follows from similar arguments to those used for
the Galerkin sequence in the proof of Theorem 1.

However, using the same energy-procedure as in Lemma 6, we are able to prove
that in [τ, t] any set of solutions (with a converging sequence as initial data in
the corresponding phase-space) possesses a converging subsequence in C([τ, t];H),
whence all claims follows.

The following two results finally show the existence of attractors for the universe
of fixed bounded sets and for Dδ

CH
and Dδ

M2p′
H

(for clarity we have treated separately

the cases of M2p′

H and CH as phase-spaces).

Theorem 4. [Attractors in the CH framework] Assume that (c’1)-(c’3) and (27)-
(29) hold. Then, there exist global pullback attractors ACH

= {ACH
(t) : t ∈ R}

and ADδ
CH

= {ADδ
CH

(t) : t ∈ R} for the process (CH , U) in the universes of fixed

bounded sets and in Dδ
CH

respectively. Moreover, they are unique (in the sense of
Theorem 3) and negatively invariant for U, and the following relation holds:

ACH
(t) ⊂ ADδ

CH

(t) ∀t ∈ R.

Proof. The results follow from applying Theorem 3 and Corollary 2, in view of
propositions 6 and 8.

Theorem 5 (Attractors in the M2p′

H framework). Under the assumptions of The-
orem 4, there exist global pullback attractors

A
M2p′

H

= {A
M2p′

H

(t) : t ∈ R} and ADδ

M
2p′
H

= {ADδ

M
2p′
H

(t) : t ∈ R}
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for the process (M2p′

H , U) in the universes of fixed bounded sets and in Dδ

M2p′
H

re-

spectively. They are unique (in the sense of Theorem 3) and negatively invariant
for U, and the following relation holds:

A
M2p′

H

(t) ⊂ ADδ

M
2p′
H

(t) ∀t ∈ R.

Moreover, they are related with the attractors obtained in Theorem 4 for (CH , U)
in the following way:

A
M2p′

H

(t) = j(ACH
(t)) and ADδ

M
2p′
H

(t) = j(ADδ
CH

(t)), (36)

where j : CH → M2p′

H is the continuous mapping defined by j(φ) = (φ(0), φ).

Proof. Indeed all the claims but (36) follow exactly as in the proof of Theorem 4.
In order to prove the first identification in (36), observe that U(t, τ) maps M2p′

H

into CH if t ≥ τ + h, and bounded sets from M2p′

H goes to bounded sets of CH

(these claims are both consequences of Theorem 1).
The inclusion A

M2p′
H

(t) ⊂ j(ACH
(t)) follows since A

M2p′
H

(t) is the minimal closed

set with the property of attracting in pullback sense to bounded sets in M2p′

H , and
from the above arguments we have that j(ACH

(t)) also attracts in pullback sense
to bounded sets in M2p′

H .
The opposite inclusion,

A
M2p′

H

(t) ⊃ j(ACH
(t)) (37)

follows from the continuous injection j(CH) ⊂ M2p′

H and the construction of the
attractor

ACH
(t) =

⋃
B⊂CH

bounded

ΛCH
(B, t)

CH

,

(where we have denoted ΛCH
(·, ·) the omega-limit construction in the space CH to

distinguish from the case of phase space M2p′

H , which we will denote Λ
M2p′

H

(·, ·))
and so

j(ACH
(t)) ⊂

⋃
B⊂CH

bounded

j(ΛCH
(B, t))

M2p′
H

.

And finally it is obvious that for each bounded set B ⊂ CH , one has that

j(ΛCH
(B, t)) = Λ

M2p′
H

(j(B), t),

whence (37) follows.
The second identification in (36) can be proved analogously.
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Linéaires, Dunod, Paris, 1969.

[15] (0771394) A. Z. Manitius, Feedback controllers for a wind tunnel model involving a delay:

analytical design and numerical simulation, IEEE Trans. Automat. Control 29 (1984), 1058–
1068.
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