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Abstract – In Shunt Active Filter applications, the 3-phase 4-
wire topology is frequently used when dealing with unbalanced 
loads containing zero sequence components. A new design 
criteria for this topology  is presented, based on the well known 
existing method for the 3-phase 3-wire system. Simulation and 
experimental results confirms the validity of this new criteria, 
providing an easy method for the design of the reactive elements 
involved in a Shunt Active Filter.  
 
 
 

I. INTRODUCTION 
 

Active Filters are a fast growing field in the power 
electronics area, due to the new regulations and standards on 
power quality. In particular, Shunt Active Filters are the most 
common structure, having nowadays a lot of practical 
implementations installed. 

The most common structure in this field is based on the 
Current Controlled Voltage Source Inverter (CC-VSI). When 
designing this inverter, a special care have to be taken in the 
election of the reactive elements, that is, the capacitance and 
nominal voltage of the DC-Link and the value of the 
smoothing inductance.  

When the load to be compensated is a 3-phase load, 
without neutral connection, a 3-phase 3-wire CC-VSI is 
commonly used. For this kind of inverters, a design criteria 
was developed long ago [1] that is very useful to select the 
correct values of this parameters, using the well known α-β 
transformation.  

In this paper, an extension of this method is presented, 
covering the 3-phase 4-wire topology, also very employed in 
the Shunt Active Filters field [2] [3] [4]. In this case, the α-β 
transformation is not so useful, as it will be stated, because of 
the necessity of adding another component, the 0 axis, 
making the graphical analysis too much complicated. 

In Section II, the 3-phase 4-wire topology is briefly 
presented and analysed, showing the RST-αβ0 
transformation of the inverter simplified equations. Then in 
Section III the controllability condition is defined, showing 
the difficulty on the assessment of this condition in αβ0 axis. 
In Section IV a new change of axis is stated, called IMC 
transformation, that greatly simplifies the graphical analysis 
of the controllability problem. After that, in Section V 
simulation and experimental results are presented, that 
confirms the validity of the proposed method, and finally in 
Section VI some conclusions are extracted.  

 
 

II. 3-PHASE 4-WIRE TOPOLOGY 
 

The 3-phase 4-wire topology is characterised by the 
connection of the neutral to the middle point of the DC-Link. 
In this situation, the three phases are independent of each 
other, and the current flowing for each leg depends only on 
the position of the associated switches and its phase voltage. 

In fig. 1 a basic scheme of this topology is presented. It 
should be noted that the current is considered positive 
flowing out of the inverter.  
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Fig  1. Basic scheme of a 3-phase 4-wire based Shunt Active Filter 

 
So, the equations describing the behaviour of the phase 

currents could be expressed as (1) 
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Where S(k) is a vectorial discrete function depending on 
the state (k) of the inverter, with the following values: 

TABLE I 
VALUES OF S(K)  

State (k) Switch. ON S(k)R S(k)S S(k)T 
0 S2,S4,S6 -1  -1 -1 
1 S1,S4,S6 1 -1 -1 
2 S1,S3,S6 1 1 -1 
3 S2,S3,S6 -1 1 -1 
4 S2,S3,S5 -1 1 1 
5 S2,S4,S5 -1 -1 1 
6 S1,S4,S5 1 -1 1 
7 S1,S3,S5 1 1 1 

 
As the three phase are decoupled, it is not possible to 

reduce it to a two component system, i.e. using the αβ 
transformation. Instead, a three component reference system 



 

must be applied. If we use the αβ0 transformation, defined 
by the matrix Mαβ0 (2), the equations can be translated to (3): 
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Where the vectors iF, U and V(k) are derived from (4): 
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It is important to note that all vectors V(k) have a 
component on the 0 axis, as it can be seen in (5). That leads 
to two conclusions: 

• Vectors 0 and 7 are not interchangeable, as it 
happened in the 3-wire topology. 

• The hexagon formed for the vectors in the 3-wire 
topology is now a cube, rotated in the αβ0 
coordinates. 
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Fig  2. State vectors in αβ0 coordinates, generating the controllability cube 
 

This cube is the three dimensional equivalent to the well 
known two-dimensional hexagon produced by the vectors in 
the αβ coordinates and will play an important role on the 
definition of the control capability of the inverter in 
following a certain current reference, so we called it 
controllability cube. 

 
III. CONTROLLABILITY CRITERIA IN αβ0 

COORDINATES 
  
Using the same technique as in [1] but for the three 

dimensional case, let us define i*F as the current reference to 
be injected, and then the tracking error (∆iF) could be 
expressed as: 

FFF i*ii −=∆  (6) 
 
The condition to assure that the reference can be tracked is 

that the tracking error decreases with the time. So the 
controllability condition will be that the time derivative of 
this error is negative. Making this derivative, and using (3): 
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If we name e0 the term in parenthesis, (7) can be rewritten 
in the following form: 
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Analysing (8) it is clear that the controllability depends on 

which vector is greater, e0 or V(k). To ensure the 
controllability in the three phases simultaneously, the three 
components of the vector e0 should be smaller than those of 
the V(k) vector. 

If a Space Vector modulation is implemented, V(k) will 
represent the voltage vector of the inverter, and it will be 
included on the previously defined controllability cube. 
Then, the controllability criteria could be expressed as: 
 

For given values of VDC and L, the so defined inverter will 
be capable of tracking a certain current reference only if the 
vector e0 defined in (8) is contained on the inside of the 
controllability cube described by the vectors V(k). 

 
It is important to notice that, even in the case that the load 

has no zero sequence component, is not applicable the two 
dimensional criteria, because the intersection of the 
controllability cube with the αβ plane is not equal to the 
hexagon described by the projection of the state vectors over 
the αβ plane. This projection is equal to the hexagon used in 
[1], but the intersection of the cube with the αβ plane, where 
should be located e0 if it do not has zero sequence to ensure 
controllability, is an hexagon smaller than that, with its 
vertices in the middle of the sides of the first, as it is shown 
in fig. 3. 
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Fig  3. Controllability hexagon in the two dimensional case (solid) and 

intersection of controllability cube with the αβ plane(dashed) 
 

IV. NEW CONTROLLABILITY CRITERIA IN IMC 
COORDINATES 

 
A. IMC transformation 

 
The complexity of the application of this new 

controllability criteria lays on the difficulty to determine 
whether e0 is contained or not in the controllability cube, as it 
is rotated from the reference system.  

To overcome this problem, a new transformation is 
proposed, called IMC transformation (whose name comes 
from Inverse of Matrix of Controllability), stated as: 
 
• The new coordinates will be defined by the unitary 

vectors vI, vM, vC, in the direction of V(0)-V(5), V(4)-V(5) 
and V(6)-V(5) respectively. 

• The centre of the reference system will be placed on 
V(5). 

• The axis will be scaled down so the vectors V(0)-V(5), 
V(4)-V(5) and V(6)-V(5) will have unitary modulus. 

 
To make this coordinates change, it is useful to define the 

Matrix of Controllability (MC), constructed by columns with 
the vectors V(0)-V(5), V(4)-V(5) and V(6)-V(5) expressed in 
αβ0 coordinates: 
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Note that the columns of this matrix represents three 
orthogonal vectors placed in three sides of the controllability 
cube, and the three of them have the same modulo: 2VDC.  

 
Now, to express a generic vector Yαβ0 in the IMC 

reference system, it is only necessary to subtract from it the 
V(5) vector, in αβ0 coordinates, and then pre-multiply this by 
the inverse of the matrix of controllability, resulting: 

 

))(VY(MCYIMC 00
1 5 αβαβ −= −  (10) 

 

Operating with (10), (9) and (5), the change of coordinates 
from αβ0 to IMC can be stated finally as: 
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B. Controllability cube on IMC axis 
 

The virtue of this new coordinate system is that, on IMC 
axis, the controllability cube will be a unitary cube (with all 
its sides measuring 1) and with its faces parallel to the 
coordinate planes IM, IC and MC, as represented in fig.4 

 
Fig  4. Controllability cube represented in IMC axis. 

 
In this situation, the accomplishment of the controllability 

criteria can be very easily checked, only by testing that the 
IMC components of the e0 vector remains between 0 and 1 
always. If they do that, the vector will be contained in the 
controllability cube.  

 
C. Controllability Criteria in IMC coordinates 
 

Using the new coordinates transformation, the 
controllability criteria defined in III may be rewritten in this 
way: 

 
For given values of VDC and L, the so defined inverter will 

be capable of tracking a certain current reference only if the 
IMC coordinates of the vector e0 defined in (8) remains 
between 0 and 1. 

 
Note that e0 depends not only on the current reference 

derivatives, but also on the value of the smoothing 
inductance, and even on the grid voltage. On the other hand, 
V(k) depends on the DC-Link voltage. Consequently, for a 
given current reference and grid voltage, this two parameters 
(VDC and L) could be adjusted to comply with this 
controllability criteria. 

 



 

 
 
V. SIMULATION AND EXPERIMENTAL RESULTS 

 
To validate the criteria stated before, many simulation and 

experimental results were obtained. First a three phase 
unbalanced load, with zero sequence component, were used 
as load to compensate, doing extensive simulations to 
determine the optimal values for VDC and L. Then , a three 
phase balanced load were simulated and compensated 
experimentally, offering the posibility of comparing the 
simulation and experimental results. 

 
A. Simulation with an unbalanced load 

 
A 3-phase 4-wire load with unbalance, zero sequence, 

current harmonics and reactive power was modelled from 
experimental measures of a real one. The wave shapes of the 
three phase currents and neutral current are drawn in fig. 5. It 
is noticeable the magnitude of the neutral current, related to 
the zero sequence component. 

 

 
Fig  5. Unbalanced load simulated. (a) Load currents in R-S-T phases. (b) 

Neutral Current 
 
Simulations were made calculating the vector e0 needed to 

compensate adequately this load, for many values of VDC and 

L. In fig. 6, the three components of e0 in IMC coordinates 
are plotted for two particular conditions (VDC=250, L=1.5mH 
and VDC=300, L=1.2mH). It can be seen that in the first 
situation the controllability criteria will not be fulfilled, and it 
will in the second case. 

Next, in fig. 7, the optimal values for VDC depending on 
the value of L is drawn. It can be seen that a quadratic 
relationship is almost followed (plotted in solid) by the 
calculated pairs (plotted as circles). 

 

 
Fig  6. plot of e0 in IMC coordinates. (a) VDC=300V, L=2mH. 

(b) VDC=300V, L=1mH 
 

 
Fig  7. Optimal values for VDC, for a given value of L. 

 



 

The curve obtained in fig. 7 gives us a design criteria for a 
Shunt Active Filter that might have to compensate this 
particular load: fixing the DC-Link voltage, due to switching 
or capacitor limitations, the inductance required can be 
calculated by means of this quadratic approximation. 

 
B. Simulations with a load without zero sequence 
 

Next, simulations of balanced load without zero sequence 
were performed, in order to prove that, in this case if a 3-
phase four-wire inverter is employed, the controllability 
hexagon applicable is the one defined in fig.3, and not the 
bigger one stated in [1]. 

The load simulated was modelled form laboratory 
measures, and is equal to the real one that will be 
compensated using an experimental Shunt Active Filter. The 
wave shape of the phase current is plotted in fig. 8.  

In fig. 9, the three components of e0 are plotted, for three 
values of VDC and the same value of L, showing that only the 
third case (VDC=300V) complies with the controllability 
criteria. Then, in fig.10 the polar representation of the α, β 
components of e0 are plotted, for the same conditions as 
above. 

 

 
Fig  8. Load current used in simulations 

 
Notice that, as iL has no zero sequence component, neither 

i*F will, so supposing that grid voltage has no zero sequence 
components, e0 will be located on the αβ plane. Then, the 
controllability criteria could be simplified to that eo(αβ) 
remains in the hexagon defined in fig. 3. It is important to 
point out that, if the criteria defined for the 3-phase 3-wire 
case should be used, the situation represented in (b) should 
be considered as controllable erroneously, taking the outer 
hexagon (dashed) instead of the inner hexagon (solid) as the 
controllability hexagon.  

 

 
Fig  9. Components of e0 in IMC coordinates. (a) VDC=225V, L=2.4mH. (b) VDC=250V, L=2.4mH. (c) VDC=300V, L=2.4mH. 

 

 
Fig  10. Polar representation of e0αα,e0ββ with the new controllability hexagon (solid) and the 3-phase 3-wire case hexagon (dashed), for the same values as 

above. 



 

 
 

C. Experimental results 
 

To validate the controllability criteria stated in this paper, 
experiments were made, using the same load than in the 
previous simulations.  

For this experiments, an Active Power Filter developed by 
the authors was employed [5]. The control algorithm 
implemented was based on Self-Tuned Vector Filters [6], 
able to compensate current harmonics even in presence of a 
highly distorted voltage grid. 

The most important parameters of the power system are 
shown in Table I . 

 
TABLE I. POWER SYSTEM PARAMETERS 

Topology 3-phase 4-wire 
Voltage (phase-neutral) 150V 

DC-Link capacity 2 x 13.2 mF 
DC-Link voltage (max) 2 x 350V 
Smoothing inductances 2.4mH 

Power switches IGBT’s (SKM300 GB 123 D) 
Commutation frequency 20kHz 
Nominal power (load) 12kW 

 
Finally, in fig. 11 experimental curves for the compensated 

current  are shown. It can be observed easily that in the first 
and second cases a peak appears on the compensated current, 
due to the loose of controllability. This peak is greater in the 
first case (VDC=225V), and do not appears in the third case 
(VDC=300V). 

These results match precisely the predicted controllability 
of the system in terms of complying the controllability 
criteria stated, validating this way the proposed method. 

 
VI. CONCLUSIONS 

 
The 3-phase 4-wire topology is widely used in the 

implementation of Shunt Active Filter solutions, having the 
ability to compensate unbalanced loads with zero sequence 
components. It is important therefore to have a design 
criteria, based on a controllability criteria in the same way 
than for the 3-phase 3-wire topology. 

In this paper, a new controllability criteria is presented, as 

an extension of the two dimensional case to a three 
dimensional analysis. 

By means of a transformation of coordinates, the criteria 
can be easily checked, allowing the use of it to estimate the 
correct values of the voltage of the DC-Link (VDC) and the 
smoothing inductance (L). 

The match between theoretical and experimental results 
confirms the validity of this technique, that should be used 
when a 3-phase 4-wire inverter is being designed for an 
Active Filter application, even if  the load to compensate has 
not  zero sequence components. 
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Fig  11. Experimental results. Compensated current for different values of VDC, and L=2.4mH. (a) VDC=225V. (b) VDC=250V. (c) VDC=300V 




