PREPRINTS

Fourth IASTED International Conference
HIGH TECHNOLOGY IN THE POWER INDUSTRY
POWER HIGH TECH'89
Valencia, Spain

Edited by
C. Alvarez
and
P. Albertos

UNIVERSIDAD POLITÉCNICA DE VALENCIA
Solid-State Solenoid Control Circuit
Z.M. Salameh and E.H. Judge

Performance Calculation for an Inverter-Fed Double Squirrel-Cage Induction Motor with Higher Time Harmonics Taken into Account
J.F. Gieras

A New Method of Three-Phase Bridge Rectifier Current and Voltage Harmonics Determination
V.A. Katic

Comparative Study of Various SCR Modelling Techniques for Computer Aided Analysis and Design
M.L. Kejariwal, V.Gerez and P.Emmanuel

A Computer-Aided Optimum Design of Wavelength Demultiplexer with Dielectric Resonators
H. Qinglan, S. Jarfan and Y. Bingkun

ADVANCED COMPUTER TECHNIQUES IN POWER SYSTEMS

Three Methods For The Pararell Solution of a Large, Sparse System of Linear Equations by Multiprocessors
A. Torralba, A. Gomez and L.G. Franquelo

Exploring Applications of Pararell Processing to Power System Problems - A Status Report
A. Viejas de Vasconcellos

A Data Driven Architecture for Efficient Execution of Algorithms for Real Time Power System Monitoring and Control".
Ch.C. Carroll and D. Singh

A Pararell Algorithm for Real Time Power System Simulation
T. Berry, A.R. Daniels and R.W. Dunn

Decoupled Approach to Contingency Ranking of Branch Outages Causing Bus Voltage Deviations and Line Overloads
K.L. Putta Buddhi, P.R. Bijwe and J. Nanda

STEADY STATE ANALYSIS

Influence of Network Parameter Errors in State Estimation Results
A. Reig; C. Alvarez
Three Methods for the Parallel Solution of a Large, Sparse System of Linear Equations by Multiprocessors

A. Torralba, A. Gómez and L.G. Franquelo

Department of Electrical Engineering, University of Seville
Av. Reina Mercedes, s/n
41012 Sevilla, Spain

Abstract

In this paper three methods for the parallel solution of large-scale, sparse, linear equation systems are presented and compared. Both, factorisation of the matrix and forward-backward processes, have been considered. A multiprocessor architecture has been simulated and results are presented corresponding to eight examples taken from power systems field, ranging from 117 to 660 equations.

Keywords: Sparse Systems, Multiprocessors, Parallel Processing, Simulation.

1 Introduction

In recent years, considerable effort has been directed towards the parallel solution of linear equations, due mainly to advances in multiprocessor and array processor computer architectures.

Single instruction multiple data stream (SIMD) processors, which attain parallelism at the instruction level (e.g., vector and/or pipelined operations), have been used to solve linear equations in different engineering fields, e.g., in power system analysis [1]–[5]. An alternative type of parallel processor, the multiple instruction multiple data stream (MIMD) processor, can make use of parallelism at the instruction level. References [4] and [5] give examples in the same engineering field through this approach.

Following [4] two kinds of parallel algorithms can be distinguished. One, which will be referred to as block schemes, divide the matrix of interest into blocks, for example, in [5]–[6]. The number of blocks is simply related to the number of processors. An alternative group of methods exploit the parallelism which is shown to exist when considering each individual element substitution during the solution. These methods shall be referred to as elemental schemes. Reference [7] gives a theoretical model from which the operations that can be done in parallel are identified, and the absolute minimum completion time and lower bounds on the minimum number of processors required to solve the equations in minimal time can be found. A more practical approach is given in [4] where the management overhead is considered and hardware developed is described.

The former group (block schemes) requires the network or system to be partitioned into subsystems (i.e., clusters). A possible decomposition for a parallel processing system is the bordered block diagonal form (BBDF), ideally composed of equally sized sub-blocks and a minimum sized border.

Elemental schemes need a dynamic method of task allocation among processors, accounting for the actual execution rates of tasks (i.e., task scheduling). The number of synchronisations required is usually higher than with block schemes.

2 Description of the Algorithms

Consider a large, sparse system of linear equations given by:

\[A x = b \]

For the sake of simplicity, assume that the system matrix is symmetric and, hence, only the upper half is stored and dealt with. Anyway, the algorithms described below, may be easily extended to cover the non-symmetric case.

2.1 Block scheme

A method for partitioning the involved matrices into blocks is needed if a block scheme is going to be used for the parallel solution of (1). A few papers deal with this problem (e.g., [5]–[10]) and the algorithm in [10] has been used here because of its good performance.

Suppose, without loss of generality, that only two processors are available. The matrices are, then, partitioned into two equally-sized diagonal blocks and a minimum border (figure 1).

Before the forward/backward process, the matrix must be factorized into \(A = U^T U \) (figure 1) as follows:

\[U_1 U_1 = A_1 \]

\[U_1 U_2 = A_2 \]

\[U_1 U_3 = A_3 \]

\[U_1 U_4 = A_4 \]

\[U_1 U_5 = A_5 - U_1 U_5 - U_1 U_4 \]

![Fig. 1. Partitioned matrices and vectors.](image-url)
Operation (2) is the factorisation of the diagonal block \(A_1 \). Using \(U_1, U_2 \) may be computed from (3) by performing the forward elimination on the columns of \(A_2 \). Of course, both processes are simultaneously done. While one processor is carrying out the operations indicated by (2) and (3), the other is doing the same with (4) and (5). Finally, one of them must compute \(U_4 \) from (6).

The forward elimination process, \(U^T y = b \), is somewhat similar:

\[
U_1^T y_1 = b_1 \tag{7}
\]

\[
U_1^T y_2 = b_2 \tag{8}
\]

\[
U_1^T y_3 = b_3 - U_2^T y_1 - U_4^T y_2 \tag{9}
\]

The operations indicated by (7) and (8) are done in parallel by the two processors. Elimination process is finished when one of the processors performs (9).

The unknown vector \(x \) is obtained from \(y \) during the back substitution process, \(U x = y \):

\[
U_2 x_2 = y_2 \tag{10}
\]

\[
U_2 x_3 = y_3 - U_3 x_3 \tag{11}
\]

\[
U_1 x_1 = y_1 - U_2 x_2 \tag{12}
\]

Previous solution of equation (10) gives \(x_3 \), which is then used by both processors to solve respectively (11) and (12).

Figure 2 shows one possible schedule using two processors. In this figure, block 2 is assumed to be greater than block 1 and processor 1 takes account of the non-parallel part of the algorithm (i.e., equations (6), (9) and (12)).

![Figure 2. A possible schedule with two processors.](image)

2.2 Elemental scheme

Some papers deal with elemental parallelism when applied to solve linear equations ([4], [7]). The main drawback of elemental schemes is synchronisation overhead. An elemental scheme with reduced overhead is adopted in this paper [11].

Let us consider a symmetric matrix whose sparsity structure is shown in figure 4.

Operations may be classified into two distinct types:

1. Inversion. \(a_{ij} = 1/a_{ii} \)
2. Update. \(a_{ij} = a_{ij} - a_{ik}a_{kj}a_{ij}, j \geq i > k \)

One possible sequence of operations to factorise the matrix is listed in Table 1.

It is possible to build a graph, named task graph [7], containing all the precedence relations that exist among elemental operations. However, the process to obtain this graph is complex, processors scheduling is not trivial and introduces overhead.

Consider now that these operations might be grouped into blocks as shown in Table 1. A block consists of the inversion of a diagonal element and the update operations involving this inverted element.

Precedence rules among these blocks are obtained from the simple directed path graph instead of from the more complex task graph, reducing synchronisation overhead. The path graph of the system matrix may be obtained following [12]; the path for node (block) 1 is depicted in figure 4a. Figure 4b represents the full path graph. A compact description of this graph is achieved, either with the vector NEXT or with the list structure PRED (figure 4c). NEXT(i) contains the successor, and PRED(i) the predecessors, of node i in the path.

![Figure 3. Sparse structure of the matrix.](image)

![Figure 4. Path Graph.](image)

<table>
<thead>
<tr>
<th>Block 1</th>
<th>1</th>
<th>(a_{11} = 1/a_{11})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>(a_{22} = a_{22} - a_{12}a_{21}a_{12})</td>
</tr>
<tr>
<td>Block 2</td>
<td>3</td>
<td>(a_{33} = 1/a_{33})</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>(a_{44} = a_{44} - a_{31}a_{41}a_{43})</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>(a_{55} = a_{55} - a_{42}a_{52}a_{45})</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>(a_{66} = a_{66} - a_{53}a_{63}a_{56})</td>
</tr>
<tr>
<td>Block 3</td>
<td>7</td>
<td>(a_{77} = 1/a_{77})</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>(a_{78} = a_{78} - a_{77}a_{87}a_{78})</td>
</tr>
<tr>
<td>Block 4</td>
<td>9</td>
<td>(a_{44} = 1/a_{44})</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>(a_{55} = a_{55} - a_{44}a_{54}a_{45})</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>(a_{66} = a_{66} - a_{55}a_{65}a_{56})</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>(a_{77} = a_{77} - a_{66}a_{76}a_{67})</td>
</tr>
<tr>
<td>Block 5</td>
<td>13</td>
<td>(a_{55} = 1/a_{55})</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>(a_{66} = a_{66} - a_{55}a_{65}a_{56})</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>(a_{77} = a_{77} - a_{66}a_{76}a_{67})</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>(a_{88} = a_{88} - a_{77}a_{87}a_{78})</td>
</tr>
<tr>
<td>Block 6</td>
<td>17</td>
<td>(a_{44} = 1/a_{44})</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>(a_{55} = a_{55} - a_{44}a_{54}a_{45})</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>(a_{66} = a_{66} - a_{55}a_{65}a_{56})</td>
</tr>
<tr>
<td>Block 7</td>
<td>20</td>
<td>(a_{77} = 1/a_{77})</td>
</tr>
</tbody>
</table>

Table 1. Operations required to factor the matrix of figure 4.
In a practical implementation an auxiliary integer vector, PEND, is required. Whenever PEND(i) = 0, node i is a ready node (that is, the operations in block i are ready to be executed).

In the factorisation process, the initial value of PEND is set by PEND(i) = number of elements in PRED(i).

Each processor carries out the following operations:

1. Search for a ready node (PEND(i) = 0).
2. Perform the arithmetic operations of the i-th node.
 (a) Inversion: \(a_i = 1/a_i \)
 (b) Updates: \(a_{ij} = a_{ij} - a_i a_{i+1} a_{ij}, j > i \)
3. PEND(h) = PEND(h) - 1, where h = NEXT(i).

Forward elimination is similar to factorisation process. Step 2 in the above procedure is substituted by:
 (a) \(b_i = b_i a_i \)
 (b) \(b_j = b_j - a_{ij} b_i, j > i \)

In backward substitution, precedence relations are determined reversing the direction of the arcs in the path graph. The initial value of PEND(i) is now initialized to 1, except for the highest numbered node whose initial value is set to zero (this node has not a successor).

Backward substitution process consists of:
1. Search for a ready node (PEND(i) = 0).
2. Perform the operations of the i-th node
 \(b_i = b_i - a_{i+1} b_i, j > i \)
3. PEND(k) = 0, \(\forall k \in \text{PRED}(i) \).

In order to avoid conflicts each entry in the matrix has one associated semaphore. When an element is going to be updated the semaphore is set, preventing this element from being accessed by other processors.

Actually, the algorithm used is slightly more complex than the procedure described above, i.e., redundant operations (such as multiple products of type \(a_i a_{i+1} \) in update operations) are avoided in order to reduce operation time.

This procedure is similar to the one described in [4]. Unlike that, the proposed algorithm derives precedences from the simple path-graph and is more suitable for being applied to the factorisation process.

2.3 Hybrid scheme

The hybrid algorithm is as follows:

1. Perform the block partitioning of the matrix. It is preferable to obtain equally-sized blocks in this case, rather than minimum-sized border.
2. Solve each diagonal block in parallel. In case of two clusters, this corresponds to solve eqs. (2), (3), (4) and (5) during factorisation step, eqs. (7) and (8) in forward process and eqs. (11) and (12) in backward process.

Note that, from an elemental-scheme point of view the process is the same as if each processor performed only the elemental operations of a major branch of the path graph (see figure 5 for three clusters). However, this block solution avoids the synchronization required by the elemental method.

3 Practical Implementation

In order to evaluate the algorithms, their performance has been simulated in a VAX computer. In the simulation process, linear systems of equations corresponding to a typical power system analysis problem [13] are actually solved.

Since elemental and hybrid schemes require that all processors may gain partial or whole access to the matrix, a common-memory single-bus architecture has been chosen. In addition, each processor has a local memory and an arithmetic coprocessor (FPU). The CPU instruction set pattern has been taken from a 68000-based VME-bus system.

Different arithmetic operation times have been simulated to find out the effects of CPU relative speed (FPU average operation time to CPU average instruction time ratio) on algorithms' efficiencies. Multiplication and division times are assumed to be equal and 50% greater than that of addition/subtraction.

Like in reference [4], four overhead types appear:

1. Increased number of operations due to a larger fill-in in the factorised matrix as a consequence of special orderings (this applies only to partitioned-based schemes)
2. Searching for ready nodes and semaphore overhead (especially notable in elemental schemes)
3. Idle time waiting for a ready task.

Only the last one has not been considered. Anyway, its effects may be neglected for a reduced number of processors.

The best ordering algorithm proposed in [14] has been adopted in elemental schemes. This yields a shorter mean path length and increases the number of initial ready nodes, which is a more suitable graph structure. In addition, the total fill-in is even reduced compared to the minimum degree method.

4 Simulation Results

The algorithms have been tested on eight different power system networks including the IEEE 118-node standard network and other actual Spanish systems up to 661 nodes.

The algorithm performance index considered is the efficiency of the parallel process, defined by the ratio $t_i/\left(t_n+\alpha\right)$, where t_i is the process execution time with i processors.

First of all the forward/backward process will be dealt with. Figure 6 shows the mean of the efficiencies of tested networks versus the number of processors for two different CPU relative speeds. (Floating addition time is equal to 6 CPU instruction cycles in 6a and equal to 80 CPU instruction cycles in 6b).

It may be noticed that the methods which require the partition of the matrix are more sensitive to the number of processors because the clustering algorithm performs worse when this number grows.

On the other hand, the elemental scheme's efficiency drops appreciably when a fast FPU is employed. In this case, arithmetic operation times are reduced and the effects of synchronisation overhead are more noticeable. This may be seen clearly in Fig. 7 where the efficiencies versus CPU relative speeds are plotted for 2 and 6 processors. In this sense the hybrid method exhibits an intermediate behavior. It is neither so dependent on the number of processors, nor so influenced by FPU speed.

Fig. 8 is the counterpart of Fig. 7 for the factorization process, illustrating similar results.

The efficiency of the backward/forward process versus system size is shown in Fig. 9 for 2 and 6 processors (CPU add time is 20
CPU cycles). Experiences indicate this efficiency is more dependent on the system topology than on the system size. The irregular shape of the curves in this figure obeys to the different nature of the actual power networks used.

5 Conclusions

Three parallel methods for solving large, sparse, linear systems of equations have been presented in this paper. The first one requires the partitioning of the matrix into as many blocks as processors are available. The second algorithm exploits the inherent parallelism existing among elemental operations. Precedence rules are deduced from the simple path graph. Finally, a hybrid method is proposed which performs also the partitioning of the matrix but solves the interconnection of the blocks by means of an elemental strategy.

Experimental results reveal:

1. Block scheme is more suitable when the clustering algorithm performs well. This usually happens if a low number of processors is used or natural clusters may be found in the matrix. Furthermore, FPU relative speed does not have an appreciable influence on its behavior.

2. Elemental scheme's performance is quite sensitive to FPU relative speed but allows a larger number of processors to be used.

3. Hybrid method represents a compromise solution which is not so influenced by FPU speed and the number of processors.

Some improvements have been achieved in all cases by using recently-developed ordering algorithms.

6 Acknowledgements

The authors would like to acknowledge the financial support by the Spanish CICYT, project number PA86-0233-C02-01.

References

