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In this article, an empirical evaluation and review of some metrics–based verification heuristics for
use cases are presented. This evaluation is based on empirical data collected from requirements
documents developed by Software Engineering students at the University of Seville using REM, a
free XML–based requirements management tool developed by one of the authors. The analysis of
the empirical data has not only confirmed the validity of the intuitions that gave rise to the
verification heuristics but has also made possible to review and adjust some of their parameters,
consequently enhancing their accuracy in predicting defects in use cases. One of the most
interesting results derived from the analysis of empirical data is a number of possible enhancements
that could be applied to the underlying metamodel of use cases implemented in REM, in which the
heuristics are based on, thus providing an important feedback to our current research in
Requirements Engineering. 
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1. INTRODUCTION
It is widely acknowledged within the Software Engineering community that Requirements
Engineering (RE) is one of the most critical activities of a quality–driven software development
process. Early detection of problems in requirements has a very important impact on the overall
quality of the software development process, as shown by Kamsties and Rombach (1997). This
early detection is especially important to avoid budget overruns, as confirmed by Boehm (1981).

* This work is partially funded by the following projects: AgilWeb (TIC 2003–02737), Tamansi (PCB–02–001) and
Messenger (PCC–03–003–1).
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Traditionally, requirements verification and validation have been considered as the only
requirements quality assurance (RQA) activities in the RE process. Nevertheless, a wider vision of
RQA like the one we presented in Durán et al (2002b), considers not only verification and
validation but also requirements analysis as a RQA activity. The reason for this classification of
requirements analysis is that its main goal, as defined by Kontoya and Sommerville (1997), is
finding problems and conflicts in the draft requirements so they could be solved and therefore
requirements quality increased.

In the UML activity diagram in Figure 1, a RE process model taking into account our wider
vision of RQA is shown. In this RE process model, we consider that the goal of requirements
verification is to increase the so–called internal quality (ISO/IEC, 2001) of the requirements
documents according to applicable standards in the developer organization; whereas the goal of
requirements validation is to certify that the requirements are consistent with the intentions of
customers and users, as defined by Pohl (1997).

In the context of our RQA model, more specifically in requirements verification, this article
presents an empirical evaluation and review of some metrics–based heuristics for use case
verification initially presented in Durán et al (2002a). The evaluation and later review are based on
empirical data collected from requirements documents developed by fourth–year Software
Engineering students at the University of Seville using REM (Durán, 2004), a free XML–based
requirements management tool.

The rest of this article begins with a brief description of the REM use case metamodel. Some
use case metrics which are relevant for the verification heuristics and the verification heuristics
themselves are described in Section 3. In Section 4, the analysis of the empirical data collected for
the evaluation of the verification heuristics and some of the empirically driven reviews are
presented. Some related work is commented in Section 5 and, finally, in Section 6 some conclusions
and future work are presented.

Figure 1: Requirements Engineering process model  
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2. REM USE CASE METAMODEL
Using REM, a requirements engineer can develop requirements documents containing, amongst
other elements, use cases, whose metamodel is shown in the UML class diagram in Figure 2.

REM use cases, whose user interface is shown in Figure 3, are based on Durán’s template for
use cases, formerly published in Durán et al (1999). One of the characteristics of this template is
that for a number of its elements some linguistic patterns are provided, thus easing use case writing.
A simplified example of the use case template is shown in Figure 4, in which some requirements
management attributes like version, authors, etc. have been omitted for the sake of brevity. A
description of linguistic patterns is out of the scope of this article, but the interested reader can see
Durán et al (1999) for details. A more extensive work on the use of linguistic patterns for use cases
can be found in Ben Achour et al (1999), one of the results of the CREWS project.

Apart from inherited requirements attributes, a use case in REM is basically composed of a
triggering event, a precondition, a postcondition, and an ordinary sequence of steps describing inter-
actions leading to a successful end. In turn, steps are composed of one action and may have a
condition. Three classes of actions are considered: system actions performed by the system, actor
actions performed by one actor, and use case actions in which another use case is performed, i.e. UML

Figure 2: REM use case metamodel  
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Figure 3: REM user interface for use cases  

inclusions or extensions, depending on whether the step is conditional or not (OMG, 2003). Steps
may also have attached exceptions, which are composed of an exception condition (modelled by the
description attribute, see Figure 2), an action (of the same class than step actions) describing the
exception treatment, and a termination attribute indicating whether the use case is resumed or
canceled after the performance of the indicated action.  

3. VERIFICATION HEURISTICS
As described in Durán et al (2002b), the experience of some of the authors in the verification of use
cases developed by students using REM led to the definition of several metrics–based defect
detection heuristics. These heuristics are based on a simple idea: there are some use case metrics
which are indicators of defect–proneness and for which a range of usual values can be defined; if
for a given use case, its metric value is out of its corresponding usual range, then the use case is
considered as potentially defective and it should therefore be checked. 

Notice that the heuristics make no hypothesis about use cases with metrics value in usual ranges.
The reason for that is that there could be certain causes of defects not considered in the metrics
definitions, and therefore not related to the metrics values, that could make use cases to contain
defects even when there seems to be no problem from the heuristic point of view.

In Table 1, the definition of the metrics used in the verification heuristics is shown. As described
in Durán et al (2002b), these metrics can be easily computed in XSLT and the heuristics can be
applied automatically in REM using the XML representation of use cases.

The heuristics whose evaluation and review are presented in this article are described below. The
usual metrics ranges were chosen after a statistical analysis of 414 use cases developed by fourth–year
Software Engineering students using REM. For the used metrics, their initial usual ranges were defined
as [lower quartile, upper quartile], i.e. the box in a box plot. See Figure 5 for the box plot correspond-
ing to NOAS_RATE, NOSS_RATE and NOUS_RATE metrics. For details on other metrics–based
verification heuristics whose evaluation is not included in this article, see Durán et al (2002b).
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UC-0015 Register Book Loan

Dependencies • OBJ–0001 To manage book loans (objective)
• OBJ–0005 To know library users’ preferences (objective)
• CRQ–0003 Maximum number of simultaneous loans (business rule)
• CRQ–0014 Return date for a loan (business rule)

Description The system shall behave as described in the following use case when a library user requests
a loan of one or more books.

Precondition The library user has been identified by means of his or her identity card, has picked up the
books to loan from the shelves, has not reached the maximum number of simultaneous
loans and has no penalty.

Ordinary Step Action
Sequence 1 Actor librarian requests the system for starting the book loan registering process.

2 The system requests for the identification of the library user requesting a loan.

3 Actor librarian provides identification data of the library user to the system.

4 The system requests for the identification of the books to be loaned.

5 Actor librarian provides identification data of the books to be loan to the system.

6 The system displays the return date for each of the books to be loan and requests
loan confirmation for each of them.

7 Actor library user confirms the librarian which books he or she wants to loan after
knowing return dates.

8 Actor librarian re–confirms the book loans confirmed by the library user to the
system.

9 The system informs that the book loans have been successfully registered.

Postcondition The library user can take the loaned books away and the system has registered the book loans.

Exceptions Step Action

3 If the library user has already reached the maximum number of simultaneous loans
or has a penalty, the system informs of the situation, then this use case is cancelled.

Comments The maximum number of simultaneous book loans and the loan period depend on the library
policy and can change in the future. See business rules CRQ–0003 y CRQ– 0014.

Figure 4: Use case example using a simplified version of Durán’s template  

Metric Description
NOS Number of steps of the use case (NOS=NOAS+NOSS+NOUS)
NOAS Number of actor action steps of the use case
NOSS Number of system action steps of the use case
NOUS Number of use case action steps of the use case (inclusions or extensions)
NOCS Number of conditional steps of the use case
NOE Number of exceptions of the use case
NOAS_RATE Rate of actor action steps of the use case (NOAS/NOS)
NOSS_RATE Rate of system action steps of the use case (NOSS/NOS)
NOUS_RATE Rate of use case action steps of the use case (NOUS/NOS)
CC Cyclomatic complexity of  the use case (NOCS+NOE+1)

Table 1: Use case metrics description
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3.1 Verification heuristics summary 

Heuristic (A): NOS should be in [3, 9].
Rationale: A use case with just a few steps is likely to be incomplete. Too many steps usually

indicate too low level of detail and make the use case too complex to be understood and
defect–prone.

Heuristic (B): NOAS_RATE should be in [30%, 60%].
Heuristic (C): NOSS_RATE should be in [40%, 80%].
Rationale: A use case describes system–actor interactions, so the rate of actor and system steps

should be around 50%, considering also steps whose action is either an inclusion of or an
extension from another use case.

Heuristic (D): NOUS_RATE should be in [0%, 25%].
Rationale: An abusive use of use case relationships makes use cases difficult to understand –

customers and users are not familiar with procedure call semantics. Use them to avoid repetition
of common steps only.

Heuristic (E): CC should be in [1, 4].
Rationale: The basic idea behind this heuristic is that use cases with many alternative paths are

usually difficult to understand and sometimes illegible. The number of alternative paths of a use
case can be defined as the cyclomatic complexity (CC) of a use case in the same sense that
McCabe (1976) defined CC for source code. As McCabe’s CC, use cases CC can be defined as
the number of decision points plus one, i.e. the number of conditional steps plus the number of
exceptions plus one (see Table 1).

Figure 5: Box plot of NOAS_RATE, NOSS_RATE and NOUS_RATE metrics  
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4. EMPIRICAL EVALUATION AND REVIEW 
The empirical evaluation and analysis of the verification heuristics were carried out by manually
verifying 127 use cases in eight requirements documents developed using REM by fourth–year
students of Software Engineering at the University of Seville. The students had a basic knowledge
on requirements engineering and use case concepts, especially on Duran’s template (see Figure 4);
they were able to use REM, but were not aware of the verification heuristics. None of them had
previous experience on writing neither requirements specifications in general nor use cases in
particular. The general problem domain of all requirements documents were information systems,
although students were free to chose a specific problem domain. As a result, the specific problem
domains of the eight requirements documents were quite different from one another.

The manual verification of the requirements documents was performed by the first author of this
article using the lists of desirable properties by Davis et al (1993) and Lilly (1999). After manual
verification, the verification results were compared with metrics values automatically computed by
REM. The general results are depicted in Figure 6. The specific results for each assessed heuristic
are described below.

4.1 Evaluation of Heuristic A (NOS metric)
This heuristic, which follows Cockburn’s (2001) recommendations on use case length, was widely
validated by empirical data: 85% of the use cases out of the usual range of the NOS metric were
identified as defective (see Figure 6). A subsequent analysis of the detected defects revealed that

Figure 6: Empirical evaluation of verification heuristics: general results  
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whereas those use cases with too low NOS were usually either incomplete or trivial or described no
interaction at all, use cases with too high NOS were usually at a too low level of detail, as
commented by Lilly (1999), i.e. non concise according to Davis et al (1993) quality model.

On the other hand, for the most part of the 15% of the use cases that were wrongly identified as
potentially defective, NOS was high because of the writing style or because of the presence of
actor–to–actor interactions.

4.1.1 Writing Style 
The writing style has been identified as a very important factor for the accuracy of heuristic A.
Whereas some students used only one step for specifying a sequence of consecutive actions carried
out either by the system or by a given actor, others used one step for each action, thus increasing NOS
(see Cockburn, 2001) for a comparison of both writing styles). This heuristic was designed with the
former writing style in mind, but as commented in Bernárdez, Durán and Genero (2004a), a further
analysis for identifying another usual range for the latter writing style is currently being carried out.  

4.1.2 Actor–to–Actor Interactions 
The inclusion of actor–to–actor interactions cannot be in anyway considered as a defect in use
cases, but it dramatically affects the accuracy of heuristic A by increasing NOS without making use
cases defective (heuristics B and C are also affected, see below).

We consider that actor–to–actor interactions add interesting information to use cases, but the
results reveal the convenience of modifying the REM use case metamodel shown in Figure 2 by
specializing class ActorAction in two new disjoint classes: ActorActorAction for actor–to–actor
actions, and ActorSystemAction, for actor–to–system actions. In this way, we could redefine the
metric NOAS as counting only actor–to–system steps.

4.2 Evaluation of Heuristics B (NOAS_RATE) and C (NOSS_RATE)
Heuristics B and C were also confirmed by empirical data with 80% and 70% respectively of
defective use cases out of usual ranges. Both heuristics are tightly coupled because a high value of
one of them implies a low value of the other.

Use cases with high NOAS_RATE (and therefore low NOSS_RATE) are usually incomplete use
cases in which system behavior has been omitted or non–defective use cases in which a lot of
actor–to–actor interactions have been considered (usually business use cases), as commented
above. Notice also that the writing style in which consecutive actions of an actor are specified in
several consecutive steps makes use cases present a high NOAS_RATE value but does not
necessarily imply the presence of defects.

On the other hand, use cases with high NOSS_RATE (and therefore low NOAS_RATE) are
usually defective use cases describing batch processes or internal system actions only without
considering actor participation. The problem in these situations is that the use case is not actually a
use case and it should have been expressed as a functional requirement in plain text.

Abstract use cases (Jacobson, Griss and Jonsson, 1997), i.e. use cases containing common steps
that have been extracted from other concrete use cases in order to avoid redundancy, are an
exception to heuristics B and C. Sometimes, non–defective abstract use cases present very low
values of either NOSS_RATE or NOAS_RATE because they are simply a fragment of another use
cases. As an incomplete use case, an abstract use case does not present the usual rates of different
types of steps than concrete use cases do. This fact has made us review both heuristics so they
should be applied to concrete use cases only.
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4.3 Evaluation of Heuristic D (NOUS_RATE) 
Heuristic D, confirmed with 75% of use cases out of usual range being defective, usually detects
use cases with a high number of extensions due to a menu–like structure, i.e. use cases without a
clear goal in which, depending on an actor choice, a number of different use cases are performed.
Another source of defects detected by this heuristic is the programmer–like way of structuring use
cases. Some students developed a very complex model of use cases with lots of inclusions and
extensions that were not strictly necessary but that, in their own words, made use case model more
modular. Obviously, that kind of modularity makes use cases almost impossible to understand,
especially for customers and users.

Nevertheless, most of the 25% of non–defective use cases out of usual range were use cases in
which the impossibility of the REM metamodel of representing conditional blocks of steps, i.e. a
group of steps with the same condition, forced students to create extending use cases in order to avoid
the repetition of the same condition along several consecutive steps. The same happened when the
treatment of an exceptional situation required more than one single action to be performed (the meta-
model in Figure 2 only allows one action to be associated to an exception). In this case, students were
also forced to create an extending use case that was performed when the exception occurred.  

4.4 Evaluation of Heuristic E (CC)
This heuristic was confirmed by empirical data with 87% of use cases out of usual range being
defective. The usual cause of defect was the abusive use of conditional steps of the form “if
<condition>, the system goes to step X”, making use cases almost impossible to understand. As
commented above for heuristic D, the lack of conditional blocks was the usual case for abnormally
high values of CC in non–defective use cases when students decided not to create an extending use
case but repeating the same condition along several steps, thus artificially increasing CC value.

In our experience with some local software development companies, we have found that
sometimes when use cases have a high CC value, analysts add an UML activity diagram semantically
equivalent to the use case for the sake of comprehensibility. From our point of view, this solution has
some disadvantages like repeating the same task twice, the need of verifying consistency between
both representations of the use case and the added confusion that can cause to customers and users.

Nevertheless, the evaluation of the heuristics has made evident that the REM use case metamodel
(see Figure 2), as well as Leite et al (2000) scenarios, are not especially designed for use cases with
alternative paths involving more than one step and must therefore be enhanced by including the
possibility of having blocks of steps under the same condition. Another possibility, as it is
commented by Henderson-Sellers et al (2002) and Lilly (1999), is to consider a specific use case
section for the alternative paths instead of mixing alternative steps within the ordinary sequence.
Something that, in our opinion, fragments use cases and makes them more difficult to understand.

5. RELATED WORK
As summarized in Bernárdez, Durán and Genero (2004b), several studies on use case metrics can
be found in the literature. Most of them propose to define metrics such as the number of use cases,
the number of actors or the number of steps to measure size or complexity of requirements
specification and use those measures as predictors of some attributes of the system to be built, such
as effort or size (Feldt, 2000; Henderson-Sellers et al, 2002; Marchesi, 1998; Schneider and
Winters, 1998). Other proposals, (Alexander, 2001; Kim and Boldyreff, 2002) focused on the RE
process, define use case metrics related to requirements importance, status or progress in order to
highlight RE process areas that need attention.
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Nevertheless, our main goal is to automate as much as possible the requirements verification
process. In this area, there are some proposals based on Natural Language Processing (NLP) like
Fabbrini et al (1998). The usual goals of NLP when applied to RE are to know the used vocabulary,
the writing style, detecting ambiguity (degree of syntactic and semantic uncertainty of the
sentence), the information conveyed by requirements, discovering underspecifications, missing
information and unconnected statements.

NLP is also adaptable to use case verification. For example, Fantechi et al (2002) present a set
of metrics to quality evaluation of use cases. For Fantechi et al (2002), a use case is seen as a set of
sentences (with an underlying template) for which metrics such as the average number of words per
sentence or the average of sentences containing acronyms not explicitly and completely explained
can be collected in order to perform a quantitative evaluation of a requirements document,
especially related to expressiveness.

In Zowghi, Gervasi and McRae (2001) an approach to discover inconsistencies in requirements
by means of an automatic processing is provided. The process consists of two steps, both supported
by a tool. In the first step, the natural language sentences are translated into predicate logic. Then,
the logic specification is instantiated and the behavior of the system under certain conditions is
simulated. The result of the simulation is used by the requirements engineers or by the users for
analyzing whether the simulated behavior was the desired or not, and consequently if the set of
requirements involved in the simulation can be considered as acceptable.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented an evaluation and review of some of the metrics– based verification
heuristics for use cases proposed in Durán et al (2002a) and Durán et al (2002b). These heuristics
are based on the intuition that some use cases metrics are predictors of defects and that there is a
usual range of values for each defect– predictive metric. If the metric value for a given use case is
not in the usual range, the probability of the use case of being defective is higher than on the
contrary. The analysis of the empirical data has not only allowed us to verify that use cases out of
usual range have a high probability of containing defects but also to identify new defects types and
reveal the convenience of modifying some aspects of the original REM use case metamodel.

Our future work will be focused on defining a suitable requirements quality model containing a
detailed taxonomy of defects usually detected by the heuristics. Using that quality model, we want
to make the heuristics more specific so they could become actual predictors of the presence, or
absence, of specific types of defects.

Furthermore, it is convenient to evaluate the evolved heuristics using data from real projects.
After the evaluation, it would be interesting to perform a family of controlled experiments in order
to know if the usage of the heuristics can really help RQA people to find defects in use cases.
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