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ASYMPTOTIC BEHAVIOUR OF A STOCHASTIC SEMILINEAR
DISSIPATIVE FUNCTIONAL EQUATION WITHOUT

UNIQUENESS OF SOLUTIONS

T. CARABALLO, M. J. GARRIDO-ATIENZA, B. SCHMALFUSS, AND J. VALERO

Abstract. In this work we present the existence and uniqueness of pullback

and random attractors for stochastic evolution equations with infinite delays
when the uniqueness of solutions for these equations is not required. Our

results are obtained by means of the theory of set-valued random dynamical

systems and their conjugation properties.

Dedicated to Peter E. Kloeden on his 60th birthday.

1. Introduction. In this work, we investigate the asymptotic behaviour of a sto-
chastic functional evolution equation in a separable Hilbert space H,{

du(t) + Au(t)dt = F (ut)dt + dW (t), if t ≥ 0,
u(t) = x̃0(t), if t ≤ 0,

(1)

where −A is the infinitesimal generator of a C0 contraction semigroup, F is a
non-linear term, and W is an infinite dimensional two-sided Wiener process. Our
aim is to study the qualitative properties of this problem by analyzing the exis-
tence of the so-called pullback and random attractors associated to the multivalued
non-autonomous and random dynamical systems (MNDS and MRDS for short)
generated by the solutions of (1). For interesting papers related to the theory of
these attractors we cite the works by Caraballo et al. [4], [5] and [6], Chueshov [8],
Flandoli and Schmalfuß [9], Kloeden [13], Kloeden and Schmalfuß [14], Robinson
[16], Schmalfuß [17], amongst many others.
In the recent work [3], the existence of pullback and random attractors for MNDS
and MRDS generated by the solutions of delayed random semilinear equations has
been analyzed, where the delay could be infinite. Motivated by this paper, our
intention in this work is to prove analogous results dealing with the equation (1),
where non-uniqueness of solutions may happen (and for that we consider multival-
ued systems). As in [3] we allow the delay to be equal to infinite. To establish our
results, we will transform the stochastic equation (1) into an evolution equation
without noise but with random coefficients by means of the Ornstein-Uhlenbeck
process.
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It is worth pointing out that, in this article, we not only extend the results obtained
in [3] to the stochastic situation, but also we develop a specific technique for the
equation with random coefficients, since, once we have transformed the stochastic
equation into a random one, some continuity problems appear, and, therefore, we
cannot apply directly the results in [3].
We organize this paper as follows. In Section 2, we include basic concepts on
multivalued non-autonomous and random dynamical systems as well as on their
associated attractors. In Section 3, we introduce the Ornstein-Uhlenbeck process
and discuss some important properties of this process. We then transform (1) into
a random equation, and show that we can restrict ourselves to the study of such a
random evolution equation provided that we consider a particular metric dynamical
system, in which some crucial properties for the involved processes hold.

2. Definitions and preliminaries. In the interest of brevity, in what follows we
only recall some basic definitions for set–valued non–autonomous and random dy-
namical systems, and formulate very general sufficient conditions for the existence of
a pullback attractor for these systems, which is a random set if the non–autonomous
perturbation is a noise (for a more comprehensive presentation of random dynam-
ical systems see Arnold [1] in the single-valued case, and Caraballo et al. [5] for a
generalization of this concept to the case of multivalued mappings).
A metric dynamical system (Ω,F , P, {θt}t∈R) with two-sided time R consists of a
probability space P := (Ω,F , P) and a family of transformations {θt}t∈R such that:

1. It is a one-parameter group, i.e.

θ0 = idΩ, θt+s = θtθs,∀t, s ∈ R,

2. (t, ω) ∈ R× Ω 7→ θtω is measurable,
3. P is invariant with respect to θ, i.e., θtP = P, for all t ∈ R, which means that

P(θtA) = P(A), for all A ∈ F and all t ∈ R.
In addition, we assume that the metric dynamical system is ergodic (we also say
that P is ergodic with respect to θ), i.e, for any {θt}t∈R-invariant set B ∈ F , which
means that θtB = B for all t ∈ R, we have either P(B) = 0 or P(B) = 1.
If we replace in the definition of a metric dynamical system the probability space
P by its completion Pc := (Ω, F̄ , P̄) the above measurability property given in the
second point is not true in general, see Arnold [1] Appendix A. But for fixed t ∈ R
we have that the mapping

θt : (Ω, F̄) 7→ (Ω, F̄)
is measurable.
Assume that Ω′ is a {θt}t∈R–invariant set of full measure, which is not in F but
in the completed σ–algebra F̄ . This set Ω′ could be given by all ω ∈ Ω having a
particular property. The next result, which has interest by itself, shows how then
we could consider on Ω′ a restricted metric dynamical system.

Lemma 1. Let Ω′ be a element of Pc such that P̄(Ω′) = 1. In addition, Ω′ is
supposed to be {θt}t∈R-invariant. Let FΩ′ be the trace-σ-algebra of F with respect
to Ω′, P′(A′) := P̄(A′) for A′ ∈ FΩ′ , and θ′ the restriction of θ to Ω′ × R. Then
(Ω′,FΩ′ , P′, θ′) forms a metric dynamical system such that for every A′ ∈ FΩ′ and
every A ∈ F with A′ = A ∩ Ω′ we have that P′(A′) = P(A). In addition, if
(Ω,F , P, θ) is ergodic then (Ω′,FΩ′ , P′, θ′) is also ergodic.
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Proof. Let F × B(R) be the set of rectangles F ×R, F ∈ F and R ∈ B(R) and let
σ(G) denote the σ-algebra generated by a set system G over Ω× R. Then, for the
trace σ–algebra with respect to Ω′ × R, we have that

F ⊗ B(R) ∩ (Ω′ × R) = σ(F × B(R)) ∩ (Ω′ × R) = σ((F × B(R)) ∩ (Ω′ × R))

= σ(FΩ′ × B(R)) = FΩ′ ⊗ B(R),

see Halmos [10], Theorem 5.E, where the expression on the right hand side is a
σ–algebra over Ω′ × R.
We have θ′(Ω′ × R) = Ω′. Hence, by the above equality,

(θ′)−1(A′) = (θ′)−1(A ∩ Ω′) = θ−1(A) ∩ (Ω′ × R) ∈ FΩ′ ⊗ B(R)

since θ−1(A) ∈ F ⊗ B(R). Therefore, θ′ is measurable.
Because P′(Ω′) = 1 and FΩ′ ⊂ F̄ the function P′ is a probability measure on FΩ′ .
Clearly, if A ∈ F and A′ = A∩Ω′, then P′(A′) = P̄(A∩Ω′) = P̄(A)+ P̄(Ω′)− P̄(A∪
Ω′) = P̄(A) = P(A).
In addition, P′ is invariant since, for t ∈ R and A′ ∈ FΩ′ , we have

P′(θ′tA′) = P′(θ′t(A ∩ Ω′)) = P′(θtA ∩ Ω′) = P̄(θtA ∩ Ω′) = P̄(θtA)

= P(θtA) = P(A) = P̄(A) = P̄(A ∩ Ω′) = P̄(A′) = P′(A′).

Now let A′ be a {θ′t}t∈R–invariant set in FΩ′ : A′ = θ′tA
′, for all t ∈ R. Suppose

that (Ω,F , P, θ) is ergodic. Then a simple calculation shows that

0 = P′(A′∆θtA
′) = P̄((A∆θtA) ∩ Ω′) = P̄(A∆θtA) = P(A∆θtA),

so that A is a {θt}t∈R–invariant set modulo P. Hence P(A) = P̄(A∩Ω′) = P̄(A′) =
P′(A′) = 1 or 0 by the ergodicity of P and by Arnold [1], pages 537 and 539.

Remark 2. If Ω′ ∈ F then the statements of Lemma 1 are trivial because FΩ′ ⊂ F .
If some property holds P almost surely on a {θt}t∈R–invariant set Ω′ ⊂ Ω of full
measure, then we say that this property holds θ–almost surely and we suppose that
we change the metric dynamical system in the above sense so that the property holds
for all ω ∈ Ω′. For this new metric dynamical system we will always keep the old
notation (Ω,F , P, θ).

From now on, let (X, dX) be a Polish space.
Let D : ω 7→ D(ω) be a multivalued mapping in X over P. The set of multivalued
mappings D with closed and non–empty images is denoted by C(X). Let also
denote by Pf (X) the set of all non-empty closed subsets of the space X.
A multivalued mapping is called a random set if

ω 7→ inf
y∈D(ω)

dX(x, y)

is a random variable for every x ∈ X. It is well known that a mapping is a random
set if and only if for every open set O in X the inverse image {ω : D(ω)∩O 6= ∅} is
measurable, i.e., it belongs to F (see Hu and Papageorgiou [12, Proposition 2.1.4]).
We now introduce non–autonomous and random dynamical systems.

Definition 3. A multivalued map U : R+×Ω×X → Pf (X) is called a multivalued
non–autonomous dynamical system (MNDS) if

i) U(0, ω, ·) = idX ,
ii) U(t+τ, ω, x) ⊂ U(t, θτω, U(τ, ω, x)) (cocycle property), for all t, τ ∈ R+, x ∈

X, ω ∈ Ω.
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It is called a strict MNDS if, moreover, U(t + τ, ω, x) = U(t, θτω, U(τ, ω, x)), for
all t, τ ∈ R+, x ∈ X, ω ∈ Ω.
An MNDS is called a multivalued random dynamical system (MRDS) if the multi-
valued mapping (t, ω, x) 7→ U(t, ω, x) is B(R+)⊗F ⊗ B(X) measurable, i.e.

{(t, ω, x) : U(t, ω, x) ∩ O 6= ∅} ∈ B(R+)⊗F ⊗ B(X)

for every open set O of the space X.

For the above composition of multivalued mappings we use that, for any non–empty
set Y ⊂ X, U(t, ω, Y ) is defined by

U(t, ω, Y ) =
⋃

x∈Y

U(t, ω, x).

Our first aim is to formulate a general sufficient condition ensuring that an MNDS
defines an MRDS. To do that, we introduce an appropriate concept of continu-
ity for multivalued mappings: we say that U(t, ω, ·) is upper–semicontinuous at
x0 if for every neighborhood U of the set U(t, ω, x0) there exists δ > 0 such
that if dX(x0, y) < δ then U(t, ω, y) ⊂ U . In general U(t, ω, ·) is called upper–
semicontinuous if it is upper–semicontinuous at every x0 in X.
Assuming that Ω is a Polish space, it is not difficult to extend this definition and
obtain upper–semicontinuity with respect to all variables.
The proof of the following result can be found in Caraballo et al. [3].

Lemma 4. Let Ω be a Polish space and let F be the associated Borel–σ–algebra.
Suppose that (t, ω, x) 7→ U (t, ω, x) is upper–semicontinuous. Then this mapping is
measurable in the sense of Definition 3.

In order to define the concept of attractor (both pullback and random) we need to
recall the definitions of invariance, absorption and attraction.
A multivalued mapping D is said to be negatively (resp. strictly) invariant for the
MNDS U if D(θtω) ⊂ U(t, ω,D(ω)) (resp. =), for ω ∈ Ω, t ∈ R+.
Let D be a family of multivalued mappings in C(X). We say that a family K is
pullback D-attracting if for every D ∈ D

lim
t→+∞

distX(U(t, θ−tω, D (θ−tω)),K(ω)) = 0, for all ω ∈ Ω,

where by distX(A,B) we denote the Hausdorff semi-distance of two non-empty sets
A, B:

distX(A,B) = sup
x∈A

inf
y∈B

dX(x, y).

B is said to be pullback D-absorbing if for every D ∈ D and ω ∈ Ω there exists
T = T (ω, D) > 0 such that

U(t, θ−tω, D (θ−tω)) ⊂ B(ω), for all t ≥ T. (2)

Throughout this work we always consider a particular system of sets (see Schmalfuß
[18]). Namely, let D be a set of multivalued mappings in C(X) satisfying the
inclusion closed property : suppose that D ∈ D and let D′ be a multivalued mapping
in C(X) such that D′(ω) ⊂ D(ω) for ω ∈ Ω, then D′ ∈ D. The reason to consider
such a system of sets is that then we will have a unique attractor in D.
The following two concepts are the main objects to be studied in this work.

Definition 5. A family A ∈ D is said to be a global pullback D-attractor for the
MNDS U if it satisfies:
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i) A (ω) is compact for any ω ∈ Ω;
ii) A is pullback D-attracting;
iii) A is negatively invariant.

A is said to be a strict global pullback D-attractor if the invariance property in the
third item is strict.

A natural modification of this definition for MRDS is the following.

Definition 6. Suppose that U is an MRDS and suppose that the properties of
Definition 5 are satisfied. In addition, we suppose that A is a random set with
respect to Pc. Then A is called a random global pullback D-attractor.

Remark 7. In particular, the global random attractor attracts in the pullback sense
all the random sets in D.

Remark 8. In contrast to the theory of random attractors for single valued random
dynamical systems we have weaker assumptions on the measurability of A. Of
course, it is desirable to obtain that A is a random set with respect to P, but
usually we need stronger assumptions in the applications to obtain this property.

To analyze the asymptotic behaviour of an abstract delay evolution equation with-
out uniqueness of solutions and with additive noise, we will use in this paper the
following two general results on the existence and uniqueness of pullback and ran-
dom attractors associated to MNDS and MRDS respectively. For the proofs we
refer the reader to Caraballo et al. [3].

Theorem 9. Suppose that the MNDS U(t, ω, ·) is upper–semicontinuous for t ≥ 0
and ω ∈ Ω. Let B ∈ D be a multivalued mapping such that the MNDS is asymptot-
ically compact with respect to B, i.e. for every sequence tn → +∞ and ω ∈ Ω, it
holds that every sequence yn ∈ U(tn, θ−tnω, B(θ−tnω)) is pre–compact. In addition,
suppose that B is pullback D–absorbing. Then, the set A given by

A (ω) :=
⋂
s≥0

⋃
t≥s

U (t, θ−tω, B (θ−tω)) (3)

is a pullback D-attractor. Furthermore, A is the unique element from D with these
properties. In addition, if U is a strict MNDS, then A is strictly invariant.

Lemma 10. Under the assumptions in Theorem 9, let ω 7→ U(t, ω,B(ω)) be a
random set with respect to F̄ for t ≥ 0. Assume also that U(t, ω,B(ω)) is closed
for all t ≥ 0 and ω ∈ Ω. Then the set A defined by (3) is a random set with respect
to Pc.

3. An abstract stochastic functional evolution equation. Let us consider
H = (H, ‖ · ‖, (·, ·)) a separable Hilbert space and let −A be the generator of a C0

contraction semigroup (S(t))t≥0 on H:

‖S(t)x‖ ≤ ‖x‖e−αt, for some α > 0 and every t ≥ 0.

In particular, we assume that A is a symmetric operator, positive on H and that
has a compact inverse. Then the eigenvectors of A form a complete orthonormal
system {ei}i∈N on H with spectrum λ1 < λ2 < · · · of finite multiplicity. The first
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eigenvalue is denoted by α. Assume that the operators S(t) are compact for t > 0.
We also consider the space V := D(A

1
2 ) given by

V = {u =
∑
i∈N

uiei ∈ H :
∑
i∈N

λi|ûi|2 < ∞},

equipped with the norm ‖u‖2V :=
∑

i∈N λi|ûi|2, where ûi = (u, ei).
In what follows we consider a two sided Wiener process W with covariance Q =
Q∗ ≥ 0 such that tr (A

1
2 QA

1
2 ) < ∞. Then, by the Kolmogorov test, see Kunita [15],

Theorem 1.4.1, there exists a Wiener process W with trajectories in Ω = C0(R, V ).
Ω is a topological space with respect to the compact open topology. The associated
Borel–σ–algebra is denoted by F . In addition we set

Ft = σ{W (τ, ·)−W (s, ·) : τ, s ≤ t} ⊂ F .

The canonical version of this Wiener process is a filtered probability space (Ω,F ,
{Ft}t∈R, P) where P is the Wiener measure related to W . Over this filtered prob-
ability space we also consider the measurable flow θ : R × Ω → Ω given by
θtω(·) := ω(t + ·) − ω(t), for ω ∈ Ω and t ∈ R. Note that the metric dynami-
cal system (Ω,F , P, θ) is ergodic with respect to θ [2].

Lemma 11. There exists a {θt}t∈R-invariant set Ω′ ⊂ Ω of full P-measure such
that for all ε > 0 and ω ∈ Ω′, there exists a constant C(ε, ω) such that

‖W (t, ω)‖2V ≤ ε|t|3 + C(ε, ω), (4)

for all t ∈ R.

Proof. For simplicity we only consider the case t > 0. First of all notice that we
have

‖W (t, ω)‖V

= ‖W (t, ω)−W ([t], ω) + W ([t], ω)−W ([t]− 1, ω) + W ([t]− 1, ω) + · · · − 0‖V

≤ ‖W (t, ω)−W ([t], ω)‖V + ‖W ([t], ω)−W ([t]− 1, ω)‖V + · · ·+ ‖W (1, ω)‖V

≤
[t]∑

i=0

sup
s∈[0,1]

‖θiW (s, ω)‖V . (5)

Since {W (t, ω)}t≥0 is a square integrable V -valued martingale with respect to
{Ft}t≥0 (and the same is true when considering {W (t, ω)}t<0 with respect to
{Ft}t<0), then E supt∈[−T,T ] ‖W (t, ω)‖2V < ∞, for all T > 0. Therefore,

E sup
t∈[0,1]

sup
s∈[0,1]

‖θtW (s, ω)‖2V ≤ 4E sup
t∈[0,2]

‖W (t, ω)‖2V < ∞.

Applying Arnold [1], Proposition 4.1.3. (ii), we have that sups∈[0,1] ‖θtW (s, ω)‖2V
is sublinear growing in Ω′, a {θt}t∈R-invariant set, measurable with respect to F ,
and of full P-measure. Then, from (5), for ε > 0 and ω ∈ Ω′, we have

‖W (t, ω)‖2V ≤ ([t] + 1)
[t]∑

i=0

sup
s∈[0,1]

‖θiW (s, ω)‖2V ≤ ([t] + 1)
( [t]∑

i=0

(K(ε, ω) + εi)
)

≤ ([t] + 1)2K(ε, ω) +
[t]
2

([t] + 1)2ε,

and then the result follows.
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From (4) it follows that ‖W (t, ω)‖V , t ∈ R, has subexponential growth as |t| → ∞,
so for every ε > 0 and ω ∈ Ω′, there exists a positive constant C̃(ε, ω) such that

‖W (t, ω)‖V ≤ C̃(ε, ω)eε|t|, t ∈ R.

Therefore, thanks to Lemma 1 and Remark 2, we can construct a restricted met-
ric dynamical system, which, in the sequel will be denoted with the old symbol
(Ω,F , P, θ), so that, from now on

Ω :=
{
ω ∈ C0(R, V ) : lim

t→±∞

log+‖W (t, ω)‖V

t
= 0

}
. (6)

We are interested in studying the asymptotic behaviour of the following stochastic
functional partial differential equation{

du(t) + Au(t)dt = F (ut)dt + dW (t), if t ≥ 0,
u(t) = x̃0(t), if t ≤ 0.

(7)

We define ut in the following way:

ut(s) :=
{

u(t + s) for s ∈ [−t, 0],
x̃0(s + t) for s < −t,

where t ≥ 0, and x̃0 is a given continuous function on R− with values in H.
We assume that the non–linear term F : Cγ → H is a continuous mapping such
that

‖F (u)‖ ≤ c1 + c2‖u‖γ (8)
for appropriate positive constants c1, c2, where Cγ is the space given by

Cγ := {y ∈ C((−∞, 0];H) : lim
τ→−∞

y (τ) eγτ exists},

with γ > α, and ‖y‖γ := supτ∈(−∞,0] e
γτ‖y(τ)‖ < ∞. It is known that (Cγ , ‖ · ‖γ)

is a separable Banach space (see Hino et al. [11, p.15]).
Now we consider the following linear stochastic differential equation

dz + Az dt = dW.

It is known that this equation has a unique stationary solution denoted by z∗. From
z∗ we can define the well-known stationary Ornstein-Uhlenbeck process z̄ : R×Ω →
H given by z̄(t, ω) := z∗(θtω) which can be written in the form

z̄(t, ω) =
∫ t

−∞
S(t− τ)dW (ω, τ) =

∫ 0

−∞
S(−τ)dW (θtω, τ), for t ∈ R.

We would like to study the Cauchy problem (7) by means of the classical change of
variables y(t) = u(t)− z∗(θtω), for which we firstly need to obtain some properties
for z∗(ω). Indeed, for z∗(ω) we choose the following version

z∗(ω) :=
∫ 0

−∞
S(−τ)dW (ω, τ)

= lim
t→∞

(
− S(t)W (−t) + A

∫ 0

−t

S(−τ)ω(τ)dτ
)
, (9)

where the last expression is obtained applying the integration by parts formula for
stochastic integrals.

Lemma 12. For ω ∈ Ω the limit in (9) exists in H.
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Proof. From (6) and the properties of S it is straightforward that the first term of
the right hand side of (9) tends to zero.
Let us prove that there exists (in H) limt→−∞A

∫ 0

t
S(−τ)ω(τ)dτ . Consider t1 <

t2 ≤ 0, 0 < µ < λ1 and

Cµ := sup
i∈N

λi

2(λi − µ)
. (10)

Then, denoting ω̂i(t) = (ω(t), ei), we have

‖A
∫ t2

t1

S(−τ)ω(τ)dτ‖2 =
∑
i∈N

(
A

∫ t2

t1

S(−τ)ω(τ)dτ, ei

)2

=
∑
i∈N

( ∫ t2

t1

S(−τ)ω(τ)λidτ, ei

)2

=
∑
i∈N

( ∫ t2

t1

eλiτ ω̂i(τ)λ1/2
i λ

1/2
i e−µτeµτdτ

)2

≤
∑
i∈N

( ∫ t2

t1

e2(λi−µ)τλie
µτdτ

)( ∫ t2

t1

(ω̂i(τ))2λie
µτdτ

)

≤ sup
i∈N

λi

2(λi − µ)

∫ t2

t1

∑
i∈N

|ω̂i(τ)|2λie
µτdτ = Cµ

∫ t2

t1

‖ω(τ)‖2V eµτdτ.

As
∫ 0

−∞ ‖ω(τ)‖2V eµτdτ < ∞ in Ω (where Ω is given by (6)), the conclusion follows.

Notice that, as an immediate consequence of the previous estimate, we have that

‖z∗(ω)‖2 = ‖A
∫ 0

−∞
S(−τ)ω(τ)dτ‖2 ≤ Cµ

∫ 0

−∞
‖ω(τ)‖2V eµτdτ. (11)

As we have mentioned, we study the Cauchy problem (7) by means of the change of
variables y(t) = u(t)− z∗(θtω). Then y(t) satisfies the random evolution equation

dy

dt
+ Ay = f(θtω, yt), (12)

where f(ω, ξ) := F (ξ+Z∗(·, ω)) (Z∗(·, ω) is the element of Cγ defined as Z∗(s, ω) :=
z∗(θsω), for s ≤ 0), with initial condition

y(s) = x̃0(s)− z∗(θsω) =: x0(s), for s ≤ 0. (13)

Indeed, we can express the transformation of our stochastic equation (7) into the
random evolution equation (12) by means of the following operator: for every ω ∈ Ω,
let L(ω) : Cγ → Cγ be given by

L(ω)ξ := ξ − Z∗(·, ω). (14)

Then, it is clear that yt(s) = L(θtω)ut(s) = ut(s)− z∗(θt+sω).
We observe that the map f is Caratheodory. The continuity of ξ 7→ f(ω, ξ) is
obvious, and the measurability of ω 7→ f(ω, ξ) follows from the measurability of
the map ω 7→ Z∗(·, ω) ∈ Cγ (which can be proved using the representation (9) with
standard arguments).
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For ω ∈ Ω we say that a function [0, T ] 3 t → yt ∈ Cγ is a mild solution of (12)-(13)
if

yt(s) =
{

S(t + s)x0(0) +
∫ s+t

0
S(t + s− τ)f(θτω, yτ )dτ : s ∈ [−t, 0],

x0(s + t) : s < −t.
(15)

In [3], by using the compactness of the semigroup S(t), t > 0, the existence of a mild
solution to the random equation (12)-(13) in Cγ has been established. Also it is
shown that every mild solution can be extended to a global one, that is, defined for
all T ≥ 0. Here, by a mild solution of (7) we understand the process ut defined by
means of the transformation (14) with yt given in (15), that is, ut = yt +Z∗(·, θtω),
for every t ∈ [0, T ].
As we have already mentioned, we aim to show the existence of a random attractor
for the corresponding dynamical system generated by the solutions of (7). Our next
objective is to prove that, in order to do that, we can restrict ourselves to the same
analysis but for the random evolution equation (12).
We first establish the next result which is used to obtain a conjugated MNDS to a
given MNDS.

Lemma 13. Let X be a separable Banach space, and let U be an MNDS. Suppose
that the mapping T : Ω×X → X satisfies the following properties: for fixed ω ∈ Ω
the mapping T (ω)(·) is a homeomorphism on X, and for fixed x ∈ X, the mappings
T (·)(x), T −1(·)(x) are measurable. Then, the mapping

(t, ω, x) ∈ R+ × Ω×X 7→ T −1(θtω)U(t, ω, T (ω)x) =: Ũ(t, ω, x) ∈ C(X)

is also an MNDS.
Moreover, if U is strict, then Ũ is also strict. And, if U is a MRDS, then Ũ is also
a MRDS.

Proof. The result follows from the following facts:
i) Ũ(0, ω, x) = T −1(ω)U(0, ω, T (ω)x) = T −1(ω)T (ω)x = x.
ii) For all t, τ ∈ R+, x ∈ X and ω ∈ Ω it holds

Ũ(t + τ, ω, x) = T −1(θt+τω)U(t + τ, ω, T (ω)x)

⊂ T −1(θt+τω)U(t, θτω, U(τ, ω, T (ω)x))

= T −1(θtθτω)U(t, θτω, T (θτω)Ũ(τ, ω, x))

= Ũ(t, θτω, Ũ(τ, ω, x)),

so the cocycle property holds.
The strict property follows by the same arguments.
Finally, we have to prove that

(t, ω, x) ∈ R+ × Ω×X 7→ Ũ(t, ω, x)

is measurable if U is. Since U is measurable there exists a sequence of measurable
selections of U such that

U(t, ω, x) = ∪n∈Nun(t, ω, x),

see [12], page 155. Hence

Ũ(t, ω, x) = T −1(θtω)∪n∈Nun(t, ω, T (ω)x) = ∪n∈NT −1(θtω)un(t, ω, T (ω)x)



10 T. CARABALLO, M. J. GARRIDO-ATIENZA, B. SCHMALFUSS, AND J. VALERO

is measurable, as well, where we have used standard theorems for multivalued
measurable maps (see e.g. [12, Chapter 2.2]). We note that the map

(t, ω, x) 7→ (t, ω, T (ω)x) ∈ R+ × Ω×X

is measurable, and then the composition un(t, ω, T (ω)x) is also measurable.

Let us consider the following system of sets:

D̃ := {D̃ ∈ C(Cγ) : D̃(ω) = L−1(ω)D(ω), for ω ∈ Ω, D ∈ D}, (16)

where L−1 is the inverse operator of L given by (14) (note that L−1 is well defined
and is given by L−1(ω)ξ = ξ + Z∗(·, ω), for ξ ∈ Cγ).

Theorem 14. Under the hypotheses in this section the following results hold:
i) The random evolution equation (12) with initial condition (13) possesses glob-

ally defined mild solutions which generate a strict MNDS. In particular, the
MNDS U : R+ × Ω× Cγ → Pf (Cγ) is defined by

U(t, ω, x0) := ∪yt, (17)

where this union is taken on the set of mild solutions [0,+∞) 3 t 7→ yt ∈ Cγ

such that y0 = x0.
ii) The multivalued mapping Ũ : R+ × Ω× Cγ → Pf (Cγ) defined by

Ũ(t, ω, x̃0) = L−1(θtω)U(t, ω, L(ω)x̃0)

is another strict MNDS such that Ũ(t, ω, x̃0) = ∪ut, where ut stands for any
mild solution of (7) with initial condition x̃0.

iii) There is a one-to-one correspondence between pullback attractors of U and
Ũ . In particular, if A(ω) is a (strictly invariant) pullback D-attractor of U

then Ã(ω) := L−1(ω)A(ω) is a (strictly invariant) pullback D̃-attractor of Ũ .
Conversely, if Ẽ(ω) is a (strictly invariant) pullback D̃-attractor for Ũ , then
E(ω) := L(ω)Ẽ(ω) is a (strictly invariant) pullback D-attractor for U .

Moreover, if A(ω) is random with respect to Pc, then Ã(ω) is as well, and
conversely.

Proof. The first part of this result follows from Caraballo et al. [3], since from (8)
it immediately holds that

‖f(ω, ξ)‖ ≤ c̃1(ω) + c̃2(ω)‖ξ‖γ ,

where c̃1 : Ω → R, defined by c̃1(ω) := c1 + c2‖Z∗(·, ω)‖γ , is measurable with
respect to F , integrable with respect to every finite interval and subexponentially
growing for t → ±∞. Here c̃2(ω) is simply c2.
The second part of this theorem follows from Lemma 13 taking as T the mapping
L given by (14), so that U and Ũ are conjugated MNDS, and from the definition
of mild solutions for both random and stochastic problems.
Finally we show the relation between the attractors associated to U and Ũ . Assume
that A(ω) is a pullback D-attractor for U . Then, from the continuity of L it follows
the compactness of Ã. From the negative invariance property of A we can deduce
the negative invariance for Ã:

Ã(θtω) = L−1(θtω)A(θtω) ⊂ L−1(θtω)U(t, ω,A(ω))

= L−1(θtω)U(t, ω, L(ω)Ã(ω)) = Ũ(t, ω, Ã(ω)).
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In the same way one can check that if A is strictly invariant, then Ã also is.
Consider now D̃ ∈ D̃, where D̃ is defined by (16). It follows

lim
t→+∞

distCγ (Ũ(t, θ−tω, D̃ (θ−tω)), Ã(ω))

= lim
t→+∞

distCγ (L−1(ω)U(t, θ−tω, L(θ−tω)D̃(θ−tω)), L−1(ω)A(ω))

= lim
t→+∞

distCγ (U(t, θ−tω, D(θ−tω)) + Z∗(t, ω),A(ω) + Z∗(t, ω))

= lim
t→+∞

distCγ
(U(t, θ−tω, D(θ−tω)),A(ω)) = 0, for all ω ∈ Ω,

and thus, as the set of multivalued mappings D satisfying the inclusion closed
property is attracted by A, then D̃ is attracted by Ã.
The measurability property of the attractor follows from

Ã(ω) = L−1(ω)A(ω) = L−1(ω)∪n∈Nan(ω)

= ∪n∈NL−1(ω)an(ω),

where an(ω) are measurable selections of A(ω) with respect to F .

On account of Theorem 14, we can restrict ourselves to the analysis of the existence
of attractors to the MNDS generated by the random equation (12).
In the sequel, let us consider the system D given by the multivalued mappings D
with D(ω) ⊂ BCγ

(0, %(ω)), the closed ball with center zero and radius %, which is
supposed to have a subexponential growth:

lim
t→±∞

log+ %(θtω)
t

= 0 for ω ∈ Ω.

Then, it is easily checked that, in this particular situation, the system of sets D̃
given by (16) is exactly the same as D.
To start with, we should emphasize that it is also shown in [3] that U given by
(17) satisfies that, for fixed t ≥ 0 and ω ∈ Ω, the mapping x0 7→ U(t, ω, x0) is
upper-semicontinuous. In addition, assuming that

c2 < α, (18)

U is pullback asymptotically compact with respect to B(ω) = BCγ
(0, R(ω)), the

random ball in Cγ with center zero and random radius

R(ω) := 2
∫ 0

−∞
e(α−c2)τ (c1 + c2‖Z∗(·, θτω)‖γ)dτ. (19)

Furthermore, assuming (18), it is proved that B(ω) belongs to the sets system D,
and it is a pullback D-absorbing set in the sense of (2). Hence, applying Theorem
9, the MNDS generated by (12) has a pullback strictly invariant D-attractor A in
C(Cγ).
We want to show that the MNDS is an MRDS and that its corresponding pullback
attractor is in fact a random attractor. To prove the first assertion, by Lemma 4, it
is enough to prove that U is upper-semicontinuous with respect to all its variables.
And to prove that (see the proof of Theorem 6.1 in [3]) a sufficient condition is
given in the following result:

Theorem 15. Assume that

Ω× Cγ 3 (ω, ξ) 7→ F (ξ + Z∗(·, ω)) ∈ H is continuous, (20)
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and also that, for every ω0 ∈ Ω and t0 ∈ R, there exists a neighborhood V =
V (ω0, t0) such that, for some β > 1,∫ t

0

(
(c1 + c2‖Z∗(·, θτω)‖γ)β + cβ

2

)
dτ ≤ C (ω0, t0) < ∞, (21)

for all (ω, t) ∈ V. Then, the mapping

(t, ω, x) ∈ R+ × Ω× Cγ 7→ U (t, ω, x) ∈ C(Cγ)

is upper-semicontinuous.

Moreover, according to Lemma 10, in order to prove that A is also a random
attractor associated to U , we would need to check that ω 7→ U(t, ω,B(ω)) is a
random set with respect to F̄ for t ≥ 0, for which, in view of the next lemma, a
sufficient condition is the continuous dependence of the radius R(ω) of the absorbing
multivalued set B(ω) (see the proof in [3]):

Lemma 16. In addition to (18), (20) and (21), assume that

lim sup
ω→ω0

R(ω) ≤ R(ω0) for ω0 ∈ Ω. (22)

Then, the multivalued mapping ω 7→ U(t, ω,B(ω)) is F̄ measurable for t ≥ 0. In
addition, U(t, ω,B(ω)) ∈ C(Cγ).

But the problem is that over the chosen metric dynamical system the mapping
Ω 3 ω 7→ Z∗(·, ω) ∈ Cγ is not continuous, so none of the conditions (20) and (22)
are satisfied. However, we will overcome this continuity problem by considering
Z∗(·, ω) over the following subsets ΩN : let us fix a small constant ζ satisfying that

0 < 2ζ < µ := α− c2. (23)

Consider, for N ∈ N, the sets

ΩN := {ω ∈ Ω : ‖ω(t)‖V ≤ Neζ|t|, for t ∈ R}.

Then, it is easily checked that Ω = ∪NΩN and ΩN ∈ F .

We are interested in establishing some topological properties of the sets ΩN .

Lemma 17. For every N the space ΩN is a Polish space.

Proof. ΩN as a subspace of Ω is separable. Let ωn → ω0 where ωn ∈ ΩN for n ∈ N.
Then ωn tends uniformly on every interval [−T, T ] to ω0. Hence, ‖ω0(t)‖V ≤ Neζ|t|

for t ∈ R, so that ω0 ∈ ΩN which gives the completeness of ΩN .

Lemma 18. For any N ∈ N, there exists an M = M(N) such that

‖z∗(θtω)‖ ≤ Meζ|t|

for every ω ∈ ΩN , where ζ is given in (23).

Proof. From (11) we also have∥∥A

∫ 0

−∞
S(−τ)θtω(τ)dτ

∥∥2 ≤ Cµ

∫ 0

−∞
‖θtω(τ)‖2V eµτdτ,



ASYMPTOTIC BEHAVIOUR OF A STOCHASTIC FUNCTIONAL EQUATION 13

for µ = λ1 − c2 and the corresponding Cµ given by (10). Therefore, we get∥∥A

∫ 0

−∞
S(−τ)θtω(τ)dτ

∥∥2 ≤ 2Cµ

∫ 0

−∞
eµτ‖ω(t)‖2V dτ + 2Cµ

∫ 0

−∞
eµτ‖ω(t + τ)‖2V dτ

≤ 2Cµ

µ
N2e2ζ|t| + 2Cµ

∫ 0

−∞
eµτN2e2ζ|τ |dτe2ζ|t| ≤ N2 4Cµ

µ− 2ζ
e2ζ|t|

which gives the conclusion.

Lemma 19. The mapping ΩN 3 ω 7→ Z∗(·, ω) ∈ Cγ is continuous.

Proof. Note that with our chosen constants, see (23), we have that 2ζ < µ < α < γ.
Suppose that ωn → ω0, for ωn, ω0 ∈ ΩN .
Given an ε > 0, consider t0 = t0(ε) < 0 and T = T (ε) < 0 such that

8N2Cµ

µ− 2ζ
e2(γ−ζ)t0 < ε2,

8N2Cµ

µ− 2ζ
e2(µ−ζ)T < ε2,

and, for these t0, T an n0(ε) such that for n ≥ n0(ε),

sup
t∈[t0+T,0]

‖ωn(t)− ω0(t)‖2V ≤ ε2µ

2Cµ
.

Thanks to (9) and Lemma 12 we have

sup
t≤0

e2γt‖z∗(θtωn)− z∗(θtω0)‖2 = sup
t≤0

e2γt‖A
∫ 0

−∞
S(−τ)(θtωn(τ)− θtω0(τ))dτ‖2

≤ 2Cµ sup
t≤0

e2γt

∫ 0

−∞
eµτ‖ωn(t)− ω0(t)‖2V dτ

+ 2Cµ sup
t≤0

e2γt

∫ 0

−∞
eµτ‖ωn(t + τ)− ω0(t + τ)‖2V dτ =: E1 + E2,

where Cµ is given by (10). As ‖ωn(t) − ω0(t)‖2V ≤ 2‖ωn(t)‖2V + 2‖ω0(t)‖2V ≤
4N2e2ζ|t|, E1 is estimated by

E1 ≤ sup
t≤t0

2Cµe2γt4N2e−2ζt

∫ 0

−∞
eµτdτ +

2Cµ

µ
sup

t∈[t0,0]

‖ωn(t)− ω0(t)‖2V

≤ 8N2Cµ

µ
e2(γ−ζ)t0 +

2Cµ

µ
sup

t∈[t0,0]

‖ωn(t)− ω0(t)‖2V .

Similarly we obtain for E2:

E2 ≤ sup
t≤t0

2Cµe2γt

∫ 0

−∞
eµτ‖ωn(τ + t)− ω0(τ + t)‖2V dτ

+ sup
t0≤t≤0

2Cµe2γt

∫ T

−∞
eµτ‖ωn(τ + t)− ω0(τ + t)‖2V dτ

+ sup
t0≤t≤0

2Cµe2γt

∫ 0

T

eµτ‖ωn(τ + t)− ω0(τ + t)‖2V dτ

≤ 8N2Cµ

µ− 2ζ
e2(γ−ζ)t0 +

8N2Cµ

µ− 2ζ
e(µ−2ζ)T +

2Cµ

µ
sup

t∈[t0+T,0]

‖ωn(t)− ω0(t)‖2V .
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Hence, for n ≥ n0(ε),

‖Z∗(·, ωn)− Z∗(·, ω0)‖γ <
√

5ε.

Let FΩN
be the trace σ–algebra of F with respect to ΩN . Let BΩN

(a, r), a ∈
ΩN , r > 0 be a ball in ΩN . These balls can be generated by BΩ(a, r) ∩ ΩN where
BΩ(a, r) is a ball in Ω. The same is true for all open sets in ΩN . Hence FΩN

is just
the Borel–σ–algebra of ΩN . Moreover, since ΩN ∈ F we have FΩN

⊂ F .
Let us define

PΩN
(A) := P(A), for A ∈ FΩN

,

that is, PΩN
is just the restriction of P to FΩN

.

Lemma 20. PΩN
is a finite measure on (ΩN ,FΩN

).

Proof. It follows immediately, due to the fact that P is a probability measure and
FΩN

⊂ F , since
i) PΩN

(∅) = P(∅) = 0.
ii) If {Fn}n∈N ⊂ FΩN

are such that Fn ∩ Fm = ∅, for n 6= m, then it holds

PΩN
(
∞⋃

n=1

Fn) = P(
∞⋃

n=1

Fn) =
∞∑

n=1

P(Fn) =
∞∑

n=1

PΩN
(Fn).

However, we cannot claim that PΩN
is a probability measure, because PΩN

(ΩN ) < 1.
Nevertheless, for the objectives in this paper, this is not a restriction, since we only
need to work with a finite measure.
Let F̄ΩN

be the completion of FΩN
with respect to PΩN

. We denote by Ωc
N the

complement of ΩN .

Lemma 21. If A ∈ F̄ΩN
, then A ∈ F̄ .

Proof. We can find Ǎ, Â ∈ FΩN
such that

Ǎ ⊂ A ⊂ Â, PΩN
(Ǎ) = PΩN

(Â).

Define B̌ = Ǎ ∪ Ωc
N and B̂ = Â ∪ Ωc

N . These sets are in F and

P(B̌) = P(Ǎ) + P(Ωc
N ) = P(B̂) = P(Â) + P(Ωc

N ).

Because of B̌ ⊂ A∪Ωc
N ⊂ B̂ we have that A∪Ωc

N ∈ F̄ , hence A = (A∪Ωc
N )∩ΩN ∈

F̄ .

We now show how over ΩN we can deduce the continuous dependence of the radius
R(ω) of the absorbing set given by (19) .

Lemma 22. The mapping ω 7→ R(ω) is continuous on ΩN .

Proof. Suppose ωn, ω0 ∈ ΩN , ωn → ω0. Due to Lemma 19, we have

lim
n→∞

2e(α−c2)τ (c1 + c2‖Z∗(·, θτωn)‖γ) = 2e(α−c2)τ (c1 + c2‖Z∗(·, θτω0)‖γ).

On the other hand, thanks to Lemma 18 and since we have chosen 0 < ζ < α− c2,
there exists a non-negative integrable majorant function:

|2e(α−c2)τ (c1 + c2‖Z∗(·, θτωn)‖γ)| ≤ 2c1e
(α−c2)τ + 2Mc2e

(α−c2−ζ)τ .

Therefore, the convergence of R(ωn) follows by Lebesgue’s theorem.
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Finally, we can establish the main result in this section:

Theorem 23. Under the hypotheses in this section, the MNDS U given by (17) is
also an MRDS. In addition, the pullback attractor A is F̄ measurable, that is, A is
also the random attractor associated to the MRDS U .

Proof. The first part of this result follows from Lemma 19 and the fact that, for
every ω0 ∈ ΩN and t0 ∈ R, there exists V = V (ω0, t0) such that for some β > 1 we
have∫ t

0

(
(c1 + c2‖Z∗(·, θτω)‖γ)β + cβ

2

)
dτ

≤ cβ
2 t +

∫ t

0

(c1 + c2 sup
s≤0

eγs‖z∗(θτ+sω)‖)βdτ

≤ cβ
2 t +

∫ t

0

(c1 + c2M sup
s≤0

eγseζ|τ+s|)βdτ ≤ cβ
2 t + (c1 + c2Meζ|t|)βt ≤ C(t0),

for all (ω, t) ∈ V, so that the uniform integrability condition (21) holds. Then,
applying Theorem 15 and Lemma 4, for every open set O of the space Cγ ,

{(t, ω, x) ∈ R+ ×ΩN ×Cγ : U(t, ω, x) ∩O 6= ∅} := AN,O ∈ B(R+)⊗FΩN
⊗B(Cγ),

and also AN,O ∈ B(R+)⊗F ⊗ B(Cγ). Hence

{(t, ω, x) ∈ R+ × Ω× Cγ : U(t, ω, x) ∩ O 6= ∅}

=
∞⋃

N=1

{(t, ω, x) ∈ R+ × ΩN × Cγ : U(t, ω, x) ∩ O 6= ∅}

=
∞⋃

N=1

AN,O ∈ B(R+)⊗F ⊗ B(Cγ)

and then, U is an MRDS.
On the other hand, from Lemma 16 and Lemma 22, the mapping

ΩN 3 ω 7→ U(t, ω,B(ω)) ∈ C(Cγ)

is F̄ΩN
measurable for t ≥ 0, that is, we have the measurability of U in the sense

that, for every open set O of Cγ , the set

CN,O := {ω ∈ ΩN : U(t, ω,B(ω)) ∩ O 6= ∅} ∈ F̄ΩN
,

and then, due to Lemma 21,

{ω ∈ Ω : U(t, ω,B(ω)) ∩ O 6= ∅} =
∞⋃

N=1

CN,O ∈ F̄ΩN
⊂ F̄

and, as a consequence of Lemma 10, the pullback attractor A for the MRDS asso-
ciated to the random equation (12) is also the random attractor.
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