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SUMMARY

This paper addresses the imbalance problem of the dc-link capacitor voltages in the three-level diode-
clamped back-to-back power converter. In order to cope withit, a mathematical analysis of the capacitor
voltage difference dynamics, based on a continuous model ofthe converter, is first carried out. It leads to an
approximated model which contains explicitly several sinusoidal functions of time. In view of this result, the
voltage imbalance phenomenon can be addressed as an output regulation problem, considering the sinusoidal
functions as exogenous disturbances. Thus, a novel approach to deal with the mentioned problem in the back-
to-back converter is presented. Then, the particular features of the disturbances are used to design several
controllers. They all follow an asymptotic disturbance rejection approach. In this way, the estimations of the
disturbances are used to apply a control law that cancels them while regulating the capacitor voltage balance
as well. Finally, the performance of the proposed control laws is evaluated, presenting the simulation results
obtained when the different controllers are implemented. Copyright c© 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the field of power conversion, back-to-back converter topology plays a fundamental role, that
has found widespread applications such as train traction systems, automotive applications, energy
generation and conversion, among others, in various industrial sectors [1]. In particular, regenerative
conveyors and variable speed drives [2–4], for conversion from a three-phase source to a three-phase
load with an arbitrary frequency and amplitude, and, especially, wind power generators [5,6], due
to the recently increasing influence of the renewable energies [7,8], have been under research and
development over the last years.

In respect of the back-to-back configuration, it consists ofa connection of two power converters.
The left-hand side converter generally works as a rectifier for the grid interface, and the right-hand
side one as an inverter for the load, as shown in Fig.1. Both converters are able to switch their
operation functions and to connect asynchronous systems, allowing an indirect ac-ac conversion
[9, 10], also referred to as ac-dc-ac conversion, including energy storage elements in the dc-link.
These elements provide a decoupling of both converter stages for control purposes [11], as well as
energy buffering when the instantaneous powers in the rectifier and inverter are unbalanced. Besides,
the back-to-back converter presents other remarkable features such as good dynamic response, the
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2 F. UMBRÍA ET AL.

Figure 1. Three-phase three-level diode-clamped back-to-back power converter used as a grid interface for
applications such as wind power generators or variable speed drives.

same hardware is required for both converters, high power factor and bidirectional power flow. In
other words, they absorb energy from the grid or transfer it to the grid, meaning that the active power
flow direction can be reversed at any instant due to the four-quadrant capability of the setup.

Among the different back-to-back configurations, the setupbased on the three-level diode-
clamped converter (DCC), also known as neutral-point-clamped converter [12], is one of the most
attractive converter topologies [13, 14]. It adds the typical advantages of the multilevel topology,
compared with the conventional two-level converter topology, to those provided by the back-to-
back connection. In this way, it leads to an increase of the output voltage magnitude, lower switching
frequency, reduction of the total harmonic distortion, better output voltage spectrum, robustness and
higher efficiency [15]. Nevertheless, there exists the issue of the voltage imbalance of the dc-link
capacitors, which is a relevant and well-known drawback of the DCC.

Concerning the difficulty of balancing of the dc-link capacitor voltages, multilevel DCCs with a
large number of levels present some theoretical and practical limits related to the modulation index
and the power factor of the load [16], so a proper voltage balancing is not possible in all the operating
conditions [17]. Focusing on the back-to-back converter, although the particular connection of
the rectifier and the inverter might yield a natural compensation of the voltage unbalance, this
configuration is only able to achieve an acceptable voltage balancing including a suitable controller
or modulation strategy [18–20]. Thus, the most popular method to mitigate the voltage imbalance
is the use of modulation strategies based on the exploitation of the redundant switching states of the
converter [21,22]. That is, those distinct positions of the converter switches that generate the same
output voltage but they cause different effects on the capacitor voltages.

This paper addresses the voltage imbalance phenomenon in the three-level diode-clamped back-
to-back converter. In order to cope with it, an analysis of the dc-link capacitor voltage difference
dynamics is carried out in this paper. The analysis is based on a continuous model of the converter
and, considering a singular perturbation approach [23], yields a particular model for the voltage
difference dynamics that contains explicitly several sinusoidal functions of time. This important
fact is the key of the work presented here since it leads to relate the voltage imbalance problem to a
problem of periodic disturbance cancellation and regulation of the output of the system. In this way,
this new problem statement, which has been widely studied inthe literature and applied to many
other industrial system, is the first contribution of the current paper. The mathematical analysis
derived enables the use of classical control theory to design the controller. Thereby, it provides an
alternative approach to deal with the problem, compared with the strategies usually considered and
previously mentioned [18–22].

One of the most important problems in control theory is that of controlling a fixed plan in order
to retain closed-loop stability and output regulation in the presence of disturbances produced by
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ASYMPTOTIC REJECTION OF SINUSOIDAL DISTURBANCES IN BACK-TO-BACK CONVERTERS 3

Figure 2. Three-phase three-level diode-clamped back-to-back power converter.

some external generator. The problem has been first treated for linear systems [24–26], showing
that any regulator which solves the matter at hand incorporates in the feedback a reduplicated
model of the dynamic structure of the disturbance which mustbe tracked and/or rejected. This
property is commonly known as the internal model principle [25, 26]. Incorporating the earlier
results established in the linear setting, the theory was then extended to the nonlinear case. The
most classical formulation of the problem for this case was presented by Isidori and Byrnes in [27].
Still today, significant effort is being made in this research field [28–30].

Regarding the topic of identifying and asymptotically rejecting periodic disturbances, huge
progresses have been reported [31–33]. Both the case when the disturbance frequency is known
as well as the case when it is an unknown parameter have been studied. Even the varying frequency
disturbance scenario, typical in applications such as rolling machines and magnetic tape drives,
has been also discussed [34, 35]. Thus, methods related to adaptive control [36, 37], repetitive
control [38,39], backstepping [40], among others, have been used providing solid results.

Based on the analysis of the converter dynamics presented inthe first part of this paper, some
control schemes are designed to achieve the voltage balancing of the dc-link capacitors of the back-
to-back converter. In this way, the design of the controllers applying well-known techniques to reject
sinusoidal disturbances is the second contribution of thiswork. The authors have worked previously
with control techniques based on disturbance rejection in other converter topologies [41,42], where
the circuit studied was the neutral-point-clamped rectifier. In particular, in [41] an analysis of the
voltage difference dynamics was also formulated but leading to an expression which contains only
one sinusoidal function. In the current paper, the ideas presented in [41,42] are adopted and extended
to the multiple frequency approach of the back-to-back topology.

The remainder of this paper is organized as follows. In Section2, the converter model is described,
presenting the control objectives. Afterwards, the dynamics of the capacitor voltage difference are
analyzed in detail in Section3. Considering the previous analysis, Section4 states the problem of
disturbance rejection in the converter topology of this paper and proposes several control methods
to guarantee the correct behavior of the capacitor voltages. Then, the admissible implementations of
the proposed control laws are discussed in Section5. The simulation results obtained are presented
in Section6. Finally, some conclusions are drawn in Section7.

2. MODEL OF THE BACK-TO-BACK CONVERTER AND CONTROL OBJECTIVES

Fig. 2 illustrates a schematic diagram of the three-phase three-level diode-clamped back-to-back
power converter, which is the setup considered in this paper. The dc-link is composed of capacitors
C1 and C2, both of identical capacitanceC, being their respective voltagesvc1 and vc2 . As
mentioned before, both left-hand side and right-hand side converters are able to switch their
operation modes. However, in the following, the left-hand side converter is named rectifier, and
the right-hand side one is named inverter, in order to distinguish one from the other, as well as
to simplify the notation. Both converters are connected to acorresponding ac system through the
inductorsLr andLi. The whole system represents a general back-to-back converter. In other words,
it is not only focused on a particular application of this configuration, but it includes the all purpose
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Table I. Variables of the system inαβγ coordinates.

Variable Description

iαβ,r = [ iα,r iβ,r ]T Rectifier phase current vector

iαβ,i = [ iα,i iβ,i ]T Inverter phase current vector

vαβ,r = [ vα,r vβ,r ]T Rectifier phase voltage vector

vαβ,i = [ vα,i vβ,i ]T Inverter phase voltage vector

δαβγ,r = [ δα,r δβ,r δγ,r ]T Rectifier control vector

δαβγ,i = [ δα,i δβ,i δγ,i ]T Inverter control vector

interconnection of two ac power systems with different frequencies, where the instantaneous power
flows from one ac system to another.

The variables of the system inabc coordinates are, on one hand, the phase currents and phase
voltages of the rectifier, denoted byia,r, ib,r, ic,r andva,r, vb,r, vc,r, respectively. On the other hand,
considering the inverter, the phase currentsia,i, ib,i, ic,i, and the phase voltages, given in this case
by va,i, vb,i andvc,i. In addition, the gating signals that regulate the positions of the switches of both
converters are defined byδ∗a,r, δ∗b,r andδ∗c,r in the rectifier, and byδ∗a,i, δ

∗

b,i andδ∗c,i in the inverter.
Among the large variety of converter models such as, e.g., time-varying and time-invariant

averaged models, detailed switching models and small signal models [43], the continuous model
of the back-to-back converter presented in [44] is adopted in this paper. The model is based on a
direct average of the characteristics and waveforms associated with each of the components of the
converters, providing a model valid all over the range of values of the control inputs. Thereby, the
model obtained describes, inαβγ orthogonal coordinates, using the Clarke-Concordia Transform,
the dynamics of the phase currents and of the total dc-link voltage [44], including the dc-link
capacitor voltage difference dynamics, as well. Particularly, these last dynamics are given by

C
dvd
dt

=
δTαβ,r iαβ,r√

3
δγ,r +

[
δ2α,r − δ2β,r

2
√
6

− δα,r δβ,r√
6

]
iαβ,r

(1)

−
δTαβ,i iαβ,i√

3
δγ,i −

[
δ2α,i − δ2β,i

2
√
6

− δα,i δβ,i√
6

]
iαβ,i,

wherevd is the difference between the upper and lower dc-link capacitor voltages, that is,

vd =
vc1 − vc2

2
. (2)

Notice that the system variables have been transformed intoαβγ coordinates, yielding the vectors
summarized in TableI. It is assumed that the gating signals can be replaced by their averaged values
in a switching period, defining in this way the control vectors δαβγ,r andδαβγ,i. They are the
control inputs of the model and are carried out as an indirectcontrol through a modulator. The
componentsαβ of these control vectors are also represented together in (1) by

δαβ,r =
[
δα,r δβ,i

]T
(3)

δαβ,i =
[
δα,i δβ,i

]T
. (4)

Moreover, (1) includes the current vectorsiαβ,r and iαβ,i, meaning that the capacitor voltage
difference dynamics are coupled with the current ones.

2.1. Control objectives

As pointed out in the introduction, this paper addresses theimbalance problem of the voltages of the
dc-link capacitors. The voltage differencevd should be controlled to avoid the presence of unbalance
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ASYMPTOTIC REJECTION OF SINUSOIDAL DISTURBANCES IN BACK-TO-BACK CONVERTERS 5

in the system, so it should be kept close to zero

vd ≃ 0, (5)

providing closed-loop stability as well. It is worth stressing that it is not aimed forvd(t) → 0
as t → ∞ for all possible initial conditions of the closed-loop state variables. Consequently, the
requirements of the classical output regulation problem [24,27] are smoothed. Besides, at this point
of the paper, the disturbances in the system have not been considered yet.

The analysis and control methods presented in the next sections have been worked out to keep
balanced the dc-link capacitor voltages. Nevertheless, other requirements of the system such as, e.g.,
desired instantaneous active power, total dc-link voltageand power factor at both ac sides should
be also fulfilled. Hence, it is necessary to design some othercontrollers to satisfy these other aims.
Thus, the other variables to control are the rectifier instantaneous active and reactive powers denoted
by pr andqr, and in the inverter bypi andqi, being their references described, respectively, byp∗r,
q∗r , p∗i andq∗i , and the total dc-link voltage defined as

vdc = vc1 + vc2 . (6)

In the following section it is assumed that there exist certain controllers to deal with the regulation
of the instantaneous powers as well as with the total dc-linkvoltage. Specifically, the control vectors
(3) and (4) are used by the power controller to this end, remaining control inputsδγ,r andδγ,i as the
degrees of freedom for coping with the voltage imbalance problem.

3. ANALYSIS OF THE DC-LINK CAPACITOR VOLTAGE DIFFERENCE DYNAMICS

Since current and dc-link capacitor voltage difference dynamics in the back-to-back converter are
tightly coupled, the design of a controller to balance the capacitor voltages is not an easy task. This
section is devoted to study in detail the voltage differenceequation in order to provide a better
understanding of its behavior, as well as some remarkable results that are the basis of the proposed
control methods in this paper. The analysis, worked out froma mathematical point of view, is carried
out considering some essential assumptions related to a time-scale approach, that are stated next.

3.1. Time-scale assumptions

Assumption 1
The instantaneous power dynamics are faster than the dc-link capacitor voltage difference dynamics.

Under the assumption of different velocities of the power and voltage dynamics [45], and in
order to study (1), it leads to suppose that the instantaneous powers have been regulated around
their references. Therefore, applyingδαβ,r and δαβ,i in an appropriate control scheme, the
instantaneous powers at both rectifier and inverter sides are approximated by

pr ≃ p∗r (7)

qr ≃ q∗r (8)

pi ≃ p∗i (9)

qi ≃ q∗i . (10)

Assumption 2
The total dc-link voltage and the rectifier instantaneous active power reference dynamics are slower
than the dc-link capacitor voltage difference dynamics.

Concerning this second assumption, which is related to the design of the parameters of the
voltage balancing methods, it leads to assume that the totaldc-link voltage as well as the rectifier
instantaneous active power reference are treated as constants in the analysis of (1).
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Regarding the rectifier power referencep∗r , it is assigned to control the total dc-link voltage, whose
dynamics considering Assumption1 are given by

C
d

dt

(
v2dc
2

)
≃ p∗r − p∗i . (11)

It is worth mentioning that, in the back-to-back topology, the rectifier and inverter are usually
controlled individually, so one of them should be devoted toregulate the total dc-link voltage
regardless of the operating state of the another. Hence, whereas the power referencesq∗r , p∗i and
q∗i are fixed parameters, the dynamics of the rectifier power referencep∗r are defined to drive the
total dc-link voltage towards its referencev∗dc.

3.2. Final expression of the voltage difference dynamics

Considering the time-scale assumptions and following the procedure to analyze (1) given in
AppendixA, it results in the final expression of the dynamics of the voltage difference between
the dc-link capacitors defined by

C
dvd
dt

= krδγ,r − kiδγ,i + φr + φi. (12)

Due to Assumption2, kr andki are the constants described by

kr =
2 p∗r√
3 vdc

(13)

ki =
2 p∗i√
3 vdc

. (14)

andφr andφi are the sinusoidal functions given by

φr = µ1,r sin (3ωrt+ 3θr + arctan (µ2,r)) (15)

φi = µ1,i sin (3ωit+ 3θi + arctan (µ2,i)) . (16)

Parametersµ1,r, µ2,r, µ1,i and µ2,i are constant values defined in AppendixA. Notice that the
frequencies of the sinusoidal functions correspond with three times the frequencies of the rectifier
and inverter side phase voltages (77)-(80), denoted byωr andωi, respectively.

Summarizing, this section has simplified the initial highlycomplicated expression of the dc-link
capacitor voltage difference dynamics (1), leading to a simpler equation (12), under some particular
conditions. Besides, (12) is a linear function of control inputsδγ,r andδγ,i, containing also explicitly
two additional terms which take the form of sinusoidal functions. The special features ofφr andφi,
which are regarded in the following as external disturbances, are used to propose several methods
to design the voltage balance controllers.

4. PROBLEM STATEMENT AND PROPOSED VOLTAGE BALANCING METHODS

Due to the appearance of the disturbances in the capacitor voltage difference dynamics, it leads to
relate the voltage imbalance problem to a problem of periodic disturbance rejection. In this way, the
purpose of the controllers to design is now twofold. The firstgoal, as pointed out in Section2.1, is to
regulate the dc-link capacitor voltage differencevd which should remain close to its reference given
by v∗d , providing closed-loop stability. This reference is set tozero to keep balanced the capacitor
voltages. The second goal is the asymptotic cancellation ofthe sinusoidal disturbances, that is, the
asymptotic cancellation of the disturbancesφr andφi defined in the previous section. In this way, to
achieve a proper output regulation, suitable models of bothdisturbances should be included in the
controller, as stated in [25,26].
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ASYMPTOTIC REJECTION OF SINUSOIDAL DISTURBANCES IN BACK-TO-BACK CONVERTERS 7

Figure 3. Schematic block diagram of the system (dc-link capacitor voltage difference dynamics) when the
controller as well as the state observer are both implemented.

The balancing methods here presented are based on an asymptotic disturbance rejection approach.
The proposed controllers estimate asymptotically the sinusoidal disturbances, having in common the
idea of applying a control law to cancel them while regulating the capacitor voltage balance as well.
The methods use some control concepts widely discussed in [25,26,47–49], and also proposed for
the neutral-point-clamped rectifier in [41, 42], extending them to the multiple frequency approach
of the back-to-back topology of the current paper.

In order to apply the control action, whereas vectorsδαβ,r and δαβ,i are used to control the
instantaneous powers, the remaining control inputsδγ,r andδγ,i are still free parameters, so they
both can be used for the balancing of the capacitor voltages.However, in this section, a control
signal denoted byuγ is defined containing bothδγ,r andδγ,i as follows

uγ = krδγ,r − kiδγ,i. (17)

As a result, the final equation of the voltage difference dynamics given by (12) is expressed as

C
dvd
dt

= uγ + φr + φi. (18)

The control termuγ is only introduced in the controller design stage to simplify the notation. The
implementation of the definitive control law is discussed inthe following section. Notice that (18)
takes the form of the system considered in [27] for the linear setting, defining the disturbancew in
that reference as the sum ofφr andφi.

Fig. 3 depicts a schematic block diagram of (18) when the controller is included in the system.
The block denoted byP (s) is the transfer function defined in the Laplace domain by

P (s) =
1

Cs
. (19)

4.1. State space estimation provided by a Luenberger observer

The first proposed control method includes the asymptotic estimations of (15) and (16) provided by a
state space observer, concretely by a Luenberger observer.Taking into account that the frequencies
of the sinusoidal disturbancesφr andφi are 3ωr and3ωi, respectively, (18) is expressed as the
augmented systemS described by

S :





ẋd =
1

C
xφ1

r
+

1

C
xφ1

i

+
1

C
uγ

ẋφ1
r

= xφ2
r

ẋφ2
r

= − (3ωr)
2 xφ1

r

ẋφ1

i

= xφ2

i

ẋφ2

i

= − (3ωi)
2
xφ1

i

.

(20)
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The capacitor voltage difference is defined by the variablexd. The sinusoidal disturbancesφr and
φi by xφ1

r
andxφ1

i

, and their time derivatives byxφ2
r

andxφ2

i

, respectively. The control input of the
system isuγ .

Considering that the output of the system is the variablexd, the state space representation of
systemS is given by

S :

{
ẋ = Ax+Buγ

y = Cx,
(21)

wherex ∈ R
5 is the state vector of the system, and it is defined by

x =
[
xd xφ1

r
xφ2

r
xφ1

i

xφ2

i

]T
, (22)

y ∈ R is the output, anduγ ∈ R is the control input. The state matrixA, and the input and output
matrices,B andC, respectively, are given by

A =




0
1

C
0

1

C
0

0 0 1 0 0

0 − (3ωr)
2

0 0 0

0 0 0 0 1

0 0 0 − (3ωi)
2

0




, B =




1

C

0

0

0

0




, C =




1

0

0

0

0




T

. (23)

Since the observability matrix of systemS is full rank, the system is observable, and it is possible
to reconstruct the system state from its output measurements via a state space observer. Thereby, to
provide an estimate ofx, the Luenberger observerSo, assuming that the dc-link capacitor voltage
difference is measurable, is designed as follows

So :

{
˙̂x = Ax̂+Buγ +L (y − ŷ)

ŷ = Cx̂.
(24)

The estimated state vector˙̂x ∈ R
5 is given by

x̂ =
[
x̂d x̂φ1

r
x̂φ2

r
x̂φ1

i

x̂φ2

i

]T
, (25)

the estimated output bŷy ∈ R, and the observer gain matrix is described by

L =
[
p1 p2 p3 p4 p5

]T
. (26)

The rest of the variables and parameters of (24) have been already defined in (21). The values of the
elements ofL are chosen in such a way that the poles of the observerSo converge faster than the
poles of systemS.

Finally, once the observer is implemented, the controller applies the estimates ofφr andφi that
the observer provides, represented by the state variablesx̂φ1

r
andx̂φ1

i

, respectively. Thus, the control
law is defined by

uγ = k (v∗d − vd) − x̂φ1
r
− x̂φ1

i

, (27)

wherek is a design constant parameter, andv∗d is the capacitor voltage difference reference, which
is set to zero. Notice that the estimatesx̂φ1

r
andx̂φ1

i

are applied to asymptotically cancel the terms
φr andφi in (18), and they are implemented in parallel with a proportional controller to ensure that
vd tends exponentially towards its reference.
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4.2. Internal model principle based disturbance estimation

The second approach is based on the internal model principleof control theory [25, 26], which
states that the regulation of a system is achieved when the control law encapsulates, either implicity
or explicitly, some representation of the process to be controlled. In this way, the feedback path
should incorporate suitably reduplicated models of the dynamic structure of the disturbances.

Focusing on the capacitor voltage difference dynamics, some transfer functions are used to
approximate the behavior of the sinusoidal disturbances. In this manner, the models ofφr andφi

consist ofφ̂r andφ̂i, respectively, which are defined in the Laplace domain as

φ̂r(s) = −gr
s

s2 + (3ωr)
2
(v∗d(s)− vd(s)) (28)

φ̂i(s) = −gi
s

s2 + (3ωi)
2
(v∗d(s)− vd(s)) , (29)

wheregr andgi are positive constants, andv∗d is the capacitor voltage difference reference. Notice
that the models of both disturbances have a pair of imaginarypoles at the same frequency of the
disturbancesφr andφi.

The disturbance approximations are applied to achieve the asymptotical cancellation of the
disturbances and are constructed in parallel with a proportional controller in a feedback control
system. Therefore, it leads to the following control law

uγ = k (v∗d − vd) − φ̂r − φ̂i, (30)

wherek is the gain of the proportional controller.

4.3. Disturbance estimation applying an adaptive algorithm

Under the third control approach, an adaptive algorithm is introduced to asymptotically estimate the
disturbances, in order to apply an adaptive feedforward cancellation at the input of the system of
bothφr andφi, considering that their expressions are known.

The control method starts by proposing equivalent expressions forφr andφi applying, among
others, the trigonometric identity

√
a2 + b2 sin

(
α+ arctan

(
b

a

))
= a sin (α) + b cos (α) . (31)

Thereby, (15) and (16) are expressed as

φr = η1,r sin (3ωrt) + η2,r cos (3ωrt) (32)

φi = η1,i sin (3ωit) + η2,i cos (3ωit) . (33)

The constantsη1,r, η1,i, η2,r andη2,i are defined as follows

η1,r = cos (3θr)
µ1,r√
1 + µ2

2,r

− sin (3θr)
µ1,r µ2,r√
1 + µ2

2,r

(34)

η2,r = cos (3θr)
µ1,r µ2,r√
1 + µ2

2,r

+ sin (3θr)
µ1,r√
1 + µ2

2,r

(35)

η1,i = cos (3θi)
µ1,i√
1 + µ2

2,i

− sin (3θi)
µ1,i µ2,i√
1 + µ2

2,i

(36)

η2,i = cos (3θi)
µ1,i µ2,i√
1 + µ2

2,i

+ sin (3θi)
µ1,i√
1 + µ2

2,i

. (37)
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The reason of introducing these new terms is that, considering sinusoidal functions, it is easier to
estimate their amplitudes than their phases. Hence, with the goal of estimate both (32) and (33),
their estimations denoted bŷφr andφ̂i, respectively, are defined in this control scheme as

φ̂r = η̄1,r sin (3ωrt) + η̄2,r cos (3ωrt) (38)

φ̂i = η̄1,i sin (3ωit) + η̄2,i cos (3ωit) . (39)

The values of̄η1,r, η̄2,r, η̄1,i andη̄2,i are obtained proposing the following update laws

˙̄η1,r = −gr (v
∗

d − vd) sin (3ωrt) (40)

˙̄η2,r = −gr (v
∗

d − vd) cos (3ωrt) (41)

˙̄η1,i = −gi (v
∗

d − vd) sin (3ωit) (42)

˙̄η2,i = −gi (v
∗

d − vd) cos (3ωit) , (43)

where the adaptation gains are the constantsgr andgi.
As mentioned before, the estimations (38) and (39) are used to asymptotically cancel the

disturbances. In this way, the control law here considered is exactly the same that the one defined
for the previous control method. It is given by (30), where φ̂r and φ̂i are replaced by their
estimations provided by the adaptive algorithm. Note thatk is the gain of the proportional controller
implemented in parallel.

Remark 1
The definition of the proposed parameter update laws is basedon the Lyapunov approach carried out
in [47,48], adopting it to the formulation of the final expression of the voltage difference dynamics
given by (18). Thus, the first step of the approach considered is the definition of the vectors

ω =
[
sin (3ωrt) cos (3ωrt) sin (3ωit) cos (3ωit)

]T
(44)

η̃ =
[
η̄1,r − η1,r η̄2,r − η2,r η̄1,i − η1,i η̄2,i − η2,i

]T
, (45)

to simplify in what follows the notation. Consequently, (18) is expressed, taking into account (32)
and (33), and introducing the proposed control law in this section,as

v̇d =
1

C

(
k (v∗d − vd) − η̃ Tω

)
. (46)

Then, the Lyapunov function candidate

V =
1

2
C (v∗d − vd)

2 +
1

2
η̃ T

Γ
−1η̃ (47)

is proposed, whereΓ is the adaption gain matrix, which is a freely chosen symmetric positive
definite matrix. The derivative over the time ofV is given by

V̇ = −k (v∗d − vd)
2 + η̃ T

(
Γ
−1 ˙̃η + (v∗d − vd)ω

)
. (48)

Choosing the vector

˙̃η = −Γ (v∗d − vd)ω, (49)

it results in the expression

V̇ = −k (v∗d − vd)
2 ≤ 0. (50)
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Applying LaSalle’s invariance principle, it can be proven that the trajectories of the system tend to
the point(vd, η̃) = (v∗d,0). Finally, the adaption gain matrixΓ is defined as follows

Γ =




gr 0 0 0

0 gr 0 0

0 0 gi 0

0 0 0 gi




. (51)

Hence, considering (49), since the elementsη1,r, η1,i, η2,r andη2,i of (45) are constant parameters,
it leads to the update laws (40)-(43).

4.4. Estimation of unknown frequency disturbances applying an adaptive algorithm

In this fourth and last control method, the frequencies3ωr and3ωi of the sinusoidal disturbances
(15) and (16) are assumed to be unknown constant values. Therefore, two new fixed parameters that
should be estimated appear in the system. Thus, the estimations of the disturbancesφr andφi are,
respectively, defined by

φ̂r = ρ1,r cos (ϕr) (52)

φ̂i = ρ1,i cos (ϕi) (53)

ϕ̇r = ρ2,r (54)

ϕ̇i = ρ2,i, (55)

where ρ1,r and ρ1,i are the estimations of the magnitude of the disturbances,ϕr and ϕi the
estimations of their phases, andρ2,r andρ2,i the estimations of their frequencies.

To obtain the values of the estimations, the approach presented in Section4.3is extended here by
integrating a modified version of a phase-locked loop withinthe control scheme [49]. Thereby, the
following update laws in the Laplace domain are considered

ρ1,r(s) = − 1

s
g1,r y1,r(s) (56)

ρ2,r(s) = − 1

s
g2,r

s+ ar
s+ br

y2,r(s) (57)

ρ1,i(s) = − 1

s
g1,i y1,i(s) (58)

ρ2,i(s) = − 1

s
g2,i

s+ ai
s+ bi

y2,i(s) . (59)

The parametersg1,r, g2,r, g1,i andg2,i are positive constants, whilear, br, ai andbi are also constants
chosen to guarantee the closed-loop stability of the system. Functionsy1,r, y2,r, y1,i andy2,i are
defined in the time domain as follows

[
y1,r

y2,r

]
=

[
P 3ωr

R −P 3ωr

I

P 3ωr

I P 3ωr

R

]−1[
(v∗d − vd) cos (ϕr)

− (v∗d − vd) sin (ϕr)

]
(60)

[
y1,i

y2,i

]
=

[
P 3ωi

R −P 3ωi

I

P 3ωi

I P 3ωi

R

]−1[
(v∗d − vd) cos (ϕi)

− (v∗d − vd) sin (ϕi)

]
. (61)

The values ofP 3ωr

R and P 3ωr

I are, respectively, the estimated real and imaginary parts of the
frequency response of the system at the frequency of the disturbanceφr . For the disturbanceφi,
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12 F. UMBRÍA ET AL.

they are denoted byP 3ωi

R andP 3ωi

I . Accordingly, considering the transfer function (19), these
parameters are given by

P 3ωr

R = Re{P (3ωrj)} (62)

P 3ωr

I = Im{P (3ωrj)} (63)

P 3ωi

R = Re{P (3ωij)} (64)

P 3ωi

R = Im{P (3ωij)}. (65)

Note that the real parts of (19) at both disturbance frequencies are zero.
Finally, considering the estimations (52) and (53), they are implemented together with a

proportional controller, whose positive gain is denoted byk, so the control law is described again
by (30). It is also important to note that in this method, although the disturbance frequencies are
unknown, the estimations of the response of the system (62)-(65) need an approximation of both
frequencies. For this reason, the uncertainty of the frequencies have to be small enough to accurate
a good estimation of the parameters.

Remark 2
The theoretical foundations of the adopted control method of this section were presented by Bodson
et al., and they can be consulted in [49]. The approach is based on the steady-state response of
a system to different sinusoidal inputs. Defining byPs(s) the plant transfer function of a time-
invariant linear system, and byPs(s) [x(t) ] the time-domain output of the system when the input is
the function of timex(t), the following expression is satisfied in steady state

Ps(s)

[
cos (ωot+ θo)

sin (ωot+ θo)

]
=

[
Re{Ps(ωoj)} − Im{Ps(ωoj)}

Im{Ps(ωoj)} Re{Ps(ωoj)}

][
cos (ωot+ θo)

sin (ωot+ θo)

]
. (66)

In the particular problem considered in this paper, the expression (18) derived from the mathematical
analysis of Section3 allows the definition of (19). This is the transfer function used to approximate
the response of the system in steady state.

Remark 3
It is worth mentioning that the design of the controllers hasbeen presented assuming that the values
of the disturbance frequencies present a relevant difference between them. However, some problems
may arise in some of the proposed control methods when the frequencies get very close to each other.
For instance, the convergence of the estimations may be too slow, or the two frequency estimates
could converge to a same value. Some methods to deal with thisundesired situation are presented
in [36,50]. Thus, in [36] the two sinusoidal disturbances are represented as a single sinusoid with
time-varying parameters, while in [50] a frequency separation block is proposed to avoid the risk of
convergence of the frequency estimates to the same value.

In addition, when the values of the disturbance frequenciesare exactly the same, that is,

3ωr = 3ωi, (67)

the sum of the disturbancesφr and φi of (12) results in this case in an only pure sinusoidal
disturbance whose frequency corresponds also with3ωr (or 3ωi, both are equivalent). This fact
reduces the complexity of the proposed controller design since solely a disturbance should be
asymptotically estimated and then rejected. In this way, the control methods discussed in [41,42],
including some adjustments, can be used for the balancing ofthe dc-link capacitor voltages. For
example, considering the internal model principle based method, only one transfer function should
be applied to approximate the disturbance.
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Table II. Simulation parameters.

Parameter Value

Sampling time (Ts) 100µs

Rectifier instantaneous reactive power reference (q∗r ) 0 VAr

Inverter instantaneous active power reference (p∗i ) 10 kW

Inverter instantaneous reactive power reference (q∗i ) 0 VAr

Rectifier phase voltage frequency (ωr) 2π · 50 rad/s

Inverter phase voltage frequency (ωi) 2π · 60 rad/s

Rectifier phase voltage amplitude (|vαβ,r|) 380 V

Inverter phase voltage amplitude (|vαβ,i|) 380 V

Inductors (Lr, Li) 5 mH

Capacitors (C1, C2) 1100 µF

5. IMPLEMENTATION OF THE CONTROL LAW

As pointed out in the preceding section, once the control lawuγ is calculated applying any one of the
proposed controllers, it should be determined the way (17) is implemented. For this purpose, control
inputsδγ,r andδγ,i are available to be used for the balancing of the dc-link capacitor voltages.

Since in the back-to-back topology both rectifier and inverter converter stages are usually
decoupled for control purposes, i.e., they are controlled individually, the first possible
implementation leads to set one of the control inputs to zerowhile devoting the remaining one
to the voltage balance control. Thereby, it yields the expressions

δγ,i = 0 → δγ,r =
uγ

kr
(68)

δγ,r = 0 → δγ,i = −uγ

ki
. (69)

With this approach, only one of the converter stages deals with the capacitor voltage balancing, so
either the rectifier or the inverter should apply the controlalgorithm.

Then, the control action implemented considering (68) or (69) is modulated together with rectifier
and inverter control termsδαβ,r andδαβ,i, after they all are transformed intoabc coordinates, to
provide the feasible gating signals. However, it could be possible that, in case that the values ofδγ,r

or δγ,r were not close enough to zero, the gating signals may not be correctly generated. In view
of this, to cope with this saturation problem, the second approach proposes the use of both control
inputsδγ,r andδγ,i to implement the control lawuγ , producing the same effect as applying only one
of them. Thus, the second approach is described as follows

δγ,r =
uγ

2 kr
(70)

δγ,i = − uγ

2 ki
, (71)

where bothδγ,r andδγ,i are used to provide the previously calculated control law. Becausekr and
ki do not present always the same value, it is not a distributionin equal shares but it is the easier
one to implement. Furthermore, it requires less computational time than other possible strategies.
Therefore, even though under this approach there is no complete control decoupling of the inverter
and rectifier, this method is the one considered in the simulations carried out and presented next.
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Table III. Design constants of the instantaneous power controllers and of the total dc-link voltage controller.

Design constant Value

Rectifier instantaneous power controller constants (kp,r, kq,r) 4 · 10−7

Inverter instantaneous power controller constants (kp,i, kq,i) 4 · 10−7

Total dc-link voltage proportional gain (kpr) 0.005

Total dc-link voltage integral gain (kint) 0.05

Table IV. Design constants of the proposed voltage balancing methods.

Controller Constant Value

Observer-based estimation controller k 10

Internal model principle based disturbance estimation controller

{
k

gr, gi

10

1000

Controller with disturbance estimation applying an adaptive algorithm

{
k

gr, gi

10

1000

Controller with estimation of unknown frequency disturbances
applying an adaptive algorithm





k

g1,r, g1,i

g2,r, g2,i

ar, ai

br, bi

10

140

200

5

30

6. SIMULATION RESULTS

In this section, the simulations results, obtained with Simulink under Matlab environment, are shown
and discussed. The equations that describe the model of the system [44] together with the voltage
balancing methods proposed in Section4 have been implemented to study the behavior of the system
and evaluate its performance. In addition, the instantaneous power controller and the total dc-link
voltage controller have been designed and implemented as well. Particularly, the simulations are
focused on the transient stage of the capacitor voltage difference of the converter dc-link when any
of the system parameters changes abruptly its value. Moreover, the aim of the simulations is also to
validate the different voltage balance controllers.

For this purpose, some simulations have been carried out applying each one of the four proposed
control methods previously mentioned, considering a totalvoltage reference step in the dc-link. To
that end, the referencev∗s is moved from800 V to 700 V. The values of the parameters used in
the simulations are summarized in TableII . The phase voltage frequenciesωr andωi are assumed
to remain constant during the simulations, which have been implemented in discrete time with
sampling time set to 100µs.

Focusing on the instantaneous powers, the control method proposed in [46] is adopted here,
which is based on the output regulation subspaces and implements a proportional-type direct power
control. Thereby, the control vectorsδαβ,r and δαβ,i are applied, respectively, to control the
instantaneous powers of the rectifier and of the inverter. Concerning the regulation of the total dc-
link voltage, the rectifier instantaneous active power reference is used to drive the voltage towards
its reference. Considering (11), i.e., the expression of the total dc-link voltage dynamics under
Assumption1, a standard proportional-integral (PI) controller is designed as follows

p∗r = kpr
(
v∗2dc − v2dc

)
+ kint

∫ t

0

(
v∗2dc − v2dc

)
dτ , (72)
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Figure 4. From top to bottom, difference between the dc-linkcapacitor voltagesvd (solid), when a total
voltage reference step occurs, and its reference valuev∗d (dashed), applying the control methods: (a)
Observer-based estimation controller. (b) Internal modelprinciple based disturbance estimation controller.
(c) Controller with disturbance estimation applying an adaptive algorithm. (d) Controller with disturbance

estimation of unknown frequency disturbances applying an adaptive algorithm.

and it is introduced in the system. Constantskpr andkint are the tuning parameters of the controller.
Regarding the design constants of the controllers, their values have been chosen in such a way

that the time-scale assumptions mentioned in Section3 are well grounded. TableIII illustrates the
design constants of the instantaneous power controllers aswell as those of the total dc-link voltage
controller. The parameters of the voltage balance controllers are summarized in TableIV . These
control methods have been presented previously in continuous time, so to work out the simulations,
they have been discretized considering the sampling time shown in TableII .

Fig. 4 depicts the evolution of the variablevd, that is, the evolution of the voltage difference
between the dc-link capacitors, when the total dc-link voltage reference changes att = 1 s. The four
control methods present a similar behavior. The voltage difference begins to oscillate, achieving its
reference, with is set to zero, quickly. The controller thatestimates the disturbances considering
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Figure 5. Evolution of the total dc-link voltage (solid) andits reference (dashed).
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Figure 6. Behavior of the rectifier instantaneous active power pr (solid) and its referencep∗r (dashed).

that their frequencies are unknown shows the worst voltage balancing, since it contains a higher
number of parameters to estimate (the frequencies are also estimated parameters applying this
control method). However, the voltage difference still remains close to zero. Nevertheless, if the
frequenciesωr andωr change their nominal values (but not much because the termsP 3ωr

R , P 3ωr

I ,
P 3ωi

R andP 3ωi

I of (60) and (61) have been estimated and set considering the nominal valuesof the
disturbance frequencies), this controller provides a better estimation of the disturbances than the
one provided by the other voltage balance controllers, which have been designed for specific values
of ωr andωi (Table II ). Focusing on the steady state behavior, the voltage difference presents a
very small ripple, which is lower than0.5 V and is not relevant. Hence, the variablevd is properly
regulated to zero with all the proposed control methods, so agood voltage balancing is ensured.

Concerning the behavior of the total dc-link voltage in the simulation carried out implementing
the controller of Section4.1, note that, when the voltage reference step occurs, the variablevdc tends
also correctly towards its new reference (Fig.5). As mentioned before, this variable is regulated
applying the instantaneous powers of the rectifier. Concretely, via the instantaneous active power
referencep∗r , whose evolution is illustrated in Fig.6. The power variablepr is also depicted in the
figure to illustrate the usefulness of the instantaneous power controller. Notice that its behavior is
practically identical to the one ofp∗r , and it is difficult to distinguishpr from p∗r .

Moving on to the control method that estimates unknown frequency sinusoidal disturbances
(Section4.4), Fig.7 illustrates the evolution of the frequency estimations of the rectifier and inverter
phase voltages. They are denoted by, respectively, the variablesρ2,r andρ2,i. The initial states of
both variables have been set toρ2,r(0) = 941 rad/s andρ2,i(0) = 1130 rad/s. As stated in Section
3.2, the frequencies of the sinusoidal disturbancesφr andφi are the triple frequencies of those of the
rectifier and inverter phase voltages, respectively. Sincethe values of the phase voltage frequencies
in the simulations areωr = 2π · 50 rad/s andωi = 2π · 60 rad/s, notice that bothρ2,r andρ2,i tend
properly to their specific references (ρ∗

2,r = 3ωr ≃ 942.48 rad/s andρ∗
2,i = 3ωi ≃ 1130.97 rad/s),

even when the total voltage reference step occurs.
Finally, Fig. 8 shows the amplitude frequency spectrums of the dc-link capacitor voltage

difference. On one hand, when the observer-based disturbance estimation controller is implemented
to regulate the voltage balance. On the other hand, when a traditional PI controller is introduced in
the system with the purpose of achieving the same control aim. Notice that both spectrums present
the highest frequency content at the frequencies of the disturbances (3fr = 150 Hz, 3fi = 180 Hz).
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Figure 7. Frequency estimations provided by the controllerwith estimation of unknown frequency
disturbances applying an adaptive algorithm. From top to bottom: (a) Rectifier frequency estimation variable
ρ2,r (solid) and its reference valueρ∗2,r (dashed). (b) Inverter frequency estimation variableρ2,i (solid) and

its reference valueρ∗2,i (dashed).

Nevertheless, the magnitude obtained applying the first control method is much smaller than that
provided considering the PI controller. Therefore, the proposed control methods in this work present
the important benefit of a smaller frequency content of the dc-link capacitor voltage difference, in
contrast with the use of other voltage balancing strategies(the spectrum features ofvd considering
the remaining control methods presented in Section4 are analogous to the one obtained applying
the observer).

7. CONCLUSIONS

In this work, several control methods designed to achieve the balancing of the dc-link capacitor
voltages in three-phase three-level diode-clamped back-to-back power converters have been
presented. Under some time-scale assumptions, the dynamics of the capacitor voltage difference are
analyzed, resulting in a expression that contains several complex terms, which are approximated by
sinusoidal functions of time. The significance of this fact is highly relevant, since it is the main idea
behind the design of the proposed controllers, which are based on the estimations of these sinusoidal
functions, considering them as external disturbances of the system. In this way, the paper relates the
capacitor voltage imbalance problem to the problem of regulating the output of the system, under
the presence of periodic disturbances that should be canceled.

The simulations presented in Section6 have proved the usefulness of the voltage balance
controllers. It is worth stressing that the control laws arenot difficult to implement. Due to the
disturbance frequencies, which are three times the frequencies of the rectifier and inverter side
phase voltages, the voltage balancing methods have been designed and introduced in the system
taking into account the values of the frequencies used in thesimulations (see TableII ). If other
nominal values of the frequencies are considered, the controllers should be redesigned to cancel the
disturbances, since the disturbance frequencies are modified and present other values.
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Figure 8. From top to bottom, single-sided amplitude frequency spectrums of the dc-link capacitor voltage
differencevd, applying the control methods: (a) Controller that estimates the disturbances via a Luenberger

observer. (b) Traditional PI controller.

A. APPENDIX

Mathematical analysis of the capacitor voltage difference dynamics of the converter

Focusing on the capacitor voltage difference dynamics defined by (1), notice that they are expressed
as a function of the components of control vectorsδαβγ,r andδαβγ,i, and of the phase current
vectorsiαβ,r andiαβ,i. Since Assumption1 is related to the power dynamics, it is more suitable
for the analysis to express (1) in terms of power instead of current. Thereby, considering(7)-(10),
the phase currents are approximated by

iα,r ≃ p∗r
|vαβ,r|2

vα,r − q∗r
|vαβ,r|2

vβ,r (73)

iβ,r ≃ p∗r
|vαβ,r|2

vβ,r +
q∗r

|vαβ,r|2
vα,r (74)

iα,i ≃ p∗i
|vαβ,i|2

vα,i − q∗i
|vαβ,i|2

vβ,i (75)

iβ,i ≃ p∗i
|vαβ,i|2

vβ,i +
q∗i

|vαβ,i|2
vα,i, (76)

defining this well-known change of variables in three-phasecircuits. It is important to mention that
the phase voltages inαβ coordinates are expressed as

vα,r = |vαβ,r| cos (ωrt+ θr) (77)

vβ,r = |vαβ,r| sin (ωrt+ θr) (78)

vα,i = |vαβ,i| cos (ωit+ θi) (79)
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vβ,i = |vαβ,i| sin (ωit+ θi) , (80)

whereωr andωi are the frequencies of the phase voltages in the rectifier andinverter sides of the
system, respectively. Their phases are denoted byθr andθi.

In the same way, concerning the control vectorsδαβ,r and δαβ,i (devoted to regulate the
instantaneous powers), their expressions are obtained introducing (73)-(76) in the phase current
dynamics [44], assuming that the capacitor voltage imbalance is small, i.e.,vd ≃ 0. Consequently,
when the instantaneous powers are located around their desired values, they are described by

δαβ,r ≃ 2

vdc
λ1,r vαβ,r − 2

vdc
λ2,r J vαβ,r (81)

δαβ,i ≃ 2

vdc
λ1,i vαβ,i +

2

vdc
λ2,i J vαβ,i. (82)

Constant parametersλ1,r, λ2,r, λ1,i, λ2,i as well as the matrixJ are introduced to simplify the
notation. They are defined as follows

λ1,r = 1 +
Lrωrq

∗

r

|vαβ,r|2
(83)

λ2,r =
Lrωrp

∗

r

|vαβ,r|2
(84)

λ1,i = 1 − Liωiq
∗

i

|vαβ,i|2
(85)

λ2,i =
Liωip

∗

i

|vαβ,i|2
(86)

J =

[
0 −1

1 0

]
. (87)

Moving on to the dynamics under analysis, introducing the change of variables (73)-(76) as well
as the control vectors (81) and (82) in (1), the variation over the time of the voltage difference results
in the complex expression

C
dvd
dt

=
2 p∗r√
3 vdc

δrγ − 2 p∗i√
3 vdc

δiγ

+
2 p∗r vα,r − 2 q∗r vβ,r√

6 |vαβ,r|2 v2dc

(
(λ1,r vα,r + λ2,r vβ,r)

2 − (λ1,r vβ,r − λ2,r vα,r)
2

)

− 4 p∗r vβ,r + 4 q∗r vα,r√
6 |vαβ,r|2 v2dc

(λ1,r vα,r + λ2,r vβ,r) (λ1,r vβ,r − λ2,r vα,r) (88)

+
2 q∗i vβ,i − 2 p∗i vα,i√

6 |vαβ,i|2 v2dc

(
(λ1,i vα,i − λ2,i vβ,i)

2 − (λ1,i vβ,i + λ2,i vα,i)
2

)

+
4 p∗i v

i
β + 4 q∗i vα,i√

6 |vαβ,i|2 v2dc
(λ1,i vα,i − λ2,i vβ,i) (λ1,i vβ,i + λ2,i vα,i) .

Nonetheless, according to the phase voltage definitions (77)-(80), and considering some
trigonometric identities and the constantsµ1,r, µ2,r, µ1,i andµ2,i given by

µ1,r = 2
|vαβ,r|√
6 v2dc

(
λ2

1,r + λ2

2,r

)√
p∗2r + q∗2r (89)
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µ2,r =

(
λ2

1,r − λ2

2,r

)
p∗r + 2λ1,r λ2,r q

∗

r

−
(
λ2

1,r − λ2

2,r

)
q∗r + 2λ1,r λ2,r p∗r

(90)

µ1,i = 2
|vαβ,i|√
6 v2dc

(
λ2

1,i + λ2

2,i

)√
p∗2i + q∗2i (91)

µ2,i =
−
(
λ2

1,i − λ2

2,i

)
p∗i + 2λ1,i λ2,i q

∗

i(
λ2

1,i − λ2

2,i

)
q∗i + 2λ1,i λ2,i p∗i

, (92)

from (88) the reduced expression defined by (12) is derived. Hence, (12) is the final expression of
the analysis worked out.
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multiple narrow band disturbances (a review on algorithms and applications).Control Engineering Practice 2011;
19(10):1168–1181.

33. Ding Z. Asymptotic rejection of general periodic disturbances in output-feedback nonlinear systems.IEEE
Transactions on Automatic Control 2006; 51(2):303–308.

34. Bodson M. Rejection of periodic disturbances of unknownand time-varying frequency.International Journal of
Adaptive Control and Signal Processing 2005; 19(2-3):67–88.

35. Pigg S, Bodson M. Adaptive harmonic steady-state disturbance rejection with frequency tracking.Asian Journal of
Control 2013; 15(1):1–10.

36. Guo X, Bodson M. Adaptive rejection of disturbances having two sinusoidal components with close and unknown
frequencies.Asian Journal of Control 2012; 14(1):36–44.

37. Sacks A, Bodson M, Khosla P. Experimental results of adaptive periodic disturbance cancellation in a high
performance magnetic disk drive.ASME Journal of Dynamic Systems, Measurement, and Control 1996; 118:416–
424.

38. Steinbuch M. Repetitive control for systems with uncertain period-time.Automatica 2002; 38(12):2103–2109.
39. Tsao TC, Qian YX, Nemani M. Repetitive control for asymptotic tracking of periodic signals with an unknown

period.ASME Journal of Dynamic Systems, Measurement, and Control 2000; 122(2):364–369.
40. Ding Z. Global stabilization and disturbance suppression of a class of nonlinear systems with uncertain internal

model.Automatica 2003; 39(3):471–479.
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