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We study the coupling between backward- and forward-propagating wave modes, with the same group
velocity, in a composite right- and left-handed nonlinear transmission line. Using an asymptotic multiscale
expansion technique, we derive a system of two coupled nonlinear Schrödinger equations governing the
evolution of the envelopes of these modes. We show that this system supports a variety of backward- and
forward-propagating vector solitons of the bright-bright, bright-dark, and dark-bright type. Performing systematic
numerical simulations in the framework of the original lattice that models the transmission line, we study the
propagation properties of the derived vector soliton solutions. We show that all types of the predicted solitons
exist, but differ on their robustness: Only bright-bright solitons propagate undistorted for long times, while the
other types are less robust, featuring shorter lifetimes. In all cases, our analytical predictions are in very good
agreement with the results of the simulations, at least up to times of the order of the solitons’ lifetimes.
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I. INTRODUCTION

Left-handed (LH) metamaterials are artificial, effectively
homogeneous structures, featuring negative refractive index
at specific frequency bands where the effective permittivity ε

and permeability μ are simultaneously negative [1–3]. In fact,
all known realizations of LH metamaterials rely on the use of
common right-handed (RH) elements and thus in a realistic
situation such a composite material features both LH and RH
behavior in certain frequency bands. Physically speaking, the
difference between the two is that in the LH (RH) regime,
the energy and the wave fronts of the electromagnetic (em)
waves propagate in the opposite (same) directions, giving rise
to backward- (forward-) propagating waves.

Transmission line (TL) theory constitutes a convenient
framework for the analysis of LH metamaterials. Such an
analysis relies on the connection of the em properties of the
medium (ε and μ) with the electric elements of the TL’s unit
cell, namely, the serial and shunt impedance. As mentioned
above, in practice, composite right- and left-handed (CRLH)
structures are quite relevant, giving rise to pertinent CRLH-TL
models. These models are in fact dynamical lattices that can
be used for the description of a variety of metamaterial-based
devices and systems, such as resonators, directional couplers,
and antennas [1–4].

Nonlinear CRLH-TL models, with a serial and/or shunt
impedance depending on voltages or currents, have also at-
tracted attention. Such structures may be realized by inserting
diodes, which mimic voltage-controlled nonlinear capacitors,
into resonant conductive elements (such as split-ring res-
onators) [5–7]. Such nonlinear CRLH-TL models have been
used in various works dealing, e.g., with the parametric shield-
ing of em fields [8], the long-wave–short-wave interaction
[9], or soliton formation [10–12]. Experiments in nonlinear
CRLH-TL models have also been performed (see [13]) and

the formation of bright [14,15] and dark [15,16] envelope
solitons, described by an effective nonlinear Schrödinger
(NLS) equation, was reported. Notice that in earlier studies
on RH-TL models it was shown that two (or more) solitons
propagating with the same group velocity can be described by
a system of two (or more) NLS equations [17] (see also [18] for
theoretical as well as experimental results). Such coupled NLS
equations have been studied extensively in nonlinear optics and
mathematical physics; see, e.g., Refs. [19–21] and references
therein. They are well known to give rise to a variety of vector
solitons, including bright-bright (BB), bright-dark (BD), and
dark-dark (DD) ones.

In this work we study analytically and numerically the inter-
action between backward- and forward-propagating solitons
in a nonlinear CRLH-TL model. Our model is a nonlinear
version of a generic CRLH-TL model, particularly relevant
to the context of LH metamaterials (see, e.g., Refs. [2,4]).
The considered nonlinear element in the unit cell of the
TL is the shunt capacitor, which simulates the presence
of a heterostructure barrier varactor (HBV) diode [6] (the
capacitance of the HBV diode depends on the applied voltage).
Starting from the discrete lump element model of the CRLH
TL, we derive a nonlinear lattice equation. First, we study the
linear regime and show that for certain frequency bands, RH
and LH modes can propagate with the same group velocity.
Then we treat the nonlinear lattice equation in the framework
of the quasidiscrete (or quasicontinuum) approximation (see,
e.g., [15,19,22,23] for a review): we thus seek envelope soliton
solutions of the nonlinear lattice model, characterized by a
discrete carrier and a continuum envelope and employ an
asymptotic multiscale expansion method to derive a system of
two coupled NLS equations. Each of these equations describes
the evolution of the envelope of a backward- (LH) and a
forward-propagating (RH) mode.
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A systematic analysis of the system of the NLS equations
reveals the existence, in certain frequency bands, of three
different types of vector solitons: (a) a backward-propagating
bright soliton coupled with a forward-propagating bright
soliton, (b) a backward-propagating bright soliton coupled
with a forward-propagating dark soliton, and (c) a backward-
propagating dark soliton coupled with a forward-propagating
bright soliton. This way we propose and study in detail all
possible vector solitons in this nonlinear CRLH-TL setting,
highlighting how individual soliton components interact via
the nonlinearity induced by the insertion of the HBV diodes.
Importantly, our analysis suggests how the characteristics
(amplitude, width, etc.) of each solitonic mode can control
the ones of the other mode; this possibility arises from the fact
that the relevant parameters of each soliton are connected with
the ones of the other soliton, thus providing a means to adjust,
e.g., the amplitude or width of the LH mode by changing the
parameters of the RH mode.

The above analytical predictions are then tested against
direct numerical simulations, which are performed in the
framework of the original nonlinear lattice model. The results
of the simulations verify the existence of the aforementioned
types of vector solitons in the full TL model, but also
offer important information regarding their robustness. In
particular, the results of direct simulations performed for
long times indicate that BB solitons are the most robust
among the members of the vector soliton family. Indeed, the
mixed [dark-bright (DB) or BD] types are found to be less
robust; however, the DB solitons in a specific frequency band,
although deformed during their evolution, are found to be more
robust than those in other bands, as well as the bright-dark
solitons, which are destroyed for the same propagation time.
The observed long-time behavior of the above solitons of the
mixed type may be qualitatively explained, in the framework
of the effective coupled NLS description, by the following
fact: in the less robust cases, the continuous-wave background
carrying the dark soliton is prone to modulational instability
[18,24], while in the more robust case it is not. In any case,
our results indicate the existence of all three types: robustness
of BB solitons and partial or substantial deformation of the
other types. We can thus conclude that bright-bright (LH-RH)
solitons, as well as dark-bright (LH-RH) solitons in certain
frequency bands, have a better chance of being observed in
experiments.

The paper is organized as follows. In Sec. II we introduce
the nonlinear CRLH-TL model and the pertinent lattice equa-
tion and derive the system of the two coupled NLS equations
(relevant details are also appended in the Appendices). In
Sec. III we present analytical and numerical results for each
type of vector soliton. Finally, in Sec. IV we summarize and
give our conclusions.

II. THE MODEL AND ITS ANALYTICAL
CONSIDERATIONS

A. The nonlinear CRLH-TL model

We consider a generic CRLH-TL model, composed by both
right- and left-handed elements, as shown in its unit-cell circuit
in Fig. 1 [2,4]. The (RH) elements of this TL are the inductance

FIG. 1. Unit-cell circuit of the nonlinear CRLH model.

LR and capacitance CR , while the LH ones are the inductance
LL and capacitance CL. We assume that the TL is loaded
with a nonlinear capacitance (CR , while the capacitance CL

will be assumed to be fixed and voltage independent). This
can be implemented by proper insertion of diodes in the TL
(see, e.g., pertinent experiments as well as theoretical work
in Refs. [10–16]); in other words, we assume that the shunt
capacitor CR is nonlinear (see details below).

Let us now consider Kirchhoff’s voltage and current laws
for the unit-cell circuit of Fig. 1, which respectively read

Vn−1 = Vn + LR

dIn

dt
+ Un, (1)

In = In+1 + IL + d

dt
(CRVn), (2)

where Un is the voltage across the capacitance CL and IL

is the current across the inductor LL. The above equations,
together with the auxiliary equations Vn = LLdIL/dt and
In = CLdUn/dt , lead to the following system:

LRLLCL

d4

dt4
(CRVn) + LL

d2

dt2
(CRVn) + LRCL

d2Vn

dt2

−LLCL

d2

dt2
(Vn+1 + Vn−1 − 2Vn) + Vn = 0. (3)

To proceed further, we now consider a specific voltage
dependence for the nonlinear capacitance CR . Here we will
assume that for sufficiently small values of the voltage Vn, the
function CR(Vn) can be approximated as follows, via a Taylor
expansion:

CR(Vn) ≈ CR0 + C ′
R0(Vn − V0) + 1

2C ′′
R0(Vn − V0)2, (4)

where CR0 ≡ CR(V0) is a constant capacitance corresponding
to the bias voltage V0, while C ′

R0 and C ′′
R0 also assume constant

values, depending on the particular form of CR(V ). Below we
will further discuss this approximation, in connection with
the HBV diode, used in the experiments described in Ref. [13]
(similar varactor-type diodes were also used in the experiments
of Ref. [7]).

Next, substituting Eq. (4) into Eq. (3) and using the
scale transformations t → ωsht [where ω2

sh = (LLCR0)−1] and
Vn → [C ′

R0(2CR0)−1]Vn, we obtain

d4Vn

dt4
− β2 d2

dt2
(Vn+1 + Vn−1 − 2Vn) + (1 + δ2)

d2Vn

dt2

+ δ2Vn + δ2 d2V 2
n

dt2
+ δ2μ

d2V 3
n

dt2
+ d4V 2

n

dt4
+ μ

d4V 3
n

dt4
= 0,

(5)

where the constant parameters δ, β, and μ are given by

δ = fse

fsh
, β = fRH

fsh
, μ = 2C ′′

R0

3C
′2
R0

CR0. (6)
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In the above expressions, fse and fsh denote series and shunt
frequencies, respectively, and fRH denotes the characteristic
frequency related to the RH part of the unit-cell circuit; the
above frequencies are defined as

fse = 1

2π
√

LRCL

, fsh = 1

2π
√

LLCR0
,

fRH = 1

2π
√

LRCR0
. (7)

Note that if fse/fsh = 1, i.e., δ = 1, then the CRLH-TL
model is usually referred to as balanced, in the sense that
the characteristic impedances of the purely LH and RH TLs,
defined as ZL = √

LL/CL and ZR = √
LR/CR0, are equal,

i.e., ZL = ZR [2]. In contrast, if fse/fsh > 1, i.e., δ > 1, the
LH part of the TL dominates, in the sense that the TL has
a more pronounced LH behavior (the serial branch features
a capacitive character, while the shunt branch an inductive
one). In the opposite case, fse/fsh < 1, i.e., δ < 1, the RH
part of the TL dominates and the TL has a more pronounced
RH behavior (the serial branch features an inductive character,
while the shunt branch shows a capacitive one).

It is now relevant to adopt physically relevant parameter
values for Eq. (5). For applications in the microwave frequency
range (e.g., for microstrip lines [2] or coplanar waveguide
structures loaded with split-ring resonators [3]; see also
Ref. [23] for recent work), typical values of the capacitances
and inductances involved in the CRLH structure are of
the order of pF and nH, respectively. Here we will use the
values LR = 1 nH, CL = 0.1 pF, and LL = 0.12 nH; thus the
frequencies in Eqs. (7) take the values fse = 15.92 GHz, fsh =
14.53 GHz, and fRH = 5.03 GHz. In contrast, as concerns
the parameters involved with the nonlinear capacitor CR , we
assume that the pertinent capacitance corresponds to a HBV
diode, which is characterized by the following equation [6] [see
also [7], where the same form of C(V ) is used, but different
parameter values]:

C(V ) = Cj0Ada

(
1 + |V |

Vbr

)−m

, (8)

where Cj0 = 1.53 fF/μm2 is the capacitance corresponding
to bias voltage V0 = 0.2 V, Ada = 650 μm2 is the device area,
Vbr = 12 V is the breakdown potential, and the exponent m =
2.7 results from fitting experimental data. It is clear that, for
sufficiently small V , by Taylor expanding Eq. (8) one obtains
Eq. (4), where the constant parameter values involved are
CR0 = 1 pF, C ′

R0 = −0.24 pF/V, and C ′′
R0 = −0.08 pF/V2.

To this end, the values of the normalized parameters δ, β, and
μ appearing in Eq. (5) take the following values:

δ ≈ 1.1, β ≈ 0.35, μ ≈ −0.9. (9)

Below we will use these values for the purposes of our
analytical and numerical considerations (we have checked that
other values lead to qualitatively similar results). Notice that
our choice leads to δ > 1, i.e., we consider the case where
the TL has a more pronounced LH character; however, when
considering the linear setting (see next section), this parameter
will also assume other values, corresponding to the balanced
and RH-dominated behavior as well.

B. Linear analysis

We now assume plane wave solutions of Eq. (5) of the
form Vn = V0 exp[i(kn − ωt)], where k and ω denote the wave
number and angular frequency, respectively, and the amplitude
of the wave is V0 � 1. Substituting the above ansatz into
Eq. (5) and keeping only the linear terms in V0, we obtain the
following linear dispersion relation:

ω4 −
(

1 + δ2 + 4β2 sin2 k

2

)
ω2 + δ2 = 0. (10)

The above result is illustrated in Fig. 2, where we plot the
frequency f/fsh as a function of the wave number k (in rad/cell)
for three different values of δ (note that here we consider
one period of k, i.e., −π � kj � π ). It is clear that for δ =
1.0954 [Fig. 2(a)] there exist two frequency bands where em
wave propagation is possible: the RH band [high-frequency
band depicted by the dashed (blue) line] for 1.0954 < f <

1.4535 and the LH band [low-frequency band depicted by
the solid (red) line] for 0.7538 < f < 1. In the same case
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FIG. 2. (Color online) Dispersion relation showing the normal-
ized frequency f/fsh as a function of the wave number k (in
rad/cell) for different values of δ: (a) δ = 1.0954, (b) δ = 1, and
(c) δ = 0.7746. The solid (red) and dashed (blue) lines show the
dispersion relation in the LH low- and RH high-frequency regions,
respectively; RH± and LH± denote branches with k > 0 or k < 0. If
δ �= 1 a gap is formed; the width of the gap is |δ − 1| for (a) δ > 1 or
(c) δ < 1.
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(δ = 1.0954), there exists a gap for 1 < f/fsh < δ where em
wave propagation is not possible.

In the case where δ = 1 (corresponding, e.g., to the value
CL = 0.12 pF) the gap vanishes [see Fig. 2(b)] and the
TL is balanced. In the balanced case, em wave propagation
is possible in two frequency bands as well: the RH band
[high-frequency band represented by the dashed (blue) line]
with 1 < f/fsh < 1.405 and the LH band [low-frequency band
represented by the solid (red) line] with 0.7117 < f/fsh < 1.

Finally, for δ = 0.7746 (corresponding, e.g., to CL =
0.2 pF), a gap appears again for δ < f/fsh < 1 [Fig. 2(c)].
In this case too there exist a RH high-frequency band and
a LH low-frequency band for 0.588 < f/fsh < 0.7746 and
1 < f/fsh < 1.317, respectively. Note that in all cases, the
RH± and LH± branches correspond to positive or negative k,
respectively.

Thus, generally, in the linear setting and for a given
frequency the em waves may propagate in either the RH
region (forward wave propagation) or the LH region (backward
wave propagation). However, in the nonlinear setting, coupling
between modes propagating in the LH and RH regimes is
possible (see, e.g., relevant earlier work in Refs. [17,18]).
Below we will demonstrate that this is the case indeed and
study the coupling (interaction) between LH and RH modes
with equal group velocities. Since the latter are tangents in the
dispersion curves, inspection of Fig. 2 shows that it is possible
to identify domains, belonging to the RH± and LH∓ branches,
exhibiting parallel tangents, i.e., equal group velocities.

To further elaborate on this, we may use Eq. (10) to obtain
the group velocity vg ≡ ∂ω/∂k:

vg = ω3β2 sin k

ω4 − δ2
. (11)

In Fig. 3 we show the dependence of the group velocity vg

on the normalized frequency f/fsh for the values of δ used in
Fig. 2. Notice that the figure depicts only the group-velocity
branches with vg > 0 [see solid (red) and dashed (blue) lines]
corresponding, respectively, to the LH− and RH+ branches of
the dispersion curves; the branches with vg < 0 (pertinent to
the LH+ and RH− branches of the dispersion curve) are mirror
symmetric with respect to the ones shown in the figure, due to
the parity of the dispersion relation.

Considering a horizontal cut of the group-velocity curves,
say, at vg = 0.1 or 0.075 [see horizontal lines in Figs. 3(a)
and 3(c)], it is readily observed that, indeed, a LH− and a RH+
mode can share a common group velocity (and interact in
the nonlinear regime, as mentioned above). In fact, inspection
of the group-velocity curves, say, in Fig. 3(a), shows that the
maximum possible common vg is given by vgmax = 0.1339, the
local maximum of vg , occurring at f = 0.9391, in the (shorter
in height) LH low-frequency band. Then one can divide each
of the LH and RH group-velocity curves into two subregions,
depending on the sign of the group-velocity dispersion (GVD)
∂vg/∂ω, where such coupling with equal group velocities
may occur. These subregions are the subbands I (0.7538 <

f/fsh < 0.9391) and II (0.9391 < f/fsh < 1) for the LH low-
frequency band, characterized by positive and negative GVD,
respectively, and the subbands III (1.0954 < f/fsh < 1.1195)
and IV (1.356 < f/fsh < 1.4535) for the RH high-frequency
band, again characterized by positive and negative GVD,
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FIG. 3. (Color online) Group velocity vg as a function of the
normalized frequency f/fsh (for the values of δ used in Fig. 2). The
solid (red) and dashed (blue) lines indicate branches corresponding
to the LH− and RH+ regimes, respectively. The intersection of the
group velocity curves with the horizontal solid (black) line depicts
frequencies of modes with the same group velocity vg = 0.1. Regions
I–IV indicate possible interactions between LH− and RH+ modes
with the same vg but different signs of GVD.

respectively. Thus nonlinear LH and RH modes of equal vg

can feature the following four different possible interactions:
(i) the LH mode in band II and RH mode in band IV, both
featuring negative GVD; (ii) the LH mode in band I and RH
mode in band IV, where the LH (RH) mode features positive
(negative) GVD; (iii) the LH mode in band I and RH mode in
band III, both featuring positive GVD; and (iv) the LH mode
in band II and RH mode in band III, where the LH (RH) mode
features negative (positive) GVD.

It is clear that the above set of possibilities arises from the
existence of the gap in the considered case with δ = 1.0954. A
similar situation also occurs for δ < 1, e.g., for δ = 0.7746, as
in Figs. 2(c) and 3(c). In contrast, for δ = 1 the gap no longer
exists and thus the only possible interaction is between a LH
mode with positive GVD and a RH mode with negative GVD;
this interaction can occur for group velocities vg � 0.175, i.e.,
beneath the dashed horizontal line in Fig. 3(b). This possibility,
however, is already taken into consideration [see case (ii)
above]; furthermore, soliton formation in the balanced CRLH-
TL model (δ = 1) has already been studied in the literature
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[11]. For these reasons, below we will proceed by analyzing
the case corresponding to δ = 1.0954, which offers all possible
scenarios. It is clear that the case of δ = 0.7746 shares similar
qualitative features; this similarity extends beyond the linear
wave case and into the nonlinear solitonic one.

Although, as explained above, we are not going to analyze
soliton formation and solitons in the special case of the
balanced CRLH-TL model with δ = 1, it is worth mentioning
that in the case of δ = 1, the dispersion relation exhibits
a Dirac point, namely, it is approximately linear in the
vicinity of k = 0, i.e., ω ≈ ±[1 + (β/2)k] [see Fig. 2(b)].
The emergence of Dirac points is particularly interesting in
the two-dimensional (2D) setting of triangular and hexagonal
lattices arising in different contexts, such as optics [25], atomic
Bose-Einstein condensates [26], and the so-called photonic
graphene [27]. This has also led to an interest in this subject
from a rigorous mathematical perspective [28]. It is thus quite
intriguing that, in principle, 2D balanced CRLH-TL models
may host a variety of fundamental effects, such as conical
diffraction, formation of topological defects, and even phase
transitions, as in Refs. [25–27].

C. Nonlinear analysis: Coupled NLS equations and solitons

To describe the coupling between a RH and a LH non-
linear mode with equal group velocities, we will use the
quasidiscrete approximation, which takes into account the
inherent discreteness of the system (see, e.g., Ref. [19] for a
review and Refs. [15,23] for relevant recent work). Generally,
this approach allows for the description of quasidiscrete
envelope solitons (usually satisfying an effective NLS model),
characterized by a discrete carrier and a slowly varying
continuum envelope. In our case, since we are interested in
the description of two different modes, we seek a solution of
Eq. (5) in the form

Vn = ε

2∑
j=1

Vj (X,T ) exp(iθj ) + c.c., (12)

where c.c. denotes complex conjugate. In Eq. (12), subscripts
j = 1,2 correspond to the LH and RH modes, Vj (X,T )
are unknown (continuous) slowly varying envelope functions
depending on the slow scales X = ε(n − vgt) (where vg is
the common group velocity) and T = ε2t , and exp(iθj ), with
θj = kjn − ωj t , are the (discrete) carriers of frequencies ωj

and wave numbers kj . Finally, ε is a formal small parameter
setting the field amplitude and the slow scales of the envelope
functions.

At this point, we should note that the field Vn as expressed
in Eq. (12) is in fact the leading-order form of a more general
ansatz employing multiple time and space scales. In this
context, use of a formal multiscale expansion method leads
to a hierarchy of equations at various powers of ε, which are
solved up to third order. We will present the main results here
and provide further details in Appendix A. In particular, from
the first- and second-order problems [i.e., at O(ε) (linear limit)
and O(ε2), respectively] we derive the dispersion relation (10)
and the group velocity (11). Finally, at the next order, O(ε3),
we obtain the following coupled NLS equations:

i∂T V1 + 1
2D1∂

2
XV1 + (g11|V1|2 + g12|V2|2)V1 = 0, (13)
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FIG. 4. (Color online) Nonlinearity coefficients g11 [solid (red)
lines] and g22 [dashed (blue) lines] as functions of f/fsh for
interactions in bands (a) II and IV, (b) I and IV, (c) I and III, and
(d) II and III. The parameter δ takes the value δ = 1.0954. Stars
(in black) in each panel depict parameter values used in relevant
simulations; see Figs. 6 and 7 [corresponding to (a)], Figs. 9 and 10
[corresponding to (b)], Figs. 13 and 14 [corresponding to (c)], and
Figs. 15 and 16 [corresponding to (d)] below.

i∂T V2 + 1
2D2∂

2
XV2 + (g21|V1|2 + g22|V2|2)V2 = 0, (14)

where the normalized GVD coefficients Dj , the self-phase
modulation (SPM) coefficients gjj , and the cross-phase
modulation (CPM) coefficients gj,3−j (with j = 1,2) are
respectively given by

Dj ≡ ∂2ωj

∂k2
j

= vg

[
cot kj − ω4

j + 3δ2

ωj

(
ω4

j − δ2
)vg

]
, (15)

gjj = ω3
j

(
ω2

j − δ2
)

2
(
ω4

j − δ2
) (3μ − Aj ), (16)

gj,3−j = ω3
j

(
ω2

j − δ2
)

2
(
ω4

j − δ2
) (6μ − B3−j ), (17)

where the coefficients Aj and B3−j are defined in Appendix A.
It is now useful to remark that for all four possible wave
interactions mentioned in the preceding section, the SPM
coefficients gjj are negative (see Fig. 4). Then, measuring
normalized time T and densities |Vj |2 in units of |D1|−1 and
|D1/gjj |, respectively, we express Eqs. (13) and (14) in the
following form:

i∂T V1 + s

2
∂2
XV1 + (λ1|V2|2 − |V1|2)V1 = 0, (18)

i∂T V2 + d

2
∂2
XV2 + (λ2|V1|2 − |V2|2)V2 = 0, (19)

where

s = sgn(D1), d = D2

|D1| , λ1 = g12

|g22| , λ2 = g21

|g11| . (20)

As seen from Eqs. (18) and (19), in the absence of CPM
coupling (λj = 0) the evolution of either the LH mode V1

or the RH mode V2 is described by a single NLS equation.
The latter supports soliton solutions of the bright or the dark
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type, depending on the sign of dispersion coefficient (see, e.g.,
Ref. [20]): In particular, the mode V1 (V2) supports bright
solitons for s < 0 (d < 0) or dark solitons for s > 0 (d >

0). These conditions, however, are modified for λj �= 0 and
various types of coupled (vector) solitons can be found in the
full version of Eqs. (18) and (19). Below we will present these
types of coupled backward- and forward-propagating solitons
belonging, respectively, to the LH low- and RH high-frequency
bands.

In principle, four types of vector solitons are possible:
bright-bright solitons in the form

V1(X,T ) = a1sech(bX) exp(−iν1T ), (21)

V2(X,T ) = a2sech(bX) exp(−iν2T ), (22)

BD solitons in the form

V1(X,T ) = a1sech(bX) exp(−iν1T ), (23)

V2(X,T ) = a2tanh(bX) exp(−iν2T ), (24)

DB solitons in the form

V1(X,T ) = a1tanh(bX) exp(−iν1T ), (25)

V2(X,T ) = a2sech(bX) exp(−iν2T ), (26)

and DD solitons in the form

V1(X,T ) = a1tanh(bX) exp(−iν1T ), (27)

V2(X,T ) = a2tanh(bX) exp(−iν2T ). (28)

In the above equations, a1,2 and ν1,2 denote the amplitudes
and frequencies of each soliton and b is the (common) inverse
width of the solitons.

Now, each of the above ansätze is substituted into Eqs. (18)
and (19), leading to a set of equations connecting the
soliton parameters. In particular, the equations connecting the
amplitudes a1,2 with the inverse width b are of the form

(aj/b)2 = −αj , (29)

(aj/b)2 = (−1)jαj , (30)

(aj/b)2 = (−1)3−jαj , (31)

(aj/b)2 = αj (32)

for the BB, BD, DB, and DD solitons, respectively, where
parameters αj (j = 1,2) are given by

α1 = dλ1 + s

1 − λ1λ2
, α2 = sλ2 + d

1 − λ1λ2
. (33)

In contrast, the frequencies of the BB, BD, DB, and DD
solitons are respectively given by

ν1 = − s

2
b2, ν2 = −d

2
b2, (34)

ν1 = − s

2
b2 − λ1a

2
1, ν2 = a2

2, (35)

ν1 = a2
1, ν2 = −d

2
b2 − λ2a

2
2, (36)

ν1 = a2
1 − λ1a

2
2, ν2 = a2

2 − λ2a
2
1 . (37)
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FIG. 5. (Color online) Parameters for soliton interactions in
bands II and IV. (a) Dependence of the coefficients α1 [solid (blue)
line] and α2 [dashed (red) line] on the normalized frequency f1/fsh.
(b) Dependence of the parameters λ1 [thin solid (blue) line], λ2

[dashed (blue) line], and d [bold solid (red) line] on the normalized
frequency f1/fsh.

It is clear that each type of vector soliton is characterized by five
independent parameters, connected by a set of four equations;
thus each of the above vector solitons is characterized by one
free parameter. Furthermore, the fact that the parameters of
each soliton component depends on the ones of the other
component clearly highlights an important possibility arising
from the nonlinear coupling of the solitonic modes: One can
control, e.g., the characteristics (amplitude, width, etc.) of a
LH soliton by means of the parameters of its RH pair and vice
versa.

Requiring that the right-hand sides of Eqs. (29)–(32) are
positive, it can be concluded that the existence of each type
of vector soliton is determined by the signs of parameters
αj : in particular, BB solitons exist for α1 < 0 and α2 < 0,
BD solitons exist for α1 < 0 and α2 > 0, DB solitons exist
for α1 > 0 and α2 < 0, and DD solitons exist for α1 > 0 and
α2 > 0. In contrast, we should mention that the signs of αj

depend on frequency, through the frequency dependence of
the parameters involved in Eqs. (33). Thus, for each different
type of mode interaction [see cases (i)–(iv) in Sec. II B], below
we will present results for the sign (and magnitude) of αj

in bands II and IV, I and IV, I and III, and II and III, and
accordingly determine which type of soliton is possible. This
way we will show that BB, BD, and DB solitons can exist in
certain frequency bands, while DD solitons do not exist: this
is due to the fact that α1 and α2 are either of opposite signs or
both negative, as attested to by Figs. 5(a), 8, 11, and 12.

Before proceeding with the presentation of the coupled
soliton solutions we make the following comments. First,
vector solitons will be found in a stationary form; however,
using these stationary solutions, one can also find traveling
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soliton solutions, with an additional free parameter, i.e., the
velocity C, by means of the following Galilean boost:

V1(X,T ) → V1(X − CT,T )

× exp

{
i

s

[
CX +

(
C2

2

)
T

]}
, (38)

V2(X,T ) → V2(X − CT,T )

× exp

{
i

d

[
CX +

(
C2

2

)
T

]}
. (39)

Second, it is interesting to note that, contrary to what is
often the case in the mathematically studied multicomponent
variants of the NLS equation [21], the model of Eqs. (18)
and (19) does not necessarily respect the condition λ1 = λ2.
The latter condition ensures the existence of an underlying
Hamiltonian structure and is customary in other physical
applications (such as atomic physics [29]). Nevertheless, as
we will see below, this is not a necessary condition for the
existence of the exact soliton solutions considered below.

III. SOLITON INTERACTIONS IN DIFFERENT
FREQUENCY BANDS: NUMERICAL RESULTS

A. Numerical procedure

Let us now proceed to study numerically the evolution of
the coupled solitons presented in the previous section in the
framework of the fully discrete model of Eq. (5). In order
to compare the analytical approximations with the results of
numerical simulations, we will make use of two diagnostic
quantities: The first one is the evolution of the center of mass
defined as

X(t) =
∑n=N

n=−N nV 2
n∑n=N

n=−N V 2
n

(40)

and the second one is a powerlike quantity defined as

P (t) =
n=N∑

n=−N

V 2
n , (41)

with 2N + 1 being the lattice size. The above quantities can
readily be determined for each type of vector soliton that is
predicted analytically in the framework of the coupled NLS
equations.

In all simulations, which have been performed by means of
a fixed-step fourth-order Runge-Kutta scheme with a time step
equal to 0.01, we have fixed the value of the small parameter
as ε = 0.02 and we have used periodic boundary conditions.
Use of the latter leads to the requirement that the wave number
k of a dark soliton component must be equal to 2πq/p, with
q,p ∈ Z and q also being odd.

In all figures below (Figs. 6–16), unless stated otherwise,
we show the density plots of Vn, the spatial profile of Vn at
t = 2000, the time evolution of the center of mass X(t) and
the quantity P (t).

Regarding the evolution time of the simulations, we should
note the following. Most of our simulations are performed
for relatively large normalized times, typically up to t ∼ 107

in some cases. However, given our time normalization, the
physical unit time (set by the frequency fsh = 14.529 GHz)
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FIG. 6. (Color online) Bright-bright solitons in regions II–IV.
(a) Density plot of the space-time evolution of Vn obtained numer-
ically. (b) Comparison of the analytical and numerical profiles of
Vn at t = 2000. Also shown is the time evolution of (c) the center
of mass and (d) the power diagnostic. The parameters used are
f1/fsh = 0.965 45 and f2/fsh = 1.365 35, which give k1 = −0.4061
and k2 = 1.8576, i.e., a bright-bright soliton in bands II and IV (this
particular choice corresponds to the points depicted by stars in Fig. 5).
The difference in the powers can be attributed to the approximate
nature of our solution.

is very small, namely, t0 = (2πfsh)−1 ≈ 11 ps (see Sec. II A).
Actually, since all characteristic frequencies of the system [see
Eq. (7)] are in the microwave regime, all characteristic times
are less than a nanosecond and thus, obviously, simulations for
time t even of the order of 109 are extremely time consuming.
Nevertheless, our results for normalized times up to t = 107
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FIG. 7. (Color online) The bright-bright soliton of Fig. 6 evolves
until t = 105. All the panels are similar to those of Fig. 6 except for
(b), in which snapshots of the soliton at t = 5 × 106 and t = 107 are
compared to the initial condition of the simulation in order to examine
its robustness under a very long evolution time.
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FIG. 8. (Color online) Parameters for solitons in bands I and IV.
Shown is the dependence of the coefficients α1 [solid (blue) line]
and α2 [dashed (red) line] on the normalized frequency f1/fsh. Stars
depict parameter values used for the simulations shown in Figs. 9 and
10 below.

(corresponding to a physical time of the order of one-tenth of a
millisecond) demonstrate good agreement with our analytical
predictions in suitable cases (see below). Furthermore, the
results of such long simulations can also be used as a reliable
indication of the solitons’ robustness. Hence, in the case where
the solitary waves are found to be very robust, we expect that
they would survive for the longer time scales that would render
them experimentally observable.

B. BD, BB, and DB solitons in bands II and IV

First, we consider the interaction between a backward-
propagating soliton, with a frequency lying in band II, and
a forward-propagating soliton, with a frequency lying in
band IV (for δ = 1.0954). In this case, s = −1 (see Fig. 3)
and, following the analysis of the previous section, we find
three different types of vector solitons in certain subbands.
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FIG. 9. (Color online) Bright-dark solitons in regions I and IV.
(a) Density plot of the time evolution of Vn obtained numerically.
(b) Comparison of the analytical and numerical profiles of Vn at t =
2000. Also shown is the time evolution of (c) the center of mass and (d)
the power diagnostics. The parameters used are f1/fsh = 0.8831 and
k2 = 5π/8 ≈ 1.9625, which give k1 = −1.0404 and f2/fsh = 1.3748
(see the corresponding points depicted by stars in Fig. 8), i.e., a
bright-dark soliton in bands I and IV.
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FIG. 10. (Color online) The bright-dark soliton of Fig. 9 evolves
until t = 2 × 105. All the panels are similar to those of Fig. 9 except
for (b), in which snapshots of the soliton at t = 2 × 105 and t =
5 × 105 are compared to the initial condition of the simulation. Notice
that the center of mass is not bounded in [−N,N ]; this can be caused
by the soliton splitting. In this setting, the modulational instability
of the background (see the discussion in Appendix B) appears to be
responsible for the breakup of the wave packet.

(i) If 0.94 < f1/fsh < 0.96 then α1 < 0 and α2 > 0; thus
BD solitons exist, with the frequency of the bright (dark)
soliton component being in the LH low- (RH high-) frequency
band.

(ii) If 0.96 < f1/fsh < 0.98 then α1 < 0 and α2 < 0; thus
BB solitons exist, with the soliton frequencies being one in the
LH low- and one in the RH high-frequency band.

(iii) If 0.98 < f1/fsh < 1 then α1 > 0 and α2 < 0; thus DB
solitons exist, with the frequency of the dark (bright) soliton
being in the LH low- (RH high-) frequency band.

Here we will focus on the BB soliton case (BD and
DB solitons will be studied below). In particular, we will
investigate the dynamics of a BB soliton corresponding to the
frequency value f1/fsh = 0.965: For this value, the dispersion
coefficient d becomes d � −1 = s, the CPM coefficients λ1,2

take the values λ1 = λ2 = λ = −1.7, and α1 = α2 = 0.487
(see the intersection point of the relevant curves depicted by a
star in Fig. 5). In this case, the BB soliton has a (common
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FIG. 11. (Color online) Same as Fig. 8, but for soliton interactions
in bands I and III. Stars depict parameter values used for the
simulations shown in Figs. 13 and 14 below.
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FIG. 12. (Color online) Same as Fig. 8, but for soliton interactions
in bands II and III. Stars depict parameter values used for the
simulations shown in Figs. 15 and 16 below.

for both components) group velocity vg = 0.1288, which
occurs when the (normalized) carrier frequencies for the modes
V1 and V2 take, respectively, the values f1/fsh = 0.965 (as
mentioned above) and f2/fsh = 1.365. Notice that other BB
soliton solutions not obeying the above particular conditions
(λ1 = λ2 and d = −1) exist as well, as per our analysis of the
previous section.

At this point, we should mention that this choice of the
parameter values leads to symmetric coupled NLS equations
(18) and (19) (and also to symmetric BB solitons of equal
amplitudes; see, e.g., Ref. [30]). A very interesting subcase,
corresponding to λ = −1 (i.e., equal SPM and CPM coef-
ficients), would render Eqs. (18) and (19) the completely
integrable Manakov system [31]; in such a case, in Fig. 5(b),
the curve for parameter d would intersect the curves for λ1,2,
with all parameters taking the value −1. However, we have
checked that other, physically relevant, choices of the values
of the parameter δ do not lead to the Manakov case [the chosen
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FIG. 13. (Color online) Dark-bright solitons in regions I and III.
(a) Density plot of the time evolution of Vn obtained numerically.
(b) Comparison of the analytical and numerical profiles of Vn at
t = 2000. Also shown is the time evolution of (c) the center of mass
and (d) the width diagnostic. The parameters used are k1 = −6π/5 ≈
−1.884 and f2/fsh = 1.1002, which give f1/fsh = 0.8003 and k2 =
0.1232 (cf. points depicted by stars in Fig. 11), i.e., a dark-bright
soliton in bands I and III.
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FIG. 14. (Color online) The dark-bright soliton of Fig. 13 evolves
until t = 2 × 105. All the panels are similar to those of Fig. 13 except
for (b), in which snapshots of the soliton at t = 2 × 105 and t =
5 × 105 are compared to the initial condition of the simulation in
order to examine its robustness under a very lengthy time evolution.

value δ = 1.0954 only leads to symmetric NLS equations (18)
and (19)].

Utilizing the above-mentioned BB soliton solution, we can
express the voltage Vn(t) in Eq. (5) in terms of the original
coordinates n and t as follows:

Vn(t) ≈ V0[R1(n,t) cos(k1n − �1t)

+R2(n,t) cos(k2n − �2t)], (42)
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FIG. 15. (Color online) Dark-bright solitons in regions II and III.
(a) Density plot of the time evolution of Vn obtained numerically.
(b) Comparison of the analytical and numerical profiles of Vn at t =
2000. Also shown is the time evolution of (c) the center of mass and
(d) the width diagnostic. The parameters used are k1 = −3π/23 ≈
−0.4095 and f2/fsh = 1.1162, which give f1/fsh = 0.965 and k2 =
0.2758 (cf. stars in Fig. 12), i.e., a dark-bright soliton in bands II
and III.
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where functions R1 and R2 have the following form:

R1 = sech[
√

2ε(n − vgt)], (43)

R2 =
√∣∣∣∣g11

g22

∣∣∣∣ sech[
√

2ε(n − vgt)]. (44)

In the above equations,  is an arbitrary parameter, while the
solution amplitude V0 and the frequencies �j (j = 1,2) are
given by

V0 = 2ε

√∣∣∣∣D1

g11

∣∣∣∣ 2

1 − λ
, �j = ωj + ε2|D1|, (45)

with ωj ≡ fj/fsh. Now, substituting Eq. (42) into Eqs. (40)
and (41), we obtain (for sufficiently small ε) our diagnostic
quantities

X(t) = vgt, P (t) = V 2
0

ε
√

2

(
1 +

∣∣∣∣g11

g22

∣∣∣∣
)

. (46)

In Figs. 6 and 7 we show the outcome of the simulations
for short and long times, respectively, of a bright-bright
soliton with  = 1 and N = 500. The parameters used are
f1/fsh = 0.965 and f2/fsh = 1.365, which give k1 = −0.406
and k2 = 1.857. In Fig. 6 it is evident that the agreement
between analytical and numerical results pertaining to the
soliton profile, as well as the evolution of the center of mass
and power diagnostics, is very good. In the case shown in Fig. 7
we have performed a very long simulation, up to normalized
times t = 107. It is clear that that the initial pulse does not
spread out, which indicates the soliton robustness: Figs. 7(a)
and 7(b), in particular the snapshots of the pulse profile at

n

t

(a)

−1000 0 1000
0

5

10

15

x 10
4

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

−1500 −1000 −500 0 500 1000 1500

−0.02

0

0.02 t=0
(b)

−1500 −1000 −500 0 500 1000 1500

−0.02

0

0.02 t=105

V
n

−1500 −1000 −500 0 500 1000 1500

−0.02

0

0.02 t=2×105

n

0 5 10 15

x 10
4

−10000

−5000

0

5000

t

X
d
(t

)

(c)
0 5 10 15

x 10
4

0.25

0.26

0.27

0.28

t

P
(t

)

(d) Numerical
Analytical

FIG. 16. (Color online) The dark-bright soliton of Fig. 15 evolves
until t = 2 × 105. All the panels are similar to those of Fig. 15 except
for (b), in which snapshots of the soliton at t = 105 and t = 2 × 105

are compared to the initial condition of the simulation. Notice that,
as in Fig. 10, the center of mass is not bounded in [−N,N ], as in that
case, the soliton splits at long evolution times. In this setting too, as
per the analysis of Appendix B, the modulational instability of the
background appears to be responsible for the breakup of the wave
packet.

t = 107, clearly show that the soliton persists as a stable
object up to the end of this long simulation time. We note
in passing that a fragment of the soliton is backscattered when
the soliton starts its motion at t = 0 (due to the approximate
nature of our analytical solution profile). Notice that despite
this emission and the subsequent interaction of the fragment
with the “distilled” solitary wave, the coherent structure
remains robust and preserves its characteristics throughout the
evolution thereafter.

C. BD solitons in bands I and IV

Next we consider the interaction between a backward-
propagating soliton, with a frequency in band I, and a forward-
propagating soliton, with a frequency in band IV; in this case,
s = 1 (see Fig. 3). In Fig. 8 we show the dependence of the
parameters α1 and α2 on the normalized frequency f1/fsh (for
δ = 1.0954). It is observed that α1 < 0 and α2 > 0 and thus
solely BD solitons exist in bands I and IV.

Employing the solutions (23) and (24), we can again
approximate a solution of Eq. (5) for the voltage Vn(t), in
terms of the original coordinates n and t , as follows:

Vn(t) ≈ V0[�1(n,t) cos(k1n − �1t)

+�2(n,t) cos(k2n − �2t)], (47)

where

�1 =
√

−α1

α2
sech[εb(n − vgt)], (48)

�2 =
√∣∣∣∣g11

g22

∣∣∣∣ tanh[εb(n − vgt)]. (49)

In this case, the solution amplitude V0 and the frequencies �j

(j = 1,2) are given by

V0 = 2ε

√
ν2

∣∣∣∣D1

g11

∣∣∣∣, �j = ωj + ε2νj |D1|. (50)

In order to get an expression for the center of mass similar
to that of the bright-bright soliton (46), we must define it as

Xd (t) = F (t)X(t)

�2
1,0 − �2

2,0

− εbN

2
�2

2,0 cot(k2) sin(2�2t), (51)

where

F (t) = �2
1,0 + �2

2,0(εbN − 1) + εb

2
�2

2,0[1 − cos(2�2t)].

(52)

Substituting Eq. (47) into Eqs. (41) and (51) we can once again
obtain relevant expressions (provided ε is small enough) for
the center of mass and power:

Xd (t) = vgt, Pd (t) = V 2
0

εb
F (t). (53)

Figures 9 and 10 show the evolution of a BD soliton (and its
characteristics) in bands I and IV with ν2 = 1 and N = 1220.
The parameters used are f1/fsh = 0.8831 and k2 = 5π/8 ≈
1.9625, which give k1 = −1.0404 and f2/fsh = 1.3748. In
this case, it is clear that although BD solitons do exist, the
agreement between analytical and numerical results becomes
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worse over time. Also, as shown in Fig. 10(b), the pulse
profile indicates that the BD soliton is not a robust object.
The observed long-time behavior of the BD soliton can be
attributed to the fact that the background of the dark soliton
component, namely, a continuous wave (cw), is subject to
the modulational instability (see Refs. [18,24]). This point is
explained in more detail in Appendix B.

D. DB solitons in bands I-III and II-III

Finally, we consider the cases of coupled solitons in bands
I and III, as well as in bands II and III. In both cases, as is
observed in Figs. 11 (bands I and III) and 12 (bands II and III),
we find that α1 > 0 and α2 < 0 and thus solely DB solitons
exist in these bands. Following our previous considerations,
we may use the DB soliton solutions of Eqs. (25) and (26)
and approximate the voltage Vn(t) in Eq. (5), in terms of the
original coordinates, as follows:

Vn(t) = V0[�1(n,t) cos(k1n − �1t)

+�2(n,t) cos(k2n − �2t)], (54)

where functions �1 and �2 are given by

�1 = tanh[εB(n − vgt)], (55)

�2 =
√

−α2

α1

∣∣∣∣g11

g22

∣∣∣∣ sech[εB(n − vgt)], (56)

while the rest of the soliton parameters are

V0 = 2ε

√
ν1

∣∣∣∣D1

g11

∣∣∣∣, �j = ωj + ε2νj |D1|. (57)

Figures 13 and 14 show the outcome of the simulations for
a DB soliton in bands I and III (with ν1 = 3 and N = 3333),
while Figs. 15 and 16 correspond to a DB soliton in bands
II and III (with ν1 = 3 and N = 1553). The parameters
used are k1 = −6π/5 ≈ −1.884 and f2/fsh = 1.1002, which
give f1/fsh = 0.8003 and k2 = 0.1232, in bands I and III,
and k1 = −3π/23 ≈ −0.4095 and f2/fsh = 1.1162, which
give f1/fsh = 0.965 and k2 = 0.2758, in bands II and III,
respectively. In the latter case, the relatively large values of
the number of particles and of ν1 used are motivated by
the necessity of a vanishing tail for the bright component
at the edges of the lattice. As seen in this set of figures,
DB solitons in bands II and III and bands I and III do
exist, as predicted in theory. Furthermore, it is observed
that the former are less robust than the latter, as seen both
from their stronger deformation and the fact that they lose
their solitary-wave character earlier. In fact, as observed in
Fig. 16(b) and explained in Appendix B, the cw background
of the dark soliton is subject to the modulation instability, as in
the case of interactions in bands I and IV. On the contrary, DB
solitons in bands I and III seem to essentially preserve their
structure even in the long evolution of Fig. 14; in this case,
as also explained in Appendix B, the cw background carrying
the dark soliton is modulationally stable. This fact can, at least
qualitatively, explain the different long-time behavior of the
DB solitons observed in Figs. 16 and 14 and the fact that DB
solitons in bands I and III are more robust than the ones in
bands II and III.

IV. CONCLUSION

We have used both analytical and numerical techniques
to study the existence and dynamical robustness of coupled
backward- and forward-propagating solitons in a compos-
ite right- and left-handed nonlinear transmission line. The
considered form of the TL was a quite generic one, finding
applications to the modeling of a wide range of LH systems
and devices, with parasitic RH behavior, such as resonators,
antennas, and directional couplers [1–4].

Our analysis started with the derivation of a nonlinear
lattice equation governing the voltage across the fundamental
(unit-cell) element of the transmission line. In the linear
regime, we derived the dispersion relation for small-amplitude
linear plane waves and showed that they may propagate in
either a right-handed high-frequency region or a left-handed
low-frequency region. We also identified frequency bands
where RH and LH modes can propagate with the same group
velocity.

Using the above result, we then investigated the possibility
of nonlinearity-assisted coupling between LH and RH modes.
This way, in order to analytically treat the nonlinear lattice
equation, we used the so-called quasidiscrete approximation.
The latter is a variant of the multiscale perturbation method,
which takes into account the discreteness of the system by
considering the carrier (envelope) of the wave as a discrete
(continuum) function of space. Employing this approach, we
derived, in the small-amplitude approximation and for certain
space and time scales, a system of two coupled nonlinear
Schrödinger equations for the unknown voltage envelope
functions. This system was then used to predict the existence
of coupled backward- and forward-propagating solitons of the
bright-bright, bright-dark, and dark-bright types, respectively.
Importantly, the analysis of such a nonlinear coupling suggests
that it is possible to control the characteristics (amplitude,
width, etc.), e.g., of a LH soliton with the ones of a RH soliton.

The above-mentioned existence results, as well as the
propagation properties and the potential robustness of these
vector solitons, were then investigated for each of the possible
scenarios. This was done by means of direct numerical
simulations of the full CRLH-TL nonlinear lattice model,
using as initial conditions the analytical forms of solitons
predicted by the perturbation theory. In the simulations, apart
from the evolution of the shape, we also studied the evolution
of the center of mass and a powerlike quantity of the various
solitons. Our numerical results have confirmed the existence
of the various types of solitons predicted analytically, but
have also revealed their distinct robustness characteristics.
In particular, we found that bright-bright solitons feature a
robust propagation over long times. In contrast, as concerns
solitons of the mixed type (namely, dark-bright and bright-dark
ones), we found that in specific frequency bands (bands I
and III), dark-bright solitons are more robust than those in
other bands (i.e., II and III) or bright-dark solitons: Dark-
bright solitons in bands II and III and bright-dark solitons
preserve their shape only for finite times and for sufficiently
long evolutions they are either destroyed (bright-dark) or are
significantly deformed (dark-bright). A qualitative explanation
of the above behavior may be attributed to the fact that the
continuous-wave background of the dark soliton was found
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to be, in the effective NLS picture, modulationally stable
(unstable) in bands I and III (bands I and IV and bands II
and III).

We can thus postulate that from all types of solitons
predicted analytically, bright-bright and dark-bright ones (in
bands I and III) are the most likely ones to be experimen-
tally observable. In all cases, our numerical results were
found to corroborate the analytical predictions, at least up
to the times during which the solitary waves propagate
robustly.

It would be interesting to study other types of nonlin-
ear CRLH-TL lattice models modeling realistic structures
composed by LH metamaterials. In that regard, a pertinent
interesting direction would be the investigation of the effects
of damping and driving, which may lead to robust nonlinear
waveforms, which would constitute dynamical attractors in
such settings. Additionally, the study of higher-dimensional
settings is a particularly challenging problem. In the latter con-
text, in addition to simpler (yet genuinely higher-dimensional
or even quasi-one-dimensional) solitary-wave structures, more
complex waveforms, such as vortices, may be realizable.
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APPENDIX A: PERTURBATION SCHEME

Our analytical approximation relies on the use of the
quasicontinuum approximation, which is a variant of the
method of multiple scales [32]. We introduce independent
temporal variables tm = εmt (m = 0,1,2, . . .) and accordingly
expand the time derivative operator as ∂t = ∂t0 + ε∂t1 + · · · .
Next we seek solutions of Eq. (5) in the form

Vn =
∑
m=1

εmumn(tm) + c.c. (A1)

(recall that subscript n denotes the lattice site). Then we
substitute Eq. (A1) into Eq. (5) and employ a continuum
approximation for functions umn, i.e., umn → um(x), where
x = nh and h is the lattice spacing (the latter parameter does
not appear in the results below, as one may readily rescale
x as x/h). Furthermore, we introduce the spatial variables
xm = εmx and thus ∂x = ∂x0 + ε∂x1 + · · · .

We now seek a solution in the form

u1 =
2∑

j=1

Vj (x1,x2, . . . ,t1,t2, . . .) exp(iθj ) + c.c., (A2)

where subscripts j = 1 and 2 correspond to the LH low- and
RH high-frequency bands, Vj is an unknown complex envelope
function, θj = kjx0 − ωj t0, and the wave numbers kj and
frequencies ωj satisfy the dispersion relation (10). Substituting
Eq. (A2) into Eq. (5) and equating coefficients of like powers

of ε, we obtain the (first three) perturbation equations

L̂0u1 = 0 for O(ε), (A3)

L̂0u2 + L̂1u1 + N̂0u
2
1 = 0 for O(ε2), (A4)

L̂1u2 + L̂2u1 + N̂0
[
u1u2 + μu3

1

] = 0 for O(ε3), (A5)

where the operators are given by

L̂0 = ∂4

∂t4
0

+
(

1 + δ2 + 4β2 sin2 kj

2

)
∂2

∂t2
0

+ δ2, (A6)

L̂1 = 4
∂4

∂t3
0 ∂t1

+ 2

(
1 + δ2 + 4β2 sin2 kj

2

)
∂2

∂t0∂t1

− 2iβ2 sin kj

∂3

∂t3
0 ∂x1

, (A7)

L̂2 =
(

1 + δ2 + 4β2 sin2 kj

2

) (
∂2

∂t2
1

+ 2
∂2

∂t0∂t2

)

− 6
∂4

∂t2
0 ∂t2

1

+ 4
∂4

∂t3
0 ∂t2

β2 cos kj

∂4

∂t2
0 ∂x2

1

− 4iβ2 sin kj

∂3

∂t0∂t1∂x1
− 2iβ2 sin kj

∂4

∂t2
0 ∂x2

2

, (A8)

N̂0 =
(

∂4

∂t4
0

+ δ2 ∂2

∂t2
0

)
. (A9)

Next, substituting Eq. (A2) into Eq. (A4), we obtain the
nonsecularity condition

∂Vj

∂t1
+

[
ωjβ

2 sin kj

2ω2
j − (

1 + δ2 + 4β2 sin2 kj

2

)
]

∂Vj

∂x1
= 0, (A10)

which suggests that Vj = Vj (X,x2, . . . ,t2, . . .), where X =
x1 − vgj

t1, while the group velocities vgj
result self-

consistently as vgj
= ∂ωj/∂kj [cf. Eq. (11)]. Employing

Eq. (A10), we may determine from Eq. (A4) the unknown
field u2,

u2 = −
2∑

j=1

4ω2
j

(
4ω2

j − δ2
)

Gj (2ωj ,2kj )
V 2

j exp(i2θj )

− 2[(ω1 + ω2)4 − δ2(ω1 + ω2)2]

G3(ω1 + ω2,k1 + k2)
V1V2 exp[i(θ1 + θ2)]

− 2[(ω1 − ω2)4 − δ2(ω1 − ω2)2]

G4(ω1 − ω2,k1 − k2)
V1V

∗
2 exp[i(θ1 − θ2)]

−
2∑

j=1

Fj (x1,x2, . . . ,t1,t2, . . .) + c.c., (A11)

where functions Gj (ωj ,kj ) (j = 1,2) are given by:

Gj = −(1 + δ2 + 4β2 sin2 kj )(2ωj )2

+ (2ωj )4 + δ2, (A12)

G3 = −
[

1 + δ2 + 4β2 sin2

(
k1 + k2

2

)]
(ω1 + ω2)2

+ (ω1 + ω2)4 + δ2, (A13)
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G4 = −
[

1 + δ2 + 4β2 sin2

(
k1 − k2

2

)]
(ω1 − ω2)2

+ (ω1 − ω2)4 + δ2. (A14)

In contrast, functions Fj (x1,x2, . . . ,t1,t2, . . .) can be derived
at O(ε4) by means of the equation

L̂2u2 + N̂2u
2
1 = 0, (A15)

which leads to the result

Fj = − 2ω2
j δ

2

ω4
j + δ2

. (A16)

To this end, we arrive at the following expression for u2:

u2 = −
2∑

j=1

cjV
2
j exp(i2θj ) − c3V1V2 exp[i(θ1 + θ2)]

− c4V1V
∗

2 exp[i(θ1 − θ2)] −
2∑

j=1

c0j |Vj |2 + c.c.,

(A17)

where

cj = 4ω2
j

(
4ω2

j − δ2
)

Gj (2ωj ,2kj )
, (A18)

c3 = 2[(ω1 + ω2)4 − δ2(ω1 + ω2)2]

G3(ω1 + ω2,k1 + k2)
, (A19)

c4 = 2[(ω1 − ω2)4 − δ2(ω1 − ω2)2]

G4(ω1 − ω2,k1 − k2)
, (A20)

c0j = 2ω2
j δ

2

ω4
j + δ2

. (A21)

Finally, defining the coefficients

Aj = c0j + cj , (A22)

B3−j = c03−j + c3 + c4 (A23)

and using the variables X = x1 − vgt1 ≡ ε(n − vgt) and T =
t2 ≡ ε2t , we derive from the nonsecularity condition at O(ε3)
the coupled NLS equations (18) and (19).

APPENDIX B: MODULATIONAL INSTABILITY

In this Appendix we provide results for the modulational
instability of plane wave solutions of Eqs. (18) and (19) (details
can be found, e.g., in Refs. [18,24]). First we note that Eqs. (18)
and (19) possess exact cw solutions, of constant amplitudes

Vj (0), of the form

Vj = Vj (0) exp(−iϕj ), (B1)

where ϕj = (V 2
j (0) − λjV

2
3−j,(0))T (with j = 1,2). The stability

of the above cw solutions is studied by introducing the
following ansatz into Eqs. (18) and (19):

Vj = (Vj (0) + ψj ) exp(iϕj ), (B2)

where ψj is a small perturbation. Then, linearizing the
resulting equations with respect to ψj and assuming that

ψj = pj cos(KpX − �pT ) + iqj sin(KpX − �pT ), (B3)

where Kp and �p are the wave number and the frequency
of perturbation, we derive a homogeneous system of four
equations for the perturbation amplitudes pj and qj . Requiring
that the system admits a nontrivial solution, we derive the
following dispersion relation for �p and Kp:

�4
p − (ρ1 + ρ2)�2

p + ρ1ρ2 − γ = 0, (B4)

where

ρ1 = sK2
p

2

(
sK2

p

2
+ 2V 2

1(0)

)
, (B5)

ρ2 = dK2
p

2

(
dK2

p

2
+ 2V 2

2(0)

)
, (B6)

γ = sdλ1λ2V
2

1(0)V
2

2(0). (B7)

A general study of Eq. (B4) is provided in Ref. [24].
Here we may study a simpler case, where solely one cw
(which carries a dark soliton) is present (i.e., γ = 0), so as
to explain the long-time behavior of BD and DB solitons
observed in simulations. In this case, if ρ1ρ2 < 0 then
the cw is modulationally unstable because Im{�p} �= 0 and
thus ψj experience exponential growth. Using the above
arguments, we find the following for the BD and DB solitons
in bands I and IV and bands II and III (as well as I
and III).

a. BD solitons in bands I and IV. In this case s = 1,
d < 0, and V1(0) = 0; hence ρ1ρ2 < 0 and the cw back-
ground of the dark soliton component is modulationally
unstable.

b. DB solitons in bands II and III. In this case s = −1,
d > 0, and V2(0) = 0; hence ρ1ρ2 < 0 and the cw back-
ground of the dark soliton component is modulationally
unstable.

c. DB solitons in bands I and III. In this case s = 1, d > 0,
and V2(0) = 0. Contrary to the previous cases, we now have
ρ1ρ2 > 0 and therefore the cw background of the dark soliton
component is modulationally stable.

The above results qualitatively explain the different long-
time behavior of the BD and DB solitons in bands I and IV
and bands II and III [see snapshots at t = 5 × 105 and at
t = 2 × 105 in Figs. 10(b) and 16(b), respectively] and DB
solitons in bands I and III [see snapshot at t = 5 × 105 in
Fig. 14(b)].
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