H^2-boundedness of the pullback attractors for non-autonomous 2D-Navier-Stokes equations in bounded domains

Julia García-Luengo, Pedro Marín-Rubio, José Real

Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080 Sevilla, Spain

Abstract

We prove some regularity results for the pullback attractors of a non-autonomous 2D-Navier-Stokes model in a bounded domain Ω of \mathbb{R}^2. We establish a general result about $(H^2(\Omega))^2 \cap V$-boundedness of invariant sets for the associate evolution process. Then, as a consequence, we deduce that, under adequate assumptions, the pullback attractors of the non-autonomous 2D-Navier-Stokes equations are bounded not only in V but also in $(H^2(\Omega))^2$.

Key words: 2D-Navier-Stokes equations, pullback attractors, invariant sets, H^2-regularity.
Mathematics Subject Classifications (2010): 35B41, 35B65, 35Q30

* Corresponding author: José Real

This work has been partially supported by Ministerio de Ciencia e Innovación (Spain) under project MTM2008-00088, and Junta de Andalucía grant P07-FQM-02468. J.G.-L. is a fellow of Programa de FPU del Ministerio de Educación.

Email addresses: luengo@us.es (Julia García-Luengo), pmr@us.es (Pedro Marín-Rubio), jreal@us.es (José Real).
1 Introduction and setting of the problem

Let us consider the following problem for a non-autonomous 2D-Navier-Stokes system:

\[
\begin{aligned}
\frac{\partial u}{\partial t} - \nu \Delta u + (u \cdot \nabla)u + \nabla p &= f(t) \quad \text{in} \quad \Omega \times (\tau, +\infty), \\
\nabla \cdot u &= 0 \quad \text{in} \quad \Omega \times (\tau, +\infty), \\
u > 0 \quad \text{and} \quad \Omega \subset \mathbb{R}^2 \quad \text{is a bounded open set}, \quad \text{with regular boundary} \quad \partial \Omega, \\
u > 0 \quad \text{is the kinematic viscosity,} \quad u \quad \text{is the velocity field of the fluid,} \\
p \quad \text{the pressure,} \quad \tau \in \mathbb{R} \quad \text{is a given initial time,} \\
\Omega \subset \mathbb{R}^2 \quad \text{is a given external force field.}
\end{aligned}
\]

(1)

where \(\Omega \subset \mathbb{R}^2 \) is a bounded open set, with regular boundary \(\partial \Omega \), the number \(\nu > 0 \) is the kinematic viscosity, \(u \) is the velocity field of the fluid, \(p \) the pressure, \(\tau \in \mathbb{R} \) is a given initial time, \(u_\tau \) is the initial velocity field, and \(f(t) \) a given external force field.

To set our problem in the abstract framework, we consider the following usual abstract spaces (see [1] and [2–4]):

\[V = \{ u \in (C^\infty_0(\Omega))^2 : \text{div} \ u = 0 \}, \]

\[H = \text{the closure of} \ V \ \text{in} \ (L^2(\Omega))^2 \ \text{with inner product} \ (\cdot, \cdot) \ \text{and associate norm} \ ||\cdot||, \ \text{where for} \ u, v \in (L^2(\Omega))^2, \]

\[(u, v) = \sum_{j=1}^{2} \int_\Omega u_j(x)v_j(x)dx, \]

\[V = \text{the closure of} \ V \ \text{in} \ (H^1_0(\Omega))^2 \ \text{with scalar product} \ ((\cdot, \cdot)) \ \text{and associate norm} \ ||\cdot||, \ \text{where for} \ u, v \in (H^1_0(\Omega))^2, \]

\[((u, v)) = \sum_{i,j=1}^{2} \int_\Omega \frac{\partial u_j}{\partial x_i} \frac{\partial v_j}{\partial x_i} dx. \]

We also consider the operator \(A : V \to V' \) defined by \(\langle Au, v \rangle = ((u, v)) \). Denoting \(D(A) = (H^2(\Omega))^2 \cap V \), then \(Au = -P\Delta u, \forall u \in D(A) \), is the Stokes operator \((P \text{ is the ortho-projector from} \ (L^2(\Omega))^2 \ \text{onto} \ H) \).

Now we define the continuous trilinear form \(b \) on \(V \times V \times V \) by

\[b(u, v, w) = \sum_{i,j=1}^{2} \int_\Omega u_i \frac{\partial v_j}{\partial x_i} w_j dx, \quad \forall u, v, w \in V. \]
It is well known that
\[b(u, v, v) = 0 \quad \text{for all} \ u, v \in V. \quad (2) \]

We remember (see [2] or [3]) that there exists a constant \(C_1 > 0 \) only dependent on \(\Omega \) such that
\[|b(u, v, w)| \leq C_1 |u|^{1/2} |v|^{1/2} |w|^{1/2} |w|^{1/2}, \quad \forall u, v, w \in V, \quad (3) \]
and
\[|b(u, v, w)| \leq C_1 |Au| |v| |w|, \quad \forall u \in D(A), v \in V, w \in H, \quad (4) \]
Assume that \(u_\tau \in H \) and \(f \in L^2_{\text{loc}}(\mathbb{R}; H) \).

Definition 1.1 A solution of \((1)\) is a function \(u \in C([\tau, T]; H) \cap L^2(\tau, T; V) \) for all \(T > \tau \), with \(u(\tau) = u_\tau \), such that for all \(v \in V \),
\[
\frac{d}{dt}(u(t), v) + \nu((u(t), v)) + b(u(t), u(t), v) = (f(t), v),
\]
where the equation must be understood in the sense of \(D'(\tau, +\infty) \).

Under the conditions above (e.g. cf. [2] or [3]), there exists a unique solution \(u(\cdot) = u(\cdot; \tau, u_\tau) \) of \((1)\). Moreover, this solution \(u \) satisfies that \(u \in C([\tau + \varepsilon, T]; V) \cap L^2(\tau + \varepsilon, T; (H^2(\Omega))^2) \) for every \(\varepsilon > 0 \) and \(T > \tau + \varepsilon \). In fact, if \(u_\tau \in V \), then \(u \in C([\tau, T]; V) \cap L^2(\tau, T; (H^2(\Omega))^2) \) for every \(T > \tau \).

Therefore, we can define a process \(U = \{U(t, \tau), \ \tau \leq t\} \) in \(H \) as
\[
U(t, \tau)u_\tau = u(t; \tau, u_\tau) \quad \forall u_\tau \in H, \quad \forall \tau \leq t, \quad (6)
\]
and the restriction of this process to \(V \) is a process in \(V \).

A pullback attractor for the process \(U \) defined by \((6)\) (cf. [5–7]) is a family \(\mathcal{A} = \{A(t) : t \in \mathbb{R}\} \) of compact subsets of \(H \) such that
\begin{enumerate}
 \item [(invariance)] \(U(t, \tau)A(\tau) = A(t) \) for all \(\tau \leq t \),
 \item [(pullback attraction)] \(\lim_{\tau \to -\infty} \sup_{u_\tau \in H} \inf_{v \in A(t)} |U(t, \tau)u_\tau - v| = 0 \), for all \(t \in \mathbb{R} \), for any bounded subset \(B \subset H \).
\end{enumerate}
It can be proved (see [9]) that, under the above conditions, if in addition \(f \) satisfies
\[
\int_{-\infty}^{0} e^{\mu r} |f(r)|^2 dr < +\infty,
\]
for some \(0 < \mu < 2\nu\lambda_1 \), where \(\lambda_1 \) denotes the first eigenvalue of the Stokes operator \(A \), then there exists a pullback attractor for the process \(U \) defined by (6).

Several studies on this model have already been published (cf. [5], [8,9]). However, as far as we know, no one refers to the \(H^2 \)-regularity we will consider in this paper.

In the next section we prove some results which, in particular, imply that, under suitable assumptions, any pullback attractor \(\mathcal{A} \) for \(U \) satisfies that, for every \(t \in \mathbb{R} \) (for similar results for reaction-diffusion equations see [10], and for related results for Navier-Stokes equations see [11]).

2 \(H^2 \)-boundedness of invariant sets

In this section we prove that, under suitable assumptions, any family of bounded subsets of \(H \) which is invariant for the process \(U \), is in fact bounded in \((H^2(\Omega))^2 \cap V \).

First, we recall a result (cf. [2]) which will be used below.

Lemma 2.1 Let \(X, Y \) be Banach spaces such that \(X \) is reflexive, and the inclusion \(X \subset Y \) is continuous. Assume that \(\{u_n\} \) is a bounded sequence in \(L^\infty(t_0,T;X) \) such that \(u_n \rightharpoonup u \) weakly in \(L^q(t_0,T;X) \) for some \(q \in [1, +\infty) \) and \(u \in C^0([t_0,T];Y) \).

Then, \(u(t) \in X \) and \(\|u(t)\|_X \leq \liminf_{n \to 1} \|u_n\|_{L^\infty(t_0,T;X)} \), for all \(t \in [t_0,T] \).

For each integer \(n \geq 1 \), we denote by \(u_n(t) = u_n(t; \tau, u_\tau) \) the Galerkin approximation of the solution \(u(t; \tau, u_\tau) \) of (1), which is given by
\[
u_{nj}(t)w_j, \quad j = 1, \ldots, n,
\]
and is the solution of
\[
\begin{cases}
\frac{d}{dt} (u_n(t), w_j) + \nu((u_n(t), w_j)) + b(u_n(t), u_n(t), w_j) = (f(t), w_j), \\
(u_n(\tau), w_j) = (u_\tau, w_j) \quad j = 1, \ldots, n,
\end{cases}
\]
where \(\{w_j : j \geq 1\} \subset V \) is the Hilbert basis of \(H \) formed by the eigenvectors of the Stokes operator \(A \). Observe that by the regularity of \(\Omega \), all the \(w_j \) belong to \((H^2(\Omega))^2\).

We first prove the following result.

Proposition 2.2 Assume that \(f \in L^2_{\text{loc}}(\mathbb{R}; H) \). Then, for any bounded set \(B \subset H \), any \(\tau \in \mathbb{R} \), any \(\varepsilon > 0 \) and any \(t > \tau + \varepsilon \), the following three properties are satisfied:

i) The set \(\{u_n(r; \tau, u_\tau) : r \in [\tau + \varepsilon, t], u_\tau \in B, n \geq 1\} \), is a bounded subset of \(V \).

ii) The set of functions \(\{u_n(\cdot; \tau, u_\tau) : u_\tau \in B, n \geq 1\} \), is a bounded subset of \(L^2(\tau + \varepsilon, t; D(A)) \).

iii) The set of time derivatives functions \(\{u_n'(\cdot; \tau, u_\tau) : u_\tau \in B, n \geq 1\} \), is a bounded subset of \(L^2(\tau + \varepsilon, t; H) \).

Proof.

Let us fix a bounded set \(B \subset H \), \(\tau \in \mathbb{R} \), \(\varepsilon > 0 \), \(t > \tau + \varepsilon \), and \(u_\tau \in B \).

Multiplying by \(\gamma_{nj}(t) \) in (7), summing from \(j = 1 \) to \(n \), and using (2), we obtain

\[
\frac{1}{2} \frac{d}{d\theta} |u_n(\theta)|^2 + \nu \|u_n(\theta)\|^2 = (f(\theta), u_n(\theta)) \quad \text{a.e. } \theta > \tau. \tag{8}
\]

Observing that

\[
|(f(\theta), u_n(\theta))| \leq \frac{1}{2\nu\lambda_1} |f(\theta)|^2 + \frac{\nu\lambda_1}{2} |u_n(\theta)|^2
\]

\[
\leq \frac{1}{2\nu\lambda_1} |f(\theta)|^2 + \frac{\nu}{2} \|u_n(\theta)\|^2,
\]

from (8) we deduce

\[
\frac{d}{d\theta} |u_n(\theta)|^2 + \nu \|u_n(\theta)\|^2 \leq \frac{1}{\nu\lambda_1} |f(\theta)|^2,
\]

and integrating between \(\tau \) and \(r \),

\[
|u_n(r)|^2 + \nu \int_{\tau}^{r} \|u_n(\theta)\|^2 d\theta \tag{9}
\]

\[
\leq |u_\tau|^2 + \frac{1}{\nu\lambda_1} \int_{\tau}^{t} |f(\theta)|^2 d\theta, \quad \forall r \in [\tau, t], \forall n \geq 1.
\]

Now, multiplying in (7) by \(\lambda_j \gamma_{nj}(t) \), where \(\lambda_j \) is the eigenvalue associated to the eigenvector \(w_j \), and summing from \(j = 1 \) to \(n \), we obtain
\[
\frac{1}{2} \frac{d}{d\theta} \|u_n(\theta)\|^2 + \nu |Au_n(\theta)|^2 + b(u_n(\theta), u_n(\theta), Au_n(\theta)) = (f(\theta), Au_n(\theta)),
\] (10)
a.e. \(\theta > \tau\). Observe that
\[
| (f(\theta), Au_n(\theta)) | \leq \frac{1}{\nu} |f(\theta)|^2 + \frac{\nu}{4} |Au_n(\theta)|^2,
\]
and by (5) and Young’s inequality,
\[
|b(u_n(\theta), u_n(\theta), Au_n(\theta))| \leq C_1|u_n(\theta)|^{1/2}\|u_n(\theta)\||Au_n(\theta)|^{3/2}
\leq \frac{\nu}{4} |Au_n(\theta)|^2 + C^{(\nu)}|u_n(\theta)|^2\|u_n(\theta)\|^4,
\] (11)
where \(C^{(\nu)} = 27C_4^1(4\nu^3)^{-1}\).

Thus, from (10) we deduce
\[
\frac{d}{d\theta} \|u_n(\theta)\|^2 + \nu |Au_n(\theta)|^2 \leq \frac{2}{\nu} |f(\theta)|^2 + 2C^{(\nu)}|u_n(\theta)|^2\|u_n(\theta)\|^4,
\] (12)
a.e. \(\theta > \tau\).

From this inequality, in particular we deduce
\[
\|u_n(r)\|^2 \leq \|u_n(s)\|^2 + \frac{2}{\nu} \int_{\tau}^{r} |f(\theta)|^2 d\theta + 2C^{(\nu)} \int_{s}^{r} |u_n(\theta)|^2\|u_n(\theta)\|^4 d\theta
\]
for all \(\tau \leq s \leq r \leq t\), and therefore, by Gronwall’s lemma,
\[
\|u_n(r)\|^2 \leq \left(\|u_n(s)\|^2 + \frac{2}{\nu} \int_{\tau}^{r} |f(\theta)|^2 d\theta\right)\exp \left(2C^{(\nu)} \int_{\tau}^{r} |u_n(\theta)|^2\|u_n(\theta)\|^2 d\theta\right)
\]
for all \(\tau \leq s \leq r \leq t\).

Integrating this last inequality for \(s\) between \(\tau + \varepsilon/2\) and \(r\), we obtain
\[
(r - \tau - \frac{\varepsilon}{2}) \|u_n(r)\|^2 \leq \left(\int_{\tau}^{r} \|u_n(s)\|^2 ds + \frac{2(t - \tau)}{\nu} \int_{\tau}^{r} |f(\theta)|^2 d\theta\right)
\times \exp \left(2C^{(\nu)} \int_{\tau}^{r} |u_n(\theta)|^2\|u_n(\theta)\|^2 d\theta\right)
\]
for all \(\tau + \varepsilon/2 \leq r \leq t\), and in particular,
\[
\|u_n(r)\|^2 \leq \frac{2}{\varepsilon} \left(\int_{\tau}^{t} \|u_n(s)\|^2 \, ds + \frac{2(t - \tau)}{\nu} \int_{\tau}^{t} |f(\theta)|^2 \, d\theta \right) \exp \left(2C(\nu) \int_{\tau}^{t} |u_n(\theta)|^2 \|u_n(\theta)\|^2 \, d\theta \right)
\] (13)

for all \(\tau + \varepsilon \leq r \leq t \), for any \(n \geq 1 \).

From (9) and (13), the assertion in i) holds. Moreover, by (12),

\[
\nu \int_{\tau+\varepsilon}^{t} |Au_n(\theta)|^2 \, d\theta \leq \|u_n(\tau + \varepsilon)\|^2 + \frac{2}{\nu} \int_{\tau}^{t} |f(\theta)|^2 \, d\theta + 2C(\nu) \int_{\tau+\varepsilon}^{t} |u_n(\theta)|^2 \|u_n(\theta)\|^2 \, d\theta,
\]

and therefore, by i), the assertion in ii) holds.

On the other hand, multiplying by the derivative \(\gamma'_{nj}(t) \) in (7), and summing from \(j = 1 \) till \(n \), we obtain

\[
|u'_n(\theta)|^2 + \frac{\nu}{2} \frac{d}{d\theta} \|u_n(\theta)\|^2 + b(u_n(\theta), u_n(\theta), u'_n(\theta)) = (f(\theta), u'_n(\theta)),
\] (14)
a.e. \(\theta > \tau \).

Observing that

\[
| (f(\theta), u'_n(\theta)) | \leq \frac{1}{4} |u'_n(\theta)|^2 + |f(\theta)|^2,
\]

and by (4)

\[
|b(u_n(\theta), u_n(\theta), u'_n(\theta))| \leq C_1 |Au_n(\theta)\| u_n(\theta) \||u'_n(\theta)|
\leq \frac{1}{4} |u'_n(\theta)|^2 + C_1^2 |Au_n(\theta)|^2 \|u_n(\theta)\|^2,
\]

we obtain from (14)

\[
|u'_n(\theta)|^2 + \nu \frac{d}{d\theta} \|u_n(\theta)\|^2 \leq 2|f(\theta)|^2 + 2C_1^2 |Au_n(\theta)|^2 \|u_n(\theta)\|^2.
\]

Integrating this last inequality, we deduce that

\[
\int_{\tau+\varepsilon}^{t} |u'_n(\theta)|^2 \, d\theta \leq \nu \|u_n(\tau + \varepsilon)\|^2 + 2 \int_{\tau}^{t} |f(\theta)|^2 \, d\theta + 2C_1^2 \sup_{\theta \in [\tau + \varepsilon, t]} \|u_n(\theta)\|^2 \int_{\tau+\varepsilon}^{t} |Au_n(\theta)|^2 \, d\theta,
\]

and therefore iii) follows from i) and ii).
Corollary 2.3 Assume that \(f \in L^2_{\text{loc}}(\mathbb{R}; H) \). Then, for any bounded set \(B \subset H \), any \(\tau \in \mathbb{R} \), any \(\varepsilon > 0 \), and any \(t > \tau + \varepsilon \), the set \(\bigcup_{r \in [\tau + \varepsilon, t]} U(r, \tau)B \) is a bounded subset of \(V \).

Proof. This is a straightforward consequence of Lemma 2.1, assertion i) in Proposition 2.2, and the well known fact (e.g. cf. [1–4]) that for all \(u_\tau \in B \) the Galerkin approximations \(u_n(\cdot; \tau, u_\tau) \) converge weakly to \(u(\cdot; \tau, u_\tau) \) in \(L^2(\tau, t; V) \), and \(u(\cdot; \tau, u_\tau) \in C([\tau, t]; H) \).

Assuming additional regularity for the time derivative of \(f \), we can improve the above results.

Proposition 2.4 Assume that \(f \in W^{1,2}_{\text{loc}}(\mathbb{R}; H) \). Then, for any bounded set \(B \subset H \), any \(\tau \in \mathbb{R} \), any \(\varepsilon > 0 \), and any \(t > \tau + \varepsilon \), the following two properties are satisfied:

iv) The set of time derivatives \(\{ u'_n(r; \tau, u_\tau) : r \in [\tau + \varepsilon, t], u_\tau \in B, n \geq 1 \} \) is a bounded subset of \(H \).

v) The set \(\{ u_n(r; \tau, u_\tau) : r \in [\tau + \varepsilon, t], u_\tau \in B, n \geq 1 \} \) is a bounded subset of \(D(A) \).

Proof. Let us fix a bounded set \(B \subset H \), \(\tau \in \mathbb{R} \), \(\varepsilon > 0 \), \(t > \tau + \varepsilon \), and \(u_\tau \in B \).

As we are assuming that \(f \in W^{1,2}_{\text{loc}}(\mathbb{R}; H) \), we can differentiate with respect to time in (7), and then, multiplying by \(\gamma'_{nj}(t) \), and summing from \(j = 1 \) to \(n \), we obtain

\[
\frac{1}{2} \frac{d}{d\theta} |u'_n(\theta)|^2 + \nu |u'_n(\theta)|^2 + b(u'_n(\theta), u_n(\theta), u'_n(\theta)) = (f'(\theta), u'_n(\theta))
\]
a.e. \(\theta > \tau \).

From this inequality, taking into account that

\[
| (f'(\theta), u'_n(\theta)) | \leq \frac{\nu}{2} |u'_n(\theta)|^2 + \frac{1}{2\nu \lambda_1} |f'(\theta)|^2,
\]

and by (3)

\[
|b(u'_n(\theta), u_n(\theta), u'_n(\theta))| \leq C_1 |u'_n(\theta)||u_n(\theta)||u'_n(\theta)|
\leq \frac{\nu}{2} |u'_n(\theta)|^2 + \frac{C_2}{2\nu} |u'_n(\theta)|^2 |u_n(\theta)|^2,
\]

we deduce

\[
\frac{d}{d\theta} |u'_n(\theta)|^2 \leq \frac{1}{\nu \lambda_1} |f'(\theta)|^2 + \frac{C_2}{\nu} |u'_n(\theta)|^2 |u_n(\theta)|^2.
\]
Integrating in the last inequality,

$$|u'_n(r)|^2 \leq |u'_n(s)|^2 + \frac{1}{\nu \lambda_1} \int^t_\tau |f'(\theta)|^2 \, d\theta + \frac{C^2_1}{\nu} \int^s_\tau |u'_n(\theta)|^2 \|u_n(\theta)\|^2 \, d\theta,$$

for all $\tau \leq s \leq r \leq t$.

Thus, by Gronwall’s inequality,

$$|u'_n(r)|^2 \leq \left(|u'_n(s)|^2 + \frac{1}{\nu \lambda_1} \int^t_\tau |f'(\theta)|^2 \, d\theta\right) \exp \left(\frac{C^2_1}{\nu} \int^t_{\tau + \varepsilon/2} \|u_n(\theta)\|^2 \, d\theta\right),$$

for all $\tau + \varepsilon/2 \leq s \leq r \leq t$.

Now, integrating this inequality with respect to s between $\tau + \varepsilon/2$ and r, we obtain

$$(r - \tau - \varepsilon/2) |u'_n(r)|^2 \leq \left(\int^t_{\tau + \varepsilon/2} |u'_n(s)|^2 \, ds + \frac{t - \tau}{\nu \lambda_1} \int^t_\tau |f'(\theta)|^2 \, d\theta\right)
\times \exp \left(\frac{C^2_1}{\nu} \int^t_{\tau + \varepsilon/2} \|u_n(\theta)\|^2 \, d\theta\right),$$

for all $\tau + \varepsilon/2 \leq r \leq t$, and any $n \geq 1$. In particular, thus,

$$|u'_n(r)|^2 \leq 2 \left(\int^t_{\tau + \varepsilon/2} |u'_n(s)|^2 \, ds + \frac{t - \tau}{\nu \lambda_1} \int^t_\tau |f'(\theta)|^2 \, d\theta\right)
\times \exp \left(\frac{C^2_1}{\nu} \int^t_{\tau + \varepsilon/2} \|u_n(\theta)\|^2 \, d\theta\right),$$

for all $\tau + \varepsilon \leq r \leq t$, and any $n \geq 1$.

From this inequality and properties i) and iii) in Proposition 2.2, we obtain iv).

On the other hand, multiplying again in (7) by $\lambda_j \gamma_{nj}(t)$, and summing once more from $j = 1$ to n, we obtain

$$(u'_n(r), Au_n(r)) + \nu |Au_n(r)|^2 + b(u_n(r), u_n(r), Au_n(r)) = (f(r), Au_n(r)), \quad (15)$$

for all $r \geq \tau$. But

$$|(u'_n(r), Au_n(r))| \leq \frac{2}{\nu} |u'_n(r)|^2 + \frac{\nu}{8} |Au_n(r)|^2,$$
Therefore, taking into account (11), we deduce from (15) that
\[
\frac{\nu}{2} |Au_n(r)|^2 \leq \frac{2}{\nu} (|u'_n(r)|^2 + |f(r)|^2) + C'(\nu) |u_n(r)|^2 \|u_n(r)\|^4 \tag{16}
\]
for all \(r \geq \tau \).

Thus, since in particular \(f \in C(\mathbb{R}; H) \), from i) in Proposition 2.2, iv) and inequality (16), we deduce v).

As a direct consequence of the above, we can now establish our main results.

Theorem 2.5 Assume that \(f \in W^{1,2}_{\text{loc}}(\mathbb{R}; H) \). Then, for any bounded set \(B \subset H \), any \(\tau \in \mathbb{R} \), any \(\varepsilon > 0 \), and any \(t > \tau + \varepsilon \), the set \(\bigcup_{r \in [\tau+\varepsilon,t]} U(r,\tau)B \) is a bounded subset of \(D(A) = (H^2(\Omega))^2 \cap V \).

Proof. This follows from Lemma 2.1, Proposition 2.4, and the well known facts that \(u_n(\cdot; \tau, u_\tau) \) converges weakly to \(u(\cdot; \tau, u_\tau) \) in \(L^2(\tau,t; V) \), and \(u(\cdot; \tau, u_\tau) \) belongs to \(C([\tau+\varepsilon,t]; V) \).

Theorem 2.6 Assume that \(f \in L^2_{\text{loc}}(\mathbb{R}; H) \), and \(\hat{A} = \{ A(t) : t \in \mathbb{R} \} \) is a family of bounded subsets of \(H \), such that \(U(t,\tau)A(\tau) = A(t) \) for any \(\tau \leq t \). Then:

i) For any \(T_1 < T_2 \), the set \(\bigcup_{t \in [T_1,T_2]} A(t) \) is a bounded subset of \(V \).

ii) If moreover \(f' \in L^2_{\text{loc}}(\mathbb{R}; H) \), then for any \(T_1 < T_2 \), the set \(\bigcup_{t \in [T_1,T_2]} A(t) \) is a bounded subset of \((H^2(\Omega))^2 \cap V \).

Proof. It is enough to observe that if \(\tau < T_1 - 1 \) is fixed, then
\[
\bigcup_{t \in [T_1,T_2]} A(t) \subset \bigcup_{t \in [\tau+1,T_2]} U(t,\tau)A(\tau).
\]
Now, apply Corollary 2.3 and Theorem 2.5.
Acknowledgments

The authors would like to thank the referees for their careful reading on a previous version of the paper.

References

