
University of Seville
Dpt. of Computer Science
and Artificial Intelligence

Accelerating Membrane Systems Simulators

using High Performance Computing with GPU

A Thesis submitted for the degree of
Doctor of Philosophy
School of Computer Engineering
University of Seville

Miguel Ángel Mart́ınez del Amor

Approval of the Thesis Supervisors

PhD. Mario de J. Pérez Jiménez PhD. Ignacio Pérez Hurtado de Mendoza

May 14, 2013

A Chary,
por ser el mejor regalo de mi vida.

A mis padres,
por darme todo lo que tengo y soy.

Y a mis hermanos y amigos,
siempre por su apoyo incondicional.

Agradecimientos

Esta tesis representa la capacidad de trabajo y sacrificio que he ido adqui-
riendo desde donde alcanzan mis recuerdos. Nada de esto habŕıa sido posible
sin la calidad humana de los que me rodean, que siempre me han alentado a
continuar, han conseguido moldear mi personalidad para ser tal y como soy, y
han conseguido que me encuentre ahora mismo escribiendo estas palabras: la
mejor oportunidad para manifestar mi gratitud.

Me gustaŕıa comenzar por dar las gracias a Chary, el regalo de mi vida, que
me ha enseñado a vivir y a amar, y que sin sus ánimos, consejos y apoyo, no
habŕıa llegado tan lejos. A mis padres, Lorenzo y Loli, por ofrecerme toda una
vida, por su educación y por transmitirme su capacidad de sacrificio, trabajo,
y superación. A mis hermanos, José Luis (junto a Maŕıa y el pequeño Luis)
y Mariloli, por siempre estar ah́ı y por enseñarme a luchar por lo que uno
quiere. También a éste primero, mi hermano mayor, por haber sido siempre
mi gúıa y un ejemplo a seguir. A mi abuela, por su cariño, transmitirme toda
su experiencia y sabiduŕıa, y ser una segunda madre para mı́. Al resto de mi
familia, t́ıos y primos, y a todos mis amigos de infancia y de la peña, por llenar
mis recuerdos con muy buenos momentos, de los mejores de mi vida, y que
hacen que tenga unas fuertes ráıces en mi tierra (Calasparra). Por supuesto,
agradecer a todos aquellos que han conseguido hacer de Sevilla un nuevo hogar
para mı́. Especialmente a mi segunda familia: Carmen y Paco, por abrirme
las puertas de su casa y cuidarme como a un hijo más; a Cisco y Virginia, por
aceptarme como a un hermano; a Chico y Taor por su fiel amistad; y al resto
de familia poĺıtica que me ha apoyado.

Quiero expresar mi infinita gratitud a todos mis compañeros durante mi
etapa de investigador primerizo en el Grupo de Computación Natural de la Uni-
versidad de Sevilla. En especial, a mi director Mario de Jesús Pérez Jiménez,
por acogerme en su grupo, y por brindarme esta oportunidad única de iniciar-
me en hacer ciencia bajo su gúıa. Su capacidad de trabajo y ayuda siempre
desinteresada hacia los demás me ha causado un gran efecto positivo. También
a mi co-director, Ignacio Pérez Hurtado, por su gran compañerismo, y ser siem-
pre esa mano amiga. Gracias a él mi trayecto en el grupo ha sido mucho más
sencillo. A Francisco José Romero, por su gran apoyo e ingenio (agradecimien-
tos especiales por ser el que dio la idea que culminó en el trabajo presentado
en mi tesis); a Agust́ın Riscos, por tener siempre una lección diaria para mı́;
a Miguel Ángel Gutiérrez por su capacidad de apoyo y de humor; a Luis,

i

Manu y Luis Felipe por ofrecerme siempre su ayuda, apoyo, y fomentar la
cooperación y buen ambiente en el grupo; a Ana, Carmen, Álvaro, Fernando y
Andrés también por su ayuda incondicional. Asimismo, deseo hacer extensivo
este sentimiento de gratitud al resto de los compañeros incluido el personal de
administración y servicios, del Departamento de Ciencias de la Computación
e Inteligencia Artificial de la Universidad de Sevilla. I would like also to thank
all the collaborators (now friends) that passed by our group: Niall, Enrico,
Henry, Xiangxiang, and Daniel; because they do not only infected me their
passion for science, but also their ability to learn and be open mind with other
cultures. Special thanks to Henry Adorna, who started a really interesting and
active collaboration with us together with Francis and the Membrane Comput-
ing Research Group. Thanks for give us this opportunity to work together, and
be also part of your group. Furthermore, I really acknowledge the support of
Anne C. Elster during my short stay at Trondheim (Norway), what gave to
me the best experience of my life. I would like to extend this to the rest of the
HPC-LAB at NTNU, specially for Ian Karlin and Rune E. Jensen, who helped
me a lot developing part of my thesis and taught me really interesting and use-
ful things. Con respecto a la estancia en Trondheim, he de dar las gracias a
Alfredo Pérez, quien me cuidó como a un hermano. También debo agradecer
la colaboración inicial con Chema y Ginés de la Universidad de Murcia, con
quienes comenzamos a desarrollar el trabajo de manera conjunta. Gracias a
ellos todo evolucionó rápidamente.

Deseo continuar expresando mis agradecimientos a todos mis formadores y
compañeros de formación. A todos los profesores que tuve, desde primaria (EP
Na Sa de la Esperanza) a la universidad (Universidad de Murcia), pasando por
secundaria y bachiller (IES Emilio Pérez Piñero), que me motivaron, y sem-
braron la semilla de la pasión por la ciencia. A todos mis compañeros de fatiga
durante aquellos años, en especial en los últimos a José Luis, por su gran apoyo
y compañerismo que acabó de forma natural en una gran amistad, al igual que
con Fernando, Ana, Alfredo, Juan, Andrés y Fran. To all the (Portuguese,
Brazilian, Italian, German, Belgium and French) people that supported me at
my Erasmus experience in Trondheim. Thanks to them all, it was the most
personally enriching experience in my life.

Finalmente, agradezco profundamente todo el apoyo económico ofrecido
por la beca de personal investigador en formación asociado al proyecto de
excelencia con investigador de reconocida vaĺıa P08-TIC04200, de la Junta de
Andalućıa, y por los proyectos de investigación nacionales I+D+i del Ministerio
de Economı́a y Competitividad TIN2006-13425, TIN2009-13192 y TIN2012-
37434; todos ellos confinanciados por los fondos FEDER de la Unión Europea.

ii

Contents

Page

Motivation 1

I Preliminaries 9

1 Bioinspired and Natural Computing 11

1.1 Natural Computing . 12

1.2 Membrane Computing . 15

1.3 Cell-like P systems . 18

1.4 Tissue-like P systems . 24

1.5 Recognizer membrane systems 27

1.6 P system based solutions to the SAT problem 31

1.7 Applications of P systems . 40

2 Software Applications for Membrane Computing 43

2.1 P systems simulators . 44

2.2 P-Lingua, and the pLinguaCore framework 47

2.3 Improving the efficiency of P systems simulators 50

2.4 Parallel simulation of P systems 53

3 High Performance Computing 59

3.1 Parallel Computing . 60

3.2 Parallel platforms . 70

3.3 GPU computing . 80

iii

II Parallel Simulation applied to Efficient Solutions
of Computationally Hard Problems 99

4 Parallel simulation of P systems with active membranes 101
4.1 Simulation algorithm . 102
4.2 Sequential simulation in C++ 104
4.3 Input binary file format . 106
4.4 Parallel simulation on CUDA 108
4.5 Performance comparative analysis 113
4.6 Characterizing the simulation on the GPU 121
4.7 Conclusions . 124

5 Parallel simulation of P systems solving SAT 125
5.1 Parallel simulation of the solution with cell-like P systems on

the GPU . 126
5.2 Parallel simulation of the solution with tissue-like P systems on

the GPU . 133
5.3 Performance analysis . 138
5.4 Characterizing the simulation on the GPU 145
5.5 Optimizing the parallel simulator on GPUs 148
5.6 Parallel simulation on supercomputers 154
5.7 Conclusions . 154

III Parallel Simulation applied to Computational Mod-
els in Biology 157

6 Simulation Algorithms for Population Dynamics P Systems 159
6.1 Population Dynamics P systems 160
6.2 Applications to real ecosystems 163
6.3 Simulation algorithms for PDP systems 164
6.4 Binomial Block Based algorithm (BBB) 166
6.5 Direct Non-Deterministic distribution with Probabilities (DNDP)171
6.6 Direct distribution based on Consistent Blocks Algorithm (DCBA)179
6.7 Validation . 190
6.8 Conclusions . 198

7 Parallel Simulation of PDP Systems 201
7.1 DNDP algorithm implementation in pLinguaCore 202
7.2 DCBA implementation in pLinguaCore 210

iv

7.3 DCBA implementation in C++ 213
7.4 DCBA parallel implementation for multicore platforms with

OpenMP . 216
7.5 DCBA parallel implementation on the GPU with CUDA 221
7.6 Conclusions . 239

IV Thesis Results 241

8 Conclusions 243
8.1 Summary . 243
8.2 Results . 246
8.3 Conclusions . 253
8.4 Guidelines for designing parallel simulators 254
8.5 Future work . 260

Appendices 264

A How to Use Guide 267
A.1 Installing CUDA . 267
A.2 Installing and using PCUDA . 268
A.3 Installing and using PCUDASAT 270
A.4 Installing and using TSPCUDASAT 271
A.5 Installing and using ABCD-GPU 271

B GPU Server Implementation 273
B.1 GPU server configuration . 273
B.2 Workload policy . 275
B.3 Software installation . 276
B.4 Client configuration . 276

Bibliography 279

v

vi

List of Figures

Page

1.1 The eukaryotic cell . 17

1.2 A membrane structure . 19

2.1 The P-Lingua approach to define simulators inputs 48

3.1 General graphics pipeline, from the application to the screen. . . 82

3.2 CUDA thread execution model 88

3.3 CUDA memory model . 89

3.4 Tesla T10 unified architecture, based on G200. 92

4.1 Iterative process of the simulation algorithm for P systems with
active membranes. 103

4.2 Generation of the input for the simulator 105

4.3 Basic design of the parallel simulator on the GPU. 109

4.4 Comparing the execution time (a) and speedup (b) for one step
of amp-seq and amp-fast-seq, by increasing the number of mem-
branes in the system and using a total of 2560 objects in the
alphabet. 115

4.5 Comparing the execution time (a) and speedup (b) for one step
of the fast sequential and parallel simulators, by increasing the
number of membranes in the system and using a total of 2560
objects in the alphabet. 116

4.6 Comparing the execution time (a) and speedup (b) for one step
of the fast sequential and parallel simulators, by increasing the
number of objects in the system and using a total of 1024 mem-
branes. 117

5.1 General design of the parallel simulator for Πam−SAT. 130

5.2 General design of the parallel simulator for Πtsp−SAT. 136

vii

5.3 Simulation performance for am-sat-seq, am-sat-gpu and am-sat-
gpu-hyb: Test 1 (2048 membranes) 140

5.4 Simulation performance for am-sat-seq, am-sat-gpu and am-sat-
gpu-hyb: Test 2 (256 Objects/Membrane) 140

5.5 Achieved speedup running Test 2 (256 Objects/Membrane) us-
ing am-sat-gpu against am-sat-seq. GPU data management is
also considered. 141

5.6 Simulation performance for tsp-sat-seq and tsp-sat-gpu: Test 1
(2048 membranes) . 142

5.7 Simulation performance for tsp-sat-seq and tsp-sat-gpu: Test 2
(256 Objects/Membrane) . 143

5.8 Speedup achieved running Test 2 (256 Objects/Cell) for tsp-sat-
gpu and tsp-sat-seq. GPU data management is also considered. . 144

5.9 Achieved speedup running Test 2 (256 Objects/Membrane) for
the sequential tissue-like (tsp-sat-seq) against the cell-like (am-
sat-seq) simulator. 145

5.10 Speedup achieved running Test 2 (256 Objects/Membrane) for
both parallel tissue-like (tsp-sat-gpu) and cell-like (am-sat-gpu)
simulators, considering or not considering the data management. 146

5.11 Sequential and parallel membranes generation on four Compute
Elements (CE). The Parallel Preprocessing (PP) is required to
set up the parallel execution prior to its starting on each CE.
This CE is represented by a processor (die) which can later be
eventually decomposed into multi- or many-cores depending on
target architecture. 150

5.12 Sequential and parallel execution when creating the exponential
workload shows the second level of parallelism in P systems,
that internal to membranes. P system rules are applied running
on hardware cores, and many-core GPUs translates this into
massive parallelism using hundreds of cores. 151

6.1 Evolution of the Bearded Vulture birds 196

6.2 Evolution of the Pyrenean Chamois 196

6.3 Evolution of the female Red Deer 196

6.4 Evolution of the male Red Deer 197

6.5 Evolution of the Fallow Deer . 197

6.6 Evolution of the Roe Deer . 197

6.7 Evolution of the Sheep . 197

viii

6.8 Data of the year 2008 from: real measurements of the ecosys-
tem, original simulator in C++, simulator using DNDP and
simulator using DCBA. 199

7.1 Simulation time of the three different implementations in a 4-
core based computer . 209

7.2 Speedups running 50 simulations with 10 environments in the
system . 219

7.3 Speedups running 10 simulations with 50 environments in the
system . 220

7.4 General design of our CUDA-based simulator: 2D grid, and 1D
thread blocks. Threads loop the rule blocks in tiles. 222

7.5 Sample of our ph2-simorder-dyncomp kernel execution. 225
7.6 Binomial random variates generated using cuRNG BINOMIAL . 233
7.7 Performance of cuRNG BINOMIAL generating 106 random num-

bers . 234
7.8 Scalability when increasing the mean LHS length of rules. 236
7.9 Scalability of the simulators when increasing the number of rule

blocks. 237
7.10 Scalability of the simulators when increasing the number of sim-

ulations and environments. 237
7.11 Scalability of the simulators when increasing the number of sim-

ulations. 238

B.1 The GPU server where all the results presented in the thesis
were obtained. 274

ix

x

List of Tables

Page

3.1 CUDA language elements and keywords 96
3.2 Memory system on the Tesla C1060 97
3.3 Major hardware and software limitations programming on CUDA 97
3.4 Hardware features for the Teslas C1060, M2050 and K10 GPUs. 97

4.1 Profiling the simulators am-fast-seq and am-gpu, running sev-
eral instances of the solution to SAT. 120

4.2 Main limitations in the parallel simulator 122

5.1 Summary for the execution times (in milliseconds) and speed-up
attained by the set of implementations outlined in this section. . 153

6.1 Number of applications for each rule in three different simula-
tions, and the rounded average for 30 simulations. 179

6.2 Simulating Πtest using the DNDP algorithm 187
6.3 Static table . 188
6.4 Selection Phase 1 - Distribution 189
6.5 Selection Phase 2 - Maximality 190
6.6 Simulating Πtest using the DCBA algorithm 190

7.1 Specifications of the test machines. 218
7.2 Serial Runtimes . 218
7.3 Profiling the simulators for GPU and 1 core CPU. 239

xi

xii

Motivation

Natural Computing is a discipline aiming the study and simulation of the
dynamic processes that occur in nature and that are subject to be interpreted
as calculation procedures. Inside this discipline, models and computational
techniques are researched. They are inspired by nature to better understand
the world around us, in terms of information processing.

Membrane Computing [141] is an emerging branch within this area, initi-
ated by Gheorghe Păun at the end of 1998 [140]. This new model of com-
putation starts from the assumption that the processes taking place in the
compartmental structure of a living cell can be interpreted as computations.
Devices of this model are called P systems. They have several syntactic in-
gredients: a membrane structure consisting of a hierarchical arrangement of
membranes embedded in a skin membrane, and delimiting regions or com-
partments where multisets of objects and sets of evolution rules are placed. P
systems have also two main semantic ingredients: their inherent parallelism
and non-determinism. The objects inside the membranes can evolve according
to given rules in a synchronous (in the sense that a global clock is assumed),
parallel, and non-deterministic way.

It is worthy to note that we have here a double parallelism, once at the
level of regions (the rules are used in a parallel way), and once at the level
of the system (all regions evolve concurrently). Is this parallelism and non-
determinism able to solve computationally hard problems in a “feasible” time?
The answer is affirmative [133], but we must point out two considerations. On
the one hand, we have to deal with the non-determinism in such a way that
the classical notion of acceptance is not a true algorithmic concept [72]. On
the other hand, the drastic decrease of the execution time from an exponential
to a polynomial one is not achieved for free, but by the use of an exponential
workspace (in the form of membranes and objects), although this space is
created in polynomial (often linear) time.

Although most research in P systems concentrates on the computational
power and efficiency of the devices involved, lately they have been used to model

1

2

biological phenomena within the framework of Computational Systems Biology
and Population Dynamics. In this case, P systems are not used as a computing
paradigm, but rather as a formalism for describing the behavior of the system
to be modeled. They offer an approach to the development of models for bi-
ological systems that meets the requirements of a good modeling framework:
relevance, understandability, extensibility and computational / mathematical
tractability [142]. In this respect, several P systems models have been pro-
posed to describe oscillatory systems [66], signal transduction [47, 128], gene
regulation control [144], quorum sensing [152, 143] and metapopulations [25],
metabolic algorithm [27], dynamical probabilistic P systems [25] and (multicom-
partmental) Gillespie Algorithm [143]. These models differ from each other in
the type of the rewriting rules, membrane structure and the strategy applied
to run the rules in the compartments defined by membranes. Furthermore,
probabilistic P systems have also been successfully applied as a tool for macro-
scopic level processes, such as the computational modeling of real ecosystems
[33, 50, 34, 53].

In order to experimentally validate P systems based models, it is neces-
sary to develop simulators able to be executed on electronic computers, which
can help researchers to compute, analyze and extract results from a model
[141]. These simulators have to be as efficient as possible to handle large
size instances, what is one of the major challenges facing today’s P systems
simulators. In this regard, software applications for Membrane Computing
typically implement sequential (or with a limited parallelism) simulation al-
gorithms adapted to conventional CPU architectures [141], so they lack the
possibility of exploiting the massively parallel nature that P systems present
by definition. This is necessary for obtaining a simulation model closer to the
theoretical one.

This parallel computation model leads us to look for a massively-parallel
technology where a parallel simulator can run more efficiently. The newest
generations of Graphics Processor Units (GPUs) are massively parallel pro-
cessors which can support several thousand of concurrent threads. To date,
many general purpose applications have been migrated to these platforms ob-
taining good speedups compared to their corresponding sequential versions
[146, 147, 5, 13]. Current NVIDIA GPUs, for example, contain thousand of
scalar processing elements per chip [94], and they are programmed using a C
programming language [88] extension called CUDA (Compute Unified Device
Architecture) [89, 5, 94, 119, 62].

The aim of this thesis is to develop more efficient P systems simulators by
using parallel architectures. This is crucial for the construction of new tools

3

that enable scientists to interact with their models. In particular, NVIDIA
GPUs with CUDA are considered for the development of parallel P systems
simulators. Previous results, concerning the stochastic simulation algorithms
on the GPU [93], put the seed that encouraged us to consider this technology
to face positive results. For this purpose, this work started with the creation of
a parallel simulator in CUDA for recognizer P systems with active membranes
[41]. This variant was chosen for their natural capacity to create an exponential
amount of resources in polynomial time, expressed in terms of membranes
and/or objects. This first simulator permitted to analyze the behavior of the
GPU on the simulation of P systems. Since the simulation of P systems involves
addressing a problem with dynamic data nature (objects and membranes are
created and deleted along the computation) and with a very large amount of
data (the number of membranes created by division rules is exponential), their
simulation is memory bound.

After the creation of the parallel simulator for active membranes, another
parallel simulator was developed. It is specifically designed for a family of
recognizer P systems with active membranes solving the SAT problem in lin-
ear time [133, 40]. Thus, this ad hoc simulator improves performance of the
more generic (flexible) simulators for these specific P systems. In addition, this
work was extended to a family of tissue-like P systems that efficiently solves
the same problem. P systems characteristics that are well suited to be simu-
lated on the GPU are deduced by studying both simulators. Many efforts have
been carried out on the GPU simulation of P systems serving as a framework
for modeling population dynamics (PDP systems). In this regard, two new
simulation algorithms have been proposed to better reproduce the semantics
of the models. They are called DNDP (Direct Non-Deterministic distribution
with Probabilities) [100] and DCBA (Direct Distribution Algorithm based on
Consistent Blocks) [98]. After their experimental validation using the stan-
dard simulation library pLinguaCore [101, 99], a parallel version of DCBA was
implemented, which works on both multicore processors (OpenMP) [103] and
manycore GPUs (CUDA) [104], improving the simulation performance.

The source codes of the implemented simulators on the GPU (with CUDA)
are available in the software project PMCGPU (Parallel simulators for Mem-
brane Computing on the GPU) [17], under the GNU GPLv3 license [2].

4

Content of the document

This document is structured in four parts that make up a total of eight chap-
ters. Next, we briefly describe its content.

Part I: Preliminaries

The first chapter introduces the disciplines of Natural Computing and Mem-
brane Computing. Moreover, formal concepts related to the syntactic and
semantics components of P systems is provided. The chapter ends with a brief
description of their applications in the computational complexity field.

In Chapter 2, the common parts of P systems simulators are analyzed.
A summary of the available simulation tools for P systems is also presented.
Furthermore, we describe a chronological overview of the P-Lingua simulation
framework [70, 16, 124], which is the starting point of the described work
herein. Finally, we analyze the necessity of efficient simulators for Membrane
Computing, providing a survey of parallel simulators already existing in the
area.

This first part ends with Chapter 3, which introduces High Performance
Computing as a source of solutions to improve the efficiency of the simulators,
with special emphasis on Parallel Computing and GPU computing. It also
presents the CUDA and Tesla technologies of NVIDIA, that will be used for
the experiments throughout the work.

Part II: Parallel simulation applied to efficient solutions
of computationally hard problems

Chapter 4 describes the design and development of the simulator for P sys-
tems with active membranes based on CUDA and, additionally, the benchmark
carried out with the GPU Tesla C1060. Two test cases were analyzed: a simple
testing case and a solution from literature for the SAT problem. These tests
permit to study the properties that P systems have to verify for successfully
accelerating their simulation on the GPU.

This second part ends with Chapter 5, which describes the development
of more specific simulators of two solutions (based on both cell-like and tissue-
like P systems) for the SAT problem. Moreover, it provides an analysis of the P
systems characteristics promoting better performance on the GPU, since two
solutions based on different variants are involved.

5

Part III: Parallel simulation applied to computational
models in biology

Chapter 6 presents two simulation algorithms designed to better capture the
semantics of P systems modeling population dynamics (called PDP systems,
Population Dynamics P systems). To this end, the syntactic and semantic
elements of PDP systems are introduced. Then, the DNDP and DCBA algo-
rithms (that will act as inference engines) are described.

This third part of the document ends with Chapter 7, which describes
the implementations developed for the algorithms introduced in the previous
chapter. A description and an analysis of the simulators created within the
pLinguaCore simulation library is provided, as well as those independently
developed in C++ with OpenMP and CUDA.

Part IV: Conclusions

The document concludes with a chapter devoted to the presentation of conclu-
sions and suggestions of future research directions. Furthermore, it provides
best practice guidelines for developers of parallel P systems simulators. They
have been obtained from the experience gained during the development of the
work presented herein. Finally, two additional chapters are supplied as techni-
cal appendices. The first one shows how to use the described simulators, and
the second describes the GPU server implemented to run the experiments.

Contributions

It is worth to note the following original contributions of the work described
in this document:

• Development of a parallel simulator in CUDA for recognizer P systems
with active membranes. This simulator receives as input a P system de-
scribed in a binary file (generated by the pLinguaCore compiler from a
P-Lingua file). This simulator is based on the one implemented in pLin-
guaCore, and uses the GPU to accelerate the simulation. After testing
with simple examples, the good performance of the GPU to simulate P
systems is showed, since both share a double parallel nature (membranes
and rules against thread blocks and threads). This simulator has been
developed in collaboration with researchers from the Parallel Comput-
ing Architecture Group from the University of Murcia. In addition, this

6

work has been presented at several conferences of different areas (First
International Workshop on High Performance Computational Systems
Biology, Trento, Italy, 2009; Tenth Workshop on Membrane Comput-
ing, Curtea de Arges, Romania, 2009; and Symposium on Application
Accelerators in High-Performance Computing, Urbana-Champaign, Illi-
nois, USA, 2009), and published in journals, the first of which is included
in the ISI Journal Citation Reports ranking, with great impact on the
scientific community:

– J.M. Cecilia, J.M. Garćıa, G.D. Guerrero, M.A. Mart́ınez-del-Amor,
I. Pérez-Hurtado, M.J. Pérez-Jiménez. Simulation of P systems
with active membranes on CUDA. Briefings in Bioinformatics, 11,
3 (2010), 313-322. JCR 9.283

– J.M. Cecilia, J.M. Garćıa, G.D. Guerrero, M.A. Mart́ınez-del-Amor,
I. Pérez-Hurtado, M.J. Pérez-Jiménez. Implementing P systems
parallelism by means of GPUs. Lecture Notes in Computer Science,
5957 (2010), 227-241.

• Development of a parallel simulator in CUDA for a family of P systems
that solves SAT in linear time. After experimenting with the previous
parallel simulator, the simulation time on the GPU for P systems based
solutions to NP-complete problems is not decreased compared to the
equivalent sequential version. The achieved performance by the previous
flexible simulator depends on the P system to simulate, and it has to
follow the behavior of the simulator on the GPU. This result leads us
to develop simulators for specific P systems solutions. This is achieved
by optimizing the ad hoc simulation algorithm and its data structures,
while obtaining an improvement of the order of up to 90 times faster.
Thus, the GPU is demonstrated to be a good choice for simulating P
systems, in case of properly adapting the specific P system simulation
to the GPU architecture. This simulator has also been developed in the
collaboration framework with researchers from the University of Murcia
and the University of Malaga. In addition, this work has led to new
contributions in the area of Parallel Computing, with new implementa-
tions optimized for GPU and supercomputer architectures, resulting in
a series of contributions in various conferences of the computer architec-
ture and Parallel Computing fields. We highlight the Third International
Workshop on Parallel Architectures and Bioinspired Algorithms, Vienna,
Austria, 2010, and the Symposium on Application Accelerators in High

7

Performance Computing, Knoxville, Tennessee, USA, 2010. It has been
also published in the following publications in ISI journals:

– J.M. Cecilia, J.M. Garćıa, G.D. Guerrero, M.A. Mart́ınez-del-Amor,
I. Pérez-Hurtado, M.J. Pérez-Jiménez. Simulating a P system based
efficient solution to SAT by using GPUs. Journal of Logic and
Algebraic Programming, 79 (2010), 317-325. JCR 0.552

– J.M. Cecilia, J.M. Garćıa, G.D. Guerrero, M.A. Mart́ınez-del-Amor,
M.J. Pérez-Jiménez, M. Ujaldón. The GPU on the simulation of
cellular computing models. Soft Computing, 16, 2 (2012), 231-246.

JCR 1.880

• Design of simulation algorithms for the modeling framework based on
probabilistic P systems. After the successes with previous simulators,
the natural step was to apply the acquired knowledge to the area of
computational modeling in population dynamics. First, two new simula-
tion algorithms were designed for PDP systems, so that the probabilistic
semantics are captured with more fidelity. The DNDP algorithm intro-
duced a new way to simulate PDP systems: three phases conduct a ran-
dom distribution of the rules over the available objects in the multisets
of a PDP system configuration. Although the behavior was improved,
it had not yet met all expectations; for instance, several real ecosystems
models were detected to provide large dispersed results. Therefore, a
new algorithm was designed, called DCBA, which performs a propor-
tional distribution of objects to rules, what avoids such mentioned dis-
persion. Both simulation algorithms have been validated towards a real
ecosystem model related with the Bearded Vulture in the Pyreneens. It
is noteworthy that the development of these algorithms was carried out
in collaboration with researchers from the University of Lleida. This
work was presented to the scientific community at the international con-
ferences IEEE Fifth International Conference on Bioinpired Computing:
Theories and Applications, Changsha, China, 2010, and Thirteenth In-
ternational Conference on Membrane Computing, Budapest, Hungary,
2012; and resulted in the following publications in prestigious scientific
journals, the first of which indexed in the ISI ranking:

– M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez,
A. Riscos-Núñez, F. Sancho-Caparrini. A simulation algorithm for
multienvironment probabilistic P systems: A formal verification.

8

International Journal of Foundations of Computer Science, 22, 1
(2011), 107-118. JCR 0.379

– M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M. Garćıa-Quismondo,
L.F. Maćıas-Ramos, L. Valencia-Cabrera, A. Romero-Jiménez, C.
Graciani, A. Riscos-Núñez, M.A. Colomer, M.J. Pérez-Jiménez.
DCBA: Simulating Population Dynamics P systems with propor-
tional object distribution, Lecture Notes in Computer Science, 7762
(2013), 257-276.

• Development of high performance simulators for the PDP systems mod-
eling framework. After experimentally validating the design simulation
algorithms (DNDP and DCBA) using the pLinguaCore library, the prob-
lem concerning the required simulation resources (CPU time and memory
space) arises. Thus, the next natural step was to implement efficient sim-
ulators for the last defined algorithm, DCBA. First, an approximation in
C++ was developed, which helped to substantially improve performance.
Next, parallel versions were implemented using technologies such as mul-
ticore processors with OpenMP (obtaining an acceleration of 2.5x) and
GPUs with CUDA (providing acceleration 7x). Concerning the CUDA
implementation, a new binomial random-variate generator on the GPU
was required. To do this, we have developed the cuRNG BINOMIAL
library, which is based on the cuRAND library. The solution is based
on the binomial approximation with the normal distribution, and a bi-
nomial algorithm, called BINV, for small values. This work was carried
out in collaboration with the HPC-Lab group of the NTNU (Norwegian
University of Science and Technology), involving a stay of three months
during the summer of 2011. The produced works were presented at the
international conference Tenth Conference on Computational Methods in
Systems Biology, London, UK, 2012; and the First International Con-
ference on Developments in Membrane Computing, Sevilla, Spain, 2012,
resulting in the following publication:

– M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, A. Gastalver-Rubio,
A.C. Elster, M.J. Pérez-Jiménez. Population Dynamics P Systems
on CUDA. Lecture Notes in Bioinformatics, 7605 (2012), 247-266.

Part I

Preliminaries

9

“While lying there admiring this amazing enzyme, I was struck
by its similarity to something described in 1936 by Alan Turing,
the famous British mathematician.”

Leonard Adleman

1
Bioinspired and Natural Computing

The human being has always had a sublime aspiration: a constant improve-
ment of life quality. Since the beginning of time, many questions have raised to
be faced by trying to find answers. However, the study of these problems has
led, in a natural way, to search for systematic procedures, which permit him
to obtain solutions by performing a number of properly sequenced elementary
tasks. This mechanization process of solutions facilitated the transmission of
knowledge and science learning in general, while opening the possibility of us-
ing devices capable of performing these tasks and assist the human being in
the general process of troubleshooting.

The advent of electronic computers in the mid last century represented a
qualitative advance in the resolution of specific problems that, until then, had
been intractable. In 1983, the euphoria produced by this great achievement
was braked when R. Churchhouse established the physical limitations of the
calculation speed in conventional electronic processors. He demonstrated that
there is an upper bound, under the principles of physics, for the speed and
the size that the microprocessor can reach. This bound would also impede
current techniques to solve problems that are considered intractable, because
they require a very high amount of time (and/or space) to solve relatively
very large instances. However much we accelerate the microprocessors (even
reaching this physical bound), there would be still having relevant instances of
these problems taking years or centuries to be solved in these super-machines.

11

Chapter 1. Bioinspired and Natural Computing 12

Unfortunately, the scenario became considerably worst, because this limit was
found to be clearly insufficient to attack the resolution of important real life
problems. Specifically, it was demonstrated that such problems could never be
solved by machines which were on electronic hardware, unless a miracle would
happen, expressed as a refutation of the famous conjecture P 6= NP, which is
today, one of the most important open problems of science (for more details,
see [54]).

Given that circumstance, the human being faces the possibility of design-
ing new devices which respond to other ways of performing calculations, and
their hardware is different, so they can get to overcome the inherent barrier
of electronic devices that from now, we call conventional. In that scenario,
the living Nature arises as an inspiration source, so giving the origins of the
Natural Computing discipline. Its purpose is the analysis of models and com-
putational techniques inspired by Nature, and to understand the world around
us in terms of processing information, starting on the basis that a series of dy-
namic processes that are likely to be interpreted as calculation procedures has
been producing in Nature from billions of years ago. The Zuse-Fredkin the-
sis (1960) states that the universe is a cellular automata, even claiming that
the information is more important than the matter and energy. The S. Lloyd
thesis (2006) states that the universe is a quantum computer.

The aim of this chapter is to analyze the above described problematic by
the historical context, and introducing properly illustrated basic concepts. In
the next section, Natural Computing is presented as the discipline to focus on
for the general framework in which this work is developed, namely Membrane
Computing. Sections 1.3 and 1.4 are devoted to the description of two of the
most common variants of this branch: the devices working like cells, and those
working like tissues. The purpose of every computing model is the resolution of
problems testing. Therefore, the recognizer membrane systems are introduced,
inasmuch as they are specifically designed for this aim. In Section 1.6, the
SAT problem of Propositional Logic satisfiability is presented, providing two
solutions through families of P Systems with active membranes and tissue P
systems with cell division, respectively. The chapter ends with a description
of some of the might called practical applications of Membrane Computing.

1.1 Natural Computing

Electronic machines are physical devices and, therefore, they have limitations
for both the speed of calculation and the miniaturization of the physical com-

1.1. Natural Computing 13

ponents that comprise it.

In the late fifties of the past century, the Nobel-prize winning R.P. Feynman
[65] described sub–microscopic computers as a revolutionary alternative in the
race for the miniaturization of physical components in conventional computers
(silicon based circuits). He proposed the computation at the molecular level as
a possible model in which to implement such operations. Thus, the molecular
complexes are considered as virtual components of a information processing
device. In 1987, T. Head [82] proposed the first abstract computational model
based on the manipulation of the DNA molecules: the splicing model. In
this model, the information is stored in characters strings like in the DNA
molecules. The operations to be performed on these strings are similar to the
operations of certain specific enzymes on DNA. In November 1994, L. Adle-
man [20] carried out the first experiment in a laboratory that solves a specific
instance of a NP-complete problem via the manipulation of DNA molecules.
Feynman’s ideas are particularly important since 1983, when R. Churchhouse
demonstrates the existence of a limitation on the calculation speed of elec-
tronic machines, and in the size of microprocessors. Feynman stated that one
day we would be able to write the entire Encyclopedia Britannica on the head
of a pin.

Many interesting problems that can be solved by means of algorithms of
a certain model require a high cost for their resolution, in time and/or space.
It is common that for the attempt of reducing one of the two measurements
results in a exponential growth of the other. Thus, it is necessary to find new
models capable of reducing both parameters; or, at least, include methods in
which a high cost of the measures is absorbed, in some way, by the model itself
in benefit of a substantial reduction over the other.

In this context, the search for new alternative models of computation is
necessary. This leads to the design of new machines that can overcome, some-
day, the barrier followed by the result of R. Churchhouse, while representing
a quantitative improvement of the results provided by the Theory of Com-
putational Complexity. Moreover, in recent decades, such search has led to
the introduction of new models of computation that substantially differ from
more classical or conventional ones (Turing machines, recursive functions, λ-
calculus, etc.). They provide an important improvement in the quantification
of computational resources as part of a possible practical implementation.

Natural Computing is a discipline whose aim is the study and implemen-
tation of the dynamic processes that occur in the living Nature and that are
likely to be interpreted as calculation procedures. In other words, it tries
to capture how Nature acts/operates over the matter, and how it has been

Chapter 1. Bioinspired and Natural Computing 14

calculating from billions of years ago. This new research field arises as one
alternative for more classical computation models, regarding the seek of new
paradigms that can provide an effective solution to the limitations of conven-
tional models. Currently, within the field of Natural Computing, there are a
wide range of models, some of them extends this concept to include quantum
computing, that is not closely based on the above interpretation. These mod-
els study how several laws of nature produce changes in certain systems (from
habitats to sets of molecules, and living organisms) which may be interpreted
as calculation processes on its elements. This simulation addressed by Natural
Computing can have different interpretations when describing the new models:
to be used for the design of new algorithmic schemes using techniques inspired
by nature; or to suggest the physical creation of new experimental models.
In the latter, the electronic media of conventional computers is replaced with
other substrate that can implement certain processes shown in the operating
mode of nature.

Living Nature has been a computational inspiration source since the mid-
forties of the last century. In 1943, W.S. McCulloch and W. Pitts [109] pro-
posed the first model of artificial neural networks, inspired by the intercon-
nections and functioning of neurons in the brain. They are the example for
subsequent models of M. Minsky [110] and F. Rosenblatt [145], among others.
In 1975, J. Holland introduced the genetic algorithm, a computational model
inspired by the processes of evolution and natural selection of living beings.
These methods aims to find a good solution from a large number of possible
candidate solutions.

Natural Computation was born, in fact, as a discipline at the end of 1994
after the experiment of L. Adleman. Adleman solved a small instance of a
presumably intractable problem from a computational viewpoint: any known
mechanical solution requires a number of resources that is exponential in the
size of the input data. One of the basic objectives of molecular computing
is the usage of organic molecules (DNA, RNA, proteins, etc.) as biological
hardware that allows to perform computations.

Membrane Computing was introduced by Gh. Păun [140] in 1998, and it is
inspired by the structure and functioning of the cells of living organisms in their
ability to process and generate information. In October 2003, the Institute for
Scientific Information (ISI, USA), has designated Membrane Computing as
Fast Emerging Research Front in the area of Computer Science.

Before going further, it is convenient to distinguish two concepts related
to computing models: implementation and simulation. Recall that any com-
puting model consists of a syntax specification, and its dynamics is governed

1.2. Membrane Computing 15

by a formal semantics. When we talk about the implementation of such a
model, we are referring to the construction of a physical device (a machine)
whose behavior is identical to the model itself, in the following sense: once it
receives an input, the machine performs each transition step of the model in a
computation step of the machine (in a unit of time) so that in both cases the
same results are obtained.

In this thesis, we use the term simulator of a formal model to a soft-
ware/hardware computer application, capable of being executed on an elec-
tronic computer, which describes the specification through a programming
language and captures the semantics through a simulation algorithm. This
simulation algorithm must faithfully reproduce the dynamics, i.e., each com-
puting step of the formal model is reproduced in the simulator through a finite
number of steps (greater than 1), so that the simulator is capable of determin-
ing the basic elements of the model which intervened in a relevant way in that
step.

Genetic algorithms and artificial neural networks have been implemented
through programs running on electronic conventional computers. DNA-based
Molecular Computing has been implemented by biochemical means: L. Adle-
man’s experiment allowed to solve a particular instance of the Hamiltonian
path problem, in its directed and two with distinguished nodes, by the ma-
nipulation of DNA molecules in the laboratory. On the contrary, Membrane
Computing has not yet been implemented neither electronically nor biochem-
ically.

The next section is devoted to present the most relevant aspects of Mem-
brane Computing, the framework where this thesis is focused on.

1.2 Membrane Computing

At the end of 1998, Gheorghe Păun [140] introduced a new natural comput-
ing paradigm, called Membrane Computing, inspired by the structure and the
functioning of the cells of living organisms. In the original ideas of Gh. Păun,
membrane systems provide distributed parallel and non-deterministic devices,
and they were not properly introduced to fully model the structure and func-
tioning of a cell, but to analyze some computationally relevant facts that can
be abstracted from them.

Cells are the basic unit of every living organism. They have a complex, but
very organized, structure that allows the simultaneous execution of chemical
reactions. There are two types of cells: prokaryotes (typical of certain unicel-

Chapter 1. Bioinspired and Natural Computing 16

lular organisms, such as bacteria and cyanobacteria), that lack of a nuclear
membrane, and therefore, have no separation between nucleus and cytoplasm;
and eukaryotes (typical of animals and plants) whose nucleus is separated from
the cytoplasm by a double membrane. In both cell types, a series of processes
that are essential to life takes place in a similar way.

In a first analysis, three distinct parts can be differentiated in a cell (see
Figure 1.1): a kind of very thin film (plasma membrane) which delimits the
cell from its environment; a central corpuscle (nucleus), which contains and
stores the genetic information in molecules of DNA; and cytoplasm, which is
the part between the core and the plasma membrane. In the cytoplasm of eu-
karyotic cells there are different fundamental components (see Figure 1.1): the
mitochondria, which is responsible for the generation of molecules enclosing
useful energy in metabolic processes; the Golgi apparatus, that is responsible
for intracellular transportation of several substances; ribosomes, which are a
protein factory and play an essential role in cellular metabolism; the endoplas-
mic reticulum, which is a network of interconnected membranes structured in
two parts: one that is part of the nuclear membrane and facilitates the passage
of the messenger RNA from the nucleus into the cytoplasm, and other that
handles the communication between the various cell components; and finally,
the lysosomes, which are vesicles surrounded by a single membrane containing
enzymes, and responsible for digesting substances which come from outside,
as well as they degrade the residual components that are no longer useful for
the cell.

A striking feature about the internal cell structure is that the parts of the
biological system are delimited by several types of membranes (in its broadest
meaning). They range from the outer membrane separating the internal and
external parts of the cell, to the several membranes which delimit the internal
vesicles. Furthermore, and regarding the functionality of these membranes in
nature, it is noteworthy that the generated compartments are not watertight,
but they allow the sometimes selective, or even only the one-directional, pas-
sage (flow) of certain chemical compounds selectively. Biological membranes
are dynamic basic structures for the cell, and play an essential role in defin-
ing the phenomenon usually called life. An entity is a living organism if it
can autonomously perform the following tasks: (a) replicate DNA; (b) energy
production; (c) synthesize proteins; and (d) perform metabolic processes.

Because the processes that occur in a cell are highly complex, it is impos-
sible to completely model them. A computing model that attempts to literally
simulate such processes would not be practical, except from a biological point
of view. It aims to create an abstract computing model that simulates, in a

1.2. Membrane Computing 17

Figure 1.1: The eukaryotic cell

simplified form but as closely as possible, the behavior of cells. This allows
us (at least in principle) to obtain alternative solutions to computationally
intractable problems from a conventional viewpoint. To do this, it is necessary
to bring out all those behavioral characteristics and constitutions of the cell.
They may be useful for the development of a computing model that have to be
both powerful (in terms of the problems they can solve) and simple (concerning
the definition, implementation and execution).

In summary, the behavior of a cell can be considered as a machine that
performs a calculation process: a non trivial machine, from the biological
point of view, in which occurs a flow and alteration of chemical substances,
as the cell itself processes, by means of a hierarchical distribution of inner
membranes.

1.2.1 Preliminaries

In this section we introduce some concepts and notations which we will use
throughout this thesis.

An alphabet, Γ, is a non–empty set whose elements are called symbols. An
ordered finite sequence of symbols is a string or word. The set of all strings
over an alphabet Γ is denoted by Γ∗. A language over Σ is a subset of Γ∗.

A multiset m over an alphabet Γ is a pair (Γ, f) where f : Γ → N is a
mapping. If m = (Γ, f) is a multiset then its support is defined as supp(m) =

Chapter 1. Bioinspired and Natural Computing 18

{x ∈ Γ | f(x) > 0}. A multiset is finite if its support is a finite set. If
m = (Γ, f) is a finite multiset over Γ, and supp(m) = {a1, . . . , ak} then it

will be denoted as m = a
f(a1)
1 . . . a

f(ak)
k (here the order is irrelevant), and we

say that f(a1) + · · ·+ f(ak) is the cardinal of m, denoted by |m|. The empty
multiset is denoted by ∅. We also denote by Mf (Γ) the set of all finite multisets
over Γ.

If m1 = (A, f1), m2 = (A, f2) are multisets over A, then we define the union
of m1 and m2 as m1 +m2 = (A, g), where g = f1 + f2.

1.3 Cell-like P systems

Membrane Computing devices are generically called P systems. They consti-
tute a theoretical computing model of a distributed, parallel and non-determi-
nistic type. In Membrane Computing there are basically two ways to consider
computational devices: cell–like membrane systems and tissue–like membrane
systems. The first one, using the biological membranes arranged hierarchi-
cally, inspired from the structure of the cell, and the second one using the
biological membranes placed in the nodes of a graph, inspired from the cell
inter–communication in tissues.

The main syntactic ingredients of a cell–like P system are the membrane
structure, the multisets, and the evolution rules.

• A membrane structure consists of several membranes arranged in a hi-
erarchical structure (understood as three dimensional vesicles) inside a
main membrane (the skin), and delimiting regions (the space in–between
a membrane and the immediately inner membranes, if any). Each mem-
brane identifies a region inside the system. A membrane without any
membrane inside is called elementary. A membrane structure can be
considered as a rooted tree.

• Regions defined by a membrane structure contain objects corresponding
to chemical substances present in the compartments of a cell. The objects
can be described by symbols or by strings of symbols, in such a way that
multiset of objects are placed in regions of the membrane structure.

• The objects can evolve according to given evolution rules, associated with
the regions (hence, with the membranes).

The semantics of the cell–like membrane systems is defined through a non
deterministic and synchronous model (in the sense that a global clock is as-

1.3. Cell-like P systems 19

'

&

$

%

'

&

$

%

#

"

!
#
"

!

�
�

�
�

�
�

�
�

'
&

$
%

�
�
�
�
�
�
�
�

membranes

elementary membrane

environment environment

regions

skin

1 2

3

4
5

6

7

8

9

@
@
@
@
@@R

HH
HHj

PPPPPPPPPPq

� ������9 �

�
�

�
��+

�
�
�
�/

S
Sw

Figure 1.2: A membrane structure

sumed), by introducing the concepts of configuration, transition step, and com-
putation.

Next, let us to describe the basic model of a cell-like P system, introduced
by Gh. Păun in the seminal paper [140]. A basic transition P system of degree
q ≥ 1 is a tuple Π = (Γ, H, µ,M1, . . . ,Mq,R, iout), where:

1. Γ is a finite alphabet.

2. H = {1, . . . , q}.

3. µ is a rooted tree.

4. M1, . . . ,Mq are finite multisets over Γ.

5. R = {R1, . . . , Rq}, where Ri, 1 ≤ i ≤ q, are finite sets of evolution rules
over Γ of the form u→ v where

• u is a finite multiset over Γ.

• v = (v1, here)(v2, out)(v3, inj) or v = (v′1, here)(v
′
2, out)(v

′
3, inj) δ,

being v1, v
′
1, v2, v

′
2, v3, v

′
3 finite multisets over Γ, and δ is a distin-

guished symbol such that δ /∈ Γ.

Chapter 1. Bioinspired and Natural Computing 20

6. iout ∈ H ∪ {0}.

A basic transition P system Π = (Γ, H, µ, ,M1, . . . ,Mq,R, iout), of degree
q ≥ 1 can be viewed as a set of q membranes (the nodes ot the tree µ),
injectively labeled by 1, . . . , q, with an environment labeled by 0, and such that:
(a) M1, . . . ,Mq are finite multisets over Γ representing the objects initially
placed in the q membranes of the system; (b) R is the set of rules that allows
to evolve the system (Ri is the set of rules associated with membrane i); and
(c) iout ∈ {0, 1, 2, . . . , q} represents a distinguished membrane (when iout ∈
{1, 2, . . . , q}), or the environment when iout = 0, which will encode the output
of the system.

Consider a rule r ≡ u → v from a set Ri. To apply this rule in region
i means to remove the multiset of objects specified by u from region i, and
to introduce the objects specified by v, in the regions indicated by the tar-
get commands associated with the objects from v. Specifically, if v contains
(a, here), then the object a will be placed in the same region i where the rule is
applied. If v contains (b, out), then the object b will be moved to the region im-
mediately outside membrane i (this region can be the environment in the case
when i is the skin membrane; in this case, the object leaves the system and it
never comes back). If v contains (c, inj), then the object c should be moved in
the region j, providing that this membrane is immediately inside membrane i;
otherwise, the rule r cannot be applied. If δ appears in v, then membrane i is
dissolved, that is, the membrane i is removed and all objects and membranes
previously present in it become elements of the contents of the immediately
upper membrane that has not been dissolved. The skin membrane is never
dissolved.

We define the cooperation degree of a rule u → v as the cardinal of the
multiset involved in the left-hand side, |u|. If the cooperation degree of a rule
is strictly greater than 1, then it is called a cooperative rule.

The rules are applied in a non-deterministic maximally parallel manner,
that is, the objects to evolve in a step and the rules by which they evolve are
chosen in a non-deterministic manner, but in such a way that in each region
we have a maximally parallel application of rules: we assign objects to rules,
non-deterministically choosing the rules and the objects assigned to each rule,
but in such a way that after this assignation no further rule can be applied to
the remaining objects. A rule can be applied in the same step as many times
as we want, only the number of copies of objects matters.

The semantics of the cell–like membrane systems is defined through a non
deterministic and synchronous model (in the sense that a global clock is as-
sumed) as follows:

1.3. Cell-like P systems 21

• An instantaneous description or a configuration at any instant of a ba-
sic cell-like P system Π = (Γ, H, µ, ,M1, . . . ,Mq,R, iout), consists of a
membrane structure and a family of multisets of objects of objects over
Γ associated with each region of the structure. The initial configuration
is (µ,M1, · · · ,Mq). A configuration is a halting configuration if no rule
of the system is applicable to it. In each time unit we can transform a
given configuration in another configuration by applying the evolution
rules to the objects placed inside the regions of the configurations, in a
non–deterministic, and maximally parallel manner (the rules are chosen
in a non–deterministic way, and in each region all objects that can evolve
must do it). In this way, we get transitions from one configuration of the
system to the next one

• We say that configuration C1 yields configuration C2 in one transition
step, denoted by C1 ⇒Π C2, if we can pass from C1 to C2 by applying the
rules from R following the previous remarks.

• A computation of Π is a (finite or infinite) sequence of configurations
such that:

1. the first term of the sequence is the initial configuration of the
system;

2. each non-initial configuration of the sequence is obtained from the
previous configuration by applying rules of the system in a maxi-
mally parallel manner with the restrictions previously mentioned;
and

3. if the sequence is finite (called halting computation) then the last
term of the sequence is a halting configuration.

All computations start from an initial configuration and proceed as stated
above; only halting computations give a result, which is encoded by the
objects present in the output region iout in the halting configuration.

If C = {Ct}t<r+1 of Π (r ∈ IN) is a halting computation, then the length
of C, denoted by |C|, is r, that is, |C| is the number of non-initial config-
urations which appear in the finite sequence C.

We assume that a global clock exists, marking the time for the whole system
(for all compartments of the system), and we have here a double parallelism,
once at the level of each region (the rules are used in parallel) and once at the
level of the system (all regions evolve concomitantly).

Chapter 1. Bioinspired and Natural Computing 22

1.3.1 P systems with active membranes

One of the explicit goals of various branches of natural computing is to find
ways to address computationally hard problems (typically, NP-complete prob-
lems) in order to solve them in a “feasible” time.

The rules of a basic transition P system are used in parallel. This is a
good level of parallelism, which, however, is not sufficient to devise polynomial
time solutions to NP-complete problems (unless P = NP, which is not at all
plausible); the proof of this result can be found in [155]. However, biology sug-
gests operations with membranes such membrane division which, sometimes
surprisingly, make possible polynomial (often linear) solutions to NP-complete
problems. Membrane division brings a further level of parallelism, making pos-
sible to construct an exponential workspace expressed in terms of the number
of membranes and the number of objects, in polynomial time.

P systems with active membranes having associated electrical charges with
membranes were first introduced by Gh. Păun [139].

Definition 1.1. A P system with active membranes of degree q ≥ 1 is a tuple
Π = (Γ, H, µ,M1, . . . ,Mq,R, iout), where:

1. Γ is a finite alphabet.

2. H = {1, . . . , q}.

3. µ is a rooted tree.

4. M1, . . . ,Mq are finite multisets over Γ.

5. R is a finite set of rules, of the following forms:

(a) [a→ u]αh, for h ∈ H,α ∈ {+,−, 0}, a ∈ Γ, u ∈ Γ∗ (object evolution
rules).

(b) a []α1
h → [b]α2

h , for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ Γ (send–in
communication rules).

(c) [a]α1
h → []α2

h b, for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ Γ (send–out
communication rules).

(d) [a]αh → b, for h ∈ H, α ∈ {+,−, 0}, a, b ∈ Γ (dissolution rules).

(e) [a]α1
h → [b]α2

h [c]α3
h , for h ∈ H, α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ Γ

(division rules for elementary membranes).

6. iout ∈ H ∪ {0}.

1.3. Cell-like P systems 23

A P system with active membrane Π = (Γ, H, µ, ,M1, . . . ,Mq,R, iout), of
degree q ≥ 1 can be viewed as as a set of q membranes (the nodes ot the
tree µ) injectively labeled with elements of H, with electrical charges (+,−, 0)
associated with them, and with an environment labeled by 0 such that: (a)
M1, . . . ,Mq are finite multisets over Γ representing the objects initially placed
in the q membranes of the system; (b) R is the set of rules that allows to evolve
the system; and (c) iout ∈ {0, 1, 2, . . . , q} represents a distinguished membrane
when iout ∈ {1, 2, . . . , q}, or the environment when iout = 0, which will encode
the output of the system.

P systems with active membranes differ from the basic transition P systems
on the type of rules. The evolution rule [a→ u]αh is associated with membrane
h and depending on the label and the charge of the membrane, but not directly
involving the membrane, in the sense that the membrane is neither taking part
in the application of this rule nor it is modified by the rule. In reaction with
an object a, a finite multiset v is produced in that membrane.

When applying a send-in rule a []α1
h → [b]α2

h , in reaction with object a in
the parent membrane, an object b is introduced in the membrane h, and the
polarization of the membrane can be modified, but not its label. When apply-
ing a send-out rule [a]α1

h → []α2
h b, in reaction with object a in membrane h,

an object b is sent out of the membrane, and the polarization of the membrane
can be modified, but not its label.

When applying a dissolution rule [a]αh → b, under the influence of object
a, the membrane h is dissolved, while the object a is transformed in object b.

When applying a division rule [a]α1
h → [b]α2

h [c]α3
h for an elementary mem-

brane h, in reaction with object a, membrane h is divided into two membranes
with the same label, possibly of different polarizations; object a is replaced in
the two new membranes by objects b and c, respectively.

These rules are applied according to the following principles ([139]):

• All the rules are applied in parallel and in a maximal manner. In one
step, one object of a membrane can be used by only one rule (chosen in
a non deterministic way), but any object which can evolve by one rule
of any form, must evolve.

• If a membrane is dissolved, its content (multiset and internal membranes)
is left free in the surrounding region.

• If at the same time a membrane labeled by h is divided by a rule of type
(e) and there are objects in this membrane which evolve by means of
rules of type (a), then we suppose that first the evolution rules of type

Chapter 1. Bioinspired and Natural Computing 24

(a) are used, and then the division is produced. Of course, this process
takes only one step.

• The rules associated with membranes labeled by h are used for all copies
of this membrane. At one step, a membrane can be the subject of only
one rule of types (b)-(e).

Note that these P systems have some important features: (a) they are non-
cooperative systems (there is no cooperative rule); (b) they use three electrical
charges; (c) the polarization of a membrane, but not the label, can be modified
by the application of a rule; and (d) they do not use cooperation (the left-hand
side of the rules consist of only one symbol).

1.4 Tissue-like P systems

In this section we consider computational devices inspired from the cell inter–
communication in tissues, and adding the ingredient of cell division rules of
the same form as in cell–like membrane systems with active membranes, but
without using polarizations. In these systems, the rules are used in the non-
deterministic maximally parallel way, as usual, but we suppose that when
a cell is divided, its interaction with other cells or with the environment is
blocked; that is, if a division rule is used for dividing a cell, then this cell does
not participate in any other rule, for division or communication. The set of
communication rules implicitly provides the graph associated with the system
through the labels of the membranes. The cells obtained by division have the
same labels as the mother cell, hence the rules to be used for evolving them or
their objects are inherited.

Definition 1.2. A tissue P system with symport/antiport rules of degree q ≥ 1
is a tuple Π = (Γ, E ,M1, . . . ,Mq,R, iout), where:

1. Γ is a finite alphabet.

2. E ⊆ Γ.

3. M1, . . . ,Mq are finite multisets over Γ.

4. R is a finite set of communication rules of the form (i, u/v, j), for i, j ∈
{0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ∗, |uv| > 0.

5. iout ∈ {0, 1, 2, . . . , q}.

1.4. Tissue-like P systems 25

A tissue P system with symport/antiport rules

Π = (Γ, E ,M1, . . . ,Mq,R, iout)

of degree q ≥ 1 can be viewed as a set of q cells, labeled by 1, . . . , q, with
an environment labeled by 0 such that: (a) M1, . . . ,Mq are finite multisets
over Γ representing the objects (elements in Γ) initially placed in the q cells
of the system; (b) E is the set of objects located initially in the environment
of the system, all of them appearing in an arbitrary number of copies; and (c)
iout ∈ {0, 1, . . . , q} represents a distinguished cell when iout ∈ {1, . . . , q}, or the
environment when iout = 0, which will encode the output of the system.

When applying a rule (i, u/v, j), the objects of the multiset represented by
u are sent from region i to region j and, simultaneously, the objects of multiset
v are sent from region j to region i. The length of the communication rule
(i, u/v, j) is defined as |u| + |v|, that is, the total number of objects which
appear in the rule.

A communication rule (i, u/v, j) is called a symport rule if u = λ or v = λ.
A symport rule (i, u/λ, j), with i 6= 0, j 6= 0, provides a virtual arc from cell i
to cell j. A communication rule (i, u/v, j) is called an antiport rule if u 6= λ
and v 6= λ. An antiport rule (i, u/v, j), with i 6= 0, j 6= 0, provides two arcs:
one from cell i to cell j and another one from cell j to cell i. Thus, every tissue
P systems has an underlying directed graph whose nodes are the cells of the
system and the arcs are obtained from communication rules. In this context,
the environment can be considered as a virtual node of the graph such that
their connections are defined by communication rules of the form (i, u/v, j),
with i = 0 or j = 0.

The rules of a system like the one above are used in a non-deterministic
maximally parallel manner as it is customary in Membrane Computing. At
each step, all cells which can evolve must evolve in a maximally parallel way (at
each step we apply a multiset of rules which is maximal, no further applicable
rule can be added).

An instantaneous description or a configuration at any instant of a tissue P
system is described by all multisets of objects over Γ associated with all the cells
present in the system, and the multiset of objects over Γ−E associated with the
environment at that moment. Bearing in mind that the objects from E have
infinite copies in the environment, they are not properly changed along the
computation. The initial configuration is (M1, · · · ,Mq; ∅). A configuration is
a halting configuration if no rule of the system is applicable to it.

Let us fix a tissue P system with symport/antiport rules Π. We say that
configuration C1 yields configuration C2 in one transition step, denoted C1 ⇒Π

Chapter 1. Bioinspired and Natural Computing 26

C2, if we can pass from C1 to C2 by applying the rules from R following the
previous remarks. A computation of Π is a (finite or infinite) sequence of
configurations such that:

1. the first term of the sequence is an initial configuration of the system;

2. each non-initial configuration of the sequence is obtained from the pre-
vious configuration by applying the rules of the system in a maximally
parallel manner with the restrictions previously mentioned; and

3. if the sequence is finite (called halting computation), then the last term
of the sequence is a halting configuration.

All computations start from an initial configuration and proceed as stated
above; only halting computations give a result, which is encoded by the objects
present in the output region (a cell or the environment) iout in the halting
configuration.

1.4.1 Tissue P Systems with Cell Division

Cell division is an elegant process that enables organisms to grow and repro-
duce. Mitosis is a process of cell division which results in the production of
two daughter cells from a single parent cell. Daughter cells are identical to one
another and to the original parent cell. Through a sequence of steps, the repli-
cated genetic material in a parent cell is equally distributed to two daughter
cells. While there are some subtle differences, mitosis is remarkably similar
across organisms.

Before a dividing cell enters mitosis, it undergoes a period of growth where
the cell replicates its genetic material and organelles. Replication is one of the
most important functions of a cell. DNA replication is a simple and precise
process that creates two complete strands of DNA (one for each daughter cell)
where only one existed before (from the parent cell).

Let us recall that the model of tissue P systems with cell division is based
on the cell-like model of P systems with active membranes [139]. In these
models, the cells are not polarized; the cells obtained by division have the
same labels as the original cell, and if a cell is divided, its interaction with
other cells or with the environment is locked during the division process. In
some sense, this means that while a cell is dividing it closes its communication
channels.

Definition 1.3. A tissue P system with cell division of degree q ≥ 1 is a tuple
Π = (Γ, E ,M1, . . . ,Mq,R, iout), where:

1.5. Recognizer membrane systems 27

1. Γ is a finite alphabet.

2. E ⊆ Γ.

3. M1, . . . ,Mq are finite multisets over Γ.

4. R is a finite set of rules of the following forms:

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j,
u, v ∈ Γ∗, |u · v| 6= 0;

(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q}, i 6= iout and
a, b, c ∈ Γ.

5. iout ∈ {0, 1, 2, . . . , q}.

A tissue P system with cell division is a tissue P system with symport/an-
tiport rules where division rules of cells are allowed.

When applying a division rule [a]i → [b]i[c]i, under the influence of object
a, the cell with label i is divided into two cells with the same label; in the first
copy, object a is replaced by object b, in the second one, object a is replaced
by object c; all the other objects are replicated and copies of them are placed
in the two new cells. The output cell iout cannot be divided.

The rules of a tissue P system with cell division are applied in a non-
deterministic maximally parallel manner as it is customary in membrane com-
puting. At each step, all cells which can evolve must evolve in a maximally
parallel way (at each step we apply a multiset of rules which is maximal, no fur-
ther rule can be added), with the following important remark: if a cell divides,
only the division rule is applied to that cell at that step; the objects inside
that cell do not evolve by means of communication rules. In other words, we
can think that before division a cell interrupts all its communication channels
with the other cells and with the environment. The new cells resulting from
division will only interact with other cells or with the environment at the next
step – providing they do not divide once again. The label of a cell identifies
the rules which can be applied to it precisely.

1.5 Recognizer membrane systems

Throughout this chapter we use the term membrane system to refer to both a
cell-like P system or a tissue-like P system. In both cases we can describe them
by Π = (Γ, E ,M1, . . . ,Mq,R, iout), where in the case of cell-like P system, the
alphabet of the environment E can be considered as the empty set.

Chapter 1. Bioinspired and Natural Computing 28

Usually, computational complexity theory deals with decisions problems
which are problems that require a “yes” or “no” answer. A decision problem,
X, is a pair (IX , θX) such that IX is a language over a finite alphabet (whose
elements are called instances) and θX is a total boolean function (that is,
a predicate) over IX . Of course, many abstract problems are not decision
problems. For example, in combinatorial optimization problems some value
must be optimized (minimized or maximized). In order to deal with such
problems, they can be transformed into roughly equivalent decision problems
by supplying a target/threshold value for the quantity to be optimized, and
then asking whether this value can be attained.

A natural correspondence between decision problems and languages can be
established as follows. Given a decision problem X = (IX , θX), its associated
language is LX = {w ∈ IX | θX(w) = 1}. Conversely, given a language L,
over an alphabet Σ, its associated decision problem is XL = (IXL

, θXL
), where

IXL
= Σ∗, and θXL

= {(x, 1)| x ∈ L} ∪ {(x, 0)| x /∈ L}.
The solvability of decision problems is defined through the recognition of

the languages associated with them. Let M be a Turing machine with working
alphabet Γ and L a language over Γ. Assume that the result of any halting
computation of M is yes or no. If M is a deterministic device then we say that
M recognizes or decides L whenever, for any string u over Γ, if u ∈ L, then
the answer of M on input u is yes (that is, M accepts u), and the answer is
no otherwise (that is, M rejects u). If M is a non-deterministic device, then
we say that M recognizes or decides L if for any string u over Γ, u ∈ L if and
only if there exists a computation of M with input u such that the answer is
yes.

Throughout this chapter, it is assumed that each abstract problem has an
associated fixed reasonable encoding scheme that describes the instances of the
problem by means of strings over a finite alphabet. We do not define reasonable
in a formal way, however, following [72], instances should be encoded in a
concise manner, without irrelevant information, and where relevant numbers
are represented in binary (or any fixed base other than 1). It is possible to use
multiple reasonable encoding schemes to represent instances, but it is proved
that the input sizes differ at most by a polynomial. The size |u| of an instance
u is the length of the string associated with it, in some reasonable encoding
scheme.

In order to study the computational efficiency of membrane systems, the
notions from classical computational complexity theory are adapted for Mem-
brane Computing, and a special class of cell-like P systems is introduced in
[134]: recognizer P systems (called accepting P systems in a previous paper

1.5. Recognizer membrane systems 29

[133]).

Definition 1.4. A recognizer membrane system of degree q ≥ 1 is a tuple
Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout), where:

1. Π = (Γ, E ,M1, . . . ,Mq,R, iout) is a membrane system.

2. The working alphabet Γ has two distinguished objects yes and no being,
at least, one copy of them present in M1 ∪ · · · ∪Mq, but, in the case of
a tissue-like P system, none of them are present in E.

3. Σ is a finite alphabet strictly contained in Γ, and such that E ∩Σ = ∅. It
is is called the input alphabet.

4. M1, . . . ,Mq are finite multisets over Γ \ Σ.

5. iin ∈ {1, . . . , q} is the input membrane/cell.

6. iout = 0 is the label of the environment that represents the output region.

7. All computations halt.

8. If C is a computation of Π, then either object yes or object no (but not
both) must have been released into the environment, and only at the last
step of the computation.

A recognizer membrane system of degree q ≥ 1 is a tuple

Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout)

can be viewed as a membrane system such that has an input alphabet Σ and
an input region iin. The initial multisets of the system are multisets over Γ\Σ.

For each multiset m over Σ, the computation of the system Π with input m
starts from the configuration of the form (M1,M2, . . . ,Miin +m, . . . ,Mq; ∅),
that is, the input multiset m has been added to the contents of the input
region iin. Therefore, we have an initial configuration associated with each
input multiset m (over the input alphabet Σ) in this kind of systems.

Given a recognizer membrane system Π, and a halting computation C =
{Ci}i<r+1 of Π (r ∈ N), the result of C is yes (respectively, no) if object
yes (respectively, object no) appears in the environment associated with the
corresponding halting configuration of C, and neither object yes nor no appears
in the environment associated with any non–halting configuration of C. If the
result of a computation C is yes (respectively, object no), then we say that We
say that a computation C is an accepting computation (respectively, rejecting
computation) if the result of C is yes (respectively, no).

Chapter 1. Bioinspired and Natural Computing 30

1.5.1 Polynomial complexity classes of membrane sys-
tems

Now, we define what it means to solve a decision problem in the framework
of membrane systems efficiently and in a uniform way. Since we define each
membrane system to work on a finite number of inputs, to solve a decision
problem we define a numerable family of membrane systems.

Definition 1.5. We say that a decision problem X = (IX , θX) is solvable in
a uniform way and polynomial time by a family Π = {Π(n) | n ∈ IN} of
recognizer membrane systems if the following holds:

1. The family Π is polynomially uniform by Turing machines, that is, there
exists a deterministic Turing machine working in polynomial time which
constructs the system Π(n) from n ∈ IN.

2. There exists a pair (cod, s) of polynomial-time computable functions over
IX such that:

(a) for each instance u ∈ IX , s(u) is a natural number and cod(u) is an
input multiset of the system Π(s(u));

(b) for each n ∈ IN, s−1(n) is a finite set;

(c) the family Π is polynomially bounded with regard to (X, cod, s),
that is, there exists a polynomial function p, such that for each
u ∈ IX every computation of Π(s(u)) with input cod(u) is halting
and it performs at most p(|u|) steps;

(d) the family Π is sound with regard to (X, cod, s), that is, for each
u ∈ IX , if there exists an accepting computation of Π(s(u)) with
input cod(u), then θX(u) = 1;

(e) the family Π is complete with regard to (X, cod, s), that is, for each
u ∈ IX , if θX(u) = 1, then every computation of Π(s(u)) with input
cod(u) is an accepting one.

From the soundness and completeness conditions above we deduce that
every membrane system Π(n) is confluent, in the following sense: every com-
putation of a system with the same input multiset must always give the same
answer.

Let R be a class of recognizer tissue P systems. We denote by PMCR

the set of all decision problems which can be solved in a uniform way and

1.6. P system based solutions to the SAT problem 31

polynomial time by means of families of systems from R. The class PMCR is
closed under complement and polynomial–time reductions [133].

Different polynomial time solutions for NP–complete problems have been
obtained using this class of cell–like recognizer membrane systems: Knapsack
([129]), Subset Sum ([130]), Partition ([78]), SAT ([133]), Clique ([21]), Bin
Packing ([131]), and CAP ([132]).

In the framework of P systems without input membrane, C. Zandron, C.
Ferretti and G. Mauri [155] proved that confluent recognizer P systems with
active membranes making use of no membrane division rule, can be efficiently
simulated by a deterministic Turing machine.

1.6 P system based solutions to the SAT prob-

lem

In this section, we provide two efficient solutions to the SAT problem of sat-
isfiability of propositional logic. One is given by a family of P systems with
active membranes, and the other one by a family of tissue P systems with cell
division, according to the Definition 1.5.

First, we will describe the SAT problem of satisfiability of the propositional
logic. Recall that this problem was the first to be demonstrated to be NP-
complete (S. Cook, 1971). Thus it begun itself the theory of computational
complexity.

The language of propositional logic consists of: (a) a countably infinite set,
V P , of propositional variables xi, (b) two logical connectives: negation (¬)
and disjunction (∨), and (c) some auxiliary parenthesis symbols: (and).
The set PForm of propositional formulas is the smallest set, F , which contains
V P and verifies the following conditions: (a) if ϕ ∈ F , then ¬ϕ ∈ F , and (b)
if ϕ, ψ ∈ F , then (ϕ ∨ ψ) ∈ F .

From the logical connectives of negation ¬ and disjunction ∨, the logical
connectives of conjunction ∧, implication → and double implication ↔ are
defined as follows:

• ϕ ∧ ψ ≡ ¬((¬ϕ) ∨ (¬ψ)).

• ϕ→ ψ ≡ (¬ϕ) ∨ ψ.

• ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ).

Usually, we note ¬ϕ as ϕ,ϕ ∨ ψ as ϕ+ ψ, and ϕ ∧ ψ as ϕ · ψ.

Chapter 1. Bioinspired and Natural Computing 32

A literal is a propositional variable or the negation of a propositional vari-
able, and a clause is a disjunction of a finite number of literals. We say that
a propositional formula is in conjunctive normal form (CNF) if it is the con-
junction of a finite number of clauses, that is, whether the formula is a finite
conjunction of a finite disjunction of literals. We assume that any proposi-
tional formula in CNF is in a simplified form, i.e., in each clause appears,
at most, a literal corresponding to each one of the variables. For example, it
can not appear, in a clause, the same variable xi twice, neither may appear
simultaneously a variable xi and its negation ¬xi.

A truth assignment (or truth valuation) is an application of the set of propo-
sitional variables, V P , in {0, 1}, that is, it assigns a boolean value (1, true,
0, false) to each propositional variable. Every truth assignment is naturally
extended to an application of the propositional formulas set PForm in {0, 1},
through truth tables. We say that a propositional formula, ϕ is true (respec-
tively, false) by a truth assignment if it is assigned the 1 value, true (respec-
tively, the value 0, false) to such formula.

Note that an truth assignment is an application whose domain is an infinite
set, the set of propositional variables V P . However, any propositional formula
contains a finite number of propositional variables. Therefore, when calculat-
ing the value of a formula by a truth assignment, it will be sufficient to know
the values of such assignment to the variables appearing in the formula. Thus,
given a propositional formula, a relevant valuation is the restriction of a truth
assignment to the set of propositional variables in such formula. Obviously,
different truth assignment can provide the same relevant valuation to a given
propositional formula. Furthermore, the number of different relevant valua-
tions associated with a propositional formula with n variables and assigning 0
value to all variables which do not appear in the formula, is 2n.

We say that a propositional formula, ϕ, is satisfiable if and only if there
is at least a truth assignment, σ, such that σ(ϕ) = 1. Thus, a propositional
formula is not satisfiable if any truth valuation makes false this formula.

Two propositional formulas are semantically equivalent if any truth valua-
tion assigns the same value to both of them. One can easily prove that every
propositional formula has a semantically equivalent formula in CNF, such that
it is in simplified form.

The SAT problem is the following: given a boolean formula in conjunctive
normal form (CNF), in a simplified way, to determine whether or not there
exists an assignment to its variables on which it evaluates true. This is a well
known NP-complete problem [72].

The satisfiability problem (SAT) has a simple statement and many solutions can

1.6. P system based solutions to the SAT problem 33

be provided following a brute force algorithm: firstly, all possible relevant val-
uations to the formula are generated (what will require an exponential amount
of time), and then, each truth valuation will be checked (polynomial time) if
it makes true the formula, in which case the algorithm stops and returns an
affirmative answer. If an affirmative answer is not returned after making all
possible checks, then the answer will be negative.

1.6.1 An efficient solution to SAT by means of P sys-
tems with active membranes

This section presents an efficient solution to the SAT problem by a family of
recognizer P systems with active membranes, in accordance with the Definition
1.5 given Section 1.5.1.

We start by recalling that the map f from IN × IN onto IN defined by
f(m,n) = (m+n)·(m+n+1)

2
+ m is a polynomial–time computable function (the

pair function) which is also a primitive recursive and bijective function. We
denote f(m,n) = 〈m,n〉.

For each pair of natural numbers m,n ∈ N, we will consider the recognizer
P system with active membranes Πam−SAT (〈m,n〉) = (Γ,Σ, µ,M1,M2,R, 2)
of degree 2, defined as follows:

• The input alphabet is Σ = {xi,j, xi,j|1 ≤ i ≤ m, 1 ≤ j ≤ n}.

• The working alphabet is

Γ = Σ ∪ {ck|1 ≤ k ≤ m+ 2} ∪ {dk|1 ≤ k ≤ 3n+ 2m+ 3} ∪
∪ {ri,k|0 ≤ i ≤ m, 1 ≤ k ≤ 2n} ∪ {e, t} ∪ n{Y es,No}

• The set of labels is {1, 2}.

• The initial structure of membranes is µ = [[]2]1.

• The initial multisets associated with the membranes areM1 = ∅ yM2 =
{d1}.

• The input membrane is the one labeled by 2.

• The set R consists of the following rules:

(a) [dk]
0
2 → [dk]

+
2 [dk]

−
2 , for 1 ≤ k ≤ n.

Chapter 1. Bioinspired and Natural Computing 34

(b) [xi,1 → ri,1]+2 , [xi,1 → ri,1]−2 , for 1 ≤ i ≤ m.
[xi,1 → λ]−2 , [xi,1 → λ]+2 , for 1 ≤ i ≤ m.

(c) [xi,j → xi,j−1]+2 , [xi,j → xi,j−1]−2 , for 1 ≤ i ≤ m, 2 ≤ j ≤ n.
[xi,j → xi,j−1]+2 , [xi,j → xi,j−1]−2 , for 1 ≤ i ≤ m, 2 ≤ j ≤ n.

(d) [dk]
+
2 → []02dk, , [dk]

−
2 → []02dk, for 1 ≤ k ≤ n.

dk[]02 → [dk+1]02, for 1 ≤ k ≤ n− 1}.
(e) [ri,k → ri,k+1]02, for 1 ≤ i ≤ m, 1 ≤ k ≤ 2n− 1.

(f) [dk → dk+1]01, for n ≤ k ≤ 3n− 3; [d3n−2 → d3n−1e]
0
1.

(g) e[]02 → [c1]+2 ; [d3n−1 → d3n]01.

(h) [dk → dk+1]01, for 3n ≤ k ≤ 3n+ 2m+ 2.

(i) [r1,2n]+2 → []−2 r1,2n.

(j) [ri,2n → ri−1,2n]−2 , for 1 ≤ i ≤ m.

(k) r1,2n[]−2 → [r0,2n]+2 .

(l) [ck → ck+1]−2 , for 1 ≤ k ≤ m.

(m) [cm+1]+2 → []+2 cm+1.

(n) [cm+1 → cm+2t]
0
1.

(o) [t]01 → []+1 t.

(p) [cm+2]+1 → []−1 Y es.

(q) [d3n+2m+3]01 → []+1 No.

Let ϕ = C1 ∧ · · · ∧ Cm be a propositional formula in CNF such that
the set of variables of the formula is V ar(ϕ) = {x1, . . . , xn}, consisting of m
clauses Ci = yi,1 ∨ · · · ∨ yi,ki , 1 ≤ i ≤ m, where yi,i′ ∈ {xj,¬xj : 1 ≤ j ≤ n}
are the literals of ϕ. Without loss of generality, we can assume that the
formula is in simplified expression, i.e. no clause contains two occurrences of
the same literal (the formula is not redundant at clause level), and no clause
can contain, simultaneously, a literal and its negation (otherwise, that clause
would be satisfiable for any assignment and, consequently, it may be removed
from the formula).

Next, we consider a polynomial encoding (cod, s) of the SAT problem in
the family Πam−SAT = {Πam−SAT (t) | t ∈ IN}. The function cod associates to
the previously described propositional formula ϕ, that is an instance of SAT
with the parameters n (number of variables) and m (number of clauses), the
following multiset of objects

cod(ϕ) =
m⋃
i=1

{xi,j|xj ∈ Ci} ∪ {xi,j|¬xj ∈ Ci}

1.6. P system based solutions to the SAT problem 35

In this case, object xi,j represents that variable xj belongs to clause Ci.

The size function, s, is defined as follows s(ϕ) = 〈m,n〉 = (m+n)·(m+n+1)
2

+m.
Then, cod(ϕ) is an input multiset of the system Πam−SAT (s(ϕ)) and the pair
(cod, s) is therefore a polynomial encoding of the SAT problem in the family
Πam−SAT. Thus, the system of the family Πam−SAT processing the instance
ϕ will be the P system with active membranes Πam−SAT (s(ϕ)) with input
multiset cod(ϕ).

The execution of the system Πam−SAT (s(ϕ)) with input cod(ϕ) is structured
in four phases:

• Generation phase: all possible relevant truth assignment is generated for
the set of variables of the formula {x1, . . . , xn}. It is implemented by a
loop using division rules in the internal membranes (labeled by 2). This
will allow the generation of 2n membranes that will properly encode all
possible assignments. Nevertheless, in this phase, while the valuations
are being generated, the clauses that are true by the encoded valuation in
each internal membrane are checked. This idea is implemented through
a very sophisticated process by which only the truth values 1 and 0 are
given to the variable 1. This variable 1 corresponds to the variable x1 in
the first loop step, but by a set of indices, the variable 1 corresponds to
the variable x2 in the second loop step, and so on. This phase is executed
in 3n−1 computation steps, and only the rules (a), (b), (c), (d) and (e)
are applied.

• Synchronization phase: it prepares the system for the checking phase
synchronizing the execution of the system by unifying certain sub-indices
of some objects. The execution of this phase consumes 2n computation
steps, and only rules (e), (f) and (g) are executed.

• Check-out phase: in this phase, it is determined how many clauses are
true for each truth assignment encoded by the internal membranes. This
is done using the objects ck (k > 1), whose appearance in a membrane
means that exactly k − 1 clauses are made true by the encoded valua-
tion in that membrane. This phase is executed in 2m steps, and rules
(h), (i), (j), (k) and (l) are applied.

• Output phase: in this phase the system provides the corresponding out-
put depending on the analysis of the check-out phase. That is, this step
performs a search of the internal membranes encoding a solution (i.e.,
containing object cm+1). If a membrane satisfies the above condition,

Chapter 1. Bioinspired and Natural Computing 36

the object Y es is sent to the environment, and the system stops. Oth-
erwise, the object No is sent to the environment and the system stops.
The execution of this phase is done in 4 steps and the used rules are
(m), (n), (o), (p) and (q).

1.6.2 An efficient solution to SAT by means of tissue P
systems with cell division

This section presents an efficient solution to SAT problem by means of family
of recognizer tissue P systems with cell division, according to Definition 1.5.

For each pair of natural numbers m,n ∈ N, we will consider the recognizer
tissue P system with cell division Πtsp−SAT (〈m,n〉) = (Γ,Σ, µ,M1,M2, R, 2)
of degree 2, defined as follows:

• The input alphabet is Σ = {xi,j, xi,j| 1 ≤ i ≤ n, 1 ≤ j ≤ m}

• The working alphabet is

Γ = Σ ∪ {ai, ti, fi | 1 ≤ i ≤ n} ∪ {ri | 1 ≤ i ≤ m} ∪
∪ {Ti, Fi | 1 ≤ i ≤ n} ∪ {Ti,j, Fi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m+ 1}∪
∪ {bi | 1 ≤ i ≤ 2n+m+ 1} ∪ {ci | 1 ≤ i ≤ n+ 1} ∪
∪ {di | 1 ≤ i ≤ 2n+ 2m+ nm+ 1}∪
∪ {ei | 1 ≤ i ≤ 2n+ 2m+ nm+ 3} ∪ {f, g, yes, no}

• The environment alphabet is E = Γ− {yes, no}.

• The set of labels is {1, 2}.

• The initial multisets associated with the cells areM1 = {yes, no, b1, c1, d1,
e1} and M2 = {f, g, a1, a2, . . . , an}.

• The input cell is the one labeled by 2, and the output region is the
environment.

• The set R is formed by the following rules:

1. Division rule:

(a) [ai]2 → [Ti]2[Fi]2, for i = 1, 2, . . . , n.

1.6. P system based solutions to the SAT problem 37

2. Communication rules:

(b) (1, bi/b
2
i+1, 0), for i = 1, . . . , n.

(c) (1, ci/c
2
i+1, 0), for i = 1, . . . , n.

(d) (1, di/d
2
i+1, 0), for i = 1, . . . , n.

(e) (1, ei/ei+1, 0), for i = 1, . . . , 2n+ 2m+ nm+ 2.
(f) (1, bn+1cn+1/f, 2).
(g) (1, dn+1/g, 2).
(h∗) (1, f 2/f, 0).
(h) (2, cn+1Ti/cn+1 Ti,1, 0), for i = 1, . . . , n.
(i) (2, cn+1Fi/cn+1 Fi,1, 0), for i = 1, . . . , n.
(j) (2, Ti,j/ti Ti,j+1, 0), for i = 1, . . . , n and j = 1, . . . ,m.
(k) (2, Fi,j/fi Fi,j+1, 0), for i = 1, . . . , n and j = 1, . . . ,m.
(l) (2, bi/bi+1, 0).
(m) (2, di/di+1, 0), for i = n+ 1, . . . , 2n+m.
(n) (2, b2n+m+1 ti xi,j/b2n+m+1 rj, 0).
(o) (2, b2n+m+1 fi xi,j/b2n+m+1 rj, 0), for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
(p) (2, di/di+1, 0), for i = 2n+m+ 1, . . . , 2n+m+ nm.
(q) (2, d2n+m+nm+j rj/d2n+m+nm+j+1, 0), for j = 1, . . . ,m.
(r) (2, d2n+2m+nm+1/f yes, 1).
(s) (2, yes/λ, 0).
(t) (1, e2n+2m+nm+3 f no/λ, 0).

Let ϕ = C1∧· · ·∧Cm be a propositional formula in CNF such that the set
of variables of the formula is V ar(ϕ) = {x1, . . . , xn}, and consists of m clauses
Cj = yj,1 ∨ · · · ∨ yj,kj , 1 ≤ i ≤ m, where yj,j′ ∈ {xi,¬xi : 1 ≤ i ≤ n} are the
literals of ϕ. Without loss of generality, we can assume that the formula is in
simplified expression.

Next, we consider a polynomial encoding (cod, s) of the SAT problem in the
family Πtsp−SAT = {Πtsp−SAT (t) | t ∈ IN}. The function cod associates to the
previously described propositional formula ϕ, that is an instance of SAT with
parameters n (number of variables) and m (number of clauses), the following
multiset of objects

cod(ϕ) =
m⋃
i=1

{xi,j|xi ∈ Cj} ∪ {xi,j|¬xi ∈ Cj}

In this case, object xi,j represents that variable xi belongs to clause Cj.

The size function, s, is defined as follows s(ϕ) = 〈m,n〉 = (m+n)·(m+n+1)
2

+m.

Chapter 1. Bioinspired and Natural Computing 38

The system of the family Πtsp−SAT to process the instance ϕ will be the tissue
P system Πtsp−SAT (s(ϕ)) with input multiset cod(ϕ).

The execution of the system Πtsp−SAT (s(ϕ)) with input cod(ϕ) is structured
in six phases:

• Valuations generation phase: in this phase all the possible relevant truth
valuations are generated for the set of variables of the formula {x1, . . . , xn}.
It is implemented by using division rules (a), whereby each object xi pro-
duces two new cells, one having the object Ti, that codifies the true value
of the variable xi, y and the other having the object Ti, that codifies the
false value of the variable xi. Thus, 2n cells are obtained in n compu-
tation steps. These cells are labeled by 2, and each one codifies each
possible truth valuation of the set of variables {x1, . . . , xn}. Meanwhile,
the objects f, g are replicated in each created cell. This phase spends n
computation steps.

• Counters generation phase: simultaneously, and using the rules (b), (c),
(d) and (e), the counters bi, ci, di, ei of the cell labeled by 1, are evolving
such that in each computation step the number of objects in each one
are doubling. Thereby, through this process and after n steps, we get 2n

copies of the objects bn+1, cn+1, and dn+1. Objects b′s will be used to
check which clauses are satisfied for each truth valuation. Objects c′s are
used to obtain a sufficient number of copies of ti, fi (namely, m). Objects
d′s will be used to check if there is at least one valuation satisfying all
clauses. Finally, objects e′s will be used to produced, in its case, the
object no at the end of the computation.

• Checking preparation phase: this phase aims at preparing the system for
checking clauses. For this, at step n + 1 of the computation, and by
the application of the rules (f) and (g), the counters bn+1, cn+1, dn+1

of the cell 1 is exchanged for the objects f and g of the 2n cells 2.
Thus, after this step, each cell labeled by two has a copy of the objects
bn+1, cn+1, dn+1, while the cell 1 has 2 copies of the objects f and g.

Subsequently, the presence of an object cn+1 in each one of the 2n cells
labeled by 2 allows to generate the objects Ti,1 and Fi,1. By the ap-
plication of rules (j) and (k), these objects allows the emergence of m
copies of ti and m copies of fi, according to the values of truth or falsity
that a cell 2 assigns to a variable xi. This process spends n + m steps
since there is only one object cn+1 in each cell 2 and, moreover, for each
i = 1, . . . , n, the rules (j) and (k) are applied exactly m consecutively

1.6. P system based solutions to the SAT problem 39

times. Simultaneously, in the first steps of this process, the application
of the rule (h∗) makes the cell labeled by 1 to appear only one copy of
the object yes.

Simultaneously in this phase, the counters bi, di and ei are evolving by
the applications of the corresponding rules.

• Checking clauses phase: in this phase it is determined which clauses are
true for every truth valuation encoded by a cell labeled by 2. This phase
starts at the computation step (n+1)+(n+m)+1 = 2n+m+2. Using the
rules (n) and (o), the true clauses are checked for each valuation encoded
by a cell, so that the appearance of an object rj in a cell 2 means that
the corresponding valuation makes true the clause Cj. Bearing in mind
that a single copy of the object b2n+m+1 is in each cell, the phase takes
nm computation steps.

Thus, the configuration C2n+m+nm+1 is characterized by the following:

– It contains exactly 2n cells labeled by 2. Each one contains the
object d2n+m+nm+1, and copies of objects rj for each clause Cj made
true by the encoded valuation in the cell.

– It contains a unique cell labeled by 1, containing a copy of objects
yes, no, f, g and the counter e2n+m+nm+2.

This phase consumes m computation steps.

• Formula checking phase: in this phase it is determined if there exists any
valuation making true the m clauses of the formula. For this, the rules
of type (q) are used, analyzing in an ordered way (first the clause C1,
after that clause C2, and so on) if the clauses of the formula are being
satisfied by the represented valuation in the corresponding cell labeled
by 2. For example, from counter d2n+m+nm+1 appearing in every cell 2,
the appearance of the object r1 (the valuation makes true clause C1)
permits to generate in that cell the object d2n+m+nm+2. This object, in
turn, permits to evolve object d2n+m+nm+3 if in that cell appears the
object r2. In this manner, a valuation represented by a cell labeled by 2
makes true the formula ϕ if and only if the object d2n+m+nm+m+1 appears
in the content of that cell in the configuration C2n+m+nm+m+1.

• Output phase: in this phase the system will provide the corresponding
output, depending on the analysis in the formula checking phase.

Chapter 1. Bioinspired and Natural Computing 40

If the formula ϕ is satisfiable, then there is some cell in the configuration
C2n+m+nm+m+1 that contains an object d2n+m+nm+m+1. In this case, the
application of rule (r) sends an object f and the object yes to the cell 1.
The object yes therefore disappears from cell 1, and consequently, rule
(t) can not be applied. In the next computation step, the application
of the rule (s) produces an object yes in the environment (for the first
time during the whole computation) and the process ends.

If the formula ϕ is not satisfiable, then there no exist any cell in the
configuration C2n+m+nm+m+1 containing an object d2n+m+nm+m+1. In this
case, the rule (r) is not applicable, and in the next computation step,
the counter ei evolves, providing an object e2n+m+nm+m+3 in the cell 1.
This object permits the application of rule (t), since the objects no and
f remains in the cell 1. In this way, the object no is sent in the next
computation step, and the computation finalizes.

It can be easily proved that the family Πtsp−SAT = {Πtsp−SAT (〈m,n〉) :
n,m ∈ N}, defined above, is polynomially uniform by deterministic Turing
machines. For this, it is enough to keep in mind that the systems of the family
have benn defined through recursive expressions, and the amount of resources
needed to describe the system Πtsp−SAT (〈m,n〉) is quadratic in max{m,n}.
Indeed:

1. Size of the alphabet: 6nm+ 12n+ 7m+ 12 ∈ Θ(nm).

2. Number of initial cells: 2 ∈ Θ(1).

3. Number of initial objects: n+ 8 ∈ Θ(n).

4. Number of rules: 4nm+ 10n+ 3m+ 16 ∈ Θ(nm).

5. Upper limit of rule length: 5 ∈ Θ(1)

1.7 Applications of P systems

Although the Membrane Computing paradigm has a biological inspiration,
it also constitutes a good theoretical model of distributed computing, where
different calculation units operate independently but structured in a certain
vertical hierarchy. For example, the hierarchy utilized to establish connec-
tions in networks such as the Internet can be represented as a structure of
membranes.

1.7. Applications of P systems 41

Membrane Computing, according to the original motivation, were not in-
tended to provide a comprehensive and accurate model of the living cell, with-
out aiming to faithfully model biological facts in such a way to provide a
modeling framework for the use of biologists, rather, to explore the computa-
tional nature of various feature of biological membranes. Indeed, most variants
of membrane systems have been proved to be computationally complete, that
is equivalent in power to Turing machines, and computationally efficient, that
is able to solve computationally hard problems in polynomial time by trading
time with space.

However, after significantly developing at the theoretical level, the domain
started to be useful for different applications in the framework of Systems Biol-
ogy and Population Dynamics. A standard procedure is the following: a Mem-
brane Computing model is constructed for a given process/phenomena/popu-
lation, a software application is developed for simulating that model, and then
computer experiments are carried out to experimentally validate the model by
using experimental data. Once the model is considered as validated, virtual
experiments can be executed for scenarios of expertise’s interest. Recently
membrane systems have been used to model biological phenomena within the
framework of computational systems biology presenting models of oscillatory
systems [66], signal transduction [128], gene regulation control [144], quorum
sensing [143], metabolic systems [96, 38, 97] metapopulations [135] and real
ecosystems [35, 34, 50].

Nevertheless, it has been reported that the macroscopic, deterministic and
continuous approach followed by ordinary differential equations (ODEs) is
questionable in cellular systems with low number of individuals and heteroge-
neous structures. The approach based on P systems has a series of features
which answer several of those limitations or difficulties. For example, the con-
cept of modularity, associated to extensibility (small changes on the modeled
system imply few changes on the model), is intrinsic to a membrane system,
what is crucial in biology, but not specific to systems of ODEs. Of course,
this does not mean at all that Membrane Computing should substitute ODEs
in all applications. Membrane Computing – in general, multiset processing
by means of rewriting-like rules – is a complementary technique to systems of
differential equations, in many cases as relevant as differential equations, in
most cases much easier to use, and in some cases the unique technique which
can be used; this last situation is met, for instance, when we deal with small
populations of reactants, such that a discrete model is the only one adequate
(approximating finite by infinite is useful, provided that the “finite” is large
enough).

Chapter 1. Bioinspired and Natural Computing 42

Besides applications in biology, Membrane Computing was considered also
in other areas, such as computer graphics (models based on compartmentalized
Lindenmayer systems proved to be more powerful and more efficient than those
using classic L systems), cryptography, modeling in a uniform way parallel
architectures, in linguistics, economics, etc.

“We avoid to plainly say that we have ’implementations’ of P sys-
tems, because of the inherent non-determinism and the massive
parallelism of the basic model, features which cannot be imple-
mented, at least in principle, on the usual electronic computer
- but which can be implemented on a dedicated, reconfigurable,
hardware [...] or on a local network.”

Gheorghe Păun (2005)

2
Software Applications for Membrane

Computing

Currently, we lack of a feasible biological implementation, either in vivo or
in vitro, for P systems. The only way to analyze and execute these devices
is by using programs running on electronic computers which are limited by
physical laws. Therefore, P systems simulators are tools that assist the re-
searchers to extract results from models, and to experimentally validate them
by reproducing their computation.

Nevertheless, in order to provide useful tools with a quick response time,
these simulators have to be as much efficient as possible. In this regard, parallel
platforms are object of study, since they can effectively implement P systems
parallelism (normally in a partial way).

A survey on the simulation of P systems is presented in this chapter. First,
a discussion of the typical architecture of P systems simulators is given, to-
gether with the most known P systems simulators (Section 2.1) and the P-
Lingua framework (Section 2.2). Then, we stress the necessity of improving
the efficiency of the simulators to handle models with large size. Finally, we
show an overview of parallel platforms utilized for this purpose (Section 2.3),
and parallel solutions developed so far (Section 2.4).

43

Chapter 2. Software Applications for Membrane Computing 44

2.1 P systems simulators

In this section, an introduction to the typical structure of P systems simulators
is provided. Then, a survey of the simulators and applications for Membrane
Computing is given, together with their categorization in two generations.

2.1.1 P systems simulation overview

P systems are bioinspired devices that work in a massively parallel and non
deterministic way. While there are preliminary studies analyzing the prob-
lems related to real implementations, there is still a long way to reach this
ultimate goal. That is why the simulation of P systems by using conventional
computers becomes a vital necessity for the advancement of scientific activi-
ties in computing paradigms that are still to be implemented (in particular,
Membrane Computing).

The usage of P systems simulators provides three main functionalities for
the scientific community:

1. Educational purposes : all the information of the simulated P systems
computations should be shown in a intuitively way.

2. Assisting the design of P systems based models: a circular development
process is carried out, where both model and simulator are validated
towards one to each another.

3. Serving as the core of more elaborated software tools : for example, ap-
plications oriented to predict the behavior of complex real-life processes,
such as Populations Dynamics.

Over the last years, a wide range of such simulators have been reported [57].
Most of them shows a typical software architecture including three main mod-
ules: input (P system definition), core (simulation engine), and output (pre-
sentation of results). Next, we briefly detail the role of each mentioned module.

Definition of the P system to be simulated

In order to simulate a P system, it is necessary to provide at least the following
information: the P system model to be used, the membrane structure, the
initial multisets of objects, and the set of rules.

We can observe three main classes of solutions for this module implemented
by the reported simulators in [57]:

2.1. P systems simulators 45

• Definition of the systems in the source code.

• Definition by using ad hoc user interfaces (usually Graphical User Inter-
faces, GUIs)

• Definition by using external files and parsers to process the files.

There are some considerations that should be taken into account when
designing this module. Defining the P system in the source code is a fast
solution for prototyping because we can use the same programming language
used for the simulation core (or another common programming language). But
this solution presents strong dependencies with the simulation core. Thus, the
definition is not very reusable, and difficult to be changed without altering the
simulation core. In this scenario, an experimental validation for the simulation
core can be tricky.

Moreover, an ad hoc Graphical User Interface (GUI) provides an user-
friendly way to specify the P system to be simulated. But developing ad hoc
GUIs is a harder task than including the P system definition in the source
code. Furthermore, it is a moderately reusable solution, because the GUI
could contain dependencies on programming libraries or specific programming
languages.

Finally, defining the P system by using text files and parsers is a solution
hard to program the first time, but it is a very reusable solution because the
P system definitions do not have dependencies with the simulation core or
other programming languages. Thus, the same definitions of P systems can be
used in different software environments by using parsers. Additionally, a GUI
can be used in combination with this solution to provide a more user-friendly
solution.

Simulation core

The simulation core is the part of the simulator that captures the semantics
of the defined P system and reproduces its behavior along one or more com-
putations within the limitations of conventional machines.

At this stage, the definition of the P system to be simulated should be free
of errors. The parser in the previous module and a low level coupling between
modules should guarantee it.

The simulation core implements a simulation algorithm whose goal is to
obtain one or more computations of the defined P systems. It is very im-
portant to design efficient simulation algorithms to reproduce the behavior of

Chapter 2. Software Applications for Membrane Computing 46

interesting P systems instances. In this regard, simulation algorithms can be
adapted and/or implemented in specific high-throughput hardware, as those
presented in this thesis.

Presentation of simulation results

The simulation core reproduces, step by step, one or more computations of
the defined P system. After the simulation, it is necessary to extract some
relevant information about the simulated computations and show it to the user.
The shown information depends mainly on the simulator goal. Some times
could be useful to show all the computation (i.e., for pedagogical or debugging
purposes); some times it is necessary to filter and process the information
(i.e., for simulators that reproduce the behavior of P systems modeling real-
life processes). In any case, the simulation results can be shown to the user in
several ways: graphics, data tables, files, etc.

2.1.2 Related simulators

A review of the simulators developed in the first ten years of Membrane Com-
puting is provided in [57]. The evolution of those simulators can be seen as an
expression of the evolution of the research itself. In this sense, it is usually to
speak about two generations of simulators according to its finality. It is worth
to mention that both generations are overlapped on time.

In the first generation, the simulators were used for checking the correct-
ness of the hand constructed P systems. To this end, they usually show to
the user the whole computations, including information about which and how
many times the rules are applied. These simulators are very good assistants for
the design of membrane solutions to computationally hard problems, since it is
difficult to ensure the correctness of hand-made simulations when the number
of compartments and objects are large. Good examples of this generation are
Malita’s simulator [95], the first transition P system simulator that only repro-
duces one computation; Balbontin’s simulator [24], another transition P system
simulator, but that calculates the whole computation tree; and, increasing the
number of membranes: Ciobanu’s simulator [48] and two simulators written in
CLIPS and Prolog [126, 55] by the Research Group of Natural Computing of
the University of Seville in their first stage of developing simulators.

In the second generation, P systems are not the object to study: they
have become the tool for studying real-life processes, especially from biology.
The results of the simulation core must be processed and filtered, showing

2.2. P-Lingua, and the pLinguaCore framework 47

only relevant information to the user related to the modeled real-life process.
One of the first simulators in this line is Romero-Campero’s simulator, which
implements the multi-compartmental Gillespie algorithm [121] in SciLab and
C. This simulator has been successfully used in addressing several real-world
problems as the simulation of a signaling pathway associated with the Epider-
mical Growth Factor [127]; simulation of FAS-induced apoptosis [47]; model-
ing gene expression control [144]; or the first computational model of Quorum
Sensing [143, 152] in Vibrio Fischeri. Other relevant simulators in the sec-
ond generation are: Cyto-Sim [148], a software that can simulate micro and
macroscopic biological processes using arbitrary kinetic laws; Meta P-lab [37],
a virtual laboratory which aims at assisting modelers both to understand the
internal mechanisms of biological systems and to forecast, in silico, their re-
sponse to external stimuli, environmental condition alterations or structural
changes; and Infobiotics Workbench [28], an integrated software suite incor-
porating model specification, simulation, parameter optimization and model
checking for Systems and Synthetic Biology.

2.2 P-Lingua, and the pLinguaCore framework

Each P system model displays semantical constraints that determine the way
in which rules are applied, as explained above. Hence, software simulators
have to be capable of supporting different scenarios when simulating P system
computations. Moreover, simulators have to receive a precise definition of the
specific P system to be simulated. Along this thesis, the term simulator input
will refer to this definition.

One approach could be defining a specific input file format for each sim-
ulator (or directly implement it on the source code), but it would require a
great redundant effort. A second approach could be to standardize the simu-
lator input, so all simulators will process inputs specified in the same format.
Nevertheless, each approach raises up a trade-off: on the one hand, specific
simulator inputs could be defined in a more straightforward way, as the used
format is closer to the P system features to simulate; on the other hand, al-
though the first approach involves developing a different standard format for
each P system model, a common standard format can avoid to completely
develop a new simulator for each new P system to be simulated. In fact, it
is possible to use a common software library for parsing the standard input
format. Moreover, users would not have to learn a new input format each time
they use a different simulator. They would also require not to change the way

Chapter 2. Software Applications for Membrane Computing 48

to specify P systems when they move on to another model, as they would keep
on using the standard input format.

This second approach is the one considered in P-Lingua [124, 16], which
is a definition language able to describe P systems within several P system
models. The P-Lingua project also provides free software tools under GNU
GPL license [2] for compilation, simulation and debug tasks. These tools are
integrated in a Java library called pLinguaCore, including a parser to handle
P-Lingua input files and check possible programming errors (both lexical/syn-
tactical and semantical); several built-in (sequential) simulators to reproduce
P system computations for the supported models; and the ability to export
the P-Lingua definition file to other file formats in order to get interoperability
between different software environments. This is the main method to obtain
the input for the simulators implemented in this thesis. Figure 2.1 illustrates
this approach to define the simulator input by using the P-Lingua framework.
Such inputs are free of programming errors since the parser inside pLinguaCore
has already checked them.

PLingua
File

XML
file

Binary
file

Another
format

Simulator

Compiler Simulator

Simulator

The input

Figure 2.1: The P-Lingua approach to define simulators inputs

As mentioned above, the pLinguaCore library includes several built-in sim-
ulators for the supported models. The current version of pLinguaCore is 3.0
and can be downloaded from the P-Lingua website [16]. Each version of P-
Lingua and pLinguaCore adds new supported models and implements new
simulation algorithms, the syntax definition of the language and more details
can be found on the related papers and the website. Next, a chronological
enumeration of the different versions of P-Lingua and pLinguaCore library is

2.2. P-Lingua, and the pLinguaCore framework 49

presented, including the features of each version and related papers.

1. P-Lingua 1.0 [58, 8]: this initial version is able to define and simulate
tractable instances of P systems with active membranes. The simulator
only reproduces one possible computation and, therefore, the simulated
P system must be confluent to obtain a useful answer.

2. P-Lingua 2.0 [70, 69, 16]: several cell-like P system models are incor-
porated, together with one or more built-in simulators for each:

• Transition P systems.

• Symport/antiport P systems.

• Active membranes.

• Active membranes with creation rules.

• Stochastic P systems.

• Probabilistic P systems.

3. P-Lingua 2.1 [107, 16]: tissue-like P systems with division rules are
also supported, including its built-in simulator and some fixed bugs.

4. P-Lingua 3.0 [98, 16]: Population Dynamics P systems (PDP Sys-
tems) are also supported, and several built-in simulators for this model
are added. It includes sequential implementations of the simulation algo-
rithms presented in this thesis (DNDP and DCBA). Furthermore, some
general bugs are fixed and the support of stochastic P systems is discon-
tinued, encouraging the use of Infobiotics Workbench [28] in this respect.

There are three major advantages for which it has been decided to use P-
Lingua and pLinguaCore in this thesis. First, P-Lingua is a standard format
to define P systems that can be traduced to syntactically free of errors outputs,
since the included parser in pLinguaCore checks them. Secondly, a natural way
for us to implement the new simulation algorithms presented in this thesis
is to first develop a built-in simulator in pLinguaCore, since this process is
relatively straightforward. They implement sequential versions, making use of
the functionality provided in the pLinguaCore software library. Thirdly, the
same P-Lingua input files can be the input for the GPU simulators and also
for the built-in pLinguaCore simulators. This is a good method to validate the
GPU simulators by comparing the results for small instances of P systems.

Chapter 2. Software Applications for Membrane Computing 50

2.3 Improving the efficiency of P systems sim-

ulators

In this section we discuss the importance of improving the performance of P
systems simulators. In Chapter 3, the concepts of efficiency and performance
will be detailed, but here they refer to reducing time and/or memory of the
simulation. Other concepts and technologies here mentioned are also explained
in Chapter 3. Moreover, an analysis of parallel platforms for simulating P
systems is provided, together with a survey of parallel simulators for P systems.

2.3.1 P system parallelism implementation

In [80], the Sevilla team1 said: “the next generation of simulators may be ori-
ented to solve (at least partially) the problems of storage of information and
massive parallelism by using parallel language programming or by using multi-
processor computers”. Indeed, although some simulators and software appli-
cations have been produced [57], most of them were developed for sequential
architectures using non parallel-oriented programming languages such as Java,
CLIPS, Prolog or C, where performance is slightly compromised.

The performance of sequential P systems simulators is dramatically de-
creased as they serialize the natural double massively parallelism of P systems
: execution of rules within each membrane, and the evolution of each mem-
brane. Thus, the sequential simulation time proportionally increases as long
as the quantity of parallelism presented in the P system. Furthermore, most of
the developed simulators are designed for pedagogic purposes (especially those
from the first generation), so they devote more resources to output processes
than to the simulation core.

However, the last generation of commodity PCs is able to support the fast
execution of sequential simulators. They can manage problem instances of
enough size for current research lines [124], but very large instance sizes are
still unfeasible for them. These large instances are increasingly demanded and,
therefore, they require more optimal and efficient simulators. For example, real
ecosystems models based on P systems require high throughput simulation
tools, so that model designers and other end users can interact in real time
with them. It requires a fast and reliable answer from the simulators. This
can be achieved by developing simulators that apply parallelism similarly as
the theoretical model does. Thus, the massively parallel nature of P systems

1Research Group on Natural Computing, University of Seville (Spain).

2.3. Improving the efficiency of P systems simulators 51

computations points out to look for a parallel technology where the simulator
can run faster.

Although the capacity of existing electronic computers is limited by the
physical laws of silicon, simulators making use of all the available parallel
resources today would be sufficient to handle instances of considerable size
instances concerning relevant real-life problems. In this regard, High Perfor-
mance Computing (HPC) is the field which studies the set of necessary tech-
niques to accelerate the execution of applications using parallel platforms. We
can find these techniques in modern supercomputers [18] and new parallel ar-
chitectures (GPUs, FPGAs, CellBE, etc.). This opens a new way with many
possibilities for the development of efficient simulators. More details about
HPC and new parallel architectures are depicted in Chapter 3.

2.3.2 Parallel platforms for P systems

A good computing platform for simulating P systems should provide a good
balance between performance, flexibility, scalability, parallelism and cost [76].
The first three features are considered as the most important quality attributes
of computing platforms for Membrane Computing applications [115]:

• Performance: it refers to the speed at which a platform executes P sys-
tems. A suitable measure for this can be the number of rule applications
performed per unit time.

• Flexibility : it means the ability of the platform to support the execution
of a wide range of P systems. A high grade of flexibility involves a great
diversity of P systems supported by the platform (regarding the variants
of P systems designated to be simulated).

• Scalability : it is the ability of the platform to execute P systems with
increasing size without reducing the ability to perform its functions or a
reduction in the performance. The size of a P system can be determined
by the number of membranes, the number of defined rules and the initial
multisets.

It is difficult to ensure that a computing platform conforms the three at-
tributes. A factor promoting one attribute can demote another. In fact, there
are two main connections between them [115]:

• Flexibility vs performance: the performance of a platform can be im-
proved by adapting it to a restricted set of specific properties of a P

Chapter 2. Software Applications for Membrane Computing 52

systems. That way, there are less elements to reproduce, and it is more
easy to carry out optimizations. However, the support of a large diver-
sity of P systems hampers the process of tailoring the implementation to
them. Therefore, increasing the performance of a platform comes at the
cost of reduced flexibility, and vice versa.

• Flexibility vs scalability : increasing the flexibility means supporting ad-
ditional P systems features. This fact involves the implementation of ad-
ditional data structures and algorithms, and these data structures also
requires more memory. As more flexibility leads to increase resource
(memory and processors) consumption, the scalability is then reduced.

Concerning the types of computing platforms for simulating P systems,
there are mainly three to mention [115]:

• Sequential computing platforms : they are common computers with soft-
ware programmed microprocessors. In these platforms, the hardware is
abstracted by the software it executes. They are a very flexible solution
(changes are made on software) at the expense of a low performance (one
instruction is executed at a time unit).

• Software-based parallel computing platforms : they are based on clusters
of processors, being each one a sequential computing platform itself, and
interconnected through a fast bus. Because each processor executes in
parallel, it can outperform the sequential computing platform. The main
problem is the required synchronization process, that can be time con-
suming. Although more processors can be included to improve the per-
formance, the overhead taken by the synchronization is also increased,
what reduces significantly the expected performance. Therefore, the scal-
ability of these systems is supported, but performance is limited.

• Hardware-based parallel computing platforms : they execute algorithms
directly on hardware. Spatially separated processors run those tasks,
what significantly improve performance. However, the use of the spa-
tial dimension of processors constrain the amount of hardware resources
available. Therefore, scalability is reduced, as well as the flexibility, since
any change made on the model involves a change of the whole hardware
design.

When designing parallel simulators for P systems, we have to, first, study
the platform and the software to use. Then, we can adopt different approaches

2.4. Parallel simulation of P systems 53

to implement real parallelism of P systems, depending on the P system model,
and, obviously, on the parallel platform.

2.4 Parallel simulation of P systems

In this section we provide an overview of parallel simulators so far developed
for P systems. As parallel simulators require to implement parallelism, they
are based on parallel computing platforms. That is, computing platforms,
which contain internal parallel architecture. There are many HPC solutions
that have been utilized for Membrane Computing applications. Although we
will provide a detailed introduction to them in Chapter 3, we also show short
definition of each to better understand the functioning of available parallel
simulators for P systems.

2.4.1 Cluster based simulators

A Cluster [138] can be defined as a set of computers interconnected through a
local network. They work together to execute parallel programs. The connec-
tion bus is perhaps the system bottleneck, as long as the number of computers
increases.

There are several attempts to implement P systems parallelism on such kind
of platforms. In fact, clusters were the first platform used to create parallel
simulators. In this context, Ciobanu and Guo [49] simulates a restricted set
of transition P systems using a Linux based cluster, using C++ and MPI
library. The design of this simulator is to assign each membrane to each
computer of the cluster, and each computer executes rules in sequential mode.
The communication mechanism is implemented through message passing in
MPI. Although performance was improved, authors indicate that the main
limitation was in the communication and cooperation between membranes,
what consume most of the total execution time. Further research was carried
out in this regard by Fernández et al. [151] to partially solve the problem in
the communication process.

Another approach was introduced by Syropoulos et al. [150]. This simula-
tor works under Java, and makes use of RMI (Remote Method Invocation) to
distribute the workload. Again, each membrane is distributed along the proces-
sors, but the scalability was damage because of the communication overhead.
However, their aim was not focused on performance, but was to show the usage
of P systems as a foundation of distributed computing.

Chapter 2. Software Applications for Membrane Computing 54

Finally, a novel alternative has been initiated by Diez Dolinski et al. [59].
They provide a highly scalable solution to the natural exponential growth of
space made by P systems. For this purpose they use MapReduce algorithms
over distributed environments. It has been categorized here as for clusters,
but it has been conceived to work over grids and Internet. Moreover, a new
branch of P-Lingua, called Distributed P-Lingua, was developed. Finally, the
simulator is implemented in Java, using the freely Hadoop library. Although
no performance analysis was provided, the first results suggest a promising
research line.

2.4.2 FPGAs based simulators

FPGAs (Field Programmable Gate Array) [108] are reconfigurable chips that
a hardware designer can program. They allow the designer to distribute re-
sources to processors and memory as he wants. The main constraint of these
devices resides in the amount of memory, which is normally low. But they are
chip technology that can be interconnected to increase scalability.

In this regard, several implementations have been performed to simulate
the transitions of P systems. The first attempt was carried out by Petreska
and Teuscher [136]. Their simulator provides a full support for a particular set
of transition P systems, also supporting division and dissolution rules. It was
implemented through VHDL (VHSIC hardware description language), using
only one type of high-level hardware component. However, it has four main
limitations [115]: firstly, it does not implement parallelism inside membranes;
secondly, it is inflexible; thirdly, it is not extensible, and so, not a flexible
platform; and fourthly, it has limited scalability.

Alternatively, Fernández et al. [64] presented the design of a circuit that
could be implemented using FPGAs. This circuit selects the active rules of a
given transition P system configuration.

An evolution of those works was made by Nguyen et al. [117, 115, 116].
Their hardware system, called Reconfig-P, together with P-Builder, provides
an elegant approach balancing performance, flexibility and scalability. It uses
FPGAs, but the systems built on top of them is intelligent enough to adapt the
circuit implementation to the P systems features. Such features can be also
non-determinism, as an algorithm, called DND, has been designed to support
it at the region level.

2.4. Parallel simulation of P systems 55

2.4.3 Microcontrollers based simulators

A microcontroller is an integrated circuit containing a processor, memory and
input/output units. Although they are limited by their set of instructions and
number precision, they are very chip technology that can also be intercon-
nected.

Gutiérrez et al. [77, 76] utilize this technology to provide an alternative
platform. Their aim is to better balance flexibility and performance at a low
cost. The work is based on one of the most used microcontrollers, that is,
the PIC (Peripheral Interface Controller). The implementation is based on
the previously proposed algorithms/architectures for improving the communi-
cation among units dealing with membranes [151, 30]. They categorize their
solution as a “partially parallel evolution with partially parallel communica-
tion” [76]. Although no performance analysis is provided, their design will be
useful for future work.

2.4.4 Cloud computing based simulators

Cloud computing [153] provides a service where performing calculus in an vir-
tual network. They implements a system similar to a cluster, but for a cheap
rental price.

In this regard, another novel approach to provide a high number of re-
sources for simulating P systems creating exponential workspace, was initi-
ated by Nabil et al. [114]. Authors use the SAT problem as a case study,
and run an instance with 11 variables (requiring 211 membranes). Although
no performance analysis is provided, the design serves as the base for future
work.

2.4.5 GPU computing based simulators

The GPU (Graphics Processing Unit) [119] is the processor inside graphics
cards. Today, they are used as HPC accelerators, since they contain from hun-
dreds to thousands of cores, and are relatively cheap technologies. Programs,
not necessary for graphics, are accelerated by means of GPU computing. The
programming is flexible, but performance depends on how the implementation
fits data parallelism. Two major GPU platforms are available: NVIDIA GPUs
with CUDA [89, 5] and OpenCL [112, 6], and AMD with OpenCL.

This thesis presents a systematic work on the simulation of P systems with
GPUs. After obtaining the first positive results, other branches were initiated.
Next, we highlight some of them (to our knowledge):

Chapter 2. Software Applications for Membrane Computing 56

• PMCGPU : it is the project initiated in our work. It consists on several
subprojects aiming the simulation of different P systems models:

– PCUDA: it is the first P system simulator based on CUDA (see
Chapter 4). It supports P systems with active membranes, with
sequential and parallel versions. It conforms a flexible platform to
simulate P systems, but performance and scalability are compro-
mised.

– PCUDASAT : it is a branch of PCUDA, on the fast simulation of a
family of P systems with active membranes solving SAT (see Chapter
5). It is an ad-hoc (non-flexible) platform, so that it behaves as
a SAT solver by means of P systems. However, performance and
scalability are increased.

– TSPCUDASAT : it is a branch of PCUDASAT. Here a family of
tissue P system with cell division solving SAT is simulated at a fast
and scalable way (see Chapter 5). However, the performance is
demonstrated to be lower than PCUDASAT simulators.

– ABCD-GPU : it is a recent project on the simulation of PDP sys-
tems (see Chapter 7). These systems are the base of a modeling
framework for Population Dynamics (specially for real ecosystems).
It includes C++ based simulators running on both multicore (by
the OpenMP [15] library) and manycore (by CUDA) platforms.

• Simulation of spiking neural P systems : the first simulators in this re-
gard have been initiated by Cabarle et al. [31, 32]. The implemented
algorithm uses a matrix representation of the model, introduced by Zeng
et al. [156]. Therefore, the implementation is straightforward on the
GPU. Moreover, they take advantage of simulating non-determinism as
a parallel level. That way, each computation path is driven by each
multiprocessor within the GPU.

• Simulation of evolution-communication P systems with energy and with-
out antiport rules : the initial work on this has been carried out by Juay-
ong et al. [86]. As for the spiking neural P systems simulator, the simu-
lator makes use of a matrix based algorithm representing the semantics
of the model. Again, the implementation is directly performed through
linear algebra operations, that are efficiently executed on the GPU.

• Simulation of enzymatic numerical P systems : this work is carried out
by Garćıa-Quismondo et al. [71]. The simulated models are used for

2.4. Parallel simulation of P systems 57

modeling robot controllers, so the results can be significant for the Ar-
tificial Intelligence field. Versions in Java (inside pLinguaCore) and C
programming languages are also provided.

• Simulation of image processing solutions with tissue P systems : Dı́az-
Pernil et al [122] present a new work on the simulation of a kind of tissue
P systems models on the GPU. These models represent algorithms for
processing images (for example, image smoothing). These applications
are specific solutions for processing images, where the ad-hoc simulation
of P systems is implicit in source code.

Chapter 2. Software Applications for Membrane Computing 58

“For over a decade prophets have voiced the contention that the
organization of a single computer has reached its limits and that
truly significant advances can be made only by interconnection
of a multiplicity of computers.”

Gene Amdahl (1967)

3
High Performance Computing

The basic question of what High Performance Computing (HPC) stands for is
hard to be concisely answered. Although there is not a unique definition, we
can adopt the following one: “High Performance Computing most generally
refers to the practice of aggregating computing power in a way that delivers
much higher performance than one could get out of a typical desktop computer
or workstation in order to solve large problem instances in science, engineering,
or business” [3].

The term HPC has been historically associated to Parallel Computing,
since it is the most adopted way to improve the performance in computation
nowadays. Parallelism is the basis for the acceleration of large and complex
real-world applications. Sometimes, HPC is also merged with the term of
supercomputing, although it refers to the development of systems with the
highest operational rate for current computers (supercomputers). Vast sums
of money are invested to develop supercomputers, and they are used by only
specialized expertise for special problems. But a High Performance Computing
system can be also used and managed without a lot of expense or expertise.

This chapter briefly introduces the required concepts to understand the
meaning of High Performance Computing. We explain the concept of paral-
lelism and its application in Parallel Computing [120, 73, 1]. We also mention
methodologies, parallel algorithm models, and models of parallel platforms.
We turn also to make a brief tour of parallel technologies that exist today,

59

Chapter 3. High Performance Computing 60

going into detail with the massively parallel architecture of graphics cards.

3.1 Parallel Computing

In this section, the concepts of parallelism and Parallel Computing are intro-
duced. Considerations and other aspects of them are also depicted.

3.1.1 Necessity of parallelism in processors

Since the popularization of computers as a way to quickly and automatically
solve problems, there has been an increasing demand for computing power
[73]. On one hand, software developers have always demanded more process-
ing speed in order to get more functionality. On the other hand, as long as
computing power increases, more problems can be considered to be resolved.
Applications for modeling, simulation and analysis applied to areas such as mi-
crobiology, biochemistry, astrophysics, particle physics, engineering, Internet
and social networks, are currently the most demanding of computing power.
Without sufficiently efficient computers, these problems will never get to be
handled.

This type of demand has led to increase the speed of conventional micro-
processors year after year. This improvement has been related, mainly, to the
density level of transistors per chip. As the transistors are smaller, their speed
is increased. However, transistor downscaling implies to increase the amount
of consumed and dissipated energy as heat. In addition, the scale of the tran-
sistors also has a known limit given by quantum physics. Although this limit
has not been reached yet, the density level has been declining. From 1986 to
2002, processors speed has increased on average 50 % per year. However, since
2002 this rate has been reduced to 20 % [73].

This change in increasing the speed of processors is associated also to the
change of the design thereof. In 2005, most chip makers changed their strategy
away from monolithic processors to produce multiprocessor systems. Thus,
the number of transistors per chip is better utilized by creating redundant
computing elements. This strategy, by making much simpler chip designs,
allowed to create cheaper technologies that consume less energy [73].

Note also that not only the parallelism is implemented in the processor
chips. This strategy is also carried out in other areas of a computer, such as
the data storage. The memories of the computers have been also adapted to
be accessed in parallel, in order to be able to always feed data to the processor.

3.1. Parallel Computing 61

3.1.2 Concurrent and Parallel Computing

Normally, we can find in the literature the terms of concurrency, parallelism
and distributed, which are often confused. We consider Concurrent Computing
to the development of programs where multiple tasks can be in progress at any
instant [120]. For example, an operating system can be considered a concurrent
computer program because it can execute multiple tasks at any instant, even
using a single processor (by serially executing them).

On the other side we find Parallel Computing, which refers to the study of
solving problems through the use of multiple processors working together. It is
worth mentioning that the control of the processors is done explicitly by parallel
programming. We say that a program is sequential (or serial) if the execution
of all its instructions are carried out successively. A sequential program will
not run faster on many processors, but it will have to be rewritten to take
advantage of the their inherent parallelism, if any. This conversion process
task is called parallelization. In this process, the communication, the load
balancing, and the synchronization must be taken into account.

In Parallel Computing, we can find several special types of computing.
Here we will mention the Distributed Computing and Heterogeneous Comput-
ing. For the first type, the programs are executed in parallel on processors of
separate machines (which have their own memories and perhaps are located in
different places). Communication between the different machines is performed
by specific protocols, such as message passing. The second type refers to the
use of Parallel Computing on multiple processors of different features. Nor-
mally there is a high end processor, which keeps the control of what happens
in the wide range of more simple processors.

The work presented in this thesis is encompassed in Parallel Computing.
P systems provide parallel solutions of problems: these machines execute rules
(tasks) in different compartments (distributed), all in a parallel and synchro-
nized way. Furthermore, the efficient simulation of these systems is carried out
using techniques of conventional parallel computing: simulating the execution
of rules distributed in the membranes on platforms that allow to implement a
real parallelism.

3.1.3 Performance estimation

In this section we briefly introduce important concepts to understand the main
goal of Parallel Computing: improving the execution performance of programs.
We also describe how to measure the cost of an algorithm, and the theoretical
performance improvement that can be achieved using parallelism.

Chapter 3. High Performance Computing 62

First, we need to know what is meant for a program to have a good perfor-
mance. There are several metrics for analyzing an algorithm, according to the
resources it uses. Thus, talking about performance depends on the adopted
metrics. Among the metrics used by algorithm developers, we highlight the
following (in order of the most frequently used):

• Speed or run-time,

• Workspace memory required during the execution,

• Data transmission size (e.g. required network bandwidth),

• Temporal external memory size (normally, hard disk) to execute the
algorithm,

• External memory size required to store the results of the algorithm,

• Quantity of consumed energy by the hardware that executes the algo-
rithm (normally, measured in watts).

The most important metrics when analyzing an algorithm are those cor-
responding to the speed and memory space, as these two are based on the
use of rather limited resources (CPU usage and main memory). This analysis
is based on the estimation of the corresponding resource consumption. This
allows us to compare the relative cost of different algorithms to solve the same
problem. This is usually done using the concept of growth ratio, which makes
mention of the increased cost of an algorithm as the input size grows.

A common way of estimating the time cost of an algorithm is through
the required number of basic operations. As the actual and accurate basic
operations of an algorithm are difficult to estimate, an assessment of the best
and worst case by the asymptotic analysis of the algorithm is usually carried
out. This analysis is the study of an algorithm as the input size becomes large,
or reaches a limit. The upper bound of an algorithm indicates the maximum
rate of growth. It is indicated by a special notation called big-O. There is
a similar notation to indicate the minimum amount of resources required by
an algorithm. The way to calculate this bound is analogous to the big-O.
This notation is called big-Omega with the symbol Ω. If the upper and lower
bounds coincide, one can use the average notation indicated by Θ.

Let us recall that if f, g are computable functions over natural numbers,
then g ∈ O(f) if there exist a real number c > 0 and a natural number n0

such tat g(n) ≤ c · f(n), for each n ≥ n0. We say that g ∈ Ω(f) if f ∈ O(g).
Finally, we say that g ∈ Θ(f) if g ∈ O(f) and f ∈ O(g).

3.1. Parallel Computing 63

These upper bounds of the growth rate indicates how expensive is an al-
gorithm. The most frequently used orders in the analysis of algorithms, in
increasing order, are:

O(1) < O(log (log n)) < O(log n) < O(
√
n) < O(n) < O(n · log n))

< O(nc) < O(cn) < O(n!) < O(nn), where c > 1.
In theory, if we use p processors (assuming they have similar features, and

that there are no synchronization overhead), the time cost is reduced p times.
For example, if the order of an algorithm is O(n), then, using O(p) processors,
the order becomes of O(n

p
). If an algorithm meets that, it is considered cost

efficient. However, we will study the performance of parallel programs by using
the run-time because for the big-O notation, O(n

p
) = O(n) (if p is a constant

value independent of n). We will consider the run-time as the time elapsed for
the algorithm, and not the used for the system’s inputs and outputs.

The aim here is to compare a serial program (taking Tserial time units)
and a parallel program (taking Tparallel time units). The value of Tserial should
be the run-time of the fastest serial program running on one of the same
parallel processor (some other authors consider the serial time using the fastest
processor available, but the first approach is more common).

We will assume that a speedup is linear when Tparallel = Tserial
p

, using p
processors. However, this is an ideal result. In practice, the performance
improvement is lower because of the communication overhead, synchronization
processes and portions of non-parallelizable code. Therefore, we will consider
that the speedup of a parallel program is given by

S =
Tserial
Tparallel

As the resulting number has no units, we usually add it an “x”. Note that the
linear speedup is given when S = p. Moreover, as p increases, we expect S to
become a smaller fraction. We call S

p
the efficiency of a parallel program.

As mentioned before, not all the code of a program is parallelizable. How-
ever, the larger the parallelizable part, the better the achieved performance.
This observation was first made by Gene Amdahl in 1960 [22]. The Amdahl’s
law states that, assuming A is the parallelizable part, and B the rest, the
speedup of a parallel program is given by

S =
Tserial

A · Tserial
p

+ B · Tserial

The general state we can get from Amdahl’s law is that, if a fraction B of
our serial program remains unparallelized, we can’t get a speedup better than

Chapter 3. High Performance Computing 64

1
B

. However, this restriction is not insurmountable. Amdahl’s law doesn’t take
into account the problem size. A normal behavior in parallel programs is that
the parallelizable part increases, in time, more with the problem instance size
than the inherently serial part. For many problems, the bigger the instance
size, the smaller the serial part. This was mathematically stated in Gustafson’s
law [75], as follows:

S(p) = p− α(p− 1)

where S is the speedup, p is the number of processors, and α is the non-
parallelizable part, given by α = a

a+b
, being a the sequential time and b the

parallel time. From such law we can state that, if faster (more parallel) equip-
ment is available, larger problem instances can be solved in the same time.

We finally give some other useful concepts, related with performance, for
Parallel Computing:

• Scalability : it is a measure of the capacity of parallel platforms to ef-
fectively utilize an increasing number of processors [92]. It is commonly
used to select the best algorithm-platform combination for a problem
under different constraints on the growth of the problem instance size
and the number of processors.

• Parallel slowdown: it is a phenomenon where the parallelization of a
parallel program beyond a certain point causes the program to run slower
(using more processors involves working with less data, but the cost of
communication becomes bigger).

• Embarrassingly parallel problem: it is one for which little effort is re-
quired to separate the problem into a number of parallel tasks.

3.1.4 Design of parallel algorithms

Parallel program design and development is a manual process. The developer is
responsible for both identifying and actually implementing parallelism. There
are two types of parallelism, based on what (tasks or data) is parallelize [83]:

• Task-parallelism: execution processes, or tasks, are distributed across
different parallel computing nodes, working on the same or different data.

• Data-parallelism: the data is distributed across different parallel com-
puting nodes executing the same task.

3.1. Parallel Computing 65

There are some methodologies that help parallel program developers to
start doing their job. We will highlight the Foster’s methodology, that was
introduced by Ian Foster [67], and is based on the following four stages:

1. Partitioning : the computation and the data are divided into small tasks.
The aim in this stage is to recognize opportunities for parallel execution.

2. Communication: the communication required to coordinate task execu-
tion is determined.

3. Agglomeration: check if there are tasks and communication structures
that can be combined into larger tasks to improve performance.

4. Mapping : the composite tasks are assigned to processors, maximizing
processor utilization and minimizing communication costs. This stage
can be specified statically or dynamically at runtime by load-balancing
algorithms.

One objective of the Foster’s methodology, and of many other methodolo-
gies, is to help the developers to select which parallel algorithm model fits better
to solve problems in parallel. A parallel algorithm model is a way to structure
a parallel program by selecting a decomposition and mapping technique, and
applying the correct strategy to minimize communication. An appropriate
model selection will allow a successfully parallelization process.

Some of the most common parallel algorithm models are listed below [73]:

• The data-parallel model: each task applies similar operations on different
portions of data. For most problems, the degree of data parallelism
increases with the size of the problem instance, what allows to use more
processors to effectively solve larger instances.

• The pipeline or producer-consumer model: the data is managed as a
stream, passing on through a succession of processors that execute some
tasks. This model, which works with data stream, is called stream par-
allelism. The succession (pipeline) of processors can be seen also as a
chain of producers and consumers. It involves a static mapping of tasks
onto processors.

• The task graph model: the computations in any parallel algorithm can
be viewed as a task-dependency graph. This model is normally used to
solve problems in which the amount of data associated with tasks is large
with respect to the amount of associated computation.

Chapter 3. High Performance Computing 66

• The work pool model: a dynamic mapping of tasks onto processors for
load balancing is performed. There is no desired premapping of tasks
onto processors. It is typically used when the amount of data associated
with tasks is relatively small compared to the computation associated
with them.

• The master-slave model: there are one or more master processors gener-
ating the tasks, and taking control of them. It is suitable for both shared
and distributed memory systems (explained below).

• Hybrid models of the above.

After an exhaustive analysis of the problem to suit the development of the
parallel program, by using the Foster’s methodology and choosing a parallel
algorithm model, the developer has to start designing the solution. To do that,
it is required to know some design aspects and concepts, which are typically
used in parallel programming. Below we summarize some of them [1], and the
most used along the report:

• Identifying the parts of the program where working in parallel:

– Profiling : identify the parts where the majority of the work is taking
place.

– Bottleneck : identify the parts where the execution is slow, and
downgrading the whole performance of the program.

– Task : each part to be executed in parallel is assigned to a task. The
parallel execution of each task is performed independently of one
another, and could be running in an uncoordinated manner.

– Granularity : it is a qualitative measure of the ratio of computa-
tion to communication. The range has two extremes: coarse grain
(relatively large amounts of computational work are done between
communication events) and fine grain (relatively small amounts of
computational work are done between communication events).

– Parallel overhead : it is the required time for coordinating the tasks.
It can include factors such as: task start-up time, synchronizations,
data communications, some software overhead imposed by compil-
ers, operating system, etc., and task termination time.

– Load balancing : it is the process of distributing work among tasks
so that all tasks are kept busy all the time.

3.1. Parallel Computing 67

• Factors to consider when designing the required communication among
the parallel tasks:

– If there is no communication, the solution can be embarrassingly
parallel.

– Latency : the minimal necessary time to send a data from the pro-
ducer to the receiver.

– Bandwidth: the amount of data that can be sent in a period of
time (e.g. MBytes/sec.). We can state that, assuming that l is the
interconnection latency (e.g. in seconds), and b is the bandwidth
(e.g. bytes per second), the time to transmit n bytes is l + n

b
.

– Synchronous communication: if the tasks need to coordinate in
some points of the computation and work in unison with shared
data. On the other side, asynchronous communications allow tasks
to transfer data independently from one another, at any time. Nor-
mally, this kind of communication implies to use data buffers.

– Shared memory : when all the processors share the main memory
system, so they can access the same data.

– Message passing : when the processors has independent (distributed)
memory systems, they normally communicate through message pass-
ing, either in synchronous or in asynchronous manner.

• When the communication is synchronous, it is necessary to know some
more on synchronization processes. Essentially, it is a way to perform
task coordination:

– Race condition: if two tasks attempt to update a common resource,
the accesses can result in an error. Specifically, the final state of the
resource depends on which task “wins the race” (one can overwrite
the result of the other), whereas both results has to be added to the
resource, independently of the access order.

– Critical section: a piece of code that can only be executed by one
task. A parallel programmer has to insure the mutually exclusive
access to critical sections.

– Lock : Also called mutex. It is used to protect and serialize the
access to global data or a critical section of a program. Only one
task can unlock the mutex, and the rest has to wait to the other

Chapter 3. High Performance Computing 68

to lock it again. Mutex enforces serialization, and the way to im-
plement it is by busy-waiting (the tasks are continuously running),
or by blocking (the tasks go to “sleep”). Finally, semaphores and
monitors are higher-level types of locks.

– Barrier : every involved task works until reaching the barrier. When
a task reach a barrier, it stops or “blocks”, until the last involved
task reaches the barrier.

– Atomic operations : they are a special type of locks which implies
to perform a specific operation over a global data in a safe manner.

3.1.5 Parallel platforms types

In order to effectively run a parallel program, we must use parallel platforms.
These platforms make mention of technologies that contain multiple intercon-
nected processors (at least more than one). Some examples of parallel plat-
forms are presented in the next section. We usually call parallel architecture
the internal structure of these platforms. However, we often use parallel archi-
tectures and parallel platforms as similar terms. Moreover, we can also speak
about performance on parallel platforms, indicating how good are them han-
dling parallelism, by the communication speed and the computational speed
of each independent processor.

From now on, we will consider that the performance of a parallel program
depends on the way it has been programmed, and on the parallel platform
where it is executed. Normally, in order to get as close as the best speedup,
developers study first which is the specific parallel platform where the program
is going to run. Then, they adopt the specific design and implementation
considerations to optimize the execution of the program.

We will detail below a dichotomy based on the logical and physical organi-
zation of parallel platforms [73]. The logical organization is the one that the
programmer can handle, while the physical organization is the real hardware.
For the latter, we will show some examples in a next section. For the former,
we will focus on the two critical components for a parallel program developer:
the control structure (expression of parallel tasks) and communication models
(interaction between tasks).

Parallel architectures can be classified, depending on the control structure,
in several ways. The most used since 1996 [120, 1] is the Flynn’s taxonomy.
The classification is according to the number of instruction streams and the
number of data streams simultaneously managed:

3.1. Parallel Computing 69

• SISD (Single Instruction, Single Data): only one instruction stream is
managed by the CPU, using also one stream of data. This corresponds
to a serial (non-parallel) computer. This is the oldest and most common
model of computer. For example, some modern PCs are still based on
this.

• SIMD (Single Instruction, Multiple Data): it is a type of parallel com-
puter that has one instruction stream shared for all the processors. How-
ever, each processor may have its own data stream, being able to operate
over different data elements in parallel. This type is well suited for data-
parallel based programs. We can see nowadays this model, for example,
on vector processors and graphics processing units, as mentioned later
in this chapter.

• MISD (Multiple Instruction, Single Data): this is a not so common par-
allel computer, having multiple processors with independent instruction
streams, but working over the same data stream. Few actual examples of
this have ever existed. One is the experimental Carnegie-Mellon C.mmp
computer (1971).

• MIMD (Multiple Instruction, Multiple Data): it is another type of par-
allel computer. Each processor may have its own instruction stream,
working also with different data streams. It is the most common type of
parallel computers, and it is noteworthy that typically, MIMD parallel
computers require more hardware than SIMD computers (SIMD has only
one global control unit). A simple variant of this model, called SPMD
(Single Program, Multiple Data), is based on executing several instances
of the same program over different data. SPMD model has the same
expressiveness as the MIMD model (MIMD can be translated to SPMD
using if-else constructions). It is therefore the most widely parallel model
used in parallel platforms.

The other classification of parallel platforms that we are going to introduce
is the one based on the communication model for MIMD systems. There are
two primary forms of data exchange between parallel tasks: by sharing or
distributing the memory. The classification is performed depending on the
way it is done:

• Distributed memory systems: each processor has its own private memory,
and the communication is made via an interconnection network. This

Chapter 3. High Performance Computing 70

communication is explicitly done by sending messages or by special func-
tions that access to the memory of other processors. There are several
standards that allow to manage distributed memory systems, such as
MPI [4]. The performance of these systems also relies on the topology of
the interconnection network (ring, toroidal mesh, hypercube, butterfly,
etc.).

• Shared memory systems: the processors are connected to a memory sys-
tem through an interconnection network, also called here a bus. The
interaction of the parallel tasks is implemented directly on this shared
memory. There exists several standards providing specific implementa-
tions for parallel programming over shared memory systems. The most
used are the POSIX threads (Pthreads) and OpenMP [15]. There are
also two different implementations of shared memory systems:

– UMA (Uniform Memory Access): the time taken to access any data
element in the memory is the same for all the processors. This is
normally achieved by directly connecting all the processors to a
same main memory.

– NUMA (Nonuniform Memory Access): the time taken to access a
data element can be longer for some processors compared to oth-
ers. The reason is that the hardware is implementing a distributed
memory system, but this is transparent for the processors. NUMA
systems dedicate different main memory banks to different proces-
sors, but the communication is made fast through the bus. Some
coherence protocols are necessary to insure the same data state
for all the processors. The main advantage of this shared memory
system is that has the potential to use larger amounts of memory
than UMA systems. A typical usage of NUMA systems is the SMP
(symmetric multiprocessing) architectures, which is the base of the
majority of supercomputers today.

3.2 Parallel platforms

Parallel programs must make use of parallel platforms in order to effectively
run in parallel. Details on the architecture and current examples of parallel
architectures are introduced in this section.

3.2. Parallel platforms 71

3.2.1 Processes implementation in operating systems

The structure of a parallel program is described in this section to better under-
stand how they are executed on parallel platforms. First of all, we emphasize
that current parallel technologies are based on the Von Neumann’s architec-
ture model. It consists of a main memory, a CPU (Central Processing Unit)
(also known as processor or core), and an interconnection between the memory,
the CPU and input/output peripherals [120].

Each position of the memory is addressed, storing both instructions and
data. The CPU is divided into a control unit and an ALU (arithmetic and
logic unit), which performs operations over fast-accessed data stored in the
CPU (registers). The program counter is a special register used by the control
unit in order to know the next instruction to be executed. The CPU works ac-
cording to a clock, so that everything can be measured on clock cycles (accesses
to registers, memory, ALU operations, etc.). The speed of a CPU is normally
measured by the number of clock cycles per second, or Hz (Hertz). The inter-
connection between the CPU and the memory is normally implemented by a
bus (consisting on a set of parallel wires of fast access), and it allows the CPU
to read (or fetch) and write (or store) instructions and data from the memory.
The bus normally conforms the bottleneck of the system, but depending on
the speed of the CPU and of the main memory.

These basic ingredients appears in the majority of today parallel platforms.
However, how are they used? In fact, the OS (Operating System) is the soft-
ware that takes control of the hardware and software levels. It controls the
execution of programs, the accesses to memory, and the access to peripheral
devices.

We can say that a program is a code (collection of instructions and data)
stored in hard disk. It is created from a source code (in a specific programming
language) by using a compiler. When a user runs a program, the operating
system creates a process, which instances the program on main memory. The
process contains the following entities: the executable code (the program it-
self), a block of memory (divided in three parts: the code, a call stack of
active functions and a heap of dynamic memory), resource descriptors (e.g.
for input/outputs), security information and state information of the process
(number identification (ID), is blocked, etc.).

We should explain a bit more precisely how a process uses its block of
memory. First of all, all the constants values are directly stored in the program
code. The value of each single variable is stored in the process. Finally, the
process can also use large amounts of memory associated to array or matrix

Chapter 3. High Performance Computing 72

based variables. This can be performed in two ways: by static or dynamic
memory allocation. The former refers to allocate memory at compile-time
before the associated program is executed. The later refers to allocate memory
as required at run-time. Sometimes, when using dynamic memory to allocate
the required memory for the algorithm just at the beginning of the execution,
it is also called static memory.

Most modern operating systems are multiuser (many user can access the
operating system at the same time), and multitasking (it can run many pro-
cesses concurrently). As we mentioned before, parallel programs cooperate in
order to solve a problem. By multitasking, it can be done by communicating
the processes, through hard disk, networks connections, etc. However, the
most common usage of parallelism is by threading. A thread is an independent
task within a process. Therefore, a process can run several threads in paral-
lel (concurrently and fast cooperating by sharing the same block of memory).
They are explicitly encoded in the program by using thread library standards
(e.g. Pthreads, OpenMP [15], etc.). Normally, the above mentioned execu-
tion of parallel tasks are actually implemented by threads within a process,
but they can be also implemented by different processes (running in the same
machine by multitasking, or in different machines) communicated through any
kind of protocol (e.g. message passing (MPI)).

3.2.2 Memory hierarchy

Another critical part of a parallel platform is the memory system. In the most
classical parallel platforms, the memory system is implemented as a hierarchy
of subsystems, where the top is the fastest memory (but smaller), and the
bottom is the lowest (but larger) memory. Let start detailing the common
memory hierarchy, from the bottom to the top.

At the bottom of the hierarchy, we find the called secondary memory or
secondary storage system. It is a large system (nowadays of the order of Gi-
gaBytes/TeraBytes), but relatively slow (measured in MegaBytes/second). It
consists of one or more rigid (hence ”hard”) rapidly rotating discs (platters)
coated with magnetic material, and with magnetic heads arranged to read-
/write data to the surfaces. We can still find other solutions for the secondary
memory, such as the magnetic tape (an older and slower solution), and the
solid-state drive (newer and faster solution). The programs and all the related
data for the execution (configuration and data files) are stored at this level.

The primary memory, primary storage or main memory is placed at the
middle of the hierarchy. It is a relatively big system (of the order of some

3.2. Parallel platforms 73

GigaBytes) and fast access (GigaBytes/second). It is the only one directly ac-
cessible from the CPU. The CPU continuously reads instructions from there,
and modify the data. The processes of the operating system are stored here.
Historically, early computers used delay lines, Williams tubes, or rotating mag-
netic drums as primary storage. Nowadays, computers make use of modern
random-access memory (RAM). It is also volatile, i.e. they lose the information
when not powered.

Current operating systems permit a process to require more memory than
the available in main memory. To permit this, they use a virtual memory
system. This system stores the recently accessed parts of a process in main
memory, and the rest on secondary memory. The address space of virtual
memory can be (and usually is) higher than the main memory. If a position
corresponding to an address is not in main memory, then that portion of data
is exchanged with the secondary memory. This process is automatically and
transparently performed (at the operating system level), and it is commonly
named pagination.

If we compare the speed of the CPU (e.g. 1 ns clock) and main memory
(e.g. 100 ns latency), we see that the latter is not able to give sufficient in-
structions and data to maintain the CPU always busy: main memory is slow
compared to the CPU. A method to solve this bottleneck is the caching tech-
nique. Cache memory is actually at the second level of the memory hierarchy.
It is quickly accessed by the CPU, but is very small (around KiloBytes (KB)
or some MegaBytes (MB)). A cache can be divided itself in a hierarchy of lev-
els, again from the fastest but smallest to slowest but largest cache memories.
Normally they have at most three levels (level 1 (L1 cache), level 2 (L2 cache)
and level 3 (L3 cache)). L1 cache is typically divided into two different parts,
one for instructions and other for data. L2 and L3 are also typically mixed
memories (instructions plus data), but it depends on the implementation of
the manufacturer.

The main idea of caching is to take advantage of locality. It is a principle
referring that, in most programs, the access of one data element is followed by
an access of a nearby element (spatial locality), and also again in a near future
(temporal locality). In other words, a cache is a fast but small memory that
automatically stores blocks of memory containing recently accessed elements
and their nearby ones.

On the other side, there exists many parallel platforms having another kind
of memory at the second level of the hierarchy, called scratchpad memory.
Scratchpad is often confused with cache (it is fast accessed and small sized),
but they are not the same. The usage is manually made by the program, and

Chapter 3. High Performance Computing 74

explicitly defined by the programmer. The goal is to allow the programmer to
exploit other properties that may exist in its program different from spatial
and temporal locality.

The registers within the CPU are at the top of the memory hierarchy. A
register is a single data element of a static size (from 32 to 64 bits, depending
on the implementation) that are accessed very quickly by the CPU (in just one
clock cycle). They are a few compared to cache and main memory, but all the
data participating in an operation has to be previously stored in a register.
The usage of registers, cache and main memory are normally automatically
performed by the compiler and the hardware. In other systems, the use of
them has to be explicitly done.

3.2.3 Real parallelism implementation

Next we will detail how parallelism is actually implemented in parallel plat-
forms. Historically, it has been gradually implemented in hardware at different
levels of abstraction: not all the parallel platforms are implemented only by a
set of independent processors. They are based on taking advantage of three
parallelism levels: instructions, threads and processes.

The Instruction-Level Parallelism (ILP) is a kind of implicit parallelism
to achieve better performance in processors. The idea is to replicate multiple
processor components (functional units, ALU, etc.) to simultaneously execute
instructions. There are two main approaches to ILP, both used in modern pro-
cessors. We will use two measurement factors in order to clarify the differences
of the two approaches. Firstly, the typical way to measure the performance
of a single processor is by using the CPI (Cycles per Instruction), which says
the number of CPU cycles required to issue an instruction. Secondly, for par-
allel processors, the performance measurement is based on IPC (Instructions
Per Cycle), which indicates the number of instructions that can be issued in
a single CPU cycle..

• Pipelining : it enables faster execution by overlapping various stages in
instruction execution. These stage varies in the implementation, but
generally are: fetch (the control unit of the CPU retrieve the instruction
information), decode (access to the operands), execute (perform the op-
eration) and store (the result). These stages can be divided into more
smaller stages, so that having smaller tasks enables faster clock rates and
more stage overlap. The ideal performance is to achieve a CPI equals to
1. However, several issues make it impossible: e.g. every fifth to sixth

3.2. Parallel platforms 75

instruction is a branch (jump instruction). Long instruction pipelines
therefore need prediction techniques for branch instructions to feed the
pipeline (the penalty of a misprediction can be disastrous). More issues,
such as race conditions, appears also at this level.

• Multiple issue: it consider a processor with two or more pipelines, with
the ability to simultaneously issue and execute several instructions. The
goal is to downscale the CPI, so now the IPC is used here. If we have k
pipelines in a multiple issue processor, the best performance is to achieve
a IPC of k. But again, this is not possible always (the above mentioned
issues are also a problem here). There are actually two approaches for
this kind of processors:

– Dynamic multiple issue: also called superscalar processor. The
hardware dynamically search for instructions that can be issued at
the same cycle to the different pipelines. Its performance is limited
by the available instruction level parallelism. The hardware logic
for dynamic dependency analysis is typically in the range of 5-10%
[73], and it becomes a bottleneck when increasing the number of
pipelines.

– Static multiple issue: also called VLIW (Very Long Instruction
Word) processor. The idea is to rely on the compiler to resolve
dependencies and resource availability at compile time. The com-
piler creates a code where the instructions are sorted in a way that
the hardware has only to issue k consecutive instructions at each
clock cycle. Therefore, hardware logic is saved. The performance
of VLIW processors depends directly to the compilers’ ability to
parallelize the instructions.

ILP is usually difficult to exploit, since it depends directly on the inde-
pendence of instructions of a program. At the next level, we find the TLP
(Thread-Level Parallelism). In this case, the hardware (or the compiler) is not
the responsible of finding and managing parallelism. Here, the programmer
has to rewrite the program in order to allow to execute several flows of in-
structions (threads). Thus, a TLP processors provide parallelism through the
simultaneous execution of different threads. TLP is typically implemented in
two ways on hardware multithreading [120]:

• Fine-grained multithreading : the processor switches between threads af-
ter each instruction, avoiding stalled (blocked) threads. The problem is

Chapter 3. High Performance Computing 76

that it does not allow a thread to execute a full sequence of instructions,
when it is possible to do it. An example of this is SMT (Simultaenous
MultiThreading), which is a variation exploiting superscalar processors
to execute multiple threads.

• Coarse-grained multithreading : the processor switches the execution of
a thread only when it gets stalled. However, the processor can be idled
for shorter stalls. Some multicore processors implement this.

Finally, the coarsest-grained level of parallelism relies between processes.
It can be easily noted that processes has their own memory, and they run
independently of each other. Therefore, a processor can run a process at a
time. There are several ways to do it:

• Multicore processors: they are processors that has several cores (CPUs)
working in parallel. As they are installed within the same chip, they
normally share the low-level of cache (L2 or L3), and the access to main
memory. Therefore, they are suitable to both executing processes and
threads in parallel. This kind of architecture is also called CMP (Chip
Multi-Processor).

• Multisocket processors: they are several processors that are plugged into
the same machine. They can be also multicore. The access to the main
memory is normally implemented as separate bus, but they use the same
memory system.

• Network of processors: the most scalable way to implement parallelism
is to use several different machines with their own processors intercon-
nected by a network. The processes can run in parallel in the different
machines, and eventually communicate through a protocol, such as mes-
sage passing.

3.2.4 Current parallel platforms for HPC

3.2.4.1 Current multicore processors

A performance limitation was reached for traditional sequential processor chips.
The main reasons are that the clock frequency can not be increased (for energy
consumption problems), and it is not possible to extract more ILP from codes.
As mentioned before, the way to achieve better utilization of the processor
chip is to move from the strategy of incorporating multiple processors (cores)

3.2. Parallel platforms 77

on the same chip [60]. The term ‘processor’ is therefore ambiguous: it can
refer to either the chip, or the processor core on the chip. For this reason, we
mostly talk about a socket (or connector) for the whole chip and core for part
containing one CPU [60].

Current multicore processors implements the three levels of parallelism in-
troduced above: ILP, TLP and PLP. Depending on the implementation, the
parallelism level is differently performed. For example, the two main high-end
processor manufactures, Intel and AMD, implements TLP by SMT (Hyper-
threading) and coarse-grained solutions (multicore), respectively. Moreover,
the memory hierarchy, at the cache level, may also be different among the
processors.

A dual-core processor has two cores (e.g. AMD Phenom II X2, Intel Core
Duo), a quad-core processor contains four cores (e.g. AMD Phenom II X4, In-
tel’s quad-core processors for i3, i5, and i7 at Intel Core), a hexa-core processor
contains six cores (e.g. AMD Phenom II X6, Intel Core i7 Extreme Edition
980X), and an octa-core processor contains eight cores (e.g. Intel Xeon E7-
2820, AMD FX-8150). Homogeneous multicore systems include only identical
cores, heterogeneous multi-core systems have cores with different features. Just
as with single-processor systems, cores in multi-core systems may implement
architectures such as superscalar, VLIW, vector processing, SIMD, or SMT.

3.2.4.2 Parallelism in networks

Probably the most adopted way to implement parallelism is the based on
computer networks. They likely constitute the most scalable and extensi-
ble solution today. These networks can be formed from commodity personal
computers to high-end computers. The size of these networks can vary from
local networks (located in the same building) to more global networks as the
Internet (the global network of networks). The way they are physically in-
terconnected depends on the topology (ring, hypercube, etc.). But we need a
protocol defining how computers (nodes) communicate with each other.

Solutions based on global networks (and also for some local networks) are
usually based on one of the two next protocol models:

• Server-client : a node has the role of the server, which distributes and
takes control of the computation among the client nodes.

• Peer-to-peer : all the nodes have the same role, and each one takes control
of a portion of computation.

Chapter 3. High Performance Computing 78

Thus, networks has been successfully applied for HPC. An example of this
is Grid Computing. A grid is a system that “coordinates resources that are not
subject to centralized control using standard, open, general-purpose protocols
and interfaces to deliver nontrivial qualities of service” [68]. Grid Comput-
ing is therefore a form of Distributed Computing whereby a “super (virtual)
computer” is composed of many networked loosely coupled computers acting
together to perform very large tasks. It can be an agglomeration of networks
from different international enterprises (departmental and enterprise grids), or
just a large group of volunteers that “borrow” their computers for the specific
purpose of the grid (also known as CPU scavenging for global grids). An ex-
ample of the latter is the BOINC project, which is operating at 5.945 PFLOPS
as of August 6, 2012, as shown in the official website [10]. Research projects,
such as Folding@Home, MilkyWay@Home, SETI@Home and Einstein@Home
are well-known examples of the BOINC usage for Grid Computing.

Grid Computing is normally used for specific purposes. If one would like
to solve its own problem, he might pay to use a grid solution, or to construct
his own one. An alternative for this today is to “hire” for computing. Cloud
Computing denotes a model on which a computing infrastructure is viewed
as a “cloud”, accessed from anywhere, and offering computing, storage, and
software “as a service.” [153]. The services provided by Cloud Computing are
divided into three classes: Infrastructure as a Service (IaaS, offering virtualized
resources), Platform as a Service (PaaS, offering environments for creating and
deploying applications), and Software as a Service (SaaS, offering the usage of
specific sofware).

At a local level, networks can be used for HPC as computer clusters. Clus-
ters are aggregations of processors in parallel configurations [138]. The control
of resource allocation, scheduling and users management is made by a central-
ized node. Each node run its own operating system instance. The network is
local, so all the nodes are normally packed into the same place. Moreover, some
grids are collections of clusters (e.G. NSF Tera grid). Perhaps the most known
cluster management system software is the Sun Grid Engine (SGE), now called
Oracle Grid Engine. It offers a complete knowledge of user requests and system
status.

Today, clusters are also used for supercomputing. A supercomputer, as
mentioned before, is a computer at the frontline of current processing capac-
ity. Most current supercomputers are clusters developed to achieve the best
performance. Others are based on grids. The ranking of today most powerful
supercomputers is the Top500 [18]. The information is produced bi-annually,
and the HPL (a portable implementation of the High-Performance LINPACK)

3.2. Parallel platforms 79

is used as benchmark.

3.2.4.3 Accelerators

A new trend in HPC is the performance improvement of single computing
nodes by using accelerators. HPC accelerators are inexpensive massively par-
allel computing chips that perform specific functions faster than using software
over general-purpose CPUs. They tend to deliver hundreds of special cores,
and they are programmed differently than common CPUs. Accelerators are
managed under the Heterogeneous Computing. The CPU is the master device
which takes control of the computation, and delivers the work to be performed
in parallel by the accelerator.

They therefore act as fast co-processors to help the CPU in certain com-
putations. When applications fit this heterogeneous programming model and
the functions implemented in the accelerator, they can run 10 to 100 times
faster than on standard multicore processors. A run-time speedup of at least
5 to 10 times is often needed to justify programming heterogeneous architec-
tures. Accelerators are advancing rapidly, in both the architecture and the
programming languages.

Many hardware accelerators are built on top of FPGAs (Field-Programmable
Gate Array Chips). They are digital integrated circuits (ICs) that contain
configurable interconnects between these blocks [108]. They first arrived at
the mid-1980s. FPGAs can be configured or programmed to perform a large
variety of tasks: digital signal processing, embedded microcontrollers, physi-
cal layer communications, and reconfigurable computing (to accelerate more
general-purpose applications). The way to program them is through hardware
description languages (HDL), such as VHDL or Verlilog. There are also high
level languages, such as Handel-C o Mitrion-C, that allow to program FPGAs
in a easier manner, but not as efficiently as HDLs.

More specific purpose accelerators are those designed for multimedia pro-
cessing acceleration. The most common example is the vectorial co-processor.
It is included in every current commodity CPU. They can operate on vectors
or arrays of data using special instructions, while the CPUs operate on scalar
data elements [120]. Some examples of them are the technologies MMX and
SSE introduced by Intel, or 3DNow of AMD.

Another well-known multimedia accelerator is the Cell-BE (Cell Broadband
Engine) processor [90]. It was jointly developed by Sony, Toshiba and IBM.
The Cell-BE is designed to bridge the gap between conventional processors and
more specialized high-performance processors, such as the graphics processors.

Chapter 3. High Performance Computing 80

Its enhanced SIMD architecture achieves better performance and power effi-
ciency than traditional CPUs. The heterogeneous multicore architecture of
the Cell-BE is formed by one Power Processor Element (PPE), which is “the
brain” of the chip, and 8 to 9 Synergistic Processing Elements (SPE), which
are “the muscles”. They are interconnected by the high-speed Element Inter-
connect Bus (EIB). We can find this processor in many multimedia devices,
such as Home Cinemas, Bluray readers and the Playstation 3. It is also used
in many supercomputers in order to enhance the performance of the nodes,
such as the Blade servers of IBM. It is also going to be the replacement of
some nodes in the spanish supercomputer Mare Nostrum.

Finally, a new solution of HPC accelerator is the usage of GPUs (Graphics
Processor Units) [119, 89], sometimes called VPU (Visual Processing Unit).
The term was popularized by NVIDIA in 1999, who marketed the GeForce
256 as “the world’s first GPU”. It is a specialized chip designed to rapidly
manipulate and alter memory for accelerating the construction of frames or
images to output in a display. Modern GPUs are very efficient at manipulat-
ing computer graphics. Their highly parallel structure is based on hundreds
of simple computing cores, making them more effective than general-purpose
CPUs for processing large blocks of data in parallel. Moreover, many software
tools have appeared until now, providing high level languages for developers.
For all mentioned above, the GPU is starting to be consolidated as a fast HPC
accelerator.

3.3 GPU computing

With the commercial sector’s demands for video and gaming, it was foreseen
by Elster [61] and others that graphics processor development would lead to
devices suitable for High Performance Computing (HPC). The era of GPGPU
(General-Purpose Computing on Graphics Processing Units) truly began with
the introduction of NVIDIA’s CUDA [89, 62] and AMD’s Stream SDK en-
vironments in 2007, so that the GPUs became more easily programmable.
GPUs can now be considered affordable computing solutions for speeding up
computationally demanding applications (GPU computing).

In this section the evolution of the GPU is introduced, and its usage for
general purpose applications. Then, the CUDA programming model is de-
tailed, which is the one used along the work. Finally, an overview of the GPU
characteristics and current graphics cards is provided.

3.3. GPU computing 81

3.3.1 Evolution of the GPU

In the progress of graphics computing, the CPU was the responsible for pro-
cessing all instructions in order to draw the output on the screen. This entailed
an overload with the increased complexity of the graphic calculation. The first
attempt to get a CPU with optimized graphics calculations was the vectorial
processor in the 70’s. This processor worked with stream data (continuous
data source), which is the nature of the graphical data. In this way, if an unit
A needs the result of an operation performed by B, it is not necessary for A to
wait for B computes all elements. Unit A can start working with the elements
from the stream that B has already processed. The key is the independence
between the elements of a stream, what allow to overlap the functional units
in the architecture. This idea is used today in the above mentioned vectorial
co-processors, such as MMX, SSE and 3DNow.

The first video cards were dedicated only to control the screen by refreshing
and painting pixels1 according to the information received from the CPU. The
GPU (Graphics Processing Unit) [56] was first created and placed within the
video card to alleviate the bottleneck created by the CPU. The GPU is a special
purpose processor, optimized to work with graphics as stream data. Note that
the CPU communicates with the GPU through a data bridge (Northbridge),
which is also connected to the main system memory. Currently, the technology
used by modern GPUs is the PCI Express bus, which runs at 16GB per second
with double bandwidth.

The most complex graphics calculations are those based on real-time three-
dimensional scenes processing (e.g. 3D video games). Therefore, the graphics
pipeline of the GPU has been driven by the 3D-market. The aim is to transform
the 3D data (coordinates of the triangles in the model, easily understood by
programmers) in pixels drawn on a 2D screen.

Figure 3.1 shows a 3D graphics pipeline overview [56]. The input of the
pipeline is the coordinates of 3D objects (mainly composed of triangles). The
coordinates are formed from the triangle vertices. They enter the Geome-
try stage, where the 3D coordinates are transformed to 2D coordinates (frag-
ments). In the last stage, called Rendering, the final color of each pixel is
calculated based on the information associated to each fragment. Some prop-
erties associated to fragments are the color, luminescence, texture, alpha ef-
fects (transparency) and fog effects. As shown in Figure 3.1, the Geometry
stage is divided into two sub-stages. The first one is called Transformation
and Lighting, which is the process of projecting objects in three dimensions to

1A point with a single color in a raster image (bitmap).

Chapter 3. High Performance Computing 82

GEOMETRY STAGE

TRANSFORMATION
 & LIGHTING

RASTERIZATION
RENDER STAGE

APPLICATION TASK

SCENE LEVEL TASK

3D objects vertices (x,y,z) Fragments (x,y,depth,...) Pixels (x,y)

Figure 3.1: General graphics pipeline, from the application to the screen.

two dimensions, and calculate the effects of lights in the scene. The second
stage, Rasterization (also known as Triangle Setup), set and cut the triangles,
making pieces (fragments) for the Rendering stage. Note that a fragment is
not a pixel (although sometimes they do not differ, as in the specification of
Direct3D). A fragment has attributes such as color and depth. Multiple frag-
ments may correspond to a pixel (for example, when using transparency). The
tasks at the application level (artificial intelligence, camera, interaction, etc.)
and scene-level tasks (collision, physics, etc.) are always carried out by the
CPU, as they are general-purpose tasks and not necessarily graphics.

However, not all the above mentioned stages were initially implemented in-
side the GPU. The first graphics card drew only lines and dots on the screen, so
that the rest of the work was performed by the CPU. By transistor downscal-
ing, it was possible to implement, progressively, stages of the graphics pipeline
on the GPU while the CPU was working with more general tasks. Thus, at
the beginning, the rendering stage was implemented on the GPU. As a result
of this work delegation, the CPU was able to send fragments to the GPU so
fast, that the GPU became a bottleneck.

Therefore, two solutions were adopted: pipelined and parallel architecture.
Several processors were implemented in parallel for the Rendering stage, since
the work to be done with each pixel was the same at any time. Thus, the
GPU began to be a SIMD processor (same instructions applied to different
data) specialized for graphics. After these changes, the CPU and the access to
3D data in memory became the bottleneck, so the solution was to give more

3.3. GPU computing 83

workload to the GPU and improve the memory bandwidth by incorporating
specific memory close to the GPU chip.

The GPU finally implemented on-chip all the stages of the pipeline (Geom-
etry and Rendering). This first GPU architecture was a fixed function pipeline.
Considering Figure 3.1, and the decomposition of each stage, we can consider
that the full fixed graphics pipeline is generically formed by the following stages
[119] (the stages are still general, and depending on the implementation, each
GPU may implement a pipeline with similar stages to these ones):

1. Vertex Operations: it performs transformations (e.g. lighting) to ver-
tices.

2. Primitive Assembly: it creates triangles.

3. Rasterization: it sets and cuts triangles into fragments.

4. Fragment Operations: it calculates colors for fragments according to
their properties.

5. Composition: it creates the final image formed by pixels.

Although this was the most efficient solution, the behavior of the GPU was
fixed, performing always the same operations on graphical data. The pipeline
was not flexible for programmers. The available operations at the Vertex and
Fragment stages were configurable but not programmable [119]. For instance,
changing the graphics API2, implementing new light models for vertices or
providing new transformations for fragments were not possible.

In 2002, the adopted solution was to develop a programmable pipeline,
where the GPU could run small programs called shaders on vertices and frag-
ments. A shader is a piece of code that programs certain parts of the graphics
pipeline. There are two types: vertex shader (which replaces the full Transfor-
mation and Lighting stage) and fragment shader (replacing the full Rendering
stage). Shaders was initially programmed using low level languages, such as
ARB Vertex Program, ARB Fragment Program and Direct3D 9 Shading lan-
guage. However, there was some simple high level languages, such as Cg and
GLSlang.

Recall that the pipeline architecture was divided in time by the CPU.
However, the GPU divided it in space. Each stage has its own unit. The
pipeline has a large latency, but a high throughput [119]. The former refers

2Application Programming Interface

Chapter 3. High Performance Computing 84

that the GPU takes several cycles to perform one operation over a data element.
However, by implementing data parallelism inside each stage, the GPU delivers
high throughput.

The major disadvantage of the GPU pipeline is load balancing. The slow-
est stage limits the full performance of the pipeline. Vertex shader is more
complex than fragment shader. Moreover, it is shown that vertex shader and
fragment shader units are used in different proportions at different times; so
there are times when many fragment units are free while there are not enough
for vertex, and vice versa. In order to solve this problem, the unified shader
unit was introduced. These units are able to execute code both for vertex and
fragment shaders. An unique language shader (for vertex and fragments) was
also introduced to improve the performance [111]. AMD introduced the first
unified shader unit in its Xenos GPU for the XBox 360. Today, current GPU
architectures consist of a number of unified shader units disposed in parallel,
sharing multiple graphics pipelines. This new unit is the key of the rapid devel-
opment of GPGPU: programmers can now target directly this programmable
unit [119].

3.3.2 General-Purpose Computing on the GPU

The evolution of the unified shader units has led to a new graphics-based com-
puting power with a highly parallel nature: a GPU has from 16 to 1000 shader
units. The GPU has been therefore considered also to run applications rather
than graphics. It is capable of accelerating applications with the following
characteristics [119]: large computational requirements (e.g. real-time appli-
cations), substantial parallelism (take advantage of the multiple fine-grained
programmable compute units), and being the throughput more important than
latency (latency of any individual operation is unimportant for human vi-
sual system). Given the successes in accelerating applications using the GPU,
Mark Harris, now a researcher at NVIDIA, coined the term GPGPU (General-
Purpose computing on the GPU) [13] in 2002. Today, this effort, also known
as GPU computing, has positioned the GPU as one of the most powerful and
cheap accelerators in HPC.

The GPU, as a HPC accelerator, has its own programming model. It is
based on the SPMD programming model: the GPU processes many indepen-
dent elements (no dependencies with each other) in parallel using the same
program [119]. Each element can operate on 32-bit integer or floating-point
data, that can be read (gather) from a global memory. The newest GPU can
also write back to arbitrary locations in memory (scatter).

3.3. GPU computing 85

This programming model is well suited for SIMD based parallel programs,
but current shader units permit a more general SPMD model. They allow
different elements to take different paths. As the GPU demotes more hardware
to computation than to control, incoherent branching has a penalty. The
solution was to group elements in blocks, so that these blocks are processed
in parallel if the take the same branch (blocks are treated in SIMD manner).
The size of the block is called “branch granularity”, and it has been reducing
during the evolution of the GPU. This concept will be used later in the CUDA
warps.

The GPGPU has evolved together with the GPU programmability [119].
Initially, when programming the GPU for graphics, developers had to think
on the geometry of each region, the shaded fragments and graphics buffers.
Therefore, a GPGPU programmer had to adapt its problem to graphic data,
and apply operations by translating them to shaders. This is also known as
the old GPGPU. Examples of these first applications were for protein folding,
SQL requests and MRI reconstruction. These programs were developed using
standard shading languages, such as Microsoft HLSL, NVIDIA Cg or OpenGL
GLSL.

The difficulty of writing GPGPU applications was solved by introducing a
more natural, direct, non-graphics interface to the GPU hardware. It was per-
formed by abstracting the GPU as a stream processor [119]. BrookGPU and
Sh were the two early academic research projects doing this. They were the
starting point of a new era of GPGPU. Programmers directly define SPMD
general-purpose programs using threads. These threads can compute many
math operations, and both gather and scatter to global memory. However,
the parallelism has to be defined explicitly in the program, considering some
restrictions on the computing elements. The hardware then only cares on ex-
ploiting that explicit parallelism to achieve a good performance. This program-
ming model provides a careful balance between generality (general-purpose),
and restrictions to ensure performance (SPMD model, branch granularity, data
communication, etc.).

Both BrookGPU and Sh, as mentioned above, introduces a stream pro-
gramming model. A stream program comprises a set of streams (ordered sets
of data), and kernels (functions applied to each element of streams). The codes
(based on C programming language[88]) were mapped directly to shaders.
However, they were quite basic and restrictive. Some more evolved but com-
mercial languages appeared later, based in the same idea, such as Microsoft’s
Accelerator (with just-in-time compilation to shader), RapidMind (targeting
several platforms, including GPUs, Cell and multicore CPUs), and PeakStream

Chapter 3. High Performance Computing 86

(providing profiling and debugging support).

In 2006, AMD introduced its own GPGPU environment, called CTM (Close-
to-Metal), which provides a low-level hardware abstraction layer (HAL) and
a compute abstraction layer (CAL) to the programmer. They allow to pro-
gram the GPU in both low and high levels. Moreover, they permit the direct
compilation of Brook programs to their hardware.

In 2007, NVIDIA announced CUDA (Compute Unified Device Architec-
ture), a programming model totally abstracted from the hardware of the GPU.
The main difference with the previous languages is that CUDA introduces
two levels of parallelism (data parallel and multithreading), multiple levels of
memory hierarchy, and basic synchronization among threads. Based on C, the
programmer only has to think on threads and arrays, together with perfor-
mance aspects such as a memory hierarchy and branching (explained in the
next sections). This easy way to build large applications has led to a rapidly
evolution of GPGPU until today.

Finally, it should be noted that the current trend nowadays is the creation
of a standard for programming heterogeneous systems [89], to accelerate the
codes in any GPU on the market (even intended to be generic for any parallel
technology: Multi-CPUs, FPGAs, CellBE, etc.). This trend is being consoli-
dated with OpenCL [112, 6], the first free, open standard for multi-platform
parallel programming of modern processors found in PCs, servers and embed-
ded devices. The two major companies of graphics cards, AMD and NVIDIA,
supports (compilers, development kits and documentation) OpenCL for their
devices.

3.3.3 CUDA programming model

In this section, we will introduce the CUDA programming model [89, 118, 62, 5]
which is the one used in our work. CUDA works only for NVIDIA’s GPUs,
so in the next section, the modern NVIDIA GPU architecture will be also
explained.

The CUDA programming model is based on heterogeneous computing: the
system consists of a host, which is a traditional CPU, and one or more devices,
which are massively parallel processors, such as a GPU.

In many modern software applications, there are program sections which
exhibit a rich amount of data parallelism. CUDA devices take advantage
of them, and accelerate their execution harvesting a large amount of data
parallelism. A CUDA program therefore consists of one or more phases that
are executed either in the host or in device. Sequential and control phases are

3.3. GPU computing 87

implemented in the host code, while phases which exhibit a large amount of
data parallelism are implemented in the device code.

A CUDA program is a unified source code covering both sides. NVIDIA
C compiler (called nvcc) separates them during the compilation process. The
host code is treated as ANSI C/C++ code [88], so it is compiled by a standard
C/C++ compiler (like GNU gcc) and runs on an ordinary CPU process. The
device code is written using extended C with special keywords to label the
data parallel functions, called kernels, and their associated data structures.
The device code is usually compiled by nvcc, and runs on the GPU device.

The kernel functions (or simply kernel) typically generate a large number
of threads that exploit the data parallelism. CUDA threads are much lighter
than CPU threads. A CUDA programmer can assume that these threads take
a few cycles to be generated and scheduled. This contrasts with the threads
of the CPU, which normally require thousands of clock cycles to be managed.

The CUDA program execution is illustrated in Figure 3.2. Execution al-
ways starts in the host. When a kernel is invoked, execution moves to the
device, where a large number of threads are generated to take advantage of
abundant data parallelism. All threads that are generated by a kernel are
collectively called grid. When all threads complete their execution, the corre-
sponding grid terminates, and the execution continues on the host until another
kernel is invoked.

Typically, a grid is composed of thousands of threads, since the creation
of a sufficient number of threads to use all hardware resources requires a large
amount of data parallelism. The threads are arranged within the grid in a
two-level hierarchy, as illustrated in Figure 3.2. At the higher level, each
grid consists of one or more thread blocks. At the lower level, each block is
organized as a three dimensional array of threads. All blocks in a grid have the
same number and organization of threads. Each block is identified by a two
dimensional identifier, and each thread within its block by a three dimensional
identifier. A thread block can contain, at most, 512 threads.

CUDA allows threads within a block coordinate their activities using a
barrier synchronization function. When a thread executes this function, it
remains blocked until the other threads of the same block execute it. Threads
of different blocks can only be synchronized by terminating the kernel, so that
all the threads in the grid finish the execution.

The memory model is also an aspect to consider in the CUDA programming
model. This memory hierarchy has to be explicitly and manually managed. In
CUDA, the host and the devices have separate memory spaces. This reflects
that, in fact, graphics cards are hardware devices that come with their own

Chapter 3. High Performance Computing 88

Figure 3.2: CUDA thread execution model

DRAM (Dynamic Random Access Memory). In order to run a kernel on
the device, the programmer needs to allocate memory on it, and transfer the
relevant data from the host to the reserved memory in device. Similarly, after
the execution on the device, the programmer needs to transfer the resulting
data from memory to the host device, and release the device memory. The
CUDA runtime system API provides functions to perform these activities by
the programmer. From this point of view, we can assume that CUDA uses
static memory allocations. Dynamic memory is only supported in the newest
GPUs of NVIDIA, with some restrictions (the maximum amount of dynamic
memory to use has to be previously allocated).

Figure 3.3 shows a summary of the CUDA memory model. At the bottom
of the memory hierarchy we found global and constant memories. These are
the memories to which the host can transfer data code in a bidirectional way,
as seen in the double arrows in the figure. Constant memory allows read-only
access to the device code. This memory is cacheable (i.e., frequent consecutive
accesses will be made faster). It is often used to store constant and common
variables to all threads. From now on, we focus on the use of global memory.

3.3. GPU computing 89

Figure 3.3: CUDA memory model

Threads can both read and write on this memory, but it is not cacheable. The
input data and the results of the device computation is normally stored here.
Note that the host memory is not shown explicitly in the figure, but is assumed
to be in the CPU side.

At the top of the hierarchy, CUDA provides a small portion of shared
memory for each block of threads. All blocks have access to it, as fast as the
access to registers (storing only single variables). However, the host can not
access to this memory. It is used to hide global memory access latency, which
limits application performance. Shared memory is a scratchpad memory, so
that the programmer has to explicitly use it. Finally, a small piece of global
memory can also be privatively reserved to each thread. It is called local
memory.

An efficient way to structure an algorithm is as follows:

1. The threads of each block read its corresponding data portion from global
memory to shared memory (which is inevitable because the host only can
put the data in global memory).

2. Threads work with the data directly on the shared memory.

Chapter 3. High Performance Computing 90

3. Threads copy these data back to global memory (so the host can retrieve
the result).

A well-known strategy in parallel programming, and used also in CUDA,
is tiling. This strategy seeks to combine the previous structure of three phases
with partitioning data, so that the three phases are repeated for each data
portion (or tile), minimizing accesses to global memory.

As mentioned before, threads from different blocks cannot cooperate di-
rectly, but only through the global memory and using a special set of atomic
operations. These operations are implemented by implicit locks, so that ac-
cesses to desired data elements can be efficiently synchronized through them.
However, this is restricted to the use of a small set of operations (see Table
3.1).

The main keywords and language elements added by CUDA into C are
summarized in Table 3.1. An example is also attached in an extra column to
better understand how they are used.

CUDA comes with a large software support for developers. It is of a huge
importance, so that programmers can use them to develop their CUDA based
applications:

• Toolkit: the driver, nvcc compiler and many other useful tools, such as
the debugger (cuda-gdb), the profiler (cuda-prof), etc.

• SDK: many examples and extra tools.

• Libraries: there are libraries to make an easier use of CUDA, and oth-
ers for specific problem domains (linear algebra, bioinformatics, random
number generation, etc.). All of them are developed by the CUDA com-
munity.

• Plugins: there are plugins for Microsoft Visual Studio, and for Eclipse
(in CUDA version 5).

As stated above, there are tools for debugging and profiling, what GPU
computing has lacked so far. Firstly, the nvcc compiler handles all parts of the
compilation flow, trying to hide the compilation details from developers and
giving a wide range of compiler options. There are several compiler flags that
are really useful in certain parts of the development process. For the debug
purpose there is an emulation mode which is enabled with the compiler flag
-g (this flag generates debuggable code). Furthermore, the compiler has other

3.3. GPU computing 91

flags which are focused on optimizing the CUDA code. These flags are -ptx
-cubin.

The PTX (Parallel Thread Execution) code is an assembly-like represen-
tation which is produced by the nvcc compiler whenever a CUDA code is
compiled with the -ptx flag enabled. It is optimized by the CUDA runtime
to get hardware-specific binaries for execution. Notice that PTX code is not
the code which executes on the GPU, but it gives an approximated idea of the
execution.

Additionally, the nvcc compiler has the -cubin flag which produces a .cubin
file. This file contains information about occupancy of each multiprocessor
in the GPU. It also shows the number of registers per thread, the amount
of shared memory used by a thread block, whether the kernel is using local
memory or not, and finally, the binary code of the application.

Other software tools have been created to support CUDA programmers
and ease the CUDA development cycle, such as CudaVisualProfiler or decuda
[5]. The former is a quite useful tool to profile your CUDA code. The latter is
a disassembler for the NVIDIA CUDA binary (.cubin) format and it helps to
identify bottlenecks showing the internal instructions generated for the G8x
and G9x architectures.

3.3.4 Modern GPU architecture: NVIDIA’s G200 as
case study

The GPU used in our work is the NVIDIA Tesla C1060. Therefore, this section
introduces the Tesla C1060 (G200) computing architecture, and it shows archi-
tecture parameters that can affect the performance. In addition, the threading
model of Tesla architectures is analyzed, together with the most important is-
sues in the CUDA programming environment.

The Tesla C1060 [94] is based on a scalable processor array which has
240 SPs (streaming-processor) cores organized as 30 SMs (streaming multi-
processor) and 4 GB of off-chip GDDR3 memory called device memory. The
applications start at the host side which communicates with the device side
through a bus, which is a PCI Express x16 bus standard (see Figure 3.4). PCI
Express delivers up to 4 GB/sec of peak bandwidth per direction, and up to 8
GB/s of concurrent bandwidth.

The SM is the processing unit and an unified graphics and computing mul-
tiprocessor. Every SM contains the following units: eight SPs arithmetic cores,
one double precision unit, an instruction cache, a read only constant cache, 16-
Kbyte on-chip read/write shared memory, a set of 16384 32-bit registers, and

Chapter 3. High Performance Computing 92

Figure 3.4: Tesla T10 unified architecture, based on G200.

access to the off-chip memory (device/local memory). The SM also has two
SFUs that execute more complex floating point operations such as reciprocal
square root, sine or cosine with low latency. The arithmetic units are capa-
ble to execute three instructions per clock cycle, and they are fully pipelined,
running at 1,296 GHz, yielding a peak theoretical 933 GFLOPS3 (240 SP * 3
instructions * 1,296 GHz).

The local and global (device) memory spaces are not cached, which means
that every memory access to global memory (or local memory) generates an
explicit memory access. A multiprocessor takes 4 clock cycles to issue one
memory instruction. Accessing local or global memory incurs an additional
400 to 600 clock cycles of memory latency [5], that is more expensive than
accessing share memory and registers (only the mentioned 4 cycles).

The Tesla C1060 achieves 102 GB/sec of bandwidth to the off-chip memory
(running at 800 MHz). This bandwidth is not enough for the big set of cores
and the possibilities to sature it are high. It is needed to coalesce accesses
to the device memory for obtaining the maximum bandwidth available. The
coalesced accesses are obtained whenever the accesses are contiguous 16-word
lines, otherwise a fraction of this bandwidth is obtained. Coalesced accesses
will be a critical point in the optimization process.

3FLOPS stands for FLoating-point Operations Per Second. GFLOPS are giga FLOPS.

3.3. GPU computing 93

In addition, the threads can use other memories like constant memory or
texture memory. Reading from constant cache is as fast as reading from reg-
isters, as long as all threads in the same warp read the same address. Texture
Memory is optimized for 2D spatial locality (see Table 3.2).

A SM is a hardware device specifically designed with multithreaded ca-
pabilities. Each SM manages and executes up to 1024 threads in hardware
with zero scheduling overhead. Each thread has its own thread execution
state and can execute an independent code path. The SMs execute threads
in a SIMT (Single-Instruction Multiple-Thread) fashion [94]. Basically, in the
SIMT model all the threads execute the same instruction on different piece
of data. SMs create, manage, schedule and execute threads in groups of 32
threads (which is the branching granularity of NVIDIA GPUs). This set of
32 threads is called warp. Each SM can handle up to 32 warps (1024 threads
in total, see Table 3.3). Individual threads of the same warp must be of the
same type and start together at the same program address, but they are free
to branch and execute independently.

The execution flow starts with a set of warps ready to be selected. The
instruction unit, which is ready for issue and executing instructions, selects
one of them. The SM maps all the threads in an active warp to the SP cores,
and each thread executes independently with its own instructions and register
state. Some threads of the active warp can be inactive due to branching
or predication, and this is a critical point in the optimization process. The
maximum performance is achieved when all the threads in an active warp takes
the same path (the same execution flow). If the threads of a warp diverge, the
warp serially executes each taken branch path, disabling threads that are not
on that path. When all the paths complete, the threads re-converge to the
original execution path.

3.3.5 Performance considerations

In this section we survey some performance considerations when programming
GPUs. It is important to understand that the implemented code for the GPU
has to be premeditated. If it is done abruptly, the application will be not
adequately accelerated.

First of all, there are data parallel operations that are well suited for GPU
computing. In fact, the success on accelerating many applications lies in trans-
lating parts of the algorithm to one of these operations. Some algorithms and
applications that have been accelerated via this operations are sorting, search
and database queries, differential equations and linear algebra. We list below

Chapter 3. High Performance Computing 94

four data parallel operations that are programming idioms long familiar to
parallel computing users, and used now as computational primitives in GPU
computing [119]:

• Scatter/gather : a type of memory addressing. Historically, GPUs allows
efficient reading (gather through cached memories), but writing (scatter)
is normally more slow (even more when it requires data synchronization
through atomic accesses). Sometimes, it is better to let the threads
to write each output value through reading many input data (gather),
rather than assigning an input element to each thread that will write
in several arbitrary positions in memory, what requires synchronization
(scatter). Variants of these types are the stencil and transpose patterns.

• Map: apply an operation to all elements in a collection. It is typically
expressed as a for loop in sequential code, and it can be performed easily
in parallel. It is a good example of data parallelism.

• Reduce: repeatedly apply a binary associative operation to reduce a
collection of elements to a single value (e.g. sum, average, minimum,
etc.). It can be performed in parallel by iteratively reduce the number of
threads working over the collection. It also requires to synchronize the
threads in every step.

• Scan (also known as parallel-prefix-sum): take an array A and return
an array B of the same length, such that each element B[i] represents
a reduction of the sub-array A[1 . . . i]. Applications of this type can be
applied to, for example, quicksort or sparse matrix operations.

Finally, a characterization of what GPUs do well would allow us to define
more efficient algorithms [119]. Next we provide four characterizations that
we will consider in our algorithms, and that are of a large importance in GPU
computing. It is the best way to understand how the GPU works:

• Emphasize parallelism: GPUs prefer to run thousand of lightweight
threads to maximize opportunities to mask memory latency and block-
ing. The algorithms should permit divide the computation into many
independent pieces. For this purpose, it is necessary to reduce the re-
sources assigned to each thread, and try to avoid synchronization.

• Minimize branch divergence: in CUDA, the warp is the unit of paral-
lelism. A warp is executed in parallel, but the warps belonging to the

3.3. GPU computing 95

same thread block are serially executed. If a warp is broken because di-
vergence, then there is no real parallelism (only along the different thread
blocks). Note that a large branching granularity has more possibilities
to be broken, but a small one leads to a low real parallelism.

• Maximize arithmetic intensity : computation is relatively cheap for today
GPUs, but bandwidth is precious. It is better to maximize the computa-
tional operations per memory transaction. Shared memory or registers
help for this purpose.

• Exploit streaming bandwidth: however, GPUs and their on-board mem-
ory (GDDR3) have a peak bandwidth 10x faster than CPUs and DRAM.
It is achieved by streaming memory access patterns: coalesced access to
aligned memory positions. A good way to maximize the bandwidth in
an algorithm is by the scatter/gather strategy.

3.3.6 GPUs today and in future

Given the importance of GPU computing today, the GPU hardware archi-
tecture and software are continually evolving. For example, both main GPU
manufactures, AMD and NVIDIA, are working on providing full double preci-
sion floating-point hardware. The bandwidth is also improving by technologies
such as PCI Express 2 and HyperTransport. AMD has also developed Fusion,
a microprocessor technology having the CPU and the GPU together in the
same chip. This technology has less bandwidth with memory (it uses DDR3
DRAM, and not GDDR3), but avoids the transfer of memory. Other authors
also propose the creation of a fully programmable graphics pipeline, being the
pipeline itself as programmable as shader units.

We have presented the NVIDIA Tesla C1060, since it is the graphics card we
have used in our work. This card appeared in the market in 2008. However, we
can find newer GPU technologies today, such as NVIDIA Fermi and Kepler,
providing a huge amount of cores (up to 512 for Fermi G400, and 1536 for
Kepler G600), cacheable global memory and better bandwidth. See Table 3.4
for more detailed hardware specifications about the three generations of the
NVIDIA Tesla cards brand. Moreover, CUDA is (at the date of this work) in
its 5th version, but we have used CUDA version 4.

AMD also provides today high-end GPUs, such as the Southern Islands
based systems, having up to 2048 cores. They are now programmed by using
OpenCL, which is standard and high level language, very similar to CUDA.

Chapter 3. High Performance Computing 96

Table 3.1: CUDA language elements and keywords
Keyword Usage Meaning Example

global function qualifier A kernel function (it is called from
the CPU and executed on the GPU)

global void myKernel(int a)
{...}

device function qualifier The device function (it is called from
the GPU and executed on the GPU)

device int myDeviceAux-
Function(int a) {...}

<<<a,b,c>>> function call The kernel function call, configuring
the number of blocks (a), number of
threads within blocks (b) and, op-
tionally, a reserved number of bytes
in shared memory (c)

<<<dimGrid,dimBlocks>>>
myKernel(0);

shared variable qualifier The variable is stored in the shared
memory

shared int a;

constant variable qualifier The variable is stored in the constant
memory

shared int a;

local variable qualifier The variable is stored in the local
memory

shared int a;

threadIdx.x
built-in variable

Coordinate x of the thread identifier myArray[threadIdx.x]
threadIdx.y Coordinate y of the thread identifier [threadIdx.y]=0;
threadIdx.z Coordinate z of the thread identifier
blockIdx.x

built-in variable
Coordinate x of the block identifier

if (blockIdx.x==0) z=0;
blockIdx.y Coordinate y of the block identifier
blockDim.x

built-in variable
Size of the block in the x dimension myArray[threadIdx.y*

blockDim.y Size of the block in the y dimension blockDim.x+threadIdx.x]=0;
blockDim.z Size of the block in the z dimension
gridDim.x

built-in variable
Size of the grid in the x dimension myArray2[blockDim.y*

gridDim.y Size of the grid in the y dimension gridDim.x+blockIdx.x]=0;
syncthreads(); built-in function Barrier synchronization of threads

belonging to the same block
syncthreads();

cudaMalloc(...); built-in function Executed in the host, it reserves
memory in device memory

cudaMalloc(&ptr,numBytes);

cudaMemcpy(...); built-in function Executed in the host, it copies
memory bidirectionally between
the host and device memories. It
takes 4 parameters: destination
pointer, source pointer, number
of bytes to copy, and the involved
memories (cudaMemcpyHostToDe-
vice, cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToDevice, cud-
aMemcpyHostToHost)

cudaMemcpy(d ptr,h ptr,...);

atomicAdd(...)

built-in function

Atomic operation for addition atomicAdd(g mem ptr, 4);
atomicSub(...) Atomic operation for subtraction atomicSub(g mem ptr, 4);
atomicExch(...) Atomic operation performing value

exchange
old=atomicExch(g mem ptr,
newValue);

atomicMin(...) Atomic operation for minimums atomicMin(g mem ptr, 0);
atomicMax(...) Atomic operation for maximums atomicMax(g mem ptr, 99);
atomicInc(...) Atomic operation for incrementation old=atomicInc(g mem ptr);
atomicDec(...) Atomic operation for decrementing old=atomicDec(g mem ptr);
atomicCAS(...) Atomic op. performing compare and

swap
old=atomicCAS(g mem ptr,
0, 5);

atomicAnd(...) Atomic operation for bits and atomicAnd(g mem ptr, 0xFF);
atomicOr(...) Atomic operation for bits or atomicOr(g mem ptr, 0x10);
atomicXor(...) Atomic operation for bits xor atomicXor(g mem ptr, 0xC1);

3.3. GPU computing 97

Table 3.2: Memory system on the Tesla C1060
Memory Location Size Latency Access

Registers On-Chip 16384 32-bits Registers per SM ' 1 cycles R/W
Shared Memory On-Chip 16 KB per SM ' registers R/W

Constant On-Chip 64 KB ' registers R
Texture On-Chip Up to Global > 100 cycles R
Local Off-Chip 4 GB 400-600 cycles R/W
Global Off-Chip 4 GB 400-600 cycles R/W

Table 3.3: Major hardware and software limitations programming on CUDA

Configuration Parameters (Maximum) Value

Threads/SM 1024
Thread Blocks/SM 8
32-bit Registers/SM 16384
Shared Memory/SM 16 KB

Threads/Block 512
Threads/Warp 32

Warps/SM 32

Table 3.4: Hardware features for the Teslas C1060, M2050 and K10 GPUs.

GPU element Feature Tesla C1060 Tesla M2050 Tesla K10

Streaming Cores per multiprocessor 8 32 192(SMX)
processors Number of multiprocessors 30 14 2x8(16)
(GPU Total number of cores 240 448 2x1536(3072)
cores) Clock frequency 1296 MHz 1147 MHz 745 MHz
Maximum Per multiprocessor 1024 1536 2048
number of Per block 512 1024 1024
threads Per warp 32 32 32
SRAM 32-bit registers 16 K 32 K 64 K
memory Shared memory 16 KB 16 KB or 48 KB 16 KB or 48 KB
available per L1 cache No 48 KB or 16 KB 48 KB or 16 KB
multiprocessor Total SRAM (shared + L1) 16 KB 64 KB 64 KB

Size 4 GB 3 GB 2x4(8) GB
Global Speed 2x800 MHz 2x1500 MHz 2x2500 MHz
(video) Width 512 bits 384 bits 256 bits
memory Bandwidth 102 GB/sc 144 GB/sc 320 GB/sc

Technology GDDR3 DRAM GDDR5 DRAM GDDR5 DRAM

Chapter 3. High Performance Computing 98

Part II

Parallel Simulation applied to
Efficient Solutions of

Computationally Hard
Problems

99

“The advent of the accelerators in High Performance Computing
offers fresh avenues for developing new and efficient simulators
for P systems and Systems Biology.”

J.M. Cecilia, G.D. Guerrero, J.M. Garćıa, M.A.
Mart́ınez-del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez

4
Parallel Simulation of P systems with

Active Membranes

In order to experimentally validate a P system based model, it is necessary to
have simulators running on electronic computers. They would help researchers
to compute, analyze and extract results from a model [57]. These simulators
have to be as efficient as possible to handle instances of large size. This is one
of the main problems with current simulators for P systems. Software appli-
cations for Membrane Computing normally implement sequential (or parallel
with relatively few threads) simulation algorithms adapted to common CPU
architectures [57], so they do not take advantage of the massively parallel
nature that P systems present by their definition.

This parallel computation model leads us to look for a highly parallel
computational technology where a parallel simulator can run efficiently. The
newest generation of GPUs, as mentioned before, are massively parallel proces-
sors which can support several thousand concurrent threads. To date, many
general purpose applications have been ported to these platforms obtaining
good speedups compared to their corresponding sequential versions [146, 147].

In this chapter, we highlight the necessity to use a parallel architecture
which improves the efficiency of P systems simulators. For this purpose, we
present a parallel simulator for the class of recognizer P systems with active
membranes using CUDA [41, 39, 44, 105, 102, 74, 45, 106], due to the fact that

101

Chapter 4. Parallel simulation of P systems with active membranes 102

in this theoretical model, the creation of an exponential workspace, expressed
in terms of number of membranes and objects, in linear time takes place in a
natural way. The simulator receives as input a P system which is defined and
translated into a binary file using the pLinguaCore [70, 69]. The simulation
algorithm is divided into two main stages: selection stage and execution stage.
Both phases are implemented on the GPU, so the entire simulation executes
all the computations in different membranes in a parallel way.

We also provide a performance test of the simulator with a family of P
systems that exploit the intrinsic parallelism of P systems and demonstrate
that GPUs are better suited than CPUs to simulate P systems as long as the
problem instance size increases.

4.1 Simulation algorithm

The simulator we have developed is based on the sequential simulator for P
systems with active membranes provided in pLinguaCore [70]. In this design,
the simulation process is a loop divided into two stages: selection stage and
execution stage (see Figure 4.1). The selection stage consists in the search for
rules to be executed in each membrane of a given configuration. The selected
rules are executed at the execution stage, what finalizes the simulation of a
computation step (or transition).

The input data for the selection stage contains the description of the mem-
branes with their multisets (strings over the working alphabet of objects, labels
associated with the membrane, etc.), and the set of defined rules. The output
data of this stage are the multisets of selected rules. Only the execution stage
changes the information of the configuration. It is the reason why execution
stage needs synchronization when accessing to the membrane structure and
the multisets.

At the end of the execution stage, the simulation process restarts the se-
lection stage in an iterative way until a halting configuration is reached. This
stop condition is twofold: a certain number of iterations or a final configuration
is reached. On one hand, we define a maximum number of iterations at the
beginning of the simulation. On the other hand, a halting configuration is ob-
tained when there are no more rules to select at selection stage. As previously
explained, the halting configuration is always reached since it is a simulator
for recognizer P systems.

Non-determinism affects the selection stage, when there are more than one
selectable rule but only one can be executed. For example, two evolution rules

4.1. Simulation algorithm 103

Figure 4.1: Iterative process of the simulation algorithm for P systems with
active membranes.

that can be executed using the same object, a division rule and a send-in rule
that can be selected in the same membrane at the same time, etc. In order
to avoid non-determinism somehow, the simulator assumes only confluent P
systems. Thus, instead of working with the entire tree of possible computa-
tions, the simulator selects and simulates only one computation path, since
all paths are guaranteed to give the same answer. We can take advantage of
this property by selecting path using the lowest cost rules. We will measure
this cost in number of membranes and synchronization operations. These are
the conditions that could damage the simulation performance the most. In
this context, we introduce the following priorities among rules in the selection
stage:

1. Dissolution rules : they decrease the number of membranes (highest pri-
ority);

2. Evolution rules : they do not need any communication among membranes
(which avoids synchronization);

3. Send-out rules : they do need communication between the given mem-
brane and its parent (adding one object to its parent);

4. Send-in rules : they do need communication between the given membrane

Chapter 4. Parallel simulation of P systems with active membranes 104

and its parent (reserving one object from its parent and adding the object
to itself);

5. Division rules : they increase the number of membranes (lowest priority).

During the execution stage, the information of the system can vary by in-
cluding new objects inside membranes, dissolving membranes, dividing mem-
branes, etc., obtaining a new configuration. This new configuration will be the
input data for the selection stage of the next iteration.

Finally, note that this two-staged algorithm allows to keep a coherence
in the simulation. If we perform selection and execution of rules, one by
one, it would be difficult to ensure the semantic constraints of the system.
Moreover, the selected and executed rules in a step of the simulator may not
correspond to the rules applied in a computing step of the theoretical model.
An alternative solution might be to take two copies of the configuration, one
to be updated with the right-hand sides of the rules, and another to select
rules (subtracting the left-hand sides of rules). As this involves a bigger use
of memory, our simulator uses the two stages, and a temporary data structure
to store information of the selection of rules.

4.2 Sequential simulation in C++

As previously mentioned, CUDA programming model [5] is based on the
C/C++ language [88]. Therefore, the first recommended step when developing
applications in CUDA is to start from a baseline algorithm written in C++,
identifying the parts that can be susceptible to be parallelized on the GPU.
In this work, we have based on the simulator for P systems with active mem-
branes developed in pLinguaCore [70]. This sequential (or single-threaded)
simulator is programmed in JAVA, so the first step was to translate the code
to C++.

Our first sequential simulator implements the structure of membranes by
using C++ pointers and dynamic memory allocations. Each membrane stores
a pointer to its parent, a pointer to the first of its children, another pointer to
one of its brothers (having the same parent membrane), the charge, and the
multiset of objects. The multiset of objects is also implemented by a (dynamic)
linked list based on pointers. Each object in the multiset stores its multiplicity
(if zero, it is deleted to save memory space) and a pointer to the next object.
Therefore, memory spaces for membranes and objects are created and deleted
“on demand”. The rules of the system are statically stored, so that we can

4.2. Sequential simulation in C++ 105

Figure 4.2: Generation of the input for the simulator

easily access to the rules associated to each membrane, by using its label and
charge. Furthermore, the multiset of selected rules is also implemented using
a dynamic linked list.

The common problem here is the competition for objects between differ-
ent membranes. In this case, internal membranes applying send-in rules are
competing for the objects in the parent. We loop the tree from the top to the
bottom, so the top level membranes have more priority using its objects than
internal membranes using send-in rules.

The input of the simulator (the P system with active membranes to simu-
late) is given by a binary file. It is a file whose information is encoded in Bytes
and bits (not understandable by humans like plain text), which is suitable for
compressing data. This binary file contains all the information of the P system
(alphabet, labels, rules, etc.) which is the input of our simulator. The format
is depicted in Section 4.3. pLinguaCore 2.0 [70] is able to translate a P system
written in P-Lingua language into a binary file. We therefore use a pipeline
of applications to simulate P systems, as shown in 4.2. First, we define our
P system into P-Lingua. pLinguaCore translate it to a binary file, which is
used as the input of the simulator. The output is a plain text generated with
a format similar to the provided in pLinguaCore.

After experimentally validating our sequential simulator with different ex-
amples, we have developed the parallel simulator as an extension of it. The
simulation always starts with the sequential simulator, and when a threshold
number of membranes is created, the execution is changed to the parallel ver-
sion. In this way, we make use of the parallel simulator only when it worths
it.

After creating the parallel simulator, we also have developed an adapted

Chapter 4. Parallel simulation of P systems with active membranes 106

sequential simulator for the CPU (called fast sequential simulator), which has
the same constraints as the CUDA simulator explained in the next subsections,
to make a fair comparison among them. This simulator achieves much better
performance than the original sequential simulator, since it uses only static
memory (saving time in memory management). It is noteworthy that this
simulator has been improved in successive versions. The current version is
faster than the one presented in [41, 44], since it has been optimized to better
utilize cache memory by internalizing some loops over the membranes.

The full framework of simulators for P systems with active membranes, in-
cluding the sequential, fast sequential and CUDA parallel simulators, is called
PCUDA. It is a subproject of the PMCGPU project, and can be downloaded
from the website: http://sourceforge.net/p/pmcgpu [17]. More informa-
tion about the simulator, how to install and use it, refer to Appendix A.

4.3 Input binary file format

In this section we show the definition of the binary format of the input file
for our simulator. It specifies the number of bytes is used for each required
element, and comments with explanations are given by ’#’. Note that it is
thought for compressing the information of the P system.

The format is structured in 3 main parts:

• A header storing general information about the file (version, etc.).

• The P system general information: alphabet, membrane structure (plus
initial charges) and initial multisets.

• The rules of the P system.

1 #########################

2 ## Format of the binary input file for the simulator (revision 13-12-2008)

3 #########################

4

5 Header (4 Bytes):

6 0xAF

7 0x12

8 0xFA

9 # Last Byte: 4 bits for P system variant, 4 bits for file version

10 0x11

11

12 Number of objects in the alphabet (2 Bytes) # if greater than 0xFF, 2 Bytes

13 # for objects identifiers (ID)

http://sourceforge.net/p/pmcgpu

4.3. Input binary file format 107

14 # For each object (identifier implicitly given by the order)

15 Text string representing the object (finished by ’\0’)

16

17 Number of different labels of membranes (2 Bytes) # if greater than 0xFF,

18 # 2 Bytes for labels ID

19 # For each label (identifier implicitly given by the order)

20 Text string representing the label (finished by ’\0’)

21

22 Number of membranes (2 Bytes) # if greater than 0xFF, 2 Bytes for

23 # membranes ID

24 # For each membrane (identifier implicitly given by the order)

25 # The first membrane is the skin, with identifier 0

26 ID of parent membrane (1 or 2 Bytes)

27 ID of label (1 or 2 Bytes)

28 Charge (1 Byte, 0 = neutral, 1 = positive, 2 = negative)

29

30 Number of initial multisets (2 Bytes)

31 # For each multiset:

32 ID of the membrane (1 or 2 Bytes)

33 Number of different objects in the membrane (2 Bytes)

34 # For each object:

35 ID of the object (1 or 2 Bytes)

36 Multiplicity (2 Bytes)

37

38 Number of evolution rules (2 Bytes)

39 # For each rule:

40 ID of the label (1 or 2 Bytes)

41 Charge (1 Byte)

42 ID of the object in the left-hand side of the rule (1 or 2 Bytes)

43 Number of different objects in the right-hand side of the rule (2 Bytes)

44 # For each object:

45 ID of the object (1 or 2 Bytes)

46 Multiplicity (2 Bytes)

47

48 Number of send-in rules (2 Bytes)

49 # For each rule:

50 ID of the label (1 or 2 Bytes)

51 Charge (1 Byte)

52 New charge (1 Byte)

53 ID of the object in the left-hand side of the rule (1 or 2 Bytes)

54 ID of the object in the right-hand side of the rule (1 or 2 Bytes)

55

56 Number of send-out rules (2 Bytes)

57 # For each rule:

58 ID of the label (1 or 2 Bytes)

59 Charge (1 Byte)

60 New charge (1 Byte)

Chapter 4. Parallel simulation of P systems with active membranes 108

61 ID of the object in the left-hand side of the rule (1 or 2 Bytes)

62 ID of the object in the right-hand side of the rule (1 or 2 Bytes)

63

64 Number of dissolution rules (2 Bytes)

65 # For each rule:

66 ID of the label (1 or 2 Bytes)

67 Charge (1 Byte)

68 ID of the object in the left-hand side of the rule (1 or 2 Bytes)

69 ID of the object in the right-hand side of the rule (1 or 2 Bytes)

70

71 Number of division rules (2 Bytes)

72 # For each rule:

73 ID of the label (1 or 2 Bytes)

74 Charge (1 Byte)

75 New charge (1 Byte)

76 New charge for new membrane (1 Byte)

77 ID of the object in the left-hand side of the rule (1 or 2 Bytes)

78 ID of the object in the right-hand side of the rule (1 or 2 Bytes)

79 ID of the object in the right-hand side of the rule for new membrane (1 or

80 2 Bytes)

4.4 Parallel simulation on CUDA

Whenever we design algorithms in the CUDA programming model, our main
effort is dividing the required work into processing pieces, which have to be
processed by TB thread blocks of T threads each. Using a thread block size of
T=256, it is empirically determined to obtain the overall best performance on
the Tesla C1060 [147]. Each thread block access to one different set of input
data, and assigns a single or small constant number of input elements to each
thread.

As mentioned in Chapter 3, each thread block can be considered inde-
pendent to the other, and it is at this level at which internal communication
(among threads) is cheap using explicit barriers to synchronize, and external
communication (among blocks) becomes expensive, since global synchroniza-
tion can only be achieved by the barrier implicit between successive kernel
calls. The need of global synchronization in our designs requires successive
kernel calls even to the same kernel.

Figure 4.3 shows the overall design of the simulator that we have imple-
mented on the GPU. We distribute the thread blocks and threads as follows.
Each membrane of the simulated P system is attributed to each thread block.
In this way, we identify the parallelism between membranes by using the par-

4.4. Parallel simulation on CUDA 109

P system

Threads

Thread Block n

................

Membrane n

0 1 2

25
4

25
5

a b c d e f g h

Threads

Thread Block 1

Membrane 1

0 1 2

25
4

25
5

a b c d e f g h

Multiset of
Objects

................

GPU

Multiset of
Objects

Figure 4.3: Basic design of the parallel simulator on the GPU.

Chapter 4. Parallel simulation of P systems with active membranes 110

allelism between thread blocks. We must take precautions with this design
decision. Membranes can communicate accordingly to the hierarchical tree
structure, while thread blocks are all independent. Communication through
send-out and dissolution rules (down-up direction) is controlled by globally
synchronizing the selection and execution stages. This is implemented by us-
ing different kernels. However, send-in rules (up-down direction in the tree)
are more complicated to control. In this case, different membranes can com-
pete for single objects. The sequential simulator controls this issue by looping
the tree from the top to the bottom. However, the parallel simulator has to
run all the membranes in parallel. Therefore, for the sake of simplicity, the
parallel simulator can handle only two levels of membrane hierarchy: the skin
(controlled by the host) and the rest of elementary membranes (controlled by
the thread blocks in device). This is the tree structure we can find in the liter-
ature for the majority of solutions based on P systems with active membranes
(note that division rules enlarge the tree widthwise) [133].

Furthermore, each individual thread is assigned to each object within a
membrane (corresponding to its thread block). It is responsible for identifying
the rules that can be executed using the corresponding object. That is, rules
that have that object in their left-hand sides. Since all blocks must have the
same number of threads, and each membrane can contain a different multiset of
objects in every time step, we identify as common for all membranes the whole
alphabet. Note that threads can work with many objects that do not really
exist in the membrane, as all the alphabet of objects is usually not present
within a membrane at a given instant. In fact, the simulator assigns multiple
objects to the same thread for not restricting the number of objects in the
alphabet. However, the number of objects in the alphabet must be divisible
by a number smaller than 512 (the maximum number of threads per thread
block), in order to equally distribute the objects among the threads.

The simulator contains five kernels to implement the selection and execu-
tion stages. The first kernel implements the selection stage and also the exe-
cution stage for evolution rules. The other four kernels implement the other
execution rules (dissolution, division, send-out and send-in rules). All the ker-
nels follow this basic design. The selection kernel starts with the selection
stage. After the selection stage, we also execute in this kernel the evolution
rules. These rules are executed inside this kernel for three main reasons: the
evolution rules do not imply communication (and therefore, synchronization)
among membranes; they are executed in a maximal way, and this decision
allows us to use less global memory because it is not necessary to store the
selected evolution rules for the execution stage. The rest of the rules to be

4.4. Parallel simulation on CUDA 111

applied are executed in four different kernels, one kernel per each kind of rule
(dissolution, division, send-out, send-in).

Algorithm 4.4.1 shows the pseudo-code of the simulator. First of all, we
move the data needed for the computation to the GPU. Then, the code calls the
selection kernel which returns the selected rules for the current configuration
of the P system. Among the possible selected rules there will be different
kinds of rules to be executed. Therefore, the type of those rules is identified
for launching only the required kernels to accomplish the execution stage. As
we explained before, we iterate on this process until the maximum number of
steps is reached or the system returns an answer. Finally, we copy back the
result data to CPU.

Algorithm 4.4.1 Parallel simulator of P systems on the GPU
1: configuration ← initialConfiguration
2: selectedRules ← ∅
3: step ← 0
4: isFinalConfiguration ← false
5: CopyDataFromCPUtoGPU(configuration)
6: CopyDataFromCPUtoGPU(rules)
7: while step < maxStep ∧ NOT isFinalConfiguration do
8: kernelSelection(rules,configuration,selectedRules)
9: if DISSOLUTION ∈ selectedRules then

10: kernelDissolution(rules,configuration,selectedRules)
11: end if
12: if DIVISION ∈ selectedRules then
13: kernelDivision(rules,configuration,selectedRules)
14: end if
15: if SEND-OUT ∈ selectedRules then
16: kernelSendOut(rules,configuration,selectedRules)
17: end if
18: if SEND-IN ∈ selectedRules then
19: kernelSendIn(rules,configuration,selectedRules)
20: end if
21: step ← step + 1
22: isFinalConfiguration ← checkFinalConfiguration(configuration)
23: end while
24: CopyDataFromGPUtoCPU(configuration)

The parallel simulator implements the following data structures to store
the P system information. Let us assume that the simulated P system with

Chapter 4. Parallel simulation of P systems with active membranes 112

active membranes is of the form Π = (Γ, H, µ, ω1, . . . , ωq, R), and creates at
most M elementary membranes:

• multisets : an array storing the multisets of objects related with elemen-
tary membranes. The size is of order O(|Γ| ∗M), and it is indexed by
using the function multisetsIndex(m, o) = |Γ| ∗m + o, being m and o
membrane and object identifiers.

• skinMultiset : an array storing the multiset of objects associated with the
skin membrane. It is of size O(|Γ|), and it is indexed using the object
identifier.

• environmentMultiset : it stores the multiset in the environment.

• rodRuleSet : an array storing rules information. It is indexed by using an
object o, a label l and a charge c: rodRuleSet(o, l, c) = o∗|H|∗3+l∗3+c.
Each position of the array is composed of four elements, so the size is of
order O(|Γ| ∗ |H| ∗ 3 ∗ 4). These elements are:

– Evolution rule identifier. It also stores the indexes for the mul-
tisetRuleSet, because evolution rules are the only one involving a
multiset in their right-hand side.

– Send-out, division or dissolution rule identifier. Only one of them
is stored, and it is done by following the commented priorities.

– Send-in rule identifier. We have to consider that, when focusing
on an active membrane, the object for the send-in rule is the one
in the parent. Therefore, we need to differentiate it with the rest,
because, for example, a division and a send-in rule can be associated
to the same label and charge, but the division rule cannot be applied
because there is no objects available, and for the send-in rule yes.

– Rule information. It stores some more information about the rules
codified in the array position.

• multisetRodSet : an array storing all the objects appearing in the right-
hand side multisets of evolution rules. It is indexed by a direct index
(stored in the rodRuleSet) and an offset. The size is of the order O(S),
where S is total size of the right-hand side multisets of all evolution rules.
It stores two elements, the object identifier and a multiplicity.

4.5. Performance comparative analysis 113

• rsiodd : an array which rule of send-in, send-out, division or dissolution
has been selected for each membrane. It is of size O(M). Note that
only one element is enough for each membrane, since evolutions rules are
executed directly in the selection kernel, and there is not need of storing
them. These kinds of rules are selected which each thread blocks using
a shared lock.

4.5 Performance comparative analysis

In this section we compare the performance of the developed simulators. We
made two performance analysis based on two different case studies. The first
one is a very simple example, with the aim of studying the behavior of the
CUDA kernels. The second one is based on a real example from the literature.
It shows a profiling of the simulators to better understand the structure and
complexity of them.

4.5.1 Case study A: simple test example

In order to evaluate the performance of the simulator, we have designed a fam-
ily of P systems, named test P system, where it is easy to vary the number of
membranes as well as the number of objects. This test P system also fits the
behavior of the GPU since only evolution and division rules are defined (with-
out communication and dissolution rules), and every object in every membrane
will evolve according to a given rule. The defined P system is of the following
form Π = (O,H, µ, ω1, ω2, R), where:

• O = {d, oi / 0 ≤ i ≤ n},

• H = 1, 2,

• µ = [[]2]2,

• ω1 = ∅, ω2 = O,

• R =

(i) Evolution rules: [oi → oi]
0
2, 0 <= i < n

(ii) Division rule: [d]02 → [d]02[d]02

Chapter 4. Parallel simulation of P systems with active membranes 114

Thus, the test P system allows us to take control of the number of objects
in the system by modifying the n parameter. Furthermore, the number of rules
changes along with the number of objects, and the number of membranes in
every step of the computation is equal to 2s, where s is the step number. Lastly,
the number of evolution rules selected and executed per membrane in every
step is invariable, since they are defined one per object and all the objects of
the alphabet are presented in every membrane labeled with 2.

First of all, we compare the performance of both sequential simulators.
Note that they run on the CPU, but they mainly differentiate on the manage-
ment of memory. The sequential simulator (let designate it amp-seq) is the
most flexible of them all, but the slowest one. The fast sequential simulator
(let call it amp-fast-seq) supports only two levels of membrane hierarchy, and
the maximum amount of membranes has to be previously declared. It has
been designed to be the CPU counterpart of the parallel (GPU) simulator (let
call it amp-gpu), since for performance comparison, we should consider the
run-time of the fastest serial program (see Chapter 3).

Figure 4.4(a) shows the run-time for amp-seq and amp-fast-seq, for only
one step and for different amount of membranes, having 2560 objects in the
alphabet. The corresponding speedup is also attached (Figure 4.4(b)). The
amount of membranes is exponentially increased by applying division rules,
and the Y-axis is showed in logarithmic way. We can observe that amp-fast-seq
outperforms amp-seq for any instance. It saves both time and memory, because
it avoids to allocate and deallocate memory on demand by using a previously
allocated array for objects. The obtained speedup is 160x, what is a good
number. Moreover, we can see that the speedup tends to increase for bigger
instances. The main reason for this is the pagination process, because amp-seq
requires more memory. We therefore take the amp-fast-seq for performance
comparison from now on.

Figures 4.5 and 4.6 present the results we have obtained for the simula-
tor between the sequential version developed in the C++ language and our
simulator developed in CUDA. Notice that in both graphs the Y-axis is also
represented in an logarithmic form. These benchmarks cover both ways of par-
allelism that P systems naturally have by its definition. The first one tests the
parallelism between membranes, exponentially increasing the number of mem-
branes, and the second one tests the parallelism between objects exponentially
increasing the number of objects within each membrane.

Figure 4.5 shows the results for the benchmark which increases the number
of membranes exponentially, having a fixed number of objects per membrane
(2560 objects). The CPU simulator also increases its time exponentially from

4.5. Performance comparative analysis 115

2
4

8
16

32
64

128
256

512
1024

2048
4096

8192
16384

32768
65536

0,01

0,1

1

10

100

1000

10000

100000

1000000

10000000

Sequential code

Fast sequential code

Number of membranes

E
xe

cu
tio

n
 t i

m
e

 (
m

se
c)

(a)

1
2

4
8

16
32

64
128

256
512

1024
2048

4096
8192

16384
32768

140

145

150

155

160

165

170

Number of membranes

S
p

e
e

d
u

p

(b)

Figure 4.4: Comparing the execution time (a) and speedup (b) for one step
of amp-seq and amp-fast-seq, by increasing the number of membranes in the
system and using a total of 2560 objects in the alphabet.

Chapter 4. Parallel simulation of P systems with active membranes 116

2
4

8
16

32
64

128
256

512
1024

2048
4096

8192
16384

32768
65536

0,01

0,1

1

10

100

1000

10000

Fast sequential code
CUDA code

Number of membranes

E
xe

cu
tio

n
 t i

m
e

 (
m

se
c)

(a)

2
4

8
16

32
64

128
256

512
1024

2048
4096

8192
16384

32768
65536

0

1

2

3

4

5

6

Number of membranes

S
p

e
e

d
u

p

(b)

Figure 4.5: Comparing the execution time (a) and speedup (b) for one step
of the fast sequential and parallel simulators, by increasing the number of
membranes in the system and using a total of 2560 objects in the alphabet.

4.5. Performance comparative analysis 117

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768
0,1

1

10

100

1000

10000

Fast sequential code

CUDA code

Number of objects per membrane

E
xe

cu
tio

n
 t i

m
e

 (
m

se
c)

(a)

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384
0

1

2

3

4

5

6

7

8

Number of objects per membrane

S
p

e
e

d
u

p

(b)

Figure 4.6: Comparing the execution time (a) and speedup (b) for one step of
the fast sequential and parallel simulators, by increasing the number of objects
in the system and using a total of 1024 membranes.

Chapter 4. Parallel simulation of P systems with active membranes 118

the beginning (with four membranes) until reaching the final configuration
(with 32768 membranes). Our CUDA simulator, which assigns 256 threads
per block (each thread handles 10 elements per membrane), also increases its
execution time in a near exponential way, but the performance difference is
about 5.7x, and this difference enlarges with the number of membranes (from
1024), because the resources of the GPU are fully utilized.

Figure 4.6 shows the behavior of both simulators executing the benchmark
which increases the number of objects per membrane. In this case, the num-
ber of membranes is fixed to 1024, which implies to have enough blocks to
distribute the work among multiprocessors (as seen in Figure 4.5). Our sim-
ulation starts with only few objects per membrane, which implies just few
threads per block in the CUDA code. Figure 4.6 shows that amp-fast-seq ini-
tially obtains better performance than amp-gpu until the simulations reach
32 elements per membrane. Less than 32 elements per membrane implies less
than 32 threads per block in amp-gpu which does not fill a warp; hence GPU
resources are badly used. The sequential version increases its simulation time
along with the number of objects since just one thread has to deal with all the
objects in each membrane.

The simulation time remains flat using the CUDA version until reaching
a 256-object configuration. The simulation time increases a little bit faster
from this configuration onwards because the following configurations have more
objects per membranes than threads per block (it uses 256-thread blocks).
Therefore, objects in a membrane are equally distributed across all the threads
in a block: 512-object per membrane implies two objects per thread; 1024-
object per membrane implies 4 objects per thread, and so on. Otherwise,
it implies to have an overloaded thread which reduces the performance of our
simulator, and leads us to conclude that it is better to have lightweight threads.

Overall, we have obtained a reduction in the simulation time, reaching for
512 objects and 1024 membranes an improvement of 7x in the execution time
between amp-fast-seq and amp-gpu.

4.5.2 Case study B: an efficient solution to SAT by a
family of P systems

In this second case study, we analyze the performance of the simulators by
running a real example from the literature: a well-known family of P systems
with active membranes solving SAT in linear time (see Sections 1.6 and 1.6.1).

Table 4.1 shows the results of both fast sequential and parallel GPU simu-
lators. It provides the run-times of each simulator, for the whole computation.

4.5. Performance comparative analysis 119

Note that in the previous case study, we only considered the run-time for one
computational step to show if the parallel execution outperforms the sequential
version. This time, we consider the full run-times of the simulators.

We consider only the full computation time (given in milliseconds) for amp-
fast-seq. For amp-gpu, we consider the full computation time (also given in
milliseconds) taken by each kernel, plus the overhead caused by the CUDA
memory management, which is an extra to consider when using the GPU.
Since all the data structures of the sequential simulator are also used by our
CUDA simulator, we do not take into account their management time in both
simulators.

Moreover, we also provide a profiling of the computation for both simu-
lators. We use for this the percentage of time consumed by each part of the
simulators:

• For the sequential simulator (amp-fast-seq): the time percentages for
selection and execution phases of the simulator.

• For the parallel simulator (amp-gpu): the time percentages for kernels
computation (selection phase plus execution phase), memory allocation
(malloc) and memory transferences.

For each simulated instance, we show the SAT instance size (number of
variables n and number of clauses m of the encoded CNF formula), and the size
of the simulated P system, in terms of maximum number of created membranes
and total amount of objects of the alphabet.

At first glance, we can see that selection phase is the most time consuming,
for both simulators. Indeed, selection phase takes more than the 90% of the
computation time for both simulators. Execution phase is actually the less
complex one, since it simply adds objects to the multisets according to the
decisions taken in selection phase.

We can also see a huge overhead caused by memory allocation in the parallel
simulator. For small instances the overhead takes around the 90% of the
time. However, it is static (always the same value for any instance size), so
for larger instances the overhead is hidden by the time consumed by kernels.
For the largest instance we could run, this overhead is completely hidden.
Furthermore, the time for memory transferences is always the same but small,
so it is negligible.

C
h

a
p

ter
4
.

P
ara

llel
sim

u
latio

n
o
f

P
sy

stem
s

w
ith

active
m

em
b

ran
es

120

Instance size Fast sequential Parallel (GPU) Speedup
SAT (n,m) Membranes Objects Time(ms) % Sel. % Exec. Time(ms) % Kernel % Sel. % Exec. % Malloc % Transf. Kernel Total

(6,33) 64 920 18.34 90.3% 9.7% 1215.1 1.37% 1.13% 0.24% 98.14% 0.49% 1.1x 0.01x
(8,32) 256 1155 83.44 93.13% 6.87% 1286.99 4.89% 4.56% 0.33% 94.61% 0.5% 1.32x 0.06x
(10,16) 1024 729 161.35 88.85% 11.15% 1341.5 8.95% 8.28% 0.67% 90.63% 0.42% 1.34x 0.12x
(12,17) 4096 914 867.88 90.45% 9.55% 1725.39 30% 28.24% 1.76% 69.68% 0.32% 1.67x 0.5x
(14,17) 16384 1056 4082.2 91.14% 8.86% 3762.81 68.09% 65.07% 30.02% 31.75% 0.16% 1.59x 1.08x
(16,16) 65536 1131 17757.4 91.56% 8.44% 12840.6 90.4% 87% 3.4% 9.54% 0.06% 1.53x 1.38x
(18,32) 262144 2465 215177 93.47% 6.53% 145497 99.22% 97.05% 2.17% 0.77% 0.01% 1.49x 1.48x

Table 4.1: Profiling the simulators am-fast-seq and am-gpu, running several instances of the solution to SAT.

4.6. Characterizing the simulation on the GPU 121

The execution of kernels always outperforms the sequential code. The
speedup is increased with the instance size, achieving the maximum of 1.67x
for 4096 membranes and 914 objects. However, the full parallel simulation
time only outperforms the sequential counterpart when the overhead is hidden
by the computation time of kernels. We report the maximum speedup of 1.48x
for the largest instance.

Nevertheless, note that the speedups for this example are very small com-
pared with the simple test example of the previous case study. The perfor-
mance is downscaled around 4 times for this example (from 5.7x to 1.38x for
65536-membrane P systems). The speedups does not go beyond the 2x, what
is a bad result. The main reason is the small rule intensity of this P system.
We will talk more about this in the characterization (next) section, so that we
can better understand which are the P systems characteristics that are well
suited to be accelerated on the GPU.

4.6 Characterizing the simulation on the GPU

In this section we characterize the simulation of P systems with active mem-
branes on the GPU, considering the results obtained during the performance
analysis.

First of all, as mentioned before, our simulator presents some limitations,
constrained by some peculiarities in the CUDA programming model and design
decisions. The main limitations are shown in table 4.2, and the following stand
out among them:

• The simulator can handle only two levels of membrane hierarchy for
simplicity in synchronization (the skin and the rest of elementary mem-
branes), which is enough for solving a wide range of NP-complete prob-
lems. This is a design decision which aims to simplify the problem of
object reservation by send-in rules in the parent membrane, which means
concurrent access from different thread blocks to the same memory space,
what has to be avoided in CUDA.

• The number of objects in the alphabet must be divisible by a number
smaller than 512 (the maximum thread block size), in order to equally
distribute the objects among the threads.

The CUDA memory model is statically managed, so the programmer should
make an estimation of the memory usage by the kernel in order to statically

Chapter 4. Parallel simulation of P systems with active membranes 122

Table 4.2: Main limitations in the parallel simulator

Parameter Limitation

Levels of membrane hierarchy 2
Maximum alphabet size 65535
Maximum label set size 65535
Maximum multiplicity of an object in
an elementary membrane

65535

Alphabet size Divisible by a number smaller than 512

allocate in advance the memory required by the kernel execution. However
if this estimation is not enough to completely execute the kernel, the GPU
execution should finish, back the control to the CPU, reallocate resources on
it, and then start again the kernel execution. Definitely, this is expensive
in time. This is one of the key aspect to take into account when designing
solutions on CUDA. A naive solution is to allocate enough memory in order
to store the worst case of a problem.

In the case of P systems with active membranes, the worst case is presented
when all different objects of the alphabet are presented in the multiset of a
membrane in a given configuration. Although this is the worst case that the
simulator has to deal with, it does not take place in the majority of P systems
to be simulated. Thus, the performance of the simulator totally depends on
the simulated P system.

Indeed, in the previous section we have shown that the performance can
vary depending on the case study. We see that the test P system (case study
A), where all the rules are applied to each membrane in all the steps, is better
accelerated (up to 5.7x for 65536 membranes) than a real example from the
literature, an efficient solution to SAT (case study B, up to 1.53x for kernels).

Looking at the results, and the general CUDA design of the kernels, there
are some properties that makes the simulation on the GPU faster than on the
CPU:

(a) Density of objects per membrane: more different objects should ap-
pear in the multiset (having multiplicity greater than 0) of every mem-
brane to increase the CUDA threads usage.

(b) Rule Intensity: more evolution rules are defined to evolve the objects
within membranes in parallel. Since the objects evolve according to the
evolution rules, the density of objects can affect the rule intensity, but

4.6. Characterizing the simulation on the GPU 123

it definitely depends on the amount of defined rules. For example, an
strategy can be to reuse objects defined in a P system.

(c) Communication among membranes: if less objects are sent to or
retrieved from the skin, the communication through PCI express bus is
reduced (the skin is executed on the CPU).

For example, the density of objects in the test P systems is of 100% (every
object in the alphabet is present in all membranes, and they evolve by the high
rule intensity). The obtained performance by the CUDA simulator is therefore
much higher. However, for the family of P systems solving SAT, the density
of objects is an average of 15%, so that the 85% of threads are wasted in the
simulation process. This leads to a lower performance in general. Moreover,
the sequential simulator has several optimizations that avoids to process the
85% of inexistent objects. This improvements are expensive to implement in
CUDA, since it is based in the ordered insertion of elements in the array.

Thus, the above mentioned properties can be considered for defining sev-
eral strategies for P system definitions, so that the simulation of the defined P
systems can be better accelerated on the GPU. Finally, recall that the strate-
gies from the properties (a) and (b) are directly related with the key point of
designing solutions in Membrane Computing by using massive parallelism [81]:

Intuitively, a bad design of a P system consists of a P system which does
not exploit its parallelism, that is, working as a sequential machine: in each
step only one object evolve in one membrane whereas the remaining objects do
not evolve. On the other hand, a good design consists of a P system in which a
huge amount of objects are evolving simultaneously in all membranes. If both
P systems perform the same task, it is obvious that the second one is a better
design than the first one.

The fact of this relationship comes out from the idiosyncrasy of the GPU
and our design: the double massively parallelism of P systems has been di-
rectly mapped with the double highly parallelism of GPUs. Therefore, the
performance of the GPU simulator depends directly on the design of P system
(if it is bad or not), as pointed in [81].

In this respect, a good way to previously study if the simulation of a P
system can be well accelerated on the GPU is by using Sevilla Carpets [79].
Sevilla Carpets provide on one hand quantitative information, and on the other
hand a fast glimpse on the complexity of the computation thanks to their
graphical representation. We can assume that Sevilla Carpets can be used
to analyze a priori the achieved simulation acceleration of a given P system.
They can help to identify the properties listed above, and to search for many

Chapter 4. Parallel simulation of P systems with active membranes 124

others. Some future work can be considered in this respect (as described in
Chapter 8).

4.7 Conclusions

In this chapter we have introduced the PCUDA framework (a subproject of
PMCGPU [17]). It includes simulators for confluent recognizer P systems with
active membranes and elementary division:

• A sequential simulator : it is written in C++, and supports any kind of
P systems of this class. C++ pointers are used to represent the mem-
brane hierarchy and the multisets. The simulation algorithm is based on
the one implemented in the simulators of the pLinguaCore simulation
framework. The algorithm is divided into two stages: selection (how
many times each rule is going to be executed) and execution (update the
state of the P system according to the output of selection stage). This
permit to synchronize the way to apply rules in every membrane.

• A parallel simulator : it is based on CUDA. The double parallelism of
these P systems is represented in the double parallelism of GPUs. That
is, each CUDA thread block works with an elementary membrane, and
each CUDA thread is assigned to a set of objects within the correspond-
ing membrane. Some constrains are also required to the type of P systems
to simulate, that mainly are: only two levels of membrane hierarchy, and
an alphabet size divisible by a number smaller than 512.

• A fast sequential simulator : it is based on the parallel simulator design,
but run on the CPU. The same constrains than the CUDA simulator are
presented here. Moreover, it uses static memory management (as the
parallel simulator), so the performance is much better than the sequential
simulator (that uses dynamic memory allocation, loosing time on the
simulation process).

The provided simulation framework is therefore flexible enough to run many
P systems from the literature, but performance and scalability are compro-
mised. Experiments showed that the best acceleration is achieved when the P
system to simulate intrinsically presents a high degree of parallelism. That is,
a high degree of rule intensity (number of rules executed per each step) and
density of objects (number of objects appearing in the multisets).

“If P = NP, then the world would be a profoundly different place
than we usually assume it to be. There would be no special
value in ”creative leaps”, no fundamental gap between solving a
problem and recognizing the solution once it’s found. Everyone
who could appreciate a symphony would be Mozart; everyone
who could follow a step-by-step argument would be Gauss...”

Scott Aaronson, MIT

5
Parallel simulation of P systems solving

SAT

The use of powerful supercomputers has been proposed over the past years to
tackle certain instances of Natural Computing methods, among which we may
cite ant colony [149], particle swarm [113] and even genetic algorithms [137].
Following this trend of good alliance between applications and hardware, we
contribute with novelties on both sides:

• At hardware level, we propose the use of commodity graphics hardware
(GPUs) as a low-cost and emerging parallel architecture to accelerate the
simulations. The newest version of programmable GPUs provide a com-
pelling alternative to the traditional parallel environments such as cluster
of computers, delivering extremely high floating point performance and
also a massively parallel framework for scientific applications which fit
their architectural idiosyncrasies.

• At application level, we focus on Membrane Computing, an emergent re-
search area which abstracts computing ideas (like data structures, opera-
tions or computing models, among others) from the structure and behav-
ior of single cells, ultimately grouped into complexes of cells. P systems
are distributed parallel and non deterministic computing devices, and
some models have been successfully used for designing polynomial time

125

Chapter 5. Parallel simulation of P systems solving SAT 126

solutions to NP-complete problems by trading space for time. Specifi-
cally, these models were inspired by the capability of cells to produce an
exponential number of new membranes in linear time, through mitosis
(membrane division) and/or autopeosis (membrane creation) processes.
Major challenges on P systems simulations are (1) a dynamic handling
of memory space and (2) an exponential workspace growing as our code
increases the number of variables involved to run the simulation.

Our previous attempt to design simulators on GPUs for P systems has
demonstrated that a parallel architecture is better positioned in performance
than traditional CPUs to simulate P systems, due to the inherently parallel
nature of them, and specifically GPUs obtain very good preliminary results
simulating P systems.

In this chapter, we analyze the behavior of GPUs simulating a family of P
systems with active membranes solving the SAT problem in linear time [133]
(Section 1.6.1). Unlike the simulator described in Chapter 4 (which is a flexible
simulator for the P systems with active membranes), this one is optimized for
this particular family of P systems, achieving a more efficient simulation in
spite of decreasing the flexibility. This work was first published in [40], and
will be detailed in Section 5.1. It has been improved by better adapting the
simulator to new GPU architectures and multi-GPU systems [43, 46] and to
supercomputers [42]. These two extensions are summarized in Section 5.5 and
5.6, respectively.

Moreover, we also analyze the parallel simulation of another efficient solu-
tion to SAT based on a family of tissue P systems with cell division (Section
1.6.2). This simulator was presented in [123], and it is detailed in Section 5.2.
The aim of this simulator is to further study which ingredients of different
P systems models are well suited to be managed by the GPU. It is carried
out by comparing the performance with the GPU simulator for cell-like P sys-
tems. The performance analysis and simulation characterization are explained
in Sections 5.3 and 5.4, respectively.

5.1 Parallel simulation of the solution with cell-

like P systems on the GPU

In this section we describe the simulator for the family Πam−SAT, described
in Section 1.6.1 (Chapter 1), of recognizer P systems with active membranes
solving SAT in linear time. First, we explain the previous work to prepare

5.1. Parallel simulation of the solution with cell-like P systems on the GPU 127

the development of the parallel simulator on the GPU. Then, we introduce the
simulator design that fully simulates a P system computation to solve instances
of the SAT problem. Finally, we describe an adapted simulator to the GPU to
accelerate the simulation.

The framework of all these simulators is named PCUDASAT, and it can
be downloaded from the website: http://sourceforge.net/p/pmcgpu [17].
More information about the simulator, how to install and use it, refer to Ap-
pendix A.

5.1.1 Design of the baseline simulator: Sequential Sim-
ulator

As mentioned before, the first recommended step when developing applica-
tions in CUDA is to start from a baseline algorithm written in C++, where
some parts can be susceptible to be parallelized on the GPU. The sequential
simulator design is based on the four main phases of a P system computation
from Πam−SAT, as it is depicted in Section 1.6.1: Generation, Synchroniza-
tion, Check-out, and Output. All these phases are sequentially executed in
this simulator, reproducing the computation of the P system.

Firstly, the Generation phase is executed, generating 2n membranes by
dividing each one in n steps, where n is the number of variables of the input
CNF formula. After that, the simulator executes the Synchronization phase
which evolves the objects following the rules previously explained. The Check-
out phase determines the membranes that codify a solution (where all the
clauses are true) of the SAT instance, and finally the Output phase sends out
the correct answer to the environment.

It is important to remark that the semantics of the P system is reproduced
by the simulation algorithm, so the simulator is specific for this solution. Thus,
we don’t need to receive a binary file describing the P system. It is enough to
receive an instance of the SAT problem through a CNF formula. We can assume
therefore that the simulator behaves as a SAT solver, receiving a propositional
formula and giving the corresponding yes or no answer. However, this solver
is implemented following a solution by means of P systems. For this purpose,
the input of this simulator is a standard DIMACS CNF file, where the CNF
propositional formula is encoded. The output is read from the environment of
the P system, where the result is stored.

http://sourceforge.net/p/pmcgpu

Chapter 5. Parallel simulation of P systems solving SAT 128

5.1.2 Reading the input file

The input file, as mentioned above, is a text file matching the DIMACS CNF
format. It has become a standard for SAT solvers. This file is read character
by character.

Normally, this format file has comments at the beginning. These comments
start by the character ’c’. The comments finish when a line starting by ’p’ is
given. After this character, a blank space plus the word ’cnf’ has to be placed.
If all of these is present, then we can assume that the file is in DIMACS CNF
format. After ’p cnf’, the number of variables ’n’ and the number of clauses ’m’
are defined. These values must be greater than 0, otherwise it is not encoding
a correct formula.

Next, we read the set of literals and clauses. We have one line per clause,
ending by character ’0’. Each line is composed by a list of numbers separated
by spaces, representing the literals (from 1 to n). Such numbers can be negative
or positive: negative numbers mean negating the corresponding variable, and
positive the variable itself. In our implementation we use a matrix of n ×m
dimension, placing 0 if a variable (row) is not present in a clause (column), 1
if it appears as the variable, or -1, if it appears negated. Moreover, we also
count the total number of literals (|cod(ϕ)|).

Finally, we provide an example for the better understanding of the file
format we use for our simulator. Let us assume the following propositional
formula in CNF: (x1 ∨ x3) ∧ (x2 ∨ x3 ∨ x1). A file representing this formula,
using the DIMACS CNF format, will be as follows:

1 c

2 c This is the DIMACS CNF file representing the example formula

3 c

4 p cnf 3 2

5 1 -3 0

6 2 3 -1 0

5.1.3 Data structures

The main goal of this specific simulator is to optimize the simulation of the
family Πam−SAT. The first challenge was to increase the object density in
the implementation, since this parameter is around 15% in the theoretical
model, as seen in Section 4.6. Increasing the object density means to avoid
extra work over inexistent objects. The solution was to find an upper bound
for the number of different objects that can simultaneously exist within any
membrane.

5.1. Parallel simulation of the solution with cell-like P systems on the GPU 129

After an exhaustive analysis of the computation, the upper bound was
fixed to the size of the input multiset (the number of literals in the input
propositional formula). Indeed, one can observe that the size of the right-hand
side of evolution rules is always 1. Thus, every object in the input multiset
always evolves to another, but it never increases the number of objects (it can
be decreased). The same also for the division rule. For the send-in rules, it
can be also observed that, before them, send-out rules are applied, so they can
be managed as an exchange of objects through transitions.

The representation of the P system is made by an array storing the multisets
of objects for every membrane labeled by 2. The amount of elements per
membrane equals to, as mentioned above, the size of the input multiset (total
number of literals in the formula, |cod(ϕ)|). This array is initially allocated for
the maximum amount of membranes 2 that the P system will create, which is
2n (note that n is defined in the input file). Only the first one is initialized
by storing the full input multiset. Division rules will initialize each membrane
later on.

We encode the objects for the input multiset in the mentioned array at
bit-level within integers of 32 bits. Each integer stores the following (8 bits for
each field):

1. The name of the object (x or x)

2. Reserved space.

3. Variable (index i).

4. Clause (index j).

It is noteworthy that the membrane charges are not stored anymore. From
the computation of Πam−SAT, we can observe that a partition of membranes
having positive and negative charges can be done over the array, that is, the
first half of membranes are positive, and the other half (new ones) negative.
The skin membrane is not represented, since its purpose is to store objects sent
out from membranes, those which are sent in to the same membranes in the
next step. This process is therefore simulated within each membrane, avoiding
to store the information for the skin membrane. Other objects, such as yes,
no and c counter, are also placed as variables in source code.

5.1.4 Design of the GPU Simulator: Parallel Simulator

The objective of this parallel simulator is to fully simulate the behavior of a
P system computation, doing this in a parallel way whenever is possible. To

Chapter 5. Parallel simulation of P systems solving SAT 130

P system

Threads

Thread Block 2n

................

Membrane 2n

cod(φ)

Threads

Thread Block 1

Membrane 1

cod(φ)

Multiset of
Objects

................

GPU

Multiset of
Objects

0 1 2 |cod(φ)|

0 1 2 |cod(φ)|

Figure 5.1: General design of the parallel simulator for Πam−SAT.

do that, we use the baseline design based on the four main phases of the P
system computation. The first three phases are developed as CUDA kernels
in this simulator, and the last one (Output phase) is developed on the CPU.

Similarly to the design of the simulator presented in Chapter 4, this simu-
lator assigns a thread block to each membrane, as shown in Figure 5.1. In this
way, the parallelism among membranes is represented. Moreover, each thread
is assigned to each object of the input multiset, which is a literal of the input
formula (with the exception of object d1). This mapping is common to all the
defined kernels.

Algorithm 5.1.1 shows the pseudocode for this version of the simulator. The
Generation phase is simulated by using three kernels which computes the rules
previously explained in Section 1.6.1. This is an iterative process of n steps
where the kernels are called n times. In each iteration, the simulator adjusts
the number of thread blocks before calling the kernel, since new membranes
are created. That is, the membranes are distributed along the 2-dimensional
grid of thread blocks.

When the exponential workspace is created, the Synchronization and Check-
out phases are executed (following the rules showed in Section 1.6.1). Both
phases are performed in the same kernel, and so, in parallel to each membrane.

5.1. Parallel simulation of the solution with cell-like P systems on the GPU 131

Algorithm 5.1.1 Parallel Simulator, reproducing the P system computation
1: Threads← |cod(ϕ)| . The number of literals in the CNF formula
2: Blocks← 1
3: repeat . Generation phase
4: Division kernel <<< Blocks, Threads >>> (numMembranes)
5: numMembranes← numMembranes× 2
6: Blocks← AdjustBlocks(numMembranes) . Distribute membranes

. into the 2-dim grid
7: Send out kernel <<< Blocks, Threads >>> (numMembranes)
8: Send in kernel <<< Blocks, Threads >>> (numMembranes)
9: d← d+ 1

10: until d < n . Repeat n times (number of variables)
. Synch. and Check-out phases

11: Syn Check kernel <<< Blocks, Threads >>> (numMembranes)
12: Output(numMembranes) . Output phase (executed on the CPU)

Global synchronization is not necessary because there is no communication
among the internal membranes at this phase. Finally, the Output phase is
developed on the CPU, checking the conditions and launching the result of the
computation.

5.1.5 Adapting the simulator to the GPU architecture:
Hybrid Simulator

Although the parallel simulator fully reproduces the P system computation,
perhaps another P system design can obtain better performance whenever
it is simulated by GPUs. In this sense, the hybrid simulator 1 uses some
heuristics along the simulation to adapt the P system computation to the
GPU architecture idiosyncrasy.

GPUs are basically a graphics accelerator which are designed to mainly
accelerate graphics applications. Graphics applications presents huge data
parallelism, that is, developing the same computation over different set of data.
Then, the communication and synchronization requirements among processing
elements should be drastically limited to enhance performance [94].

The objective of this simulator is to reduce the communication and syn-
chronization overheads presented in the previous simulator by using several
heuristics as shown in Algorithm 5.1.2. For instance, some objects that con-

1It is a hybrid simulator because it does not perform exactly the same computational
steps as the theoretic P system.

Chapter 5. Parallel simulation of P systems solving SAT 132

Algorithm 5.1.2 Hybrid Simulator. Adapting the P system computation
1: Threads← |cod(φ)| . The total number of literals in the CNF formula
2: Blocks← 1
3: repeat . Generation phase
4: Generation kernel <<< Blocks, Threads >>> (numMembranes)
5: numMembranes← numMembranes× 2
6: Blocks← AdjustBlocks(numMembranes) . Distribute membranes

. along the 2-dim grid
7: d← d+ 1
8: until d < n . Repeat n times (number of variables)

. Synchronization, Check-out and Output phases
9: Syn Check kernel <<< Blocks, Threads >>> (numMembranes)

trol the timing of the theoretical computation, depicted in Section 1.6.1, are
replaced by statical variables instead of dynamic variables. Doing this, this
simulator can join CUDA kernels, and therefore, reduce the synchronization
overhead produced by launching kernels onto the GPU, since only one kernel
can be launched at the same time on the GPU.

The Generation phase is basically the same than the parallel simulator,
creating the exponential workspace in the system and reproducing the same
steps, but now all of them are included in the same kernel, reducing the syn-
chronization overhead.

Furthermore, the kernel that represents the Check-out phase substantially
differs, including a fastest way to produce the output. Recall that the P sys-
tems of Πam−SAT check the truth assignment of clauses in a sequential way. In
this case, the kernel parallelizes this checking on the GPU, so presenting more
data parallelism. For this purpose, each thread checks whether its correspond-
ing object encode a true clause. If so, a shared variable, one per thread block
and clause, is true. At the end of the kernel, if all these variables are set to
true, the answer to the CPU is affirmative (a solution has been found). Oth-
erwise, the answer for this thread block is negative, which means that there is
no solution in the membrane, and therefore, the solution depends on the rest
of membranes. This approach reduces the data movement through the PCI
Express bus which is expensive in terms of performance, and it also loads more
computational workload onto the GPU.

5.2. Parallel simulation of the solution with tissue-like P systems on the GPU 133

5.2 Parallel simulation of the solution with tissue-

like P systems on the GPU

In this section we depict the simulator for the family Πtsp−SAT of recognizer
tissue P systems with cell division, described in Section 1.6.2. For this simu-
lator, we have only constructed a full simulator (there is no a hybrid version),
so that we can perform comparison with the cell-like version. We first explain
the data structures and the phases that compounds the simulation algorithm,
then the sequential version, and after that, the parallel one based on CUDA,
describing the different optimizations taken for each phase of the simulator.

This simulation framework is named TSPCUDASAT, and it can be down-
loaded from the website: http://sourceforge.net/p/pmcgpu [17]. More in-
formation about the simulator, how to install and use it, refer to Appendix
A.

5.2.1 Sequential simulation

For an easier implementation, the simulation algorithm has been divided into
five (simulation) phases. Note that they are different in number than the
denoted phases of the theoretical model. Each of these simulation phases
are implemented in code as separated functions whenever is possible. They
corresponds to the application of certain rules, as explained below:

• Generation phase: it performs the application of rules from (a) to (e) of
systems from Πtsp−SAT (Section 1.6.2). Therefore, it comprises the two
first phases of the theoretical model: valuations generation phase and
counters generation phase.

• Exchange phase: it simulates the application of rules (f) and (g). It
comprises the first part of the checking preparation phase.

• Synchronization phase: it applies the rules from (h) to (m), so comprising
the second part of the checking preparation phase.

• Checking phase: it performs the application of rules from (n) to (p).
Thus, it is the checking clauses phase we identified in the theoretical
model.

• Output phase: it applies rules from (q) to (t). It then performs both the
formula checking phase and the output phase identified in the theoretical
model.

http://sourceforge.net/p/pmcgpu

Chapter 5. Parallel simulation of P systems solving SAT 134

The sequential simulator implements these five simulation phases directly
in code, which is in C++. Each one works directly with the data structures
depicted in the next Subsection 5.2.2. The input of the simulator is the same
than the one used in the simulator for the cell-like solution. A DIMACS CNF
file is provided, and the simulator outputs the response of the computation.
Therefore, it acts merely as a SAT solver, but the implementation follows the
computation of the systems from the family Πtsp−SAT.

Furthermore, we have adopted a set of optimizations to improve the per-
formance of the sequential simulator. After several tests, we show that the
best optimizations are [123]:

• As the Exchange phase is very simple, it is then implemented after the
Generation phase loop, within the same function.

• We apply the full Synchronization phase to one cell before going to the
next one. This allows us to exploit data locality in cache memories.

• In the Checking phase, we orderly insert the objects rj, for 1 ≤ j ≤ m,
in the corresponding array whenever they are created. Thus, the Output
phase can be easily performed, in such a way that it is not necessary to
loop all the objects coming from the input multiset (literals). Now it is
enough to check if there exists the m objects rj.

5.2.2 Data structures

For this solution, the representation of the tissue P system is twofold. As the
model differentiates between cells labeled 1 and 2, the design decision was to
also have a different data structure representing each type of cell in the system.

First, the cell 1 is represented as an array having a maximum dimension
of 5 elements. That is, the multiset for cell 1 has the maximum amount of 5
objects. These 5 objects are the three counters, b, c and d (which are initially
in this cell), and the two objects yes and no (that will final answer to the
problem). Note that the size of the array for cell 1 is always constant, as it is
independent of the input parameters of the simulator.

Second, the cells labeled by 2 are also represented by a one-dimensional
array. All of them are stored inside this large array, since it is initially allocated
to store the maximum amount of cells (2n). By studying a computation of
the systems Πtsp−SAT, we conclude that the maximum number of objects
appearing in a cell 2 is (2n) + 4 + |cod(ϕ)|, where (see Section 1.6.2 for further
information about the alphabet):

5.2. Parallel simulation of the solution with tissue-like P systems on the GPU 135

• |cod(ϕ)| elements for the initial multiset,

• n elements for objects Ti,j and Fi,j, for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Note
that an object Ti,j and an object Fi,j, for any i, cannot be simultaneously
placed within a cell 2. Moreover, the index j is used sequentially in the
computation steps of the system, i.e. replacing objects in the evolution
process of incrementing the second index. For all of this, n elements are
enough to store those objects.

• n elements for objects ti and fi, for 1 ≤ i ≤ n. Note that objects fi
and tj, for i = j, cannot be simultaneously placed within a cell 2, so n
elements are enough to store those objects.

• 4 elements for counter objects a, b, c and d. They will be replaced for
counter objects f and g.

The objects are represented similarly to the simulator for Πam−SAT. In
this case, we recover the reserved space utilized to store the multiplicity of
the object, inasmuch as it can exceeds 1. In summary, they are encoded at
bit-level within integers of 32 bits, that store the following (8 bits for each
field):

1. The name of the object (x or x)

2. Multiplicity of the object. As there are objects whose multiplicity can
exceed 28, this field can eventually be joined to the next one (variable).

3. Variable (index i).

4. Clause (index j).

5.2.3 Design of the parallel simulator

The parallel simulator is designed to also fully reproduce a computation of
the systems from the family of tissue P systems Πtsp−SAT. That is, there
is no a hybrid solution providing simulation shortcuts to the computation.
The design of this parallel simulator is driven by the same structure of phases
we have used for the sequential one. Separate CUDA kernels are utilized to
speedup the execution of each phase.

Similar work distribution in CUDA than in the other simulators (PCUDA,
presented in Chapter 4, and PCUDASAT, presented in Section 5.1) is again

Chapter 5. Parallel simulation of P systems solving SAT 136

Tissue P
system

Threads

Thread Block 2n

................

Cell 2n

Threads

Thread Block 1

Cell 1

1 2 … n 2n+4+|cod(φ)|

T
1
... T

n
 t

1
… t

n
 b c d a cod(φ)

Multiset of objects

................

GPU

Multiset of objects

1 2 … n 2n+4+|cod(φ)|

F
1
..

.
 F

n
 f

1
... f

n
 b c d a cod(φ)

Figure 5.2: General design of the parallel simulator for Πtsp−SAT.

applied. The general assignment of work for threads and thread blocks is
summarized in Figure 5.2. Each thread block corresponds to each cell labeled
by 2 created in the system. However, unlike the previous simulator for the
cell-like solution, we do not assign a thread per literal. The assignment of each
thread, this time, is different for each simulation phase. The work mapping
per phase is therefore as follows:

• Generation phase: the number of thread blocks is iteratively increased
together with the amount of cells created in each computation step. We
distribute cells along the two-dimensional grid through successive kernel
calls. Each thread block contains (2n) + 4 + |cod(ϕ)| threads. That is,
the amount of elements assigned to each cell in the global array storing
multisets. Threads are then used to copy each individual elements of the
corresponding cell when it is divided.

• Exchange phase: it is executed at the kernel for Generation phase, using
the same amount of thread blocks, but only the corresponding threads
perform the exchange.

• Synchronization phase: the thread blocks are assigned to the cells labeled
by 2, like in the last step of the Generation phase. For this phase, the

5.2. Parallel simulation of the solution with tissue-like P systems on the GPU 137

number of threads is n (number of variables). If we use the same amount
of threads than in Generation phase, most of them will be idle. So it is
preferred to launch less threads, but performing effective work. We have
experimentally corroborated this fact.

• Checking phase: the number of thread blocks is again assigned to be the
number of cells labeled by 2. However, for this phase we use a block size
of |cod(ϕ)|. That is, each thread is used to execute, in parallel, rules of
type (n) and (o). The result at the SAT problem resolution level, each
thread checks if the corresponding literal makes true its clause, depending
on the truth assignment encoded by the cell assigned to the thread block.

• Output phase: rules of type (q) are sequentially executed in a separate
kernel, again using |cod(ϕ)| threads per block, and 2n thread blocks (2n

is the number of cells labeled by 2).

For this solution, we have applied a small set of optimizations, focused on
the GPU implementation, to improve the performance of the parallel simulator.
As analyzed in [123], we identify that the simulator runs twice faster than the
simulator without these optimizations. We will use the optimized version of
the parallel simulator to perform the comparisons.

These optimizations are oriented to improve two performance aspects of
GPU computing, what leads us to consider two kind of optimizations (see
Chapter 3). The first one is to emphasize the parallelism. This optimization
aims to increase the number of threads per block (to the recommended amount
form 64 to 256), so it allows to fulfill warps and hide latencies. The second is to
exploit streaming bandwidth. To do this, the data is loaded first to the shared
memory, and operated there, avoiding global memory (expensive) accesses.

Next, we show the specific optimizations we have carried out for each phase:

• Generation phase: no optimizations were implemented here, since the
implementation already satisfies the first optimization type. The sec-
ond type will require a more sophisticated implementation, like the one
presented in Section 5.5.

• Exchange phase: this phase, as it is joined with the generation phase,
has no optimizations.

• Synchronization phase: the two optimization types are implemented
here. The second optimization type is carried out by using shared mem-
ory to avoid global memory accesses. The first type is performed by

Chapter 5. Parallel simulation of P systems solving SAT 138

increasing the number of threads per block. For our simulator, we can
assume that n (number of variables, and the number of threads per block)
is a small number, since the number of cells grows exponentially with re-
spect to it. For example, let be n = 32. Then, 232 cells will be created,
what require 232(68+|cod(ϕ)|) bytes (in gigabytes: 272+4|cod(ϕ)|). This
number obviously exceeds the amount of available device memory. We
therefore need to increase the number of threads per block, since n < 32
means to not fulfilling a CUDA warp. A solution here is to assign more
than one cell to each thread block. This amount is 256

n
, being 256 the

optimum number of threads per block. It allows us to reach a number of
threads close to the optimum one. However, we have to take care also of
having enough shared memory to load the data of every assigned cell.

• Checking phase: since |cod(ϕ)| can be greater than 32, we then keep this
number as the number of threads per block. However, we use shared
memory to speedup the accesses to the elements of the array.

• Output phase: as in the previous phase, we also use shared memory, and
the number of threads per block is kept to |cod(ϕ)|.

5.3 Performance analysis

In this section we test the performance of both simulators for the families
Πam−SAT (cell-like solution to SAT) and Πtsp−SAT (tissue-like solution to SAT).
Moreover, we provide a comparison of both simulators to extract conclusions
of which properties are better suited for GPUs. The GPU used for the exper-
iments is our NVIDIA GPU Tesla C1060, which has 240 execution cores and
4 GB of device memory, plugged in our computing server with two Intel i5
Nehalem processors (8 cores) and 12 GB of RAM, and using a 64-bit Ubuntu
Server 10.04 as operating system.

We have developed two benchmarks (called test 1 and test 2, respectively)
to analyze the performance behavior of our simulators in two ways: increasing
the number of threads per thread block, and increasing the number of thread
blocks per grid. Both benchmarks have been generated by WinSAT program
[19]. WinSAT is able to generate random SAT instances in DIMACS CNF
format file by configuring several parameters: the number of variables (n), the
number of clauses (m) and the number of literals per clause (we fix k for our
experiments). As mentioned in Section 5.1, the number of threads per block
is associated to the number objects in the input multiset, which is the same as

5.3. Performance analysis 139

the number of literals of the CNF formula ϕ (that is, m ∗ k). The number of
thread blocks (2n) is equal to the number of membranes in the system, which
depends on the number of variables in the CNF formula (n).

5.3.1 Cell-like simulator

In this subsection, we analyze the performance of the three simulators above
presented for the family of cell-like P systems Πam−SAT: the sequential sim-
ulator developed in C++ (from now, am-sat-seq), the parallel simulator on
CUDA (am-sat-gpu) and the hybrid simulator on CUDA (am-sat-gpu-hyb).

Figure 5.3 shows the experimental performance of the cell-like simulators
(in a log scale) for test 1. The benchmark test 1 increases exponentially the
number of literals in the CNF formula (and so, the number of objects in the P
system and threads per block in the GPU) until reaching a configuration with
512 literals. It also has fixed the number of thread blocks (and membranes) to
2048 (n = 11). When the number of threads per block is low, the performance
of GPU codes is not substantial compared with the sequential code. That is,
the data parallelism is low, and we cannot take advantage of the resources
available on the GPU. However, as long as the number of threads per block
increases, the data parallelism of the application also increases, and therefore,
the performance of our GPU codes improves notably compared to the sequen-
tial code, obtaining up to 64x of speedup between am-sat-seq and am-sat-gpu.
Furthermore, the am-sat-gpu-hyb accelerates the simulation on the GPU, be-
ing this up to 9.63 times faster than am-sat-gpu. Hence, the hybrid simulator
is better adapted to the GPU architecture than the parallel simulator of the
P system, because it presents more data parallelism in its computation as it is
described in Section 5.1.

Figure 5.4 shows the experimental performance of the simulators (in a log
scale) for test 2. The benchmark test 2 increases the number of variables in
the CNF formula (and so, the number of membranes in the P system and
the number of blocks in the GPU in an exponential manner) until reaching
a configuration with 211 membranes. The number of simulated membranes is
constrained by the available memory of the system. The number of literals in
the formula is fixed to 256, which means 256 threads per block.

The behavior of the GPU simulators, as showed in Figure 5.4, is similar in
both. This is because the execution time in the GPU codes increases exponen-
tially depending on the number of blocks running at the same time. Once all
the GPU resources have been fully occupied, the execution time increases lin-
early with the number of blocks. In this case, we report up to 94x of speedup

Chapter 5. Parallel simulation of P systems solving SAT 140

Figure 5.3: Simulation performance for am-sat-seq, am-sat-gpu and am-sat-
gpu-hyb: Test 1 (2048 membranes)

Figure 5.4: Simulation performance for am-sat-seq, am-sat-gpu and am-sat-
gpu-hyb: Test 2 (256 Objects/Membrane)

5.3. Performance analysis 141

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M
0

10

20

30

40

50

60

70

Number of membranes

S
p

e
e

d
u

p

Figure 5.5: Achieved speedup running Test 2 (256 Objects/Membrane) using
am-sat-gpu against am-sat-seq. GPU data management is also considered.

between am-sat-seq and am-sat-gpu. However, Figure 5.4 shows the speedup
becomes a constant number of 10x when the number of membranes is greater
than 128 K2. This is the number of blocks that fills the pipeline of the GPU
in this case, having the hybrid simulator better overall performance than the
parallel one.

We finalize the performance analysis of the cell-like simulators by also con-
sidering the data management (allocation and transfer) time of the GPU. Fig-
ure 5.5 shows the speedup achieved by comparing am-sat-gpu (with data man-
agement) and am-sat-seq, using Test 2. We can see that for small amounts of
membranes, the speedup is below 1, what means a worst performance. How-
ever, after 32 K membranes, the speedup is 1.23x, and it is increased along
with the number of membranes until 64x for 4 M membranes. This is caused
by the decrease in the kernels time, and the time of handling the data is al-
most constant for any system size. Note that the data management performed
by am-sat-gpu is the following: data allocation, initial configuration (only 1
membrane) transfer, and answer (object yes or not) transfer. The information
of the P system during the computation is always kept on the GPU memory.

5.3.2 Tissue-like simulator

In this subsection, we analyze the performance of the two simulators developed
for the family of tissue-like P systems Πtsp−SAT: the sequential simulator

2Note that we use here “K” and “M” for binary prefixes “kilo” and “mega”, respectively.
Therefore, 128 K=217=131072.

Chapter 5. Parallel simulation of P systems solving SAT 142

2 4 8 16 32 64 128 256
0,1

1

10

100
Sequential simulator

Parallel simulator

Objects per membrane

M
ili

se
co

n
d

s

Figure 5.6: Simulation performance for tsp-sat-seq and tsp-sat-gpu: Test 1
(2048 membranes)

developed in C++ (from now, tsp-sat-seq), and the parallel simulator on the
GPU (tsp-sat-gpu).

For this analysis we will use also the two tests utilized for the cell-like
simulators: the first one increasing the number of objects (fixing membranes
to 2048), and the second increasing the number of membranes (fixing objects
to 256).

Figure 5.6 shows the performance behavior of the tissue-like simulators for
test 1. Only the time employed by kernels are considered for tsp-sat-gpu. We
can see that, even for small number of objects per membrane, tsp-sat-gpu runs
faster than tsp-sat-seq. A different number of objects does not produce a great
impact into the performance of the parallel simulator. Note that in Section
5.2, we have introduced a different CUDA design for each phase. In this sense,
the synchronization phase has been optimized to assign more cells to a thread
block in order to increase the number of threads. However, the speedup is
increased together with the number of objects per membrane. This means
that the resources of the GPU are better utilized (e.g. 4 objects/threads does
not fulfill a warp). We report the maximum speedup for 32 objects (a warp),
which is of 11.6x. For 2 objects is 4x, and for 256, 6.1x.

Figure 5.7 shows the results for test 2, considering only kernel runtime for
tsp-sat-gpu. For this case, we can observe that again, the kernels of tsp-sat-gpu
runs faster than tsp-sat-seq. However, the performance gain is increased with
the amount of cells 2 created by the system. For 64 membranes, the speedup
is of 2x, but for 2 M cells it is of 8.3x.

5.3. Performance analysis 143

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M
0,1

1

10

100

1000

10000

100000
Sequential simulator

Parallel simulator

Membranes

M
ili

se
co

n
d

s

Figure 5.7: Simulation performance for tsp-sat-seq and tsp-sat-gpu: Test 2
(256 Objects/Membrane)

Finally, we show the speedup achieved by using test 2 of the simulator
tsp-sat-gpu, taking into account also the amount of time consumed by the
data management (allocation and transfer). It is observed that, since the data
management time is fixed for all the sizes (copy the initial multiset and retrieve
the final answer), the speedup exceeds 1 only after 128 K membranes. Systems
with smaller number of cells are executed slower than in the CPU, because of
the data management. However, for very large systems, the speedup is as large
as with only kernels. The maximum speedup we report for this simulator is
given for 4 M cells, up to 10x.

5.3.3 Cell-like vs tissue-like

Next, we compare the two simulators developed for the two solutions to the
SAT problem, using different Membrane Computing model types: cell-like (P
systems with active membranes, family Πam−SAT) and tissue-like (tissue P
systems with cell division, family Πtsp−SAT). The aim here is to study which
model is better suited to be simulated on the GPU.

First of all, we should analyze the differences between them, to better
understand the different behaviors. We highlight the following:

• Computational steps: for a given pair < m,n >, m,n ∈ N , represent-
ing the number of clauses and variables respectively, the P systems of
Πam−SAT (〈m,n〉) take 5n + 2m + 3 steps, and the tissue P systems of
Πtsp−SAT (〈m,n〉) require 2n + 2m + nm + 1. We can state that the

Chapter 5. Parallel simulation of P systems solving SAT 144

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M
0

2

4

6

8

10

12

Number of membranes

S
p

e
e

d
u

p

Figure 5.8: Speedup achieved running Test 2 (256 Objects/Cell) for tsp-sat-gpu
and tsp-sat-seq. GPU data management is also considered.

computation of Πtsp−SAT (〈m,n〉) is longer (in number of steps) than
Πam−SAT (〈m,n〉), if m > 3 + 2

n
' 3.

• Phases: the cell-like simulators are based on 4 phases (implemented in 3
kernels), whereas the tissue-like simulators uses 5 phases (implemented
in 4 kernels).

• Memory requirements: each membrane in the cell-like simulators is repre-
sented by a number of 32-bit integers equals to |cod(ϕ)|, but the tissue-
like simulators use for them 2n + 4 + |cod(ϕ)|. Thus, the tissue-like
simulators use, in total, (2n+ 4)2n bytes more.

Our first comparison is made for the sequential simulators. Figure 5.9
shows the speedup achieved by comparing tsp-sat-seq against am-sat-seq. We
can note that the tsp-sat-seq simulator outperforms the cell like version, for any
instance. The speedup gets frozen in 3.2x for more than 2k cells/membranes
(from now, we will refer to membranes for both simulators). Although tsp-sat-
seq has been optimized, this result is still interesting.

Finally, we compare the GPU simulators for both solutions. We can see,
in Figure 5.10, that the kernels of am-sat-gpu outperforms tsp-sat-gpu, even
using optimizations for the last one. This improvement implies a speedup of
2.9x. However, if we take into account the data management in the GPU, we
can see that the behavior of them is almost similar. The simulator am-sat-
gpu runs just a bit faster, but for 2M membranes, the speedup is almost 2x.
This makes us to think that the data implementation of am-sat-gpu can be

5.4. Characterizing the simulation on the GPU 145

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M
2

2,2

2,4

2,6

2,8

3

3,2

3,4

Number of membranes

S
p

e
e

d
u

p

Figure 5.9: Achieved speedup running Test 2 (256 Objects/Membrane) for the
sequential tissue-like (tsp-sat-seq) against the cell-like (am-sat-seq) simulator.

improved, since it requires an inferior amount of data. Recall that am-sat-gpu
has not any GPU oriented optimizations, as tsp-sat-gpu.

We finish this comparison by reporting their corresponding maximum speed-
up, which is of 63x and 10x for the cell-like and tissue-like simulators, respec-
tively. Therefore, using the GPU for the cell-like solutions allows to get better
performance gain.

5.4 Characterizing the simulation on the GPU

In this section, we characterize the simulations described in this chapter. We
will analyze two aspects introduced here: ad-hoc (less flexible) simulations,
and simulation of cell-like and tissue-like models. These aspects are depicted
below:

• Ad-hoc simulation: we achieve better performance by using a specialized
(less flexible) simulator for the family of P systems Πam−SAT, compared
with the general simulator am-gpu (Chapter 4). The general simulator
has to check all situations that may occur in a P system with active
membranes. For example, it has to control that a division rule and a
dissolution rule cannot be selected at the same time in a membrane.
However, the specific simulator can avoid generalities and improve the
performance of the simulator by adapting the simulation algorithm, since
it only works with a family of P systems. For example, it can be easily

Chapter 5. Parallel simulation of P systems solving SAT 146

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M
0

0,5

1

1,5

2

2,5

3

3,5

Speedup (w/ data)

Speedup (w/o data)

Number of membranes

S
p

e
e

d
u

p

Figure 5.10: Speedup achieved running Test 2 (256 Objects/Membrane) for
both parallel tissue-like (tsp-sat-gpu) and cell-like (am-sat-gpu) simulators,
considering or not considering the data management.

demonstrated that, for the family Πam−SAT, a division rule and a send-in
rule cannot ever be selected simultaneously in any membrane. In addition
of adapting the algorithm, the data structures can be also optimized.
For example, in this simulator, it is not necessary to maintain a data
structure for rules, since the simulation algorithm already implements
them in code. This way, we report up to 94x of speedup between the
simulator am-sat-gpu and am-sat-seq (only considering kernels runtime),
and up to 10x between both GPU codes (am-sat-gpu and am-sat-gpu-
hyb). For tsp-sat-gpu and tsp-sat-seq, we report up to 10x.

• Simulation of cell-like vs tissue-like models : from the comparison of the
simulators for the cell-like and the tissue-like solutions, we have observed
that the cell-like simulations are better carried out by the GPU. Thus,
we have identified two properties that have helped to improve the per-
formance of these GPU simulators:

– Charges : the model of P systems with active membranes associates
charges to the membranes. They can be used to store information
over the computation as well. If they are considered, and well used,
for a given solution (e.g. for SAT to encode the truth assignment),
less memory would be required (remind that the tissue-like simula-
tor requires 2n(2n + 4) bytes more). Actually, having charges can
help to improve the object density within membranes (described

5.4. Characterizing the simulation on the GPU 147

in Chapter 4). The information encoded by charges can save ob-
jects that may or not may appear simultaneously in membranes,
what saves at the same time memory to represent them, and so, the
number of threads to launch, working with much less objects.

– Rules with no cooperation: the model of P systems with active mem-
branes defines rules with no cooperation, that is, the number of ob-
jects appearing in their left-hand sides is always 1. This property
helps threads to be assigned to each rule, what also means to work
with each object in parallel. Rules permitting cooperation (as in tis-
sue P systems) require to take care of which objects are accessed by
the rules (and threads). However, it is interesting to study each type
of rule separately. Recall that for the general simulator am-gpu, the
constraints of send-in, send-out, division and dissolution rules have
to be considered for each membrane, what degrades parallelism on
the GPU (it implies using local locks). While in the model of tissue
P systems these restrictions are not presented, a general simulator
for tissue models (tsp-gpu) can be implemented in a future to study
what is better: usage of charges but restricting types of rules, or
not using charges (i.e. more objects per membrane) and more (but
less restrictive) parallel rules.

In this chapter we show two different results. On one hand, we demonstrate
that GPUs are well suited to simulate P system due to the highly parallelism
that they present in its architecture. Although the GPU is not a cellular
machine, its features help the researches to accelerate their simulations. On
the other hand, if the P systems based solutions are redesigned to be adapted
to the GPU programming model, the performance of the simulations can be
also improved.

Nevertheless, the simulation of this kind of P systems that creates an expo-
nential workspace to achieve polynomial time is memory bounded. This bot-
tleneck limits the size of the NP-complete problem instances whose solutions
can be successfully simulated. Moreover, the simulation of this exponential
workspace is performed in exponential time, since no real parallelism like in P
systems is available. However, we can reduce this restriction to obtain better
simulation times, using the highly parallelism that the GPU provides.

Chapter 5. Parallel simulation of P systems solving SAT 148

5.5 Optimizing the parallel simulator on GPUs

Our simulator for the family Πam−SAT has been further optimized to take ad-
vantage of modern GPU architectures [43, 46]. This was conducted through a
close collaboration with specialized parallel computer architecture researchers.
Next we summarize the major improvements developed, and the performance
comparison.

We start by introducing a new design for the first cell-like simulator (de-
tailed in Section 5.1). This helps to solve some bottlenecks by using the tiling
technique. Then, we show that using a newer GPU architecture, NVIDIA’s
Fermi, we can achieve also a bit better performance.

5.5.1 A new design of the parallel simulator

We recall that the family Πam−SAT gathers all computational features of rec-
ognizer P systems with active membranes. Among them, we highlight the
theoretical double level of parallelism and non-determinism that makes P sys-
tems a computational tool to solve NP-complete problems in polynomial (often
linear) time.

The first level of parallelism is found among membranes, that is, by execut-
ing rules inside each membrane in parallel along the computation (see Figure
5.11). The second level of parallelism is found within each membrane (see Fig-
ure 5.12). That way, the first level is coarse-grained and can be characterized
by an inter-task parallelism and exploited by the number of processors avail-
able in a parallel system, whereas the second level of parallelism is fine-grained
and intra-task to be exploited by the number of cores within each processor,
either on multi- or many-core architectures.

The main idea of this design is to distribute the exponential amount of
membranes among the processors of a parallel system. This distribution is
performed in the Generation phase, in such a way that each processor will
execute Generation, Synchronization, Check-out and Output phases over a
portion of membranes in parallel.

Figure 5.11 shows the membrane parallelism for the execution of the Gen-
eration phase in a sequential as well as in a parallel architecture with four
Compute Elements (CE). In a parallel architecture, a set of membranes is
initially created by the master process, whose size is equal to the number of
CEs available during the execution. Then, a membrane is sent to each CE by
the master processor. This step is called Parallel Preprocessing (PP), and it
is developed just before the generation phase starts the computation on each

5.5. Optimizing the parallel simulator on GPUs 149

CE. This CE is represented by a processor which can later be eventually
decomposed into multi- or many-cores when exploiting intra-task parallelism.

Furthermore, Figure 5.11 shows that it is known which membrane generates
each one and also in which computational step. For instance, membrane two is
always generated by membrane one in the first computational step, membrane
three is always generated by membrane one in the second step, and so on.
Finally, each node sends the partial response back to the master in order to
produce the final result of the P system.

Figure 5.12 shows the second level of parallelism, internal to membranes.
Once the initial data has arrived to the CE after the Parallel Preprocessing
step, it starts the simulation of the phases. Then, resources on each CE can
be exploited at its peak to cooperate for speeding up the computation of the
generation and check-out phases. These resources are essentially hardware
cores, but fortunately GPUs are many-core which can handle this level of
parallelism at large scale using hundreds of streaming processors.

5.5.2 GPU optimization by tiling and dynamic queuing

In our first version of the GPU simulator (am-sat-gpu), the Generation phase is
encoded as a CUDA kernel, and it starts right after the Parallel Preprocessing
step. Therefore, each membrane is assigned to each block (which is considered
to be a CE). Once membranes have been generated, the Check-out phase
starts its execution in a different kernel. Each thread block loads a membrane
from global memory, and then each thread checks the rules associated with
this phase (Figure 5.1). For these phases, all threads within a CUDA thread
block cooperate with coalesced access to device memory (threads of the same
warp access the same memory segment either for reading or writing).

Blocking can be exploited on GPUs, taking advantage of the on-chip shared
memory by using tiles and dynamic queues with the aim of increasing the
bandwidth to device memory. Tiles decompose the computational domain
into a number of independent chunks whose size fits within the shared memory,
and they are implemented using the concept of CUDA blocks. This way, the
whole data structure can benefit from this high-speed and low-latency memory
even though it represents just a tiny fraction of the algorithm requirements.
Furthermore, dynamic queues schedule jobs at run-time depending on the ever
changing workload supported by each GPU multiprocessor, always assigning
the next computational block to the less overloaded one.

The simulation has to perform a Block Preprocessing (BP) step before
starting the generation phase itself, which is implemented through a CUDA

Chapter 5. Parallel simulation of P systems solving SAT 150

1 2

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

CE1

CE2

CE3

CE4

5

6

7

8

1

2

3

4

CE1

CE2

CE3

CE4

9

10

11

12

5

6

7

8

13

14

15

16

Sequential Membranes layout

3 41 2

Step 1

Step 4

Step 3

Step 4

Parallel Membranes layout

Step 3

Step 2

Parallel Preprocessing (PP)1 2

3 41 2 Step 2

Step 1
 by the master process

Generation

Generation

Figure 5.11: Sequential and parallel membranes generation on four Compute
Elements (CE). The Parallel Preprocessing (PP) is required to set up the
parallel execution prior to its starting on each CE. This CE is represented
by a processor (die) which can later be eventually decomposed into multi- or
many-cores depending on target architecture.

5.5. Optimizing the parallel simulator on GPUs 151

P system

Sequential Membrane Generation

Parallel Membrane Generation

P system

Membrane 1

a b c f e g h z

Membrane 0

a b c f e g h z

Multiset of
Objects

Multiset of
Objects

Membrane 1

a b c f e g h z

Membrane 0

a b c f e g h z

Multiset of
Objects

Multiset of
Objects

Thread 0 Thread 0

Step 1

Step 1

Thread 0 Thread i Thread n

Figure 5.12: Sequential and parallel execution when creating the exponential
workload shows the second level of parallelism in P systems, that internal to
membranes. P system rules are applied running on hardware cores, and many-
core GPUs translates this into massive parallelism using hundreds of cores.

Chapter 5. Parallel simulation of P systems solving SAT 152

kernel where a set of membranes are partially created, placing them apart
from each other at a block size distance. This can be considered the GPU
implementation of the PP. An additional kernel is created at the end of the
simulation to perform the generation locally to each block, followed by the
Check-out phase. Each thread on a thread block cooperates for an efficient
load from global memory to shared memory of the initial membrane generated
by the Block Preprocessing step.

5.5.3 Parallel simulation on multi-GPU systems

Within a GPU-based cluster, GPUs cannot interact with each other, and a
CPU process has to be created to monitor each GPU independently. The
master process creates four CPU threads or contexts (for four GPUs plugged
in a system) to invoke the execution on each GPU and manage its resources (i.e
allocate device memory, move data to/from the GPU, and so on). Resources
created on each CPU thread are not accessible by any other thread, and there
is no explicit initialization function for the runtime API [5], which makes hard
to measure time in a reliable manner, particularly on multi-GPU environments.

For the GPU case, the master process performs the Parallel Preprocessing
step as usual, generating as many membranes as GPUs are involved in the
simulation, and performing the assignment. At a starting point, the simula-
tion barely exploits GPU resources because the computation begins with a
single CUDA thread block (which represents the membrane generated by the
Parallel Preprocessing step). However, the number of CUDA thread blocks
grows exponentially along with the number of membranes, and GPU resources
are fully utilized at early stages of the simulation.

5.5.4 Performance analysis

Table 5.1 summarizes the performance for all software implementations and
hardware enhancements exploited through parallel strategies deployed along
this section. For the smallest benchmark, GPU performance achieves an im-
pressive speedup factor which exceeds three orders of magnitude, and this
factor even increases with the problem size. Acceleration reaches its peak for
the highest number of membranes that can fit into video memory given our
hardware constraints (that is, the n = 21 variables case).

In general, all speedups increase with the problem size, being more remark-
able the scalability shown by the multiprocessor version: 3.87x when moving
to 4 GPUs means that are barely 3% below the optimal line. This outstanding

5.5. Optimizing the parallel simulator on GPUs 153

Table 5.1: Summary for the execution times (in milliseconds) and speed-up
attained by the set of implementations outlined in this section.

Code Number of membranes (problem size)
version 213 215 217 219 221

1. CPU baseline simulator 800.47 3382.49 14211.80 59521.80 247467.00
2. Running on Tesla C1060 GPU 0.82 2.90 11.16 44.69 171.04
3. Running on Tesla M2050 GPU 0.62 2.30 8.71 33.16 127.85
4. With tiling on Tesla M2050 0.37 1.24 4.65 18.27 73.23
5. With tiling on 4 Tesla M2050 0.17 0.39 1.26 4.86 18.89
Departure GPU speed-up (2 vs. 1) 976.18x 1166.37x 1273.45x 1331.88x 1446.83x
Speedup on M2050 GPU (3 vs. 2) 1.32x 1.26x 1.28x 1.34x 1.33x
Speedup with tiling (4 vs. 3) 1.67x 1.85x 1.87x 1.81x 1.74x
Speedup on 4 GPUs (5 vs. 4) 2.17x 3.17x 3.69x 3.75x 3.87x
Overall speed-up factor (5 vs. 1) 4708x 8673x 11279x 12247x 13100x

behavior can find a good rationale in the overall amount of cache available for
running the code, which is multiplied by a factor of four in a memory-bound
algorithm like ours. On the down side, one might expect more from the new
Tesla M2050 GPU: 448 cores running at 1.147 GHz deliver 513 GFLOPS, while
those 240 cores of the Tesla C1060 running at 1.296 deliver 311 GFLOPS. Ana-
lytically, we have a 1.65x speed-up factor in raw processing power; in practice,
however, our improvement fluctuates around 1.30x, confirming the theory that:

1. P systems simulations are not that demanding on arithmetic intensity.

2. The bottleneck lies more on memory accesses.

Considering the largest problem size and amount of parallelism we were
able to expose, we reach a minimum execution time of 18.89 milliseconds on
four Tesla M2050 GPUs, each endowed with 448 cores for a total of 1792 GPU
streaming cores. This represents an improvement factor of 13100x with respect
to the departure time given by the original simulator, that is, more than four
orders of magnitude. In other words, a P system simulation which would take
an entire day on the Intel Xeon CPU can be processed in 6.5 seconds within
our Tesla S2050 GPU Computing System.

The multi GPU environment shines with a linear speed up along with the
number of GPUs. This result is expected as the computational workload is
evenly distributed on GPUs. Furthermore, there is more room on each GPU
memory space, so higher workloads may be executed.

Chapter 5. Parallel simulation of P systems solving SAT 154

5.6 Parallel simulation on supercomputers

In [42], an alternative parallel simulator for the family Πam−SAT is intro-
duced. This simulator is implemented for clusters, which normally contains
shared memory machines conforming distributed memory systems. The spe-
cific cluster used for the experiments was the supercomputer installed at the
Supercomputing Center of the Region of Murcia (Spain). The developed sim-
ulators, one focused on shared memory, and the other on distributed memory,
were designed following the strategies explained in Section 5.5.

The simulator on the shared memory system was implemented using Open-
MP. The shared memory space is equally distributed among the processes
considered, and the master process performs the Parallel Preprocessing step
by creating as many membranes as threads are involved in the computation.

The simulator on the distributed memory system was programmed using
MPI. In this case, each process allocates memory on its own and private mem-
ory space. The master process also performs the Parallel Preprocessing step,
creating as many membranes as number of processors involved in the compu-
tation. Then, membranes are distributed along the processors by using MPI.
Once the initial data arrives to each node, the P system computation is devel-
oped as in the shared memory case.

Using this technique, the parallel efficiency of the shared memory architec-
ture is improved, but the OpenMP simulator reaches the lowest performance
as the pressure on shared resources increases with the number of cores. On the
positive side, this was the only platform able to execute all benchmarks due to
a higher memory availability. The distributed memory system exhibits good
scalability with the number of processors, which can be partially explained by
the low number of communications required by the simulations.

This work concludes that GPUs constitute a good platform to simulate P
systems solving SAT in terms of execution time. The two levels of parallelism
that P systems exhibit, one at region level and another one at system level,
were exploited by the GPU implementation to reach speedup factors around
10x versus distributed memory and around 40x versus shared memory when
four processors are used on a given platform.

5.7 Conclusions

In this chapter we have described the PCUDASAT framework (a subproject
of PMCGPU [17]). It includes simulators specially designed for a family of P
systems with active membranes solving SAT in linear time (Chapter 1):

5.7. Conclusions 155

• A sequential simulator : it is written in C++, and it is optimized for
this family of P systems. The rules of the P systems are represented
directly in source code, so the given input is only the P system input
multiset; that is, the code of the formula to be processed. Therefore, the
simulator acts as a SAT solver but with a Membrane Computing based
engine. The simulation algorithm is based on the four phases identified in
these P systems computation: Generation, Synchronization, Check-out
and Output. Each phase is executed separately.

• A parallel simulator : it is based on CUDA, and works similar than the
sequential simulator. Again, the double parallelism of these P systems
is represented in the double parallelism of GPUs; that is, each CUDA
thread block works with an elementary membrane, and each CUDA
thread is assigned to an object of the input multiset. Looking at the
SAT solution level, each thread block is assigned to a truth assignment,
and each thread to each literal of the CNF formula. Each phase of the
simulation algorithm is implemented on separated CUDA kernels.

• A hybrid parallel simulator : based on CUDA, this simulator is similar to
the previous parallel simulator. However, the Check-out phase kernel is
substantially different. The solution made by the P systems is sequential
regarding the clauses (each one is checked at a time). The solution in
this simulator is parallel, using GPU techniques. Therefore, the simulator
does not fully reproduce the P system computation at this phase, but the
speedup is much improved. Moreover, further optimizations were made
in the other phase kernels.

The provided simulation framework is therefore inflexible (only supports
one family of P systems), but thanks to this, the performance and scalability
is much increased. Moreover, further development was made for new GPU
architectures (Fermi), multi-GPU systems and clusters. Experiments showed
that P systems simulations are not that demanding on arithmetic intensity,
and that the bottleneck lies more on memory accesses.

Chapter 5. Parallel simulation of P systems solving SAT 156

Part III

Parallel Simulation applied to
Computational Models in

Biology

157

“Essentially, all models are wrong, but some are useful.”

George E. P. Box

“Wolves directly affect the entire ecosystem, not just moose pop-
ulations, their main prey, because less moose equals more tree
growth.”

Rolf Peterson, Purdue University

6
Simulation Algorithms for Population

Dynamics P Systems

Membrane Computing covers both the study of the theoretical basis for the
models as well as the applications of the model to various fields including com-
putational Systems Biology [47, 152, 128, 121, 51], and Ecosystem Dynamics
[51, 34, 53]. Population Dynamics P Systems, or PDP systems, is a P system
based framework for modeling population dynamics [50, 33, 99]. It enables si-
multaneous evolution of a high number of species, as well as the management
of a large number of auxiliary objects. It also facilitates model development
that can be easily interpreted by simulation software.

So far, several algorithms have been developed in order to capture the se-
mantics defined by the modeling framework. A comparison on the performance
of some of these algorithms can be found in [52]. These algorithms select rules
according to their associated probabilities, while keeping the maximal paral-
lelism semantics of P systems.

In this chapter we introduce the formal framework for Population Dynamics
modeling, or PDP systems (Section 6.1). We then discuss about the simula-
tion algorithms for this framework, and also provide the description of each
one developed to date. The first simulation algorithm was called BBB (Bi-
nomial Block Based algorithm), and it is described in Section 6.4. The two
new algorithms we have defined are called DNDP (Direct Non-Deterministic

159

Chapter 6. Simulation Algorithms for Population Dynamics P Systems 160

distribution with Probabilities) (Section 6.5) and DCBA (Direct distribution
based on Consistent Blocks Algorithm) (Section 6.6). Finally, they both are
experimentally validated through using a model for a real ecosystem related
to the Bearded Vulture in the Pyrenees 6.7.

6.1 Population Dynamics P systems

Population Dynamics P systems are a variant of multienvironment P systems
with active membranes [51], a model with a network of environments, each of
them containing a P system where features such as electrical charges associated
with membranes which describe specific properties in a better way, are used.
All P systems share the same skeleton, in the sense that they have the same
working alphabet, the same membrane structure and the same set of rules.
Nevertheless, in this framework each rule has associated a probability function
which can vary for each environment.

Definition 6.1. A Population Dynamics P system (PDP) of degree (q,m),
q,m ≥ 1, taking T ≥ 1 time units, is a tuple

Π = (G,Γ,Σ, T,RE, µ,R, {fr,j : r ∈ R, 1 ≤ j ≤ m}, {Mi,j : 1 ≤ i ≤ q, 1 ≤ j ≤ m})

where:

• G = (V, S) is a directed graph. Let V = {e1, . . . , em}.

• Γ and Σ are alphabets such that Σ $ Γ.

• T is a natural number.

• RE is a finite set of rules of the form (x)ej
pr−−−→(y1)ej1 · · · (yh)ejh , where

x, y1, . . . , yh ∈ Σ, (ej, ejl) ∈ S, 1 ≤ l ≤ h, and pr : {1, . . . , T} −→ [0, 1]
is a computable function such that for each ej ∈ V and x ∈ Σ, the sum of
functions associated with the rules of the type (x)ej

pr−−−→(y1)ej1 · · · (yh)ejh
is the constant function 1.

• µ is a rooted tree labeled by 1 ≤ i ≤ q, and by symbols from the set
EC = {0,+,−}.

• R is a finite set of rules of the form u[v]αi → u′[v′]α
′
i , where u, v, u′, v′ ∈

Mf (Γ), u+ v 6= ∅, 1 ≤ i ≤ q and α, α′ ∈ {0,+,−}, such that there is no
rules (x)ej

pr−−−→(y1)ej1 · · · (yh)ejh and u[v]αi → u′[v′]α
′
i having x ∈ u.

6.1. Population Dynamics P systems 161

• For each r ∈ R and 1 ≤ j ≤ m, fr,j : {1, . . . , T} −→ [0, 1] is a computa-
ble function such that for each u, v ∈Mf (Γ), 1 ≤ i ≤ q, α, α′ ∈ {0,+,−}
and 1 ≤ j ≤ m, the sum of functions fr,j with r ≡ u[v]αi → u′[v′]α

′
i , is

the constant function 1.

• For each i, j (1 ≤ i ≤ q, 1 ≤ j ≤ m), Mi,j is a finite multiset over Γ.

A Population Dynamics P system defined as above can be viewed as a set
of m environments e1, . . . , em interlinked by the edges from the directed graph
G. Each environment ej only can contain symbols from the alphabet Σ and
all of them also contain a P system skeleton, Πj = (Γ, µ,M1,j, . . . ,Mq,j,R),
of degree q, where:

(a) Γ is the working alphabet whose elements are called objects.

(b) µ is a rooted tree which describes a membrane structure consisting of q
membranes injectively labeled by 1, . . . , q. The skin membrane (the root
of the tree) is labeled by 1. We also associate electrical charges from the
set {0,+,−} with membranes.

(c) M1,j, . . . ,Mq,j are finite multisets over Γ, describing the objects initially
placed in the q regions of µ, within the environment ej.

(d) R is the set of evolution rules of each P system. Every rule r ∈ R in Πj

has a computable function fr,j associated with it. For each environment
ej, we denote by RΠj

the set of rules with probabilities obtained by
coupling each r ∈ R with the corresponding function fr,j.

Therefore, there is a set RE of communication rules between environments,
and the natural number T represents the simulation time of the system. The
set of rules of the whole system is

⋃m
j=1RΠj

∪RE.
The semantics of Population Dynamics P systems is defined through a

non deterministic and synchronous model (in the sense that a global clock is
assumed). Next, we describe some semantics aspects of these systems.

An evolution rule r ∈ R, of the form u[v]αi → u′[v′]α
′
i , is applicable to

each membrane labeled by i, whose electrical charge is α, and it contains the
multiset v, and its parent contains the multiset u. When such rule is applied,
the objects of the multisets v and u are removed from membrane i and from its
parent membrane, respectively. Simultaneously, the objects of the multiset u′

are added to the parent membrane i, and objects of multiset v′ are introduced
in membrane i. The application also replaces the charge of membrane i to
α′. In each environment ej, the rule r has associated a probability function

Chapter 6. Simulation Algorithms for Population Dynamics P Systems 162

fr,j that provide an index of the applicability when several rules compete for
objects. In this model, the cooperation degree is given by |u|+ |v|.

A rule r ∈ RE, of the form (x)ej
pr−−−→(y1)ej1 . . . (yh)ejh is applicable to

the environment ej if it contains object x. When such rule is applied, object x
passes from ej to ej1 , . . . , ejh possibly modified into objects y1, . . . , yh respec-
tively. At any moment t (1 ≤ t ≤ T) for each object x in environment ej, if
there exist communication rules of the type (x)ej

pr−−−→(y1)ej1 . . . (yh)ejh , then
one of these rules will be applied. If more than one such a rule can be applied
to an object at a given instant, the system selects one randomly, according to
their probability which is given by pr(t).

For each j (1 ≤ j ≤ m) there is just one further restriction, concerning the
consistency of charges: in order to simultaneously apply several rules of RΠj

to
the same membrane, all the rules must produce the same electrical charge in
the membrane in which to be applied. Thus, we will say that the rules of the
system, in this computational framework, are applied in a non-deterministic,
maximally consistent and parallel way.

An instantaneous description or configuration of the system at any instant
t is a tuple of multisets of objects present in the m environments and at each
of the regions of each Πj, together with the polarizations of the membranes in
each P system. We assume that all environments are initially empty and that
all membranes initially have a neutral polarization. We assume a global clock
exists, synchronizing all membranes and the application of all the rules (from
RE and from RΠj

in all environments).
In each time unit we can transform a given configuration in another config-

uration by using the rules from the whole system as follows: at each transition
step, the rules to be applied are selected in a non–deterministic way according
to the probabilities assigned to them, and all applicable rules are simultane-
ously applied in a maximal way. In this way, we get transitions from one
configuration of the system to the next one.

A computation is a sequence of configurations such that the first term of
the sequence is the initial configuration of the system, and each non-initial
configuration of the sequence is obtained from the previous configuration by
applying rules of the system in a maximally consistent and parallel manner
with the restrictions previously mentioned.
Remark: PDP systems verify four properties (relevance, understandability,
extensibility and computability) that are desirable to have any computational
model [142].

• Relevance: a computational model must be relevant, capturing the es-
sential features of the investigated system. It should present a unifying

6.2. Applications to real ecosystems 163

specification of the different components that constitute the system, the
interaction between them, their dynamic behavior as well as the physical
structure of the system itself.

• Understandability: the abstract formalisms used to model complex sys-
tems should correspond to the informal concepts and ideas which are
used by experts in the population under study.

• Extensibility: in a computational model, we should be able to easily
identify the different components and characteristics of the systems that
are essential in the context of the management or scientific problem to
be solved or comprehended [85]. So they can be rearranged, duplicated,
composed, etc. in an easy way to produce other models. Models of com-
plex systems should also be extensible to higher levels of organizations.

• Computability and mathematical tractability: it should be possible to
implement or simulate a model in a computer so that we can run simula-
tions to study the dynamics of the system by manipulating experimental
conditions in the model. In this manner we can experimentally validate
the model and also study the behavior of the system under different
scenarios of interest. The computability of the model also allows us to
perform model checking and similar techniques to infer and study quali-
tative and quantitative properties of the system in an automatic way. In
this respect, the model should be mathematically tractable. That is, it
should be possible to perform mathematical analysis on it.

6.2 Applications to real ecosystems

Recent research works have been focused on using P systems as a modeling
tool for biological phenomena, within the framework of Computational Systems
Biology [25, 26, 47, 121, 128, 152] and Population Dynamics [51, 33, 50], being
complementary and an alternative to more classical approaches (i.e. ODEs,
Petri Nets, etc.). They are used as a formalism for describing, and simulating,
the behavior of biological systems, with the advantage of providing a discrete
and modular formal model [51].

In [33], a P systems based general framework for modeling ecosystems
dynamics is presented. This computational modeling has been used for real
ecosystems, such as the scavenger birds in the Catalan Pyrenees [34] and the
zebra mussel in Ribarroja reservoir [33]. These P system based models are able
to analyze the simultaneous evolution of a high number of species, and they

Chapter 6. Simulation Algorithms for Population Dynamics P Systems 164

can also handle a large number of auxiliary objects representing e.g. grass,
biomass, etc.

The aim of this P system based modeling tool is to help the ecologists to
adopt a priori management strategies for the real system by executing vir-
tual experiments. However, since no in vivo nor in vitro implementations of
P systems are yet available, the computation and analysis of these models is
currently performed by simulators. Thus, the design of simulators and other
related software tools becomes a critical point in the process of model vali-
dation, as well as for virtual experimentation. Indeed, after running virtual
experiments it is often required to add or remove some ingredients or charac-
teristics from the initial blueprint of the model. These modifications are quite
simple to implement thanks to the modularity of these models.

The modeling framework mentioned above had an associated software tool,
called MeCoSim, providing, among others, the following features: a graphical
user interface (users be ecologists or model designers), definition of model and
ecosystem’s parameters, execution of simulations, creation of statistical data in
form of tables, graphs, etc. [125]. The core of this application is pLinguaCore
[70], a software library for Membrane Computing. The models are defined by
plain-text files using P-Lingua specification language. The application loads
that file, configures the corresponding parameters, pLinguaCore to execute,
and collects the results of the simulation.

Inside the pLinguaCore library, many simulation algorithms are defined
for the different supported P system variants. Specifically, for PDP systems,
the implemented simulation algorithms is based on binomial distribution and
blocks of rules. This simulation algorithm is efficient enough only for small
and medium instance sizes, but it lacks maximal consistency application of
rules and calculation of probability functions. This simulation algorithm is
called BBB, and is described in Section 6.4, together with the corresponding
concepts and notions. Two new algorithms were defined for this work, and they
are DNDP and DCBA, described in Section 6.5 and Section 6.6, respectively.

6.3 Simulation algorithms for PDP systems

In order to simulate a P system, we have seen in the previous chapters that it
is necessary to define a simulation algorithm. It has to be able to provide a
representation of the syntactical elements and to faithful reproduce the seman-
tics of the model. We can assume that the syntactical elements refer to all the
data elements of P systems: graph associated membrane structure, multisets

6.3. Simulation algorithms for PDP systems 165

of objects, rules, etc. The semantics of the model refers to how the system
evolve, that is, how rules are applied.

Therefore, the aim of the developed simulation algorithms for PDP systems
is to serve as inference engines to reproduce the semantics of the model, in
a reliable and accurate way. Before introducing the algorithms, we should
note some semantical properties that are desirable on the simulation of PDP
systems. They are defined to adjust the behavior of the models according to
how the experts and designers think about the modeled phenomena. Others
come from the fact that we are actually using P systems and Markov Chains
based probabilistic systems.

• Probabilistic behavior : PDP systems aims to reproduce the stochasticity
of nature processes according to given probabilities. This random be-
havior is directly associated to rules by the number of times they are
going to be applied. To do this, a simulation algorithm should calculate
random numbers, in such a way that each time the system is simulated
the reproduced computation should differentiate (according to the prob-
abilities). Thus, statistical studies over several parallel and independent
simulations should fit the expected mean and variance.

• Resource competition: since their cooperation degree is greater than 1,
rules are utilized to dictate how groups of elements and individuals evolve
in the model. According to the semantics of PDP systems (and the way
experts think on population dynamics), what happens to the same group
of individuals must be predefined, and the probability of each option
has to sum 1. However, the same elements can participate in different
groups, and so, they can participate in different evolutions. This issue
is also known as competition for resources (by the evolution of groups
viewpoint). The behavior for this is not such explicitly specified, and can
be done by several approaches. It is actually the tricky part of simula-
tion algorithms. Some algorithms implement a random way to distribute
the resources. Others assume that nature has a tendency towards pro-
portionally distribute resources to such groups were less elements are
required (the more required, the more energy is needed).

• Maximality of the model : rules are applied in a maximally parallel way, as
traditionally in P systems. This property can, in fact, help to control the
evolution of every element, even if they remain unchanged or disappear.
We will see that, sometimes, an extra phase assuring maximality will be
required.

Chapter 6. Simulation Algorithms for Population Dynamics P Systems 166

• Consistency of rules : the property of maximality is, however, restricted
to those rules that produce consistent states of the system; that is, two
rules producing a different charge to the same membrane cannot be si-
multaneously applied.

We have only mention the most important semantical properties that have
to be captured by the simulation algorithms, but we also desire an extra con-
dition: efficiency. A simulation algorithm that require an exponential growth
of time or space will not be practical. Indeed, we look to procedures that can
help to ecology experts to run their models. However, we will see that the
simulation algorithms can be also implemented in parallel platforms to look
for good performance.

6.4 Binomial Block Based algorithm (BBB)

In this section we describe the first simulation algorithm developed for PDP
systems, presented in [33]. It is also available in the current release of pLin-
guaCore library [70], and it is implemented following a strategy based on the
binomial distribution and blocks of rules.

Let us consider a PDP system of degree (q,m) with q ≥ 1, m ≥ 1, taking T
time units, T ≥ 1, Π = (G,Γ,Σ, T,RE, µ,R, {fr,j : r ∈ R, 1 ≤ j ≤ m}, {Mi,j :
1 ≤ i ≤ q, 1 ≤ j ≤ m}) , as defined in section 6.1. The computation of
the system is a sequence of configurations Ct, 0 ≤ t ≤ T constructed by the
application of rules from R =

⋃m
j=1RΠj

∪RE.
The algorithm introduced in this section is based on the concept of rule

blocks. Next, we will define the related notions with left and right hand sides
(Definitions 6.2 and 6.3), and blocks of rules (Definition 6.4).

Definition 6.2. The left and right-hand sides of the rules are defined as fol-
lows:

(a) Given a rule r ∈ RE of the form (x)ej
p−−−→ (y1)ej1 · · · (yh)ejh where ej ∈

V and x, y1, . . . , yh ∈ Σ:

• The left-hand side of r is LHS(r) = (ej, x).

• The right-hand side of r is RHS(r) = (ej1 , y1) · · · (ejh , yh).

(b) Given a rule r ∈ R of the form u[v]αi → u′[v′]α
′
i where 1 ≤ i ≤ q, α, α′ ∈

{0,+,−} and u, v, u′, v′ ∈ Γ∗:

6.4. Binomial Block Based algorithm (BBB) 167

• The left-hand side of r is LHS(r) = (i, α, u, v). The charge of
LHS(r) is charge(LHS(r)) = α.

• The right-hand side of r is RHS(r) = (i, α′, u′, v′). The charge of
RHS(r) is charge(RHS(r)) = α′.

The charge of LHS(r) is the second component of the tuple (idem for
RHS(r)).

Definition 6.3. Given x ∈ Γ, l ∈ H, and r ∈ R such that LHS(r) =
(i, α, u, v), we say that (x, l) appears in LHS(r) with multiplicity k in any of
the following cases:

• l = i, and x appears in the multiset v with multiplicity k.

• l is the label of the parent membrane of membrane i, and x appears in
the multiset u with multiplicity k.

Definition 6.4. Rules from R and RE can be classified in blocks as fol-
lows: (a) the block associated to (i, α, u, v) is Bi,α,u,v = {r ∈ R : LHS(r) =
(i, α, u, v)}; and (b) the block associated with (ej, x) is Bej ,x = {r ∈ RE :
LHS(r) = (ej, x)}.

Additionally, we also provide the notion of consistent rules and set of rules,
in Definition 6.5 and Definition 6.6, respectively.

Definition 6.5. Two rules, r1 ≡u1[v1]α1
i1
→ u′1[v′1]

α′1
i1

and r2 ≡u2[v2]α2
i2
→

u′2[v′2]
α′2
i2

, are consistent if and only if (i1 = i2 ∧ α1 = α2 → α′1 = α′2)

Definition 6.6. A set of rules is consistent if every pair of rules of the set is
consistent.

That is, the concept of consistent set of rules aims to capture the next
idea: all rules of the set can be simultaneously applied if given the necessary
conditions in the corresponding configuration. Thereby, the semantics of PDP
systems is attributed to require a maximally consistent multiset of selected
rules to move from one configuration to another one in a computation step. In
fact, this multiset determines a consistent set of rules (in this case we will say
that a maximally consistent multiset of applicable rules have been selected).

After the introduction of required notions, the pseudocode of the Binomial
Block Based (BBB) simulation algorithm is shown below (Algorithm 6.4.1).
Roughly speaking, it is divided into two main phases: selection and execution.

Chapter 6. Simulation Algorithms for Population Dynamics P Systems 168

In the first one, the rules are selected, determining the number of times that
they will be applied in the simulated step, according to their left-hand sides
and the available objects in the configuration. In the second phase, the chosen
rules are applied the elected number of times by adding the multisets of the
right-hand side to the configuration, and possibly changing the polarization of
membranes.

Algorithm 6.4.1 BBB MAIN PROCEDURE

Input: A PDP system of degree (q,m) with q,m ≥ 1, and T ≥ 1.

1: for t← 0 to T − 1 do
2: Rsel ← SELECTION PHASE (Ct, R) . (Algorithm 6.4.2)
3: Ct+1 ← EXECUTION PHASE (Ct, Rsel) . (Algorithm 6.4.3)
4: end for

The input data for selection phase consists of the configuration in time t,
Ct, and the set of defined rules R. The output data of this stage is a multiset
of the form Rsel = {〈r, nr〉}, where r ∈ R and nr ∈ N is the number of times
to be executed. Note that adding new objects before finishing selection phase
could mislead the algorithm yielding inconsistent states, since the algorithm
could use such new objects for triggering rules of the PDP system that were
not supposed to be applied until the next transition step. The pseudocode of
the selection phase is as shown in Algorithm 6.4.2.

The selection mechanism starts from the assumption that rules in R can
be classified into blocks of rules having the same left-hand side, following the
definitions 6.2 and below. Recall that, according to the semantics of the model,
the sum of probabilities of all the rules from a block is always equal to 1 – in
particular, rules with probability equal to 1 form individual blocks. Note that
rules with overlapping (but different) left-hand sides are classified in different
blocks.

The rules selection mechanism iterates through the randomly ordered set
of blocks of rules, and within each block, rules are selected in a maximal way
(i.e. they will consume as many objects from the configuration as possible).
More precisely, given a block, the number of times that a rule r is applied is
determined according to a binomial distribution B(N, pr) (see Section 7.5.2
for further information), where N is the number of copies of the multisets in
LHS(r) contained in the configuration, and pr is the probability associated
with r.

In order to guarantee that we do not consume more resources than what
it is available, after determining the number of applications for the first rule

6.4. Binomial Block Based algorithm (BBB) 169

Algorithm 6.4.2 BBB SELECTION PHASE
1: Rules from R = RE ∪RΠj , 1 ≤ j ≤ m are clustered into blocks Bl according to

Definition 6.4.
2: Let Fb(N, p) be a function that returns a random natural number using the

binomial distribution B(N, p).
3: A random order on the family of all blocks of rules is considered.
4: for all blocks of rules Bl = {r1, . . . , rs}, according to the selected random order

do
5: A random order on the rules {r1, . . . , rs} is chosen.
6: (h, α, u, v)← l and cr1 , . . . , crs are the probabilistic constants of {r1, . . . , rs}.
7: N ← max{n : rn1 is applicable to configuration Ct}.
8: if N > 0 then
9: d ← 1

10: for k ← 1 to s− 1, according to the selected order do
11: crk ←

crk
d

12: nrk ← F (N, crk)
13: N ← N − nrk
14: q ← 1− crk
15: d ← d ∗ q
16: end for
17: nrs ← N
18: for k ← 1 to s do
19: Ct ← Ct − nrk ∗ LHS(rk)
20: Rsel ← Rsel ∪ 〈rk, nrk〉
21: end for
22: end if
23: end for
24: return Rsel

Algorithm 6.4.3 BBB EXECUTION PHASE
1: for all 〈r, n〉 ∈ Rsel do
2: if n > 0 then
3: Ct ← Ct + n ∗RHS(r)
4: Update charges of membranes from Ct using RHS(r)
5: end if
6: end for
7: return Ct

Chapter 6. Simulation Algorithms for Population Dynamics P Systems 170

of the block (nr = B(N, pr)), the first parameter of the binomial distribution
is reduced so that for the next rule the maximum number of applications
matches the available objects (N ← N − nr). This is done for all rules in
the block (randomly ordered) except for the last one, which skips the binomial
distribution and takes directly all the remaining applications. It is worth noting
that this process is equivalent to calculating a multinomial distribution.

When the selection phase finishes, it returns the multisetRsel containing the
applicable rules and the number of times they will be executed in the simulated
step. Execution phase (Algorithm 6.4.3) iterates through the selected rules,
and adds the corresponding right-hand sides to the configuration (taking into
account the number of applications).

This simulation algorithm is useful for the majority of models, such as
[34, 33]. However, it has several disadvantages that restrict the P systems
models to be correctly simulated:

• It does not handle rules with intersections on their left-hand side (object
competition). Rules with partial (no total) overlapping on their left-hand
sides are classified into different blocks, so the common objects will not
be distributed since these blocks are maximally executed.

• It does not check the consistency of charges in the selection of rules. As
seen in Section 6.1, rules are executed in a maximally consistent way. If
there are rules changing the charge of a membrane, and others changing
to a different one, they cannot be executed in the same step. Fixing one
value to the charge, all the rules consistent to it must be, if possible,
executed.

• It does not evaluate probabilistic functions related to rules. Only con-
stant probabilities are considered, what is not the case of the new P
systems based models.

These constraints lead to develop new simulation algorithms, looking for
flexibility on the semantics to simulate and providing supplementary features
for the new requirements of models (maximal consistency and probabilistic
functions).

6.5. Direct Non-Deterministic distribution with Probabilities (DNDP) 171

6.5 Direct Non-Deterministic distribution with

Probabilities algorithm (DNDP)

In this section we describe the pseudocode of one of our proposed simulation
algorithms for PDP systems. It is called DNDP, which comes from the inspi-
ration on the DND algorithm [116], and the extension for probabilities. The
input is a PDP system of degree (q,m), taking T time units. The algorithm
simulates only one computation of the PDP system (actually, only T transition
steps), by executing rules in a non-deterministic maximal consistent parallel
way.

6.5.1 Inspiration: Direct Non-deterministic Distribu-
tion algorithm (DND)

The algorithm to develop has to solve the restrictions mentioned above: object
competition, maximal consistency and calculation of probability functions, and
possibly improve the performance. In order to solve the first two points, a
solution is to assure the object distribution to the rules (according to the
probabilities) and maximal execution.

In [116], V. Nguyen et al. introduced an algorithm performing non-deter-
ministic, maximally parallel object distribution for transition P systems, and
its hardware implementation. Assuming that it is possible to have more than
one solution to the object distribution problem, several approaches are also
analyzed:

• Indirect approaches: These approaches consider both solutions and non-
solutions to the problem in the searching process. For example, the
Incremental Approach constructs a solution starting from a non-solution.

• Direct approaches: These approaches only consider solutions in the ex-
ploration process. For example, the Direct Non-deterministic Distribu-
tion algorithm (DND) constructs an object distribution in one step, with
a possible second step to fix the maximal parallelism. In order to do that,
the algorithm executes two phases:

– Forward phase: it is a loop iterating the rules of a region in a random
order, choosing a random value for each and storing it for the next
rules that can have intersections.

Chapter 6. Simulation Algorithms for Population Dynamics P Systems 172

– Backward phase: it is a loop iterating the rules of such region in the
previous random order, checking if there exists more applications
to the rules, and assigning that number to each.

It can be considered that the forward phase implements a non-deterministic
object distribution, and the backward phase makes the maximal parallelism,
both selecting the rules individually (without using blocks). Therefore, the
idea of the DND algorithm is suitable for solving object competition in PDP
systems.

6.5.2 DNDP pseudocode

Next we show the pseudocode of the DNDP algorithm (Algorithm 6.5.1).

Algorithm 6.5.1 DNDP MAIN PROCEDURE

Input: A PDP system of degree (q,m) with q ≥ 1, m ≥ 1, taking T time
units, T ≥ 1.

1: C0 ← initial configuration of the system
2: for t ← 0 to T − 1 do
3: C ′t ← Ct
4: INITIALIZATION . (Algorithm 6.5.2)
5: FIRST SELECTION PHASE : consistency . (Algorithm 6.5.3)
6: SECOND SELECTION PHASE : maximality . (Algorithm 6.5.4)
7: EXECUTION . (Algorithm 6.5.5)
8: Ct+1 ← C ′t
9: end for

Similarly to the previous algorithm (section 6.4), the transitions of the
P system are simulated in two phases, selection and execution, in order to
synchronize the consumption and production of objects. However, selection
is divided in two micro-phases, following the design of the DND algorithm
explained in section 6.5.1. The first one calculates a multiset of consistent
applicable rules. The second eventually increases the multiplicity of some of
the rules in the previous multiset to assure maximal application, obtaining a
multiset of maximally consistent applicable rules.

Let us now describe the pseudocode of the four main modules of the sim-
ulation algorithm.

First of all, in order to simplify the selection and execution phases, the
initialization process (Algorithm 6.5.2) constructs two ordered set of rules, Aj
and Bj, gathering only applicable rules from RE and RΠj

in environment ej,

6.5. Direct Non-Deterministic distribution with Probabilities (DNDP) 173

and having a probability greater than 0. Finally, a new feature is provided
in this initialization procedure, which is that the probabilities of rules are
recalculated for each moment t.

Algorithm 6.5.2 DNDP INITIALIZATION
1: for j ← 1 to m do
2: RE,j ← ordered set of rules from RE related with the environment j
3: Aj ← ordered set of rules from RE,j whose probability is > 0 at step t
4: LCj ← ordered set of pairs 〈label, charge〉 for all the membranes from Ct

contained in the environment j
5: Bj ← ∅
6: for all 〈h, α〉 ∈ LCj (following the considered order) do
7: Bj ← Bj ∪ ordered set of rules from RΠj whose probability is > 0 at

step t for the environment j
8: end for
9: end for

In the first selection phase (Algorithm 6.5.3), a multiset of consistent ap-
plicable rules, denoted by Rj for each environment j, is calculated. First, a
random order is applied to Aj∪Bj, and stored in an ordered set Dj. Moreover,
a copy of the configuration Ct, called C ′t, is created and updated each time that
a rule is selected (removing the LHS from C ′t).

Algorithm 6.5.3 DNDP FIRST SELECTION PHASE: CONSISTENCY
1: for j ← 1 to m do
2: Rj ← ∅
3: Dj ← Aj ∪Bj with a random order
4: for all r ∈ Dj (following the considered order) do
5: M ← maximum number of times that r is applicable to C ′t
6: if r is consistent with the rules in R1

j ∧M > 0 then
7: N ← maximum number of times that r is applicable to Ct
8: n← min{M,Fb(N, pr,j(t))}
9: C ′t ← C ′t − n · LHS(r)

10: Rj ← Rj ∪ {< r, n >}
11: end if
12: end for
13: end for

Then, a rule r is considered applicable if the following holds: it is consistent
with the previously1 selected rules in Rj, and the number of possible applica-

1according to the order in Dj

Chapter 6. Simulation Algorithms for Population Dynamics P Systems 174

tions M in C ′t is greater than 0. If a rule r is applicable, a random number of
applications n is calculated according to the probability function.This number
is generated by using a binomial distribution.

On the one hand, since C ′t has been updated by the previously selected
rules, the number n cannot exceed M to guarantee a correct object distribu-
tion. On the other hand, if the generated number n is 0, the corresponding rule
is also added to the multiset Rj, giving a new chance to be selected in the next
phase (maximality). Therefore, we will handle the “multiset” of rules Rj as a
set of pairs 〈x, y〉 where x ∈ Dj and y is the number of times that x is going
to be applied (eventually y = 0). We will denote R0

j = {r ∈ Dj : 〈x, 0〉 ∈ Rj}
and R1

j = {r ∈ Dj : 〈x, n〉 ∈ Rj, n > 0}. Only rules from R1
j are considered

for the consistency condition, since rules from R0
j has not be applied in the

first selection phase.
In the second selection phase (Algorithm 6.5.4), the consistent applicable

rules are checked again in order to achieve maximality. Only consistent rules
are considered, and taken from Rj. If one rule r ∈ Rj has a number of
applications M greater than 0 in C ′t, then M will be added to the multiplicity
of the rule. In order to fairly distribute the objects among the rules, they
are iterated in order with respect to the probabilities. Moreover, one rule
from the multiset R0

j can be checked, so it is possible that another rule from
R1
j , inconsistent to this one, have been previously selected. In this case, the

consistent condition has to be tested again.

Algorithm 6.5.4 DNDP SECOND SELECTION PHASE: MAXIMALITY
1: for j ← 1 to m do
2: Rj ← Rj with an order by the rule probabilities, from highest to lowest
3: for all < r, n >∈ Rj (following the selected order) do
4: if n > 0 ∨ (r is consistent with the rules in R1

j) then
5: M ← maximum number of times that r is applicable to C ′t
6: if M > 0 then
7: Rj ← Rj ∪ {< r,M >}
8: C ′t ← C ′t −M · LHS(r)
9: end if

10: end if
11: end for
12: end for

Finally, execution phase (Algorithm 6.5.5) is similar to the binomial block
based algorithm. It will iterate all the rules in every R1

j (maximal applicable
consistent rules from environment j), and it will add the right-hand sides of

6.5. Direct Non-Deterministic distribution with Probabilities (DNDP) 175

them to the configuration C ′t. At the end of the process, C ′t is actually the next
configuration: the left-hand sides of rules have been removed in the first and
second selection phases, and the right-hand sides are added in the execution
stage.

Algorithm 6.5.5 DNDP EXECUTION
1: for all < r, n >∈ Rj , n > 0 do
2: C ′t ← C ′t + n ·RHS(r)
3: Update the electrical charges of C ′t according to RHS(r)
4: end for

The DNDP simulation algorithm aims to capture the semantic of a PDP
system. It would therefore be interesting to justify that the execution of this
algorithm to a system configuration simulates a transition step, in the sense
that a maximal consistent multiset of rules is applied to that configuration.
In this context, the application of the probability functions are not discussed
here, since it cannot be the subject of a formal treatment.

Let us recall that the algorithm consists of a main loop, such that four
modules are executed in each loop step: (a) initialization; (b) first selection
phase; (c) second selection phase; and (d) execution of rules.

In the initialization process two ordered set of rules, Aj and Bj, gather-
ing only rules from RE and RΠj

applicable in environment ej, and having a
probability greater than 0.

Let us start by analyzing the first selection phase. Its goal is to select a
multiset of applicable rules for Ct, trying to capture the stochasticity of the
system. The module receives as input:

• A number t (0 ≤ t ≤ T − 1), that indicates the step of the computa-
tion that is being simulated (actually, step t of the main loop of DNDP
algorithm refers to the (t+ 1)-th step of the P system computation).

• A number j (1 ≤ j ≤ m), representing which environment is being
considered.

• Ct, the configuration at time t of the simulated PDP system of degree
(q,m).

• The set Aj of all rules from RE applicable on environment ej and having
a probability at time t strictly greater than 0.

• The set Bj of all rules r ∈ RΠj
applicable in environment ej such that

their probabilities are strictly greater than 0.

Chapter 6. Simulation Algorithms for Population Dynamics P Systems 176

The output generated by this module is a multiset of rules Rj and a con-
figuration C ′t.

In [101] a proof of the following theorems formalizing the concept of cor-
rectness is given.

Theorem 6.1. The multiset of rules Rj is applicable to Ct, and the result of
removing the objects consumed by those rules is C ′t.

Theorem 6.2. There exists a maximally consistent multiset of applicable rules
for Ct that can be obtained from Rj. That is, any rule that does not appear in
Rj, cannot be consistently applied to C ′t.

The module of the second phase of rules selection receives as input two
numbers t and j (0 ≤ t ≤ T − 1 and 1 ≤ j ≤ m), like in the previous module,
and it also receives the following:

• A multiset of rules Rj, obtained as output of the previous algorithmic
module, with an order given by the probabilities of the rules at time t,
from highest to lowest.

• An intermediate configuration C ′t, obtained from configuration Ct by
removing all objects consumed by the application of the multiset Rj.

The output generated by this module is a multiset of rules Rj and a con-
figuration C ′t.

The following theorems formalizes the concept of correctness, and the proof
is also given in [101].

Theorem 6.3. The multiset of rules Rj, obtained as output of the module, is
a maximally consistent multiset of applicable rules to the configuration Ct.

Theorem 6.4. The configuration C ′t, obtained as output of this module, is
the result of removing from Ct the objects consumed by the application of the
multiset of rules Rj.

The module of execution of selected rules receives as input, for each j
(1 ≤ j ≤ m), the configuration C ′t and the selected multiset of rules Rj. The
output is C ′t which is the next configuration Ct+1.

6.5. Direct Non-Deterministic distribution with Probabilities (DNDP) 177

6.5.3 A test example: DNDP vs BBB

In this section we will compare the two algorithms, BBB and DNDP, towards
a simple test example. The aim is to show the difference of them when working
with systems having a specific behavior. The results here can be generated by
hand, but they have been actually generated by using the software developed
under pLinguaCore (see Chapter 7).

6.5.3.1 Test P systems

We have created a family of simple P systems with no biological meaning. An
example of using the DNDP algorithm for simulating a more complex model
of a theoretical ecosystem can be seen in [52].

These test P systems are PDP systems of degree (2,m), of the following
form:

Π = (G,Γ,Σ, T,RE, µ,R, {fr : r ∈ R},M1,M2)

where:

• G is an empty graph

• Γ = {a, b, x, y, z, d} ∪ {fi, gi : 1 ≤ i ≤ N}

• Σ = ∅

• RE = ∅

• µ = [[]2]1 is the membrane structure.

– M1 = aNa ∪ {fNf

i , g
Ng

i : 1 ≤ i ≤ N}
– M2 = bNb

• The rules R to apply are:

r1 ≡ a fi[b]
0
2

0.8−−−→ a fi[b, x]02, for1 ≤ i ≤ N

r2 ≡ a fi[b]
0
2

0.2−−−→ a fi[b, y]02, for1 ≤ i ≤ N

r3 ≡ a gi[b]
0
2

0.9−−−→ a gi[b, z]
0
2, for1 ≤ i ≤ N

r4 ≡ a gi[b]
0
2

0.1−−−→ a gi[b, d]02, for1 ≤ i ≤ N

Chapter 6. Simulation Algorithms for Population Dynamics P Systems 178

Let us remark that the skeleton of Πj is composed by two membranes, but
the number of environments is parametrized bym. On one hand, the parameter
N configures the number of different objects fi and gi, what increases the
number of rules in the system for performance testing (see Section 7.1.1). On
the other hand, the parameters Na, Nb, Nf , Ng configure the multiplicities of
the corresponding objects in order to test the behavior of the algorithm.

6.5.3.2 Behavior evaluation

In order to experimentally validate the probabilistic behavior of the algorithm,
we have configured three test P systems with the following parameters values:

• Test 1: m = 1, N = 1, Na = 1000, Nb = 1000, Nf = 100, Ng = 500. The
maximum numbers of applications for the rules r1 and r2 are 100 (limited
by object f1), and for r3, r4 are 500 (limited by object g1).

• Test 2: m = 1, N = 1, Na = 100, Nb = 500, Nf = 1000, Ng = 1000. The
maximum numbers of applications for the rules r1, r2, r3 and r4 are 100
(limited by object a).

• Test 3: m = 1, N = 1, Na = 100, Nb = 500, Nf = 1000, Ng = 10. The
maximum numbers of applications for the rules r1 and r2 are 100 (limited
by object a), and for r3, r4 are 10 (limited by object g1).

These P systems have been simulated using the implemented DNDP algo-
rithm, using T = 1 (only one transition step) and 30 simulations to calculate
rounded average data. A summary of results can be viewed in table 6.1.

In test 1, the average numbers of applications for rules r1 and r2 are 84 and
18 respectively (that is, they follow an approximate ratio of 80% and 20% of
applications). For rules r3 and r4, the average approximates the ratio of 90%
and 10%. Thus, in this test, the average applications of rules approximate the
probabilities defined for each rule.

However, in test 2, the four rules compete for object a, which limits the
number of applications to 100. Therefore, the DNDP algorithm distributes
this object following the probabilities of the rules. For example, in simulation
1, r1 is firstly selected (77 times), r2 is secondly selected (18 times), and r4 is
thirdly selected (only 5 times, because there are only 5 objects a left). In sim-
ulation 2, the order of selection of rules is r3, r2 (until finishing objects a), and
in simulation 3, the order is r3, r1. So, we can see that the order is randomly
chosen, but the rules cannot be always applied a number of times according to

6.6. Direct distribution based on Consistent Blocks Algorithm (DCBA) 179

Test Rule Simulation 1 Simulation 2 Simulation 3 Average

1

r1 65 83 91 84
r2 35 17 9 18
r3 422 467 443 447
r4 78 33 57 55

2

r1 77 0 8 38
r2 18 23 0 12
r3 0 77 92 46
r4 5 0 0 5

3

r1 72 74 75 76
r2 18 18 15 17
r3 8 8 1 6
r4 2 0 1 1

Table 6.1: Number of applications for each rule in three different simulations,
and the rounded average for 30 simulations.

the probabilities. Nevertheless, if we look to the average number of applica-
tions, we can see that the approximated ratio for each rule (40%, 10%, 45%, 5%
for rules r1, r2, r3, r4) is the half of the defined probabilities, since the common
object a is distributed among them.

Finally, in test 3, the competition for object a by rules r3 and r4 with r1

and r2 influences in decreasing the average number of applications for each
one, since object a is distributed and g1 limits this competition.

6.6 Direct distribution based on Consistent

Blocks Algorithm (DCBA)

The algorithms mentioned above share a common drawback. This drawback
involves the distortion of the way in which blocks and rules are selected. That
is, instead of blocks and rules being selected according to its probabilities in a
uniform manner, this selection process is biased towards those with the high-
est probabilities. This section introduces our most recent algorithm, known as
Direct distribution based on Consistent Blocks Algorithm (DCBA). This al-
gorithm is introduced to solve the aforementioned distortion, thus not biasing
the selection process towards the most likely blocks and rules.

First we introduce new concepts required to define the algorithm. Then we
provide the pseudocode of the algorithm, and finally we compare the DCBA

Chapter 6. Simulation Algorithms for Population Dynamics P Systems 180

and the DNDP algorithms by a very simple test example.

6.6.1 Definitions for blocks and consistency

The DCBA selection mechanism starts from the assumption that rules in R
and RE can be classified into blocks of rules having the same left-hand side,
following the Definitions 6.2 and 6.4 given in Section 6.1.

Recall that, according to the semantics of our model, the sum of proba-
bilities of all the rules belonging to the same block is always equal to 1; in
particular, rules with probability equal to 1 form individual blocks. Note that
rules that have exactly the same left-hand side (LHS) belongs to the same
block, but rules with overlapping (but different) left-hand sides are classified
into different blocks. The latter leads to object competition, what is a critical
aspect to manage with the simulation algorithms.

Definition 6.7. Given (i, α, u, v) where 1 ≤ i ≤ q, α ∈ EC, u, v ∈ Γ∗, the
block Bi,α,u,v is consistent if and only if there exists α′ such that, for each
r ∈ Bi,α,u,v, charge(RHS(r)) = α′.

In other words, a block of rules is consistent if and only if it determines a
consistent set of rules. We will consider rule blocks holding this property. In
fact, the design of the new algorithm will consider a slightly different concept of
block introduced in Section 6.4. The main reason for that is the convenience of
incorporating the consistent property inside the blocks. This will be achieved
by including in the same definition the new electrical charge represented in the
right-hand side of the rules.

Definition 6.8. Given i, α, α′, u, v where 1 ≤ i ≤ q, α, α′ ∈ EC, u, v ∈ Γ∗,
the block associated with (i, α, α′, u, v) is the set:

Bi,α,α′,u,v = {r ∈ R : LHS(r) = (i, α, u, v) ∧ charge(RHS(r)) = α′}

Note that the block Bi,α,α′,u,v determines a consistent set of rules. Then,
the left-hand side of a block B, denoted by LHS(B), is defined as the left-hand
side of any rule in the block.

Definition 6.9. We say that two blocks Bi1,α1,α′1,u1,v1
and Bi2,α2,α′2,u2,v2

are
mutually consistent with each other, if and only if (i1 = i2∧α1 = α2)⇒ (α′1 =
α′2).

That is, two rule blocks are mutually consistent if the union of them rep-
resents a consistent set of rules.

6.6. Direct distribution based on Consistent Blocks Algorithm (DCBA) 181

Definition 6.10. A set of blocks B = {B1, B2, . . . , Bs} is self consistent (or
mutually consistent) if and only if they are pairwaise mutually consistent, that
is ∀i, j (Bi and Bj are mutually consistent).

In such a context, a set of blocks has an associated set of tuples (i, α, α′),
that is, a relation between labels and electrical charges (H×EC) in EC. Then,
a set of blocks is mutually consistent if and only if the associated relationship
H × EC in EC is functional.

6.6.2 DCBA pseudocode

The goal of the DCBA (Direct distribution based on Consistent Blocks Al-
gorithm) [99, 98] is to perform a proportional distribution of objects among
competing blocks (with overlapping LHS), determining in this way the number
of times that each rule in

⋃m
j=1RΠj

∪ RE is applied. I.e. the algorithm sim-
ulates the computational steps of a PDP systems. Algorithm 6.6.1 describes
the main loop of the DCBA. It follows the same general scheme as its prede-
cessors, DNDP and BBB [100] where the simulation of a computing step is
structured in two stages: The first stage (selection), selects which rules are
to be applied (and how many times) on each environment. The second stage
(execution), implements the effects of applying the previously selected rules,
yielding the next configuration of the PDP system. Note that, although every
Πj has the same set of rules R, their probability functions may be different
for each environment. See [99] for a more detailed explanation and examples
of how to apply this algorithm.

As shown in Algorithm 6.6.1, the selection stage consists of three phases:
Phase 1 distributes objects to the blocks in a certain proportional way, Phase
2 assures the maximality by checking the maximal number of applications of
each block, and Phase 3 translates block applications to rule applications by
calculating random numbers using the multinomial distribution.

The INITIALIZATION procedure (Algorithm 6.6.2) constructs a static dis-
tribution table Tj for each environment. Two variables, Bj

sel and Rj
sel, are also

initialized, in order to store the selected multisets of blocks and rules, respec-
tively.

Observation 6.5. Each column label of the tables Tj contains the information
of the corresponding block left-hand side.

Observation 6.6. Each row of the tables Tj contains the information related
to the object competitions: for a given object, its row indicates which blocks
are competing for it (those columns having non-null values).

Chapter 6. Simulation Algorithms for Population Dynamics P Systems 182

Algorithm 6.6.1 DCBA MAIN PROCEDURE
Require: A Population Dynamics P system of degree (q,m), T ≥ 1 (time units),

and A ≥ 1 (Accuracy). The initial configuration is called C0.
1: INITIALIZATION . (Algorithm 6.6.2)
2: for t ← 1 to T do
3: Calculate probability functions fr,j(t) and p(t).
4: C ′t ← Ct−1

5: SELECTION of rules:

– PHASE 1 : distribution . (Algorithm 6.6.3)

– PHASE 2 : maximality . (Algorithm 6.6.4)

– PHASE 3 : probabilities . (Algorithm 6.6.5)

6: EXECUTION of rules. . (Algorithm 6.6.6)
7: Ct ← C ′t
8: end for

Algorithm 6.6.2 INITIALIZATION
1: Construction of the static distribution table T :

• Column labels: consistent blocks Bi,α,α′,u,v of rules from R.

• Row labels: pairs (x, i), for all objects x ∈ Γ, and 0 ≤ i ≤ q.
• For each row, for each cell of the row: place 1

k if the object in the row label
appears in its associated compartment with multiplicity k in the LHS of
the block of the column label.

2: for j = 1 to m do . (Construct the expanded static tables Tj)
3: Tj ← T . . (Initialize the table with the original T)
4: For each rule block Bej ,x from RE , add a column labeled by Bej ,x to Tj ;

place the value 1 at row (x, 0) for that column.
5: Initialize the multisets Bj

sel ← ∅ and Rjsel ← ∅
6: end for

6.6. Direct distribution based on Consistent Blocks Algorithm (DCBA) 183

Algorithm 6.6.3 SELECTION PHASE 1: DISTRIBUTION
1: for j = 1 to m do . (For each environment ej)
2: Apply filters to table Tj , using C ′t and obtaining T tj , as follows:

a. T tj ← Tj
b. Filter 1 (T tj , C ′t).
c. Filter 2 (T tj , C ′t).
d. Check mutual consistency for the blocks remaining in T tj . If there is at

least one inconsistency then report the information about the error,
and optionally halt the execution (in case of not activating step 3).

e. Filter 3 (T tj , C ′t).
3: (OPTIONAL) Generate a set Stj of sub-tables from T tj , formed by sets of

mutually consistent blocks, in a maximal way in T tj (by the inclusion
relationship). Replace T tj with a randomly selected table from Stj .

4: a← 1
5: repeat
6: for all rows X in T tj do
7: RowSumX,t,j ← total sum of the non-null values in the row X.
8: end for
9: T Vtj ← T tj . (A temporal copy of the dynamic table)

10: for all non-null positions (X,Y) in T tj do
11: multX,t,j ← multiplicity in C ′t at ej of the object at row X.

12: T Vtj(X,Y)← bmultX,t,j ·
(T t

j (X,Y))2

RowSumX,t,j
c

13: end for
14: for all not filtered column, labeled by block B, in T tj do

15: Na
B ← minX∈rows(T t

j)(T Vtj(X,B)) . (The minimum of the column)

16: Bj
sel ← Bj

sel + {BNa
B} . (Accumulate the value to the total)

17: C ′t ← C ′t − LHS(B) ·Na
B . (Delete the LHS of the block.)

18: end for
19: Filter 2 (T tj , C ′t)
20: Filter 3 (T tj , C ′t)
21: a← a+ 1
22: until (a > A) ∨ (all the selected minimums at step 15 are 0)
23: end for

The distribution of objects among the blocks with overlapping LHS (com-
peting blocks) is performed in selection Phase 1 (Algorithm 6.6.3). The ex-
panded static tables Tj are used for this purpose in each environment, together
with three different filter procedures. Filter 1 discards the columns of the
table corresponding to non-applicable blocks due to mismatch charges in the

Chapter 6. Simulation Algorithms for Population Dynamics P Systems 184

LHS and in the configuration C ′t. Then, Filter 2 discards the columns with
objects in the LHS not appearing in C ′t. Finally, in order to save space in the
table, Filter 3 discards empty rows. These three filters are applied at the
beginning of Phase 1, and the result is a dynamic table T tj (for the environment
j and time step t).

The semantics of the modeling framework requires a set of mutually con-
sistent blocks before distributing objects to the blocks. For this reason, after
applying Filters 1 and 2, the mutually consistency is checked. Note that this
checking can be easily implemented by a loop over the blocks. If it fails, mean-
ing that an inconsistency was encountered, the simulation process is halted,
providing a warning message to the user. Nevertheless, it could be interesting
to find a way to continue the execution by non-deterministically constructing
a subset of mutually consistent blocks. Since this method can be exponentially
expensive in time, it is optional for the user whether to activate it or not.

Once the columns of the dynamic table T tj represent a set of mutually con-
sistent blocks, the distribution process starts. This is carried out by creating
a temporal copy of T tj , called T V tj, which stores the following products:

• The normalized value with respect to the row: this is a way to propor-
tionally distribute the corresponding object along the blocks. Since it
depends on the multiplicities in the LHS of the blocks, in fact, the blocks
requiring more copies of the same object are penalized in the distribution.
This is inspired in the amount of energy required to gather individuals
from the same species.

• The value in the dynamic table (i.e. 1
k
): this indicates the number of

possible applications of the block with the corresponding object.

• The multiplicity of the object in the configuration C ′t: this performs the
distribution of the number of copies of the object along the blocks.

After the object distribution process, the number of applications for each
block is calculated by selecting the minimum value in each column. This
number is then used for consuming the LHS from the configuration. However,
this application could be not maximal. The distribution process can eventually
deliver objects to blocks that are restricted by other objects. As this situation
may occur frequently, the distribution and the configuration update process is
performed A times, where A is an input parameter referring to accuracy. The
more the process is repeated, the more accurate the distribution becomes, while
the performance of the simulation decreases. We have experimentally checked

6.6. Direct distribution based on Consistent Blocks Algorithm (DCBA) 185

Algorithm 6.6.4 SELECTION PHASE 2: MAXIMALITY
1: for j = 1 to m do . (For each environment ej)
2: Set a random order to the blocks remaining in the last updated table T tj .
3: for all block B, following the previous random order do
4: NB ← number of possible applications of B in C ′t.
5: Bj

sel ← Bj
sel + {BNB} . (Accumulate the value to the total)

6: C ′t ← C ′t − LHS(B) ·NB . (Delete the LHS of block B, NB times.)
7: end for
8: end for

that A = 2 gives the best accuracy/performance ratio. In order to efficiently
repeat the loop for A, and also before going to the next phase (maximality),
it is interesting to apply Filters 2 and 3 again.

After phase 1, it may be the case that some blocks are still applicable to
the remaining objects. This may be caused by a low A value or by rounding
artifacts in the distribution process. Due to the requirements of P systems
semantics, a maximality phase is now applied (Algorithm 6.6.4). Following a
random order, a maximal number of applications is calculated for each block
still applicable.

Algorithm 6.6.5 SELECTION PHASE 3: PROBABILITY
1: for j = 1 to m do . (For each environment ej)

2: for all block BNB ∈ Bj
sel do

3: Calculate {n1, . . . , nl}, a random multinomial M(NB, g1, . . . , gl) with
respect to the probabilities of the rules r1, . . . , rl within the block.

4: for k = 1 to l do
5: Rjsel ← Rjsel + {rnk

k }.
6: end for
7: end for
8: Delete the multiset of selected blocks Bj

sel ← ∅. . (Useful in next step)
9: end for

After the application of phases 1 and 2, a maximal multiset of selected
(mutually consistent) blocks has been computed. The output of the selection
stage has to be, however, a maximal multiset of selected rules. Hence, Phase 3
(Algorithm 6.6.5) passes from blocks to rules, by applying the corresponding
probabilities (at the local level of blocks). The rules belonging to a block are
selected according to a multinomial distribution M(N, g1, . . . , gl), where N is
the number of applications of the block, and g1, . . . , gl are the probabilities
associated with the rules r1, . . . , rl within the block, respectively.

Chapter 6. Simulation Algorithms for Population Dynamics P Systems 186

Algorithm 6.6.6 EXECUTION
1: for j = 1 to m do . (For each environment ej)

2: for all rule rn ∈ Rjsel do . (Apply the RHS of selected rules)
3: C ′t ← C ′t + n ·RHS(r)
4: Update the electrical charges of C ′t from RHS(r).
5: end for
6: Delete the multiset of selected rules Rjsel ← ∅. . (Useful for the next step)
7: end for

Finally, the execution stage (Algorithm 6.6.6) is applied. This stage consists
on adding the RHS of the previously selected multiset of rules, as the objects
present on the LHS of these rules have already been consumed. Moreover, the
indicated membrane charge is set.

6.6.3 A test example: DCBA vs DNDP

Let us consider a test example, with no biological meaning, in order to show
the different behavior of the algorithms. This test PDP system is of degree
(2, 1), and of the following form:

Πtest = (G,Γ, µ,Σ,R, T, {fr : r ∈ R},Me,M1,M2)

where:

• G is an empty graph because RE = ∅.

• Γ = {a, b, c, d, e, f, g, h}

• µ = [[]2]1 is the membrane structure, and the corresponding initial
multisets are:

– Me = b (in the environment)

– M1 = a60 (in membrane 1)

– M2 = a90 b72 c66 d30 (in membrane 2)

• T = 1, only one time step.

• The rules R to apply are:

r1.1 ≡ [a4 b4 c2]2
0.7−−−→ e2 []2

r1.2 ≡ [a4 b4 c2]2
0.2−−−→ [e2]2

6.6. Direct distribution based on Consistent Blocks Algorithm (DCBA) 187

r1.3 ≡ [a4 b4 c2]2
0.1−−−→ [e f]2

r2 ≡ [a4 d]2
1−−−→ f 2[]2

r3 ≡ [b5 d2]2
1−−−→ g2[]2

r4 ≡ b [a7]−1
1−−−→ [h100]−1

r5 ≡ a3 []2
1−−−→ [e3]2

r6 ≡ a b []2
1−−−→ [g3]−2

We can construct a set of six consistent rule blocks BΠtest (of the form
bh,α,α′,u,v) from the set R of Πtest as follows:

• b1 ≡ b2,0,0,∅,a4b4c2 = {r1.1, r1.2, r1.3}

• b2 ≡ b2,0,0,∅,a4d = {r2}

• b3 ≡ b2,0,0,∅,b5d2 = {r3}

• b4 ≡ b1,−,−,b,a7 = {r4}

• b5 ≡ b2,0,0,a3,∅ = {r5}

• b6 ≡ b2,0,−,ab,∅ = {r6}

It is noteworthy that the set BΠtest is not mutually consistent. However,
only the blocks b1, b2, b3 and b5 are applicable in the initial configuration,
and they, in fact, conform a mutually consistent set of blocks. Block b4 is not
applicable since the charge of membrane 1 is neutral, and block b6 cannot be
applied because there are no b’s in membrane 1.

Rules Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5
r1.1 11 0 0 0 0
r1.2 4 4 3 0 0
r1.3 1 0 0 0 0
r2 6 18 6 22 2
r3 1 6 12 4 14
r4 - - - - -
r5 20 20 20 20 20
r6 - - - - -

Table 6.2: Simulating Πtest using the DNDP algorithm

Chapter 6. Simulation Algorithms for Population Dynamics P Systems 188

Table 6.2 shows five different runs for one time step of Πtest using the
DNDP algorithm. The values refers to the number of applications for each
rule, which is actually the output of the selection stage (and the input of the
execution stage). Note that for simulation 1, the applications for r1.1, r1.2

and r1.3 follows the multinomial distribution. The applications of these rules
are reduced because they are competing with rules r2 and r3. However, this
competition leads to situations where the applications of the block b1 does not
follow a multinomial distribution. It comes from the fact of using a random
order over the rules, but not over the blocks. Rules having a probability
equals to 1 are more restrictive on the competitions because they are applied
in a maximal way in their turn. This is the reason because on simulations 4
and 5, none of the rules r1.i, 1 ≤ i ≤ 3 are applied.

This behavior could create a distortion of the reality described in the simu-
lated model. But it is usually appeased running several simulations and making
a statistical study. Finally, rules not competing for objects are applied as is,
in a maximal way. For example, rule r5 is always applied 20 times because its
probability is equal to 1.

Next, the test example is executed using the DCBA. The main results of
the different phases of the process is also detailed.

In the initialization phase, the static table is created, containing all the
consistent blocks. The static table of Πtest is showed in Table 6.3. As shown,
the values inside the cells of the table represents the inverse (1/k) of the mul-
tiplicity of the object (in the membrane, as specified in the row) inside the
block indicated in the header of the column.

Objects
Consistent Blocks

b2,0,0,∅,a4b4c2 b2,0,0,∅,a4d b2,0,0,∅,b5d2 b1,−,−,b,a7 b2,0,0,a3,∅ b2,0,−,ab,∅

< a,2> 1/4 1/4 - - - -

< b,2> 1/4 - 1/5 - - -

< c,2> 1/2 - - - - -

< d,2> - 1/1 1/2 - - -

< a,1> - - - 1/7 1/3 1/1

< b,1> - - - - 1/1

< b,e> - - - 1/1 - -

Table 6.3: Static table

Once the static table has been initialized, the simulation main loop runs
for the stated steps. Then, for each step of computation, the selection and

6.6. Direct distribution based on Consistent Blocks Algorithm (DCBA) 189

execution of rules runs, as illustrated in the following paragraphs.

The selection starts with the distribution phase. The needed filters are
performed, causing some objects and blocks to be discarded, as they need not
present charges and/or objects. Then the corresponding calculus take place,
getting the minimum number of applications of each way. The result of the
selection phase 1 of the step 1 is showed in Table 6.4. The sum of the previously
obtained values is showed in the last column. Then, the possible number of
applications of a block is calculated for each object, considering its multiplicity
in the current configuration and the block, and the relation with the sum of the
row. This relation somehow captures the proportion of objects to be initially
assigned to each block. Then, the minimum number of each block (given by
the column) is calculated.

Objects
Consistent Blocks

Sum
b2,0,0,∅,a4b4c2 b2,0,0,∅,a4d b2,0,0,∅,b5d2 b2,0,0,a3,∅

< a,2> * 90 0.25 | 11 0.25 | 11 - - 0.5

< b,2> * 72 0.25 | 10 - 0.2 | 6 - 0.45

< c,2> * 66 0.5 | 33 - - - 0.5

< d,2> * 30 - 1.0 | 20 0.5 | 5 - 1.5

< a,1> * 60 - - - 0.33 | 20 0.33

Applications 10 11 5 20

Table 6.4: Selection Phase 1 - Distribution

The next phase, maximality, starts from the remaining objects, selecting
new applications of the blocks in a maximal way. The result of this phase
is showed in Table 6.5. This table presents the remaining objects (the ones
not assigned in phase 1) and the possible blocks to be selected. The blocks
are chosen in a random way, as shown in Algorithm 6.6.4, and the possible
applications of the block are calculated. This process guarantees a maximal set
of blocks to be selected, with a maximal number of applications of each block.
The last row, applications, shows that the block b2,0,0,∅,{a4,b4,c2} is applying 1
time, additional to the number of applications calculated in the distribution
phase.

Then the phase 3, probability, take place. For each block selected in the
previous phases, its number of applications is divided among the rules being
part of the block, according to their probabilities. As a result, the number of
applications of each rule is obtained, as showed in Table 6.6.

Chapter 6. Simulation Algorithms for Population Dynamics P Systems 190

Objects
Consistent Blocks

b2,0,0,∅,a4b4c2 b2,0,0,∅,a4d b2,0,0,∅,b5d2

< a,2> * 6 - - -

< b,2> * 7 - - -

< c,2> * 46 - - -

< d,2> * 9 - - -

Applications 1 - -

Table 6.5: Selection Phase 2 - Maximality

Rules Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5
r1.1 7 10 7 6 7
r1.2 3 0 4 1 2
r1.3 1 1 5 3 1
r2 11 11 11 12 12
r3 5 5 5 6 6
r4 - - - - -
r5 20 20 20 20 20
r6 - - - - -

Table 6.6: Simulating Πtest using the DCBA algorithm

It is noteworthy that the selection of rules belonging to block 1 {r1.i, 1 ≤ i ≤
3}, in Table 6.6, always follows a multinomial distribution with respect to the
3 probabilities. This solves the drawback we showed on Table 6.2. Moreover,
it can be seen that the maximality sometimes can give one more application to
blocks 2 and 3, in spite of keeping the original 10 applications for block 1 from
phase 1. In any case, the number of applications is proportionally distributed,
avoiding the distortion of using a random order over the blocks (or rules), as
made in the DNDP algorithm.

6.7 Validation

6.7.1 Improved model for the scavenger bird ecosystem

In this section, a novel PDP systems based model for an ecosystem related to
the Bearded Vulture in the Pyrenees (NE Spain) is presented. This model is an

6.7. Validation 191

improved model from the one provided in [35]. The Bearded Vulture (Gypaetus
barbatus) is an endangered species in Europe that feeds almost exclusively on
bone remains of wild and domestic ungulates. In this model, the evolution of
six species is studied: the Bearded Vulture and five subfamilies of domestic
and wild ungulates upon which the vulture feeds.

The model consists of a PDP system of degree (2, 1),

Π = (G,Γ,Σ, T,RE, µ,R, {fr,1 : r ∈ R},M1,M2)

where:

• G = (V, S) with V = {e1} and S = ∅.

• In the alphabet Γ, we represent the seven species of the ecosystem (index
i is associated with the species and index j is associated with their age,
and the symbols X, Y and Z represent the same animal but in different
“states”); it also contains the auxiliary symbol B, which represents 0.5
kg of bones, and C, which allows a change in the polarization of the
membrane labeled by 2 at a specific stage.

Γ = {Xi,j, Yi,j, Zi,j : 1 ≤ i ≤ 7, 0 ≤ j ≤ ki,4} ∪ {B,C}

The species are the following:

– Bearded Vulture (i = 1)

– Pyrenean Chamois (i = 2)

– Female Red Deer (i = 3)

– Male Red Deer (i = 4)

– Fallow Deer (i = 5)

– Roe Deer (i = 6)

– Sheep (i = 7)

Note that although the male red deer and female red deer are the same
species, we consider them as different species. This is because mortality
of male deer is different from the female deer by reason of hunting.

• Σ = ∅.

• Each year in the real ecosystem is simulated by 3 computational steps,
so T = 3 · Y ears, where Y ears is the number of years to simulate.

• RE = ∅.

Chapter 6. Simulation Algorithms for Population Dynamics P Systems 192

• µ = [[]2]1 is the membrane structure and the corresponding initial
multisets are:

– M1 = { Xqi,j
i,j : 1 ≤ i ≤ 7, 0 ≤ j ≤ ki,4}

– M2 = { C,Bα} where α = d
k1,4∑
j=1

q1,j · 1.10 · 682e

Value α represents an external contribution of food which is added
during the first year of study so that the Bearded Vulture survives.
In the formula, q1,j represents the number of bearded vultures that
are j years old, the goal of the constant factor 1.10 is to guarantee
enough food for 10% population growth. At present, the population
growth is estimated an average 4%, but this value can reach higher
values. Thus, to avoid problems related with the underestimation
of this value the first year we have overestimated the population
growth at 10%. The constant value 682 represents the amount of
food needed per year for a Bearded Vulture pair to survive.

• The set R is defined as follows:

– Reproduction rules for ungulates

Adult males

r0,i,j ≡ [Xi,j]1
1−ki,13−−−→[Yi,j]1 : ki,2 ≤ j ≤ ki,4, 2 ≤ i ≤ 7

Adult females that reproduce

r1,i,j ≡ [Xi,j]1
ki,5ki,13−−−→[Yi,j, Yi,0]1 : ki,2 ≤ j < ki,3, 2 ≤ i ≤ 7, i 6= 3

Red Deer females produce 50% of female and 50% of male springs

r2,j ≡ [X3,j]1
k3,5k3,130.5−−−→ [Y3,jY3,0]1 : k3,2 ≤ j < k3,3

r3,j ≡ [X3,j]1
k3,5k3,130.5−−−→ [Y3,jY4,0]1 : k3,2 ≤ j < k3,3

Fertile adult females that do not reproduce

r4,i,j ≡ [Xi,j]1
(1−ki,5)ki,13−−−→ [Yi,j]1 : ki,2 ≤ j < ki,3, 2 ≤ i ≤ 7

Not fertile adult females

r5,i,j ≡ [Xi,j]1
ki,13−−−→[Yi,j]1 : ki,3 ≤ j ≤ ki,4, 2 ≤ i ≤ 7

Young ungulates that do not reproduce

6.7. Validation 193

r6,i,j ≡ [Xi,j]1
1−−−→[Yi,j]1 : 0 ≤ j < ki,2, 2 ≤ i ≤ 7

– Growth rules for the Bearded Vulture

r7,j ≡ [X1,j]1
k1,6+k1,10−−−→ [Y1,k1,2−1Y1,j]1 : k1,2 ≤ j < k1,4

r8,j ≡ [X1,j]1
1−k1,6−k1,10−−−→ [Y1,j]1 : k1,2 ≤ j < k1,4

r9 ≡ [X1,k1,4]1
k1,6−−−→[Y1,k1,2−1Y1,k1,4]1

r10 ≡ [X1,k1,4]1
1−k1,6−−−→[Y1,k1,4]1

– Mortality rules for ungulates

Young ungulates which survive

r11,i,j ≡ Yi,j[]2
1−ki,7−ki,8−−−→ [Zi,j]2 : 0 ≤ j < ki,1, 2 ≤ i ≤ 7

Young ungulates which die

r12,i,j ≡ Yi,j[]2
ki,8−−−→[Bki,11]2 : 0 ≤ j < ki,1, 2 ≤ i ≤ 7

Young ungulates which are retired from the ecosystem

r13,i,j ≡ Yi,j[]2
ki,7−−−→[]2 : 0 ≤ j < ki,1, 2 ≤ i ≤ 7

Adult ungulates that do not reach the average life expectancy

Those which survive

r14,i,j ≡ Yi,j[]2
1−ki,10−−−→[Zi,j]2 : ki,1 ≤ j < ki,4, 2 ≤ i ≤ 7

Those which die

r15,i,j ≡ Yi,j[]2
ki,10−−−→[Bki,12]2 : ki,1 ≤ j < ki,4, 2 ≤ i ≤ 7

Ungulates that reach the average life expectancy

Those which die in the ecosystem

r16,i ≡ Yi,ki,4 []2
ki,9+(1−ki,9)ki,10−−−→ [Bki,12]2 : 2 ≤ i ≤ 7

Those which die and are retired from the ecosystem

r17,i ≡ Yi,ki,4 []2
(1−ki,9)(1−ki,10)−−−→ []2 : 2 ≤ i ≤ 7

– Mortality rules for the Bearded Vulture

r18,j ≡ Y1,j[]2
1−k1,10−−−→[Z1,j]2 : k1,2 ≤ j < k1,4

r19,j ≡ Y1,j[]2
k1,10−−−→[]2 : k1,2 ≤ j < k1,4

Chapter 6. Simulation Algorithms for Population Dynamics P Systems 194

r20 ≡ Y1,k1,4 []2
1−−−→[Z1,k1,2−1]2

r21 ≡ Y1,k1,2−1[]2
1−−−→[Z1,k1,2−1]2

– Feeding rules

r22,i,j ≡ [Zi,jB
ki,14]2

1−−−→Xi,j+1[]+2 : 0 ≤ j ≤ ki,4, 1 ≤ i ≤ 7

– Balance rules

Elimination of remaining bones

r23 ≡ [B]+2
1−−−→[]2

Adult animals that die because they have not enough food

r24,i,j ≡ [Zi,j]
+
2

1−−−→[Bki,12]2 : ki,1 ≤ j ≤ ki,4, 1 ≤ i ≤ 7

Young animals that die because the have not enough food

r25,i,j ≡ [Zi,j]
+
2

1−−−→[Bki,11]2 : 0 ≤ j < ki,1, 1 ≤ i ≤ 7

Change the polarization

r26 ≡ [C]+2
1−−−→[C]2

The constants associated with the rules have the following meaning:

• ki,1: Age at which adult size is reached. This is the age at which the
animal consumes food as an adult does, and at which, if the animal dies,
the amount of biomass it leaves behind is similar to the total left by
an adult. Moreover, at this age it will have surpassed the critical early
phase during which the mortality rate is high.

• ki,2: Age at which it begins to be fertile.

• ki,3: Age at which it stops being fertile.

• ki,4: Average life expectancy in the ecosystem.

• ki,5: Fertility ratio (number of descendants by fertile females).

• ki,6: Population growth (this quantity is expressed in terms of 1).

• ki,7: Animals retired from the ecosystem in the first year, age < ki,1 (this
quantity is expressed in terms of 1).

6.7. Validation 195

• ki,8: Natural mortality ratio in first years, age < ki,1 (this quantity is
expressed in terms of 1).

• ki,9: 0 if the live animals are retired at age ki,4, in other cases, the value
is 1.

• ki,10: Mortality ratio in adult animals, age ≥ ki,1 (this quantity is ex-
pressed in terms of 1).

• ki,11: Amount of bones from young animals, age < ki,1.

• ki,12: Amount of bones from adult animals, age ≥ ki,1.

• ki,13: Proportion of females in the population (this quantity is expressed
in terms of 1).

• ki,14: Amount of food necessary per year and breeding pair (1 unit is
equal to 0.5 kg of bones).

In [35], some actual values for the constants associated with the rules can
be found, as well as actual values for the initial populations qi,j for each species
i with age j. There are two sets of initial populations values, one beginning
on year 1994 and another one beginning on year 2008.

6.7.2 Simulation results

PLinguaCore is a software library for simulation that accepts an input written
in P-Lingua [70] and provides simulators of the defined P systems. For each
supported type of P system, there are one or more simulation algorithms im-
plemented in pLinguaCore. It is a software framework, so it can be expanded
with new simulation algorithms.

Thus, we have extended the pLinguaCore library to include the DCBA
simulation algorithm for PDP systems. The current version of pLinguaCore is
3.0 and can be downloaded from [16].

In this section, we use the model of the Bearded Vulture described above to
compare the simulation results produced by the pLinguaCore library using two
different simulation algorithms: DNDP [100] and DCBA. We also compare the
results of the implemented simulation algorithms with the results provided by
the C++ ad hoc simulator and with the actual ecosystem data, both obtained
from [35]. In [9] it can be found the P-Lingua file which defines the model and
instructions to reproduce the comparisons.

Chapter 6. Simulation Algorithms for Population Dynamics P Systems 196

We have set the initial population values with the actual ecosystem values
for the year 1994. For each simulation algorithm we have made 100 simulations
of 14 years, that is, 42 computational steps. The simulation workflow has
been implemented on a Java program that runs over the pLinguaCore library
(this Java program can be downloaded from [9]). For each simulated year
(3 computational steps), the Java program counts the number of animals for

each species i, that is, Xi =
ki,4∑
j=0

Xi,j. After 100 simulations, the Java program

calculates average values for each year and species and writes the output to
a text file. Finally, we have used the GnuPlot software [12] to produce the
population graphics.

The population graphics for each species and simulation algorithm are rep-
resented in Figures 6.1 to 6.7.

Figure 6.1: Evolution of the Bearded Vulture birds

Figure 6.2: Evolution of the Pyrenean Chamois

Figure 6.3: Evolution of the female Red Deer

6.7. Validation 197

Figure 6.4: Evolution of the male Red Deer

Figure 6.5: Evolution of the Fallow Deer

Figure 6.6: Evolution of the Roe Deer

Figure 6.7: Evolution of the Sheep

The main difference between the DNDP and the DCBA algorithms is the
way they distribute the objects between different rule blocks that compete for
the same objects. In the model, the behavior of the ungulates are modeled by
using rule blocks that do not compete for objects. So, the simulator provides
similar results for both DCBA and DNDP algorithms. In the case of the

Chapter 6. Simulation Algorithms for Population Dynamics P Systems 198

Bearded Vulture, there is a set of rules r22,i,j that compete for objects because
k1,14 is not 0 (the Bearded Vulture needs to feed on bones to survive). The
ki,14 constants are 0 for ungulates (2 ≤ i ≤ 7), because they do not need
to feed on bones to survive. The initial amount of bones and the amount
of bones generated during the simulation is enough to support the Bearded
Vulture population regardless the way the simulation algorithm distributes
the bones between vultures of different ages (rules r22,1,j). Since there is a
small initial population of bearded vultures (20 pairs), some differences can be
noticed between the results from DCBA, DNDP, C++ simulator and the actual
ecosystem data for the Bearded Vulture (39 bearded vultures with DCBA for
year 2008, 36 with DNDP, 38 with the C++ simulator and 37 on the actual
ecosystem).

In Figure 6.8 it is shown the comparison between the actual data for the
year 2008 and the simulation results obtained by using the C++ ad hoc sim-
ulator, the DNDP algorithm and the DCBA algorithm implemented in pLin-
guaCore. In the case of the Pyrenean Chamois, there is a difference between
the actual population data on the ecosystem (12000 animals) and the results
provided by the other simulators (above 20000 animals), this is because the
population of Pyrenean Chamois was regulated on year 2004 [35]. Taking this
into account, one can notice that all the simulators behave in a similar way for
the above model and they can reproduce the actual data after 14 simulated
years. So, the DCBA algorithm is able to reproduce the semantics of PDP
systems and it can be used to simulate the behavior of actual ecosystems by
means of PDP systems.

6.8 Conclusions

In this chapter we have introduced the two simulation algorithms for PDP
systems, called DNDP and DCBA. They are focused on the distortion caused
by the previous algorithm, called BBB, when several rule blocks compete for
same objects.

• DNDP (Direct Non-Deterministic distribution with Probabilities algo-
rithm): it is the first adopted approach. Based on the idea of DND
algorithm, it performs a non-deterministic distribution of objects along
the rules, but considering the probabilities. The algorithm is split into
two phases, selection and execution. This time, selection phase is di-
vided into two micro-phases: phase selection 1 (consistency) and phase
selection 2 (maximality). Together with an initialization phase, it has

6.8. Conclusions 199

Sheep

Pyrenean Chamois

Roe deer

Red deer

Fallow deer

Bearded Vulture pair

0 50000 100000 150000 200000 250000

200000

12000

10000

5500

1500

37

192097

12297

9774

5631

1602

38

192255

20026

9962

5228

1623

35

192295

20017

9875

5187

1598

39

Real measurement

Simulator in C++

DNDP simulator

DCBA simulator

Figure 6.8: Data of the year 2008 from: real measurements of the ecosystem,
original simulator in C++, simulator using DNDP and simulator using DCBA.

a total of four phases. The first selection phase calculates a multiset of
consistent applicable rules. This is performed by looping the rules in
a random order, and applying each one (if consistent with the already
selected rules) using the binomial distribution according to the probabil-
ities. The second selection phase eventually increases the multiplicity of
some of the rules in the previous multiset to assure maximal application,
obtaining a multiset of maximally consistent applicable rules. Again,
there is a loop over the remaining rules, checking the maximality con-
dition. Although the DNDP algorithm achieves better results than its
predecessor (BBB), the behavior still produces some distortion in many
situations (it is biased towards the rules with the highest probabilities).

• DCBA (Direct distribution based on Consistent Blocks Algorithm): this
second approach is based on the idea of proportionally distributing the
amount of objects along the rule blocks. A proportional calculus is made
in such a way that rules requesting for more objects are penalized. How-
ever, this calculation can be adapted to the biological semantics to be

Chapter 6. Simulation Algorithms for Population Dynamics P Systems 200

captured by the model. Probabilities are applied locally to rule blocks.
The simulation algorithm consists on two phases, selection and execu-
tion. But this time, selection is split into three micro-phases: phase 1
(distribution), phase 2 (maximality), and phase 3 (probabilities). Se-
lection phase 1 uses a distribution table, where rows represent objects
inside regions, and columns are rule blocks. A normalized distribution of
the objects is performed over the rows. Phase 2 iterates the remaining
rule blocks assuring maximality, and phase 3, once rule blocks have been
selected, calculate multinomial distributions for each one (according to
the selected number for it, and the probabilities of the corresponding
rules). DCBA is able to reproduce the desired semantics for the model
of PDP systems. However, its efficient implementation is a challenge
(the distribution table can be very large).

These two algorithms have been validated towards a real ecosystem, show-
ing that they can still support already existing PDP systems based models.
Their new functionalities were tested against toy examples. New P systems
models showing the commented distortions are going to be run with these
algorithms when the new parallel simulators are available for pLinguaCore.

“We define the art of conjecture, or stochastic art, as the art of
evaluating as exactly as possible the probabilities of things, so
that in our judgments and actions we can always base ourselves
on what has been found to be the best, the most appropriate,
the most certain, the best advised; this is the only object of the
wisdom of the philosopher and the prudence of the statesman.”

Jacob Bernoulli

7
Parallel Simulation of PDP Systems

One of the main objectives of using PDP systems is to help the ecologists
to adopt a priori management strategies for real ecosystems. This is accom-
plished by executing virtual experiments. Thus, the design of simulators and
other related software tools becomes a critical point in the process of model
validation, as well as for virtual experimentation. Indeed, after running virtual
experiments, it is often required to add or remove some ingredients or char-
acteristics from the initial model’s blueprint. These modifications are quite
simple to implement thanks to the modularity of these models.

The PDP systems modeling framework is supported by a software tool
called MeCoSim [125]. It provides, among others, the following features: a
graphical user interface (users be ecologists or model designers), definition of
model and ecosystem’s parameters, execution of simulations, creation of sta-
tistical data in form of tables, graphs, etc. The core of this application is
pLinguaCore [70], a simulation software library for Membrane Computing.
The models are defined by plain-text files using the P-Lingua specification
language. The application loads that file, configures the corresponding param-
eters, calls pLinguaCore to execute, and collects the results of the simulation.

Many simulation algorithms are defined in pLinguaCore for different P
system models. Specifically for PDP systems, the implemented simulation
algorithms are BBB [100], DNDP [100, 101] and DCBA [99, 98]. For the
DNDP simulation algorithm, there are two implementations: in sequential and

201

Chapter 7. Parallel Simulation of PDP Systems 202

in parallel. The parallel version uses Java threads, so the parallelism is actually
a concurrent execution of threads managed by the JVM1. The DCBA has been
implemented considering performance. The big effort is the compression of the
static and dynamic tables by using a hash table.

In this chapter we will detail these implementations in pLinguaCore for
both DNDP (Section 7.1) and DCBA (Section 7.2). Moreover, we will in-
troduce a set of alternative implementations for the DCBA in C++ [88, 103]
(Section 7.3), OpenMP [15, 103] (Section 7.4) and CUDA [5, 104] (Section
7.5). These implementations are placed in a stand-alone simulation tool, that
will be connected with pLinguaCore in future.

All the simulators (C++, OpenMP and CUDA versions) are included in
the framework named ABCD-GPU. It can be downloaded from the PMCGPU
project website: http://sourceforge.net/p/pmcgpu [17]. More information
about the simulator, how to install and use it, refer to Appendix A.

7.1 DNDP algorithm implementation in

pLinguaCore

In this section we show an implementation to the DNDP algorithm following
the imperative programming paradigm. We have included this implementation
in the pLinguaCore library as a simulation algorithm for the model of PDP
systems.

Let us suppose that the PDP system to be simulated is of degree (q,m),
with q,m ≥ 1, and using T ≥ 1 time units of computation. Then, the algo-
rithm must receive the following input parameters:

• The initial configuration of the system, C0.

• The sets of rules RE (communication rules) and R (evolution rules).

• The values q, m and T .

• The set of functions {fr,j : r ∈ R, 1 ≤ j ≤ m}.

The main routines of this DNDP implementation are shown in Algorithm
7.1.1. The key aspect of this implementation is the provided parallel solution.
Considering that the left-hand sides of rules only affect to one environment,
the selection of rules can be executed in parallel for each environment without

1Java Virtual Machine

http://sourceforge.net/p/pmcgpu

7.1. DNDP algorithm implementation in pLinguaCore 203

compromising the concurrency when accessing to common objects. However,
the selection and execution of rules has to be synchronized, so that the execu-
tion phase cannot start before finishing the selection in every environment.

Algorithm 7.1.1 Main DNDP procedure

Procedure DNDP (C0, RE, R, q, m, T , K, {fr,j : r ∈ R, 1 ≤ j ≤ m})
1: {LRE ,j , LR,h,α : 1 ≤ j ≤ m, 0 ≤ h < q, α ∈ {−, 0,+}} ← Initialization(RE ,
R, q, m)

2: for t← 0 to T − 1 do
3: C ′t ← Ct
4: for j ← 1 to m do
5: Throw new Thread Selection-execution(j, t, C ′t, Ct, LRE ,j ,

{LR,h,α 0 ≤ h < q, α ∈ {−, 0,+}}, q, m, K, {fr,j : r ∈ R})
6: end for
7: Barrier-synchronization . All threads wait until everyone reaches this point
8: Ct+1 ← C ′t
9: print Ct+1

10: end for

Thread Selection-execution (j, t, C ′t, Ct, LRE ,j, {LR,h,α : 0 ≤ h ≤ q −
1, α ∈ {−, 0,+}}, q, m, K, {fr,j : r ∈ R})
1: Dj ,maxDj , Bj ← Initialize-selection-phase(j, t, Ct, LRE ,j , {LR,h,α 0 ≤ h <
q, α ∈ {−, 0,+}}, q, m, K, {fr,j : r ∈ R})

2: Dj ,maxDj , Bj ← Selection-first-phase(j, Dj , maxDj , Bj , K, C ′t, Ct)
3: Dj ,maxDj , Bj ← Selection-second-phase(j, Dj , maxDj , Bj , C

′
t)

4: Barrier-synchronization . All threads wait until everyone reaches this point
5: Execution(j,Dj ,maxDj ,C

′
t)

Before executing the Selection-first-phase and Selection-second-phase func-
tions, the algorithm needs to initialize some data structures. First, the initial-
ization phase of the pseudocode is executed by the function Initialization, and
the data structures for the rest of phases are initialized with rules from Aj and
Bj (represented by LRE ,j and LR,h,α) by the function Initialize-selection-phase.

Function Initialization (RE, R, q, m)

1: for j ← 1 to m do
2: The set of rules of the form (x)ej

pr−−−→ (x1)ej1 , . . . , (xs)ejs ∈ RE is
lexicographically sorted with respect of x, x1, . . . , xs.

3: Let LRE ,j be the list of rules with the previous order.
4: end for

Chapter 7. Parallel Simulation of PDP Systems 204

5: for h ← 0 to q − 1 do
6: for all α ∈ {−, 0,+} do
7: The set of rules of the form u[v]αh → u′[v′]α

′
h ∈ R is lexicographically

sorted with respect of u, v, u′, v′.
8: Let LR,h,α be the list of rules with the previous order.
9: end for

10: end for
11: return {LRE ,j , LR,h,α 0 ≤ j ≤ m− 1, 0 ≤ h ≤ q − 1, α ∈ {−, 0,+}}

Function Initialize-selection-phase (j, t, Ct, LRE ,j, {LR,h,α 0 ≤ h ≤
q − 1, α ∈ {−, 0,+}}, q, m, K, {fr,j : r ∈ R})
1: Dj ← New array of triples < rule− id, float, integer >, representing
< rule, probability, selection− number > respectively, of size:

q−1∑
h←0

Length(LRE ,j) +maximum{Length(LR,h,α) : α ∈ {−, 0,+}}

2: maxDj ← 0
3: for h ← 0 to q − 1 do
4: α ← charge of membrane h in environment j, from Ct
5: for all r ∈ LR,h,α do
6: p ← fr,j(t)
7: if p > 0 then
8: Dj [maxDj] ← < r, p, 0 >
9: maxDj ← maxDj + 1

10: end if
11: end for
12: Bj [h] ← false
13: end for
14: for all r ∈ LRE ,j do
15: p ← pr(t)
16: if p > 0 then
17: Dj [maxDj] ← < r, p, 0 >
18: maxDj ← maxDj + 1
19: end if
20: end for
21: return maxDj , Dj , Bj

First, the set of rules is processed. For each transition and for each environ-
ment, a list of applicable rules to the configuration is constructed, according
only to the membrane charge in the left-hand side. When these lists are com-
pleted, they are used to fill an array (one per environment), called Dj, of

7.1. DNDP algorithm implementation in pLinguaCore 205

triples < rule, probability, number−applications >. At this point, the proba-
bilities of rules are calculated using the associated function, and stored in the
triple with the corresponding rule. The construction of this array, assigning a
random order, corresponds to the set of rules Dj defined in the pseudocode.

Furthermore, a boolean array B with one entry per membrane and envi-
ronment, is used to check the consistency of rules in an efficient way. In the
pseudocode, the consistency condition is assured by testing each rule with the
rest of the previously selected. In this implementation, every time that a rule
u[v]αh → u′[v′]α

′

h is selected a number of times greater than 0, the value in B
for the active membrane h is set to true (B[h]← true). Moreover, the charge
is changed in C ′t. Then, an inconsistent rule can be found by looking at array
B, saying that another rule has already reserved the change of charge (stored
in C ′t).

We show below the code for the function Selection-first-phase, and its as-
sociated auxiliary functions. Additionally, the following computable functions
are considered for random number generation:

• Fb(N, p) is a function returning a random natural number 0 ≤ n ≤
N , according to the binomial distribution B(N, p) (see Section 7.5.2 for
further information), where N ∈ {0, . . . , 264} and p ∈ R ∩ [0, 1]. Real
numbers are encoded in floating point (float) with a precision of 32 bits.

• Fu(N) is a function returning a random natural number 0 ≤ n ≤ N − 1,
according to the uniform distribution U(N) (see Section 7.5.2 for further
information), where N ∈ {1, . . . , 264}.

Function Selection-first-phase (j,Dj,maxDj
,Bj,K,C ′t,Ct)

1: maxk ← maxDj

2: while maxk > 0 do
3: i ← Fu(maxk)
4: 〈r, p, n〉 ← Dj [i]
5: if Is-consistent(r,j,Bj ,C

′
t) then

6: N ′ ← Count-applications(r,j,C ′t)
7: if N ′ > 0 then
8: if p = 1 then
9: ni ← N ′

10: else
11: N ← Count-applications(r,j,Ct)
12: ni ← Fb(N, p)
13: if ni > N ′ then

Chapter 7. Parallel Simulation of PDP Systems 206

14: ni ← N ′

15: end if
16: end if
17: if ni > 0 then
18: Remove-left-hand-rule-objects(r,j,ni,C

′
t)

19: Update-charge(r,j,B,C ′t)
20: n ← n+ ni
21: end if
22: Swap(Dj ,i,maxk − 1)
23: maxk ← maxk − 1
24: else
25: Swap(Dj ,i,maxk − 1)
26: Swap(Dj ,maxk − 1,maxDj − 1)
27: maxk ← maxk − 1
28: maxDj ← maxDj − 1
29: end if
30: else
31: Swap(Dj ,i,maxk − 1)
32: Swap(Dj ,maxk − 1,maxDj − 1)
33: maxk ← maxk − 1
34: maxDj ← maxDj − 1
35: end if
36: end while
37: return Dj , maxDj , Bj

Function Is-consistent (r, j, B, Ct)

1: check ← true
2: if r is of the form u[v]αh → u′[v′]α

′
h then

3: β ← charge of membrane h in Πj ∈ Ct
4: if B[h] = true ∧ α′ 6= β then
5: check ← false
6: end if
7: end if
8: return check

Function Count-applications (r, j, Ct)

1: if r is of the form (x)ej
pr−−−→ (x1)ej1 , . . . , (xs)ejs then

2: n ← multiplicity of object x in environment ej ∈ Ct
3: else if r is of the form u[v]αh → u′[v′]α

′
h then

4: n ← minimum value such that un appears in the multiset of the parent
compartment of h in Πj ∈ Ct and vn appears in the multiset of h in Πj ∈ Ct

5: end if

7.1. DNDP algorithm implementation in pLinguaCore 207

6: return n

Procedure Remove-left-hand-rule-objects (r, j, n, Ct)

1: if r is of the form (x)ej
pr−−−→ (x1)ej1 , . . . , (xs)ejs then

2: Remove the multiset xn from environment ej ∈ Ct
3: else if r is of the form u[v]αh → u′[v′]α

′
h then

4: Remove the multiset un from the multiset of the parent membrane of h in
Πj ∈ Ct

5: Remove the multiset vn from the multiset of membrane h in Πj ∈ Ct
6: end if

Procedure Update-charge (r, j, Ct)

1: if r is of the form u[v]αh → u′[v′]α
′
h then

2: Assign α′ to the electrical charge of membrane h in Πj ∈ Ct
3: end if

Procedure Swap (D, i, j)

1: aux ← D[i]
2: D[i] ← D[j]
3: D[j] ← aux

The function Selection-first-phase works directly with the array Dj, so it
is a loop using a shuffle iterator (an index that takes random values between
0 and maxk). Like in the pseudocode (Algorithm 7.1.1), after checking the
consistency condition, the number of applications is calculated. If it is non-
zero, the binomial distribution is applied, getting a number n. When the rule
is processed, n is stored in the corresponding triple, which is changed by the
last one (maxk) in order to avoid selecting it again. In the case that the rule
is inconsistent or not applicable, it has to be discarded. That is, the rule
is changed by the last one (maxk) as before, but also changed with the last
selected rule (maxDj

), avoiding to be processed in the second phase.

At the end of the Selection-first-phase, Dj corresponds to the consistent
applicable rules, both with zero and non-zero selected numbers (Rj). The func-
tion Selection-second-phase is similar to the one depicted in the pseudocode.
It iterates the rules in Dj, according to the order given by probabilities, to
increase the number of applications of each one by checking the consistency
and maximality conditions.

Function Selection-second-phase (j,Dj,maxDj
,B,C ′t)

1: Sort triples 〈r, p, n〉 from Dj , from 0 to maxDj , in decrement order by p.
2: for i ← 0 to maxDj do

Chapter 7. Parallel Simulation of PDP Systems 208

3: < r, p, n >← Dj [i]
4: if n > 0 ∨ Is-consistent(r,j,Bj ,C

′
t) then

5: N ′ ← Count-applications(r,j,C ′t)
6: if N ′ > 0 then
7: if n = 0 then
8: Update-charge(r,j,Bj ,C

′
t)

9: end if
10: n ← n+N ′

11: Remove-left-hand-rule-objects(r,j,N ′,C ′t)
12: end if
13: end if
14: end for
15: return Dj , maxDj , Bj

The implementation of the simulation algorithm ends with the procedure
Execution, corresponding with the execution phase, which adds the right-hand
side of rules to C ′t.

Procedure Execution (j, Dj, maxDj
, C ′t)

1: for i ← 0 to maxDj do
2: < r, p, n >← Dj [i]
3: if n > 0 then
4: Add-left-hand-rule-objects(r,j,n,C ′t)
5: end if
6: end for

Procedure Add-left-hand-rule-objects (r, j, n, C ′t)

1: if r is of the form (x)ej
pr−−−→ (x1)ej1 , . . . , (xs)ejs then

2: Add the multisets xn1 , . . . , x
n
s to the environments ej1 , . . . , ejs ∈ Ct, resp.

3: else if r is of the form u[v]αh → u′[v′]α
′
h then

4: Add the multiset u′n to the multiset of the parent membrane of h in Πj ∈ Ct
5: Add the multiset v′n to the multiset of membrane h in Πj ∈ Ct
6: end if

7.1.1 Performance evaluation

In order to evaluate the performance of the algorithm, we have used the test
P systems from Section 6.5.3. Four test PDP systems have been configured
with the following values:

• m = 2, 4, 8, 16: we vary the number of environments in each test P
system to increase the parallelism in the algorithm.

7.1. DNDP algorithm implementation in pLinguaCore 209

• N = 1000: the total number of rules in R is 4000.

• Na = 232, Nb = 232, Nf = 1, Ng = 1: using this values, each rule can be
executed at most once.

These four P systems have been simulated using pLinguaCore with the
three following implementations written in Java: BBB (binomial in Figure
7.1), DNDP sequential and DNDP parallel algorithms. The simulations have
been executed in a computer with an Intel core2 Quad Q9550 system running
at 2.83GHz with 4GB of main memory, and using Ubuntu Linux Server 8.04
with the Java Virtual Machine 1.6.0.

Binomial DNDP seq DNDP par

0

1

2

3

4

5

6

7

8

9

10

2 env
4 env
8 env
16 env

S
im

u
la

tio
n

 ti
m

e
 (

se
c)

Figure 7.1: Simulation time of the three different implementations in a 4-core
based computer

Figure 7.1 shows the simulation time for the three implementations simu-
lating the example depicted above. It can be seen that the DNDP sequential
code is a little bit faster than the BBB. As the complexity of the P system
increments (in this example, the number of environments), the DNDP reaches
better performance. In this experiment, we report up to 1,07x of speedup for
the P system with 16 environments.

Furthermore, the parallel implementation of the DNDP algorithm has a
better overall performance than the others. Using a 4-core based computer, the
Java Virtual Machine distributes the threads (assigned to each environment of
the system) among them. In this way, for the P system with 16 environments,

Chapter 7. Parallel Simulation of PDP Systems 210

we report a 1,72x of speedup with respect to the DNDP sequential, and 1,84x
with the BBB.

We can conclude that using the Java Virtual Machine for executing the
DNDP algorithm is not efficient enough. The speedup is not as much as
expected when simulating 16 environments over a 4-core based processor in
our experiments. Although being powerful enough for simulating most of the
defined PDP system based models, the new models under development require
a huge amount of resources, much higher than the resources in a personal
computer using Java. For this reason, we will use our Java implementations in
pLinguaCore for validation processes. But to better improve the performance,
we will construct C++ based implementations by using libraries that let us
manage real parallelism on parallel platforms.

7.2 DCBA implementation in pLinguaCore

pLinguaCore has been upgraded to provide an implementation of the DCBA,
thus extending its existing probabilistic model simulation algorithms support.
Along with the inclusion of other extensions, regarding to models such as Spik-
ing Neural P Systems and Numerical P Systems, a new version of the library,
named pLinguaCore 3.0, and featuring an implementation of the introduced
DCBA can be downloaded from [16].

This Java implementation of the DCBA, within the pLinguaCore library,
aims to serve as a validation framework for the models and the algorithms.
Therefore, we are not going to consider the performance for this time, and
move forward for the C++ and CUDA versions.

In what follows, details of the implementation of the DCBA in pLinguaCore
are shown. Data structures, methods, code optimization and bug fixes are
reviewed. Going Top-down, Java classes involved in the implementation:

• DynamicMatrix. It provides an implementation for the main operations
of the DCBA.

DynamicMatrix is built as a dynamic map indexed by MatrixKey class
objects. MatrixKey objects are implemented as a pair of (MatrixRow,
MatrixColumn) class objects. Associated to each MatrixKey object
within the map, multiplicity k of the object specified by the MatrixRow
row in the left hand side of the rule specified by the MatrixColumn col-
umn is stored. Note that k is stored instead of 1/k for accuracy reasons.

As different filters are applied over the DynamicMatrix object, a couple

7.2. DCBA implementation in pLinguaCore 211

of lists of MatrixRow and MatrixColumn objects respectively are asso-
ciated to the matrix to keep track of its valid cells. Removal of elements
from these lists is performed when filters are applied, while the Dynam-
icMatrix object itself is reset in every step of the main loop of selection
phase. Thus, DynamicMatrix object can be viewed as a hash table of
multiplicities that allows a significant reduction of the required amount
of memory for execution of the DCBA.

Also, attributes that store the sum of the multiplicities of the objects in
the matrix by row as well as the minimum of the columns are included
in the DynamicMatrix class. Inconsistent blocks are controlled by means
of a list of pairs of MatrixColumn objects.

DynamicMatrix class directly extends from StaticMatrix class. Methods
in DynamicMatrix implement the DCBA different phases themselves,
remarkably:

– initData() initializes valid rows and columns lists in the Dynam-
icMatrix object, clearing up them; also application of rules data
structure is initialized.

– filterColumns1() computes valid columns and associates them to
the DynamicMatrix object; applies Filter 1 to these columns;

– filterColumns2() applies Filter 2 to valid columns associated to the
DynamicMatrix object, removing the required ones.

– checkMutualConsistency() checks mutual consistency over blocks of
the DynamicMatrix object; if any inconsistency is found, an excep-
tion is thrown and execution of the simulator is stopped; a message
listing the mutual inconsistent blocks found is shown to the user.

– initFilterRows() computes valid rows and associates them to the
DynamicMatrix object; applies Filter 3 to these rows.

– filterRows() applies Filter 3 to valid rows, removing the required
ones; this method is called inside the main loop of the selection
phase, while the previous one is called outside, at the beginning of
this phase.

– normalizeRowsAndCalculateMinimums() implements the main loop
of selection phase.

– maximality() implements the maximality phase.

Chapter 7. Parallel Simulation of PDP Systems 212

– executeRules() implements execution phase; remarkably, multino-
mial distribution is computed by using binomial distributions, im-
plemented through the specialized CERN Java library
(cern.jet.random.Binomial).

• StaticMatrix. Provides an implementation for the static matrix used by
the DCBA. Similarly to DynamicMatrix class, cells within the matrix are
stored as a map indexed by MatrixKey class objects, each one of them
associated to a multiplicity. A couple of immutable lists of MatrixRow
and MatrixColumn class objects determines the structure of the matrix.
Contents of the cells are fixed once initialized.

• MatrixRow. Provides an implementation for rows featured in Dynam-
icMatrix, StaticMatrix and MatrixKey objects. Implemented by a pair
of String objects representing object and membrane label, respectively,
it also provides a method for computing the validity of the row, i.e. to
determine if the row has to be kept within the DynamicMatrix object
with respect to a given environment.

• MatrixColumn. Provides an implementation for columns featured in Dy-
namicMatrix, StaticMatrix and MatrixKey objects. An abstract class is
extended and implemented by a couple of classes representing the two
kinds of rule blocks:

– SkeletonRulesBlock, which implements blocks of skeleton rules.

– EnvironmentRulesBlock, which implements blocks of environment
rules.

Both classes have the same structure: a single object to store the com-
mon LHS of the rule, plus a collection to store the several RHS objects
that conforms the block. Also, each one provides an specific method for
computing the validity of the corresponding column within the dynamic
matrix.

To conclude, let us note that while conducting the DCBA implementation,
several bugs have been fixed in pLinguaCore, notably some of them regarding
to the way in which rules are parsed and stored, thus applying beyond the
scope of the DCBA an affecting to implementation of probabilistic models
simulators as a whole:

7.3. DCBA implementation in C++ 213

• Multisets of objects are now taken into account while checking rule
blocks. In previous versions of pLinguaCore, when checking the con-
sistency of probabilities of a rule block was conducted (i.e. checking that
sum of probabilities of the rules must equal to one), multiplicities of
objects in the left hand side of the rules were ignored.

• Issues with “intentional duplicate rules” solved assigning a unique iden-
tifier for every rule within the scope of probabilistic models. Issues found
were:

– Instantiation of parameters in syntactically different rule schemes
for some models produced duplicated rules and caused the parser
to throw an error and halt. As this duplicity proved intentional, the
parser was modified subsequently to take it into account.

– Probability was not taken into account when differencing rules. This
made the parser to discard a rule syntactically identical, except for
its probability, to a previous parsed one.

7.3 DCBA implementation in C++

As shown in Section 7.2, the DCBA was first implemented inside the pLin-
guaCore framework [99, 98, 16]. This version (hereafter pdp-plcore-sim) was
validated towards a real ecosystem model (as shown in Chapter 6), reproduc-
ing the same data as the actual measurements. However, the performance was
low since it as part of the pLinguaCore was written in Java.

Our first approach for making our implementation more efficient, was to
develop a stand alone simulator written in C++ [103] (called pdp-seq-sim).
We choose C++ for its similarity to the common GPGPU (General Purpose
computations on Graphics Processing Units) languages of OpenCL and CUDA,
and the support of many parallel libraries, such as OpenMP, PThreads and
MPI.

We have designed an implementation which saves on memory by avoiding
the creation of a static table for phase 1 of the DCBA. The implementation
of this table can be inefficient in systems with a large number of rule blocks
and/or objects. Therefore, the main challenge at phase 1 is the construction
of the expanded static table Tj. The size of this table is O(|B| · |Γ | · (q + 1)),
where |B| is the number of rule blocks, |Γ | is the size of the alphabet (amount
of different objects), and q + 1 corresponds to the number of membranes plus
the space for the environment.

Chapter 7. Parallel Simulation of PDP Systems 214

A full implementation of Tj can be expensive for large PDP systems. More-
over, it is a sparse matrix, having null values in the majority of the positions:
competitions for one object appears for a relatively small number of blocks.
This problem was overcome in the pdp-plcore-sim by using a hash table storing
only non-null values. For pdp-seq-sim, the idea was to avoid the construction
of Tj, by translating the operations over the table to operations directly to the
rule blocks information (using some of observations made in Chapter 6):

• Operations over columns: they can be transformed to operations for each
rule block and the objects appearing in the multisets of the LHS.

• Operations over rows: they can be translated similarly to operations
over columns, but the partial results are stored into a global array (one
position per row).

Phase 1 can be implemented as described in Algorithm 7.3.1. Note that
Filter 3 is not needed any more. Although the full table is not created, some
auxiliary data structures are used to virtually simulate it (we say it uses a
virtual table):

• activationV ector: the information of filtered blocks is stored here as
boolean values. The full global size is O(|B| ∗m ∗nsim), where m is the
number of environments and nsim the number of simulations carried out
in parallel. This vector is actually implemented passing from boolean to
bits.

• addition: the total calculated sums for rows are stored here, one number
per each pair object and region. Its size is of order O(|Γ| ∗ (q + 1) ∗m ∗
nsim).

• MinN : the minimum numbers calculated per column are stored here.
This is needed in order to substract the corresponding number of ap-
plications to C ′t in each loop for the A value. The total global size is
O(|B| ∗m ∗ nsim).

• BlockSel: the total number of applications for each rule block is stored
here. The total global size is O(|B| ∗m ∗ nsim).

• RuleSel: the total number of applications for each rule is stored here.
The total global size is O(((|R| ∗m) + |RE|) ∗ nsim), where |R| is the
number of evolution rules and |RE| the number of communication rules.

7.3. DCBA implementation in C++ 215

Algorithm 7.3.1 Implementation of selection Phase 1 with virtual table
1: for j = 1, . . . ,m do . For each environment
2: for all block B do
3: activationV ector[B]← true
4: if charge(LHS(B)) is different to the one presented C ′t then
5: activationV ector[B]← false . (Apply Filter 1)
6: else if one of the objects in LHS(B) does not exist in C ′t then
7: activationV ector[B]← false . (Apply Filter 2)
8: end if
9: end for

10: Check the mutual consistency of blocks.
11: repeat
12: for all block B having activationV ector[B] = true do . (Row sums)
13: for each object ok appearing in LHS(B), associated to region i do
14: addition[o, i]← addition[o, i] + 1

k
15: end for
16: end for
17: for all block B having activationV ector[B] = true do . (Col. min.)
18: MinN [B]←Min[ok]i∈LHS(B)(

1
k2
∗ 1
addition[o,i] ∗ C

′
t[o, i]).

19: BlockSel[B]← BlockSel[B] +MinN [B].
20: end for
21: for all block B having activationV ector[B] = true do . (Updating)
22: C ′t ← C ′t − LHS(B) ∗MinN [B]
23: end for
24: Apply Filter 2 again (as described in step 6).
25: a← a+ 1
26: until a = A or for each active block B, MinN [B] = 0
27: end for

Chapter 7. Parallel Simulation of PDP Systems 216

7.4 DCBA parallel implementation for multi-

core platforms with OpenMP

As mentioned in the previous section, before we introduced parallelism, we
first rewrote the simulator in C/C++ which is advantageous because OpenMP,
PThreads and MPI are supported. In this section, we describe the implemen-
tation of the three forms of parallelism added to our simulator. A comparison
of the three different techniques is also included, with a discussion of their
strengths and weaknesses, and a evaluation of their performance on two gen-
erations of Intel processors with large memory sub-system differences. We will
call this new simulator pdp-omp-sim.

From our analysis of these results we identify further ways to improve the
running time of our simulator, by minimizing memory and cache bottlenecks
using data compression and GPU computing. Ideas and references on com-
pression and GPU computing can be found in [23].

7.4.1 DCBA parallel design

Our new implementation is parallelized in three ways: 1) simulations, 2) en-
vironments and 3) a hybrid approach. All of them are implemented using the
parallel standard library for multicore platforms, OpenMP [15].

• Simulations are parallelized by using the #pragma omp parallel for

OpenMP directive [15] on a simulation loop. This outermost loop for
simulations can easily be added in the main procedure of the DCBA
(Initialization, Selection and Execution stages must be executed in each
iteration) [103]. The advantage of running simulations in parallel is there
are no data dependencies between simulations, and, therefore, the prob-
lem is embarrassingly parallel. Also, the users of the simulator typically
run 50 to 100 simulations of each set of input parameters, so there are
enough simulations to consume all cores.

However, there are disadvantages of running simulations in parallel. Each
simulation needs its own memory space increasing the amount of memory
used. If the number of simulations is not divisible by the number of
processors then load balancing issues can occur with the final simulations
running while some cores are idle. Also, running simulations in parallel
can result in resource conflicts as cores compete for shared resources.

• Environments are parallelized by using the #pragma omp parallel [15]

7.4. DCBA parallel implementation for multicore platforms with OpenMP 217

to generate a thread pool for the simulation. Then the for loops in Algo-
rithm 7.3.1 that iterate over environments are parallelized with #pragma

omp for [15], which has an implicit barrier that enforces the dependen-
cies between the stages in each time step. Using this design, creating
new thread blocks for each for loop is avoided.

The advantage of parallelizing environments over simulations is that
memory usage does not increase. However, dependencies occur twice
in each time step requiring synchronization steps. Also, since most mod-
els use 5 to 30 environments, there are cases where modern machines
have more cores than environments and just parallelizing environments
cannot take advantage of all computing resources. In addition, as with
simulations, load balancing can be an issue if the number of environments
is not divisible by the number of cores, or if the runtime of environments
varies.

• Hybrid parallelization is accomplished by combining parallel environ-
ments with parallel simulations. We accomplish hybrid parallelization
through command-line flags that allow the specification of how many en-
vironments or simulations to run in parallel. By combining both forms
of parallelism, we can balance the amount of each resource used. This
will become more important as the number of cores within a node in-
creases. For example, the number of simulations can be increased until
available memory is used and then environments within each system can
be parallelized.

7.4.2 Experimental evaluation

In this section, we describe a series of tests performed on our implementation
and the systems they were run on, along with the results from those experi-
ments.

7.4.2.1 Test environment and methodology

The following experiments were run on the two machines shown in Table 7.1.
The tests used random systems with similar amounts of data to real-life exam-
ples. Multiple configurations with environments and simulations varying from
10 to 50 were tested for the parallel environments, simulations and two hybrid
combinations. Each of these tests were run on 1 to 8 cores for the Intel i5
machine, and 1 to 4 for the Intel i7. The measurements in this section, except
when noted, correspond only to the parallelized part of the code.

Chapter 7. Parallel Simulation of PDP Systems 218

Processor Speed Bus speed Cache
i5 Nehalem (2x4) 2 Ghz 3x800 Mhz 2x4 MB
i7 Sandy Bridge (1x4) 3.4 Ghz 2x1333 Mhz 8 MB

Table 7.1: Specifications of the test machines.

Processor Setup 10 env & sim 50 env & sim
Nehalem 0.8 s 48.0 s 251.0 s
Sandy Bridge 0.35 s 19.9 s 97.8 s

Table 7.2: Serial Runtimes

7.4.2.2 Results

The serial running time on both of our test machines is shown in Table 7.2.
Setup is the cost of running the serial portion of the code. The other two
columns represent the runtime extremes of our test cases when run in serial.
From the table, we can see that in serial the setup portion is a small part of
the overall runtime, and that the Sandy Bridge processor is about 2.5 times
faster than the Nehalem.

Figures 7.2 and 7.3 show the performance improvements of parallelizing
our system in various ways. The two figures are representative of the other
tests we performed with the best performance either being parallelizing by
simulations or the hybrid method (2s), which uses two simulations and then
parallelizes by environments. Another trend shown is that as the number of
simulations increases, the advantage of parallelizing by simulations increases.
The same effect is observed for environments.

On the Sandy Bridge system, the largest speedup of 2.5x occurs for 50
simulations and 50 environments. However, the maximum speedup on Sandy
Bridge when going from 3 to 4 processors is only between 0.1 and 0.2, sug-
gesting that the calculation is memory bound for larger core counts. On the
Nehalem machine, the maximum parallel speedup was 2.3x for all tests, which
is barely greater than the added available bandwidth from using the second
socket. These results, led us to suspect we that the Nehalem system’s perfor-
mance was being limited our programming approach. In particular, we did not
account for the Non Uniform Memory Access (NUMA), memory subsystem of
the two sockets.

One final test was run to see if NUMA was hurting the performance of our
code on the Nehalem machine. First one and then two instances of the code was
run with 4 threads each (affinity locked to different sockets) on the machine.
With two instances, a 2x speedup was achieved over the best parallel results

7.4. DCBA parallel implementation for multicore platforms with OpenMP 219

� � � � � � � �

�

�	�

�	�

�	�

�	�

�

�	�

�	�

����������

���������

��������

��������

�����

�
�
�
�
�
�
�

(a) Nehalem

! " # $

!

!%"

!%$

!%&

!%'

"

"%"

"%$

"%&

()*+,-)./)01

2+.3450+-)1

678,+9:"1

678,+9:"/

;-,/1

1
<
/
/
9
3
<

(b) Sandy Bridge

Figure 7.2: Speedups running 50 simulations with 10 environments in the
system

Chapter 7. Parallel Simulation of PDP Systems 220

! " # $ % & ' (

!

!)"

!)$

!)&

!)(

"

")"

")$

*+,-./+01+23

4-05672-/+3

89:.-;<"3

89:.-;<"1

=/.13

3
>
1
1
;
5
>

(a) Nehalem

� � � �

�

���

���

���

���

�

���

���

���

�	
��	��	��

��������	�

���������

���������

����

�
�
�
�
�
�
�

(b) Sandy Bridge

Figure 7.3: Speedups running 10 simulations with 50 environments in the
system

7.5. DCBA parallel implementation on the GPU with CUDA 221

from running one instance of the OpenMP version. Confirming this result is
that locking all 4 threads to a single socket, performance results in a 50%
performance increase when compared to locking 2 threads to each socket. For
the current tests, however, affinity is controlled by the operating system and
performance is similar to when two threads were locked to each socket. These
preliminary tests also indicates that the code is memory bound since overall
speedups on 8 cores were less than 5x.

In conclusion, experiments ran to test the simulator indicate the simula-
tions are memory bound and the portion of the code we parallelized consumes
over 98% of the runtime in serial. From this initial work we conclude that
parallelizing by simulations or hybrid techniques yields the largest speedups.
Also, using hardware, such as Intel’s Sandy Bridge that has more memory
bandwidth, is an easy way for scientists to improve the speed of our simulator.
It can also be concluded that performance tuning to decrease data movement
is important for P-system simulators, since P systems are memory bound com-
putations.

7.5 DCBA parallel implementation on the

GPU with CUDA

Our previous simulator, pdp-omp-sim [103], is the starting point of the new
implementation using CUDA. In this new simulator (let call it pdp-gpu-sim)
[104], the code and the data structures have been optimized, saving up to
27% of memory. We have also adapted pdp-omp-sim to these, achieving better
speedups (1.25x for large systems).

Normally, the end user (i.e., ecological experts and model designers) runs
many simulations on each set of parameters to extract statistical information
of the probabilistic model. This can be automated by adding an outermost
loop for simulations in the main procedure of the DCBA. This loop is easily
parallelized. Indeed, our tests of pdp-omp-sim conclude that parallelizing by
simulations or a hybrid technique (simulations plus environments) yields the
largest speedups.

At first glance, these two levels of parallelism (simulations and environ-
ments) could fit the double parallelism of the CUDA architecture (thread
blocks and threads). For example, we could assign each simulation to a block of
threads, and each environment to a thread (since they require synchronization
at each time step). However, the number of environments depends inherently
on the model. Typically, 2 to 20 environments are considered, which is not

Chapter 7. Parallel Simulation of PDP Systems 222

enough for fulfilling the GPU resources. Number of simulations typically range
from 50 to 100, which is sufficient for thread blocks, but still a poor number
compared to the several hundred cores available on modern GPUs.

We therefore also parallelize the execution of rule blocks. Hence, our sim-
ulator can utilize a huge number of thread blocks by distributing simulations
(parallel simulations, as memory can store them) and environments in each
one, and process each rule block by each thread. Since there are normally
more rule blocks (thousand of them) than threads per thread block (up to
512), we create 256 threads which iterate over the rule blocks in tiles. This
design is graphically shown on Figure 7.4. Each phase of the algorithm has
been designed following the general CUDA design explained above, and imple-
mented separately as individual kernels. Thus, simulations and environments
are synchronized by the successive calls to the kernels.

RULE BLOCKS

THREADS

RULE BLOCKS

THREADS

RULE BLOCKS

THREADS

RULE BLOCKS

THREADS

.

.

.

.

THREAD BLOCKS: DIM X (ENVIRONMENTS)

T
H

R
E

A
D

 B
L

O
C

K
S

:
D

IM
 Y

 (
S

IM
U

LA
T

IO
N

S
)

T. Block (0,0) T. Block (m,0)

T. Block (0,s) T. Block (m,s)

Figure 7.4: General design of our CUDA-based simulator: 2D grid, and 1D
thread blocks. Threads loop the rule blocks in tiles.

7.5.1 GPU implementation of the DCBA phases

7.5.1.1 Implementation of Selection Phase 1

The main challenge at this phase is the construction of the expanded static
table Tj. The size of this table is O(|B| · |Γ | · (q+ 1)), where |B| is the number
of rule blocks, |Γ | is the size of the alphabet (amount of different objects),
and q + 1 corresponds to the number of membranes plus the space for the

7.5. DCBA parallel implementation on the GPU with CUDA 223

environment.
A full implementation of Tj can be expensive for large PDP systems. More-

over, it is a sparse matrix, having null values in the majority of the positions:
competitions for one object appears for a relatively small number of blocks.
This problem was overcome in the pdp-plcore-sim by using a hash table storing
only non-null values. For pdp-omp-sim, the idea was to avoid the construction
of Tj, by translating the operations over the table to operations directly to the
rule blocks information (using the observations made in Section 6.6):

• Operations over columns: they can be transformed to operations for each
rule block and the objects appearing in the multisets of the LHS.

• Operations over rows: they can be translated similarly to operations over
rows, but the partial results into a global array (one position per row).

Phase 1 can be implemented as described in Algorithm 7.3.1. Note that
Filter 3 is not needed any more. Although the full table is not created, some
auxiliary data structures are used to virtually simulate it (we say it uses a
virtual table):

• activationV ector: the information of filtered blocks is stored here as
boolean values. The total global size is O(|B| ∗m ∗ nsim), where m is
the number of environments and nsim the number of simulations carried
out in parallel. This vector is actually implemented passing from boolean
to bits.

• addition: the total calculated sums for rows are stored here, one number
per each pair object and region. Its size is O(|Γ| ∗ (q + 1) ∗m ∗ nsim).

• MinN : the minimum numbers calculated per column are stored here.
This is needed in order to substract the corresponding number of ap-
plications to C ′t in each loop for the A value. The total global size is
O(|B| ∗m ∗ nsim).

• BlockSel: the total number of applications for each rule block is stored
here. The total global size is O(|B| ∗m ∗ nsim).

• RuleSel: the total number of applications for each rule is stored here.
The total global size is O(((|R| ∗m) + |RE|) ∗ nsim), where |R| is the
number of rules and |RE| the number of communication rules.

Chapter 7. Parallel Simulation of PDP Systems 224

The implementation on the device has been constructed directly from Al-
gorithm 7.3.1. Phase 1 has been implemented using several kernels, avoiding
the overload of only one:

• Kernel for Filters (from line 2 to 10 in Algorithm 7.3.1): Filters 1 and
2 are implemented here by using our general CUDA design (Figure 7.4).

• Kernel for Normalization (from line 11 to 20): the two parts for row
additions and minimum calculations (called normalization step) are im-
plemented in a kernel. They are synchronized by synchtreads CUDA in-
struction. The work assigned to threads is divergent (scatter operation),
that is, each thread works with one rule block, but writes information
for each object appearing in the LHS. Therefore, the writes to addition
are carried out by atomic operations.

• Kernel for Updating and Filter 2 (from line 21 to 26). As before, the
work of each thread is divergent (scatter operation). Thus, the update
of the configuration is also implemented with atomic operations.

Finally, we also had to deal with a GPU constraint concerning floating
point operations. We found that on many NVIDIA GPUs (specially, in our
GPUs with compute capability 1.3), addition and multiplication are IEEE 754-
compliant operations, so they generate the same results than using a commod-
ity CPU. However, many other operations, such as square root and division,
result in the floating point value closest to the correct mathematical result
[154, 5].

Executing Phase 1 many times with very large models, we find many dis-
crepancies with the results from the CPU version. These differences, in terms
of rule blocks selection number, are small (around only 1 or 2 units). However,
this leads to miss information, and sometimes to incorrect results.

The problem takes place at line 14 in Algorithm 7.3.1. Initially, we have
implemented those divisions and additions by using double values for the addi-
tion vector to avoid losing accuracy. However, when using GPUs with compute
capability 1.2, they are demoted again to floats. Double operations are also
inefficient. Therefore, our solution was to use two integer values representing
the fractions in the addition vector, so that the real division is performed only
at the end of the accumulative process (line 18 in Algorithm 7.3.1).

In order to avoid overflows, we have implemented a loop at the beginning
of the algorithm. This loop initializes the addition vector to the total sums
using the static table. Later on, the addition value is calculated by subtracting
the values of filtered rule blocks, instead of summing those that are active.

7.5. DCBA parallel implementation on the GPU with CUDA 225

7.5.1.2 Implementation of Selection Phase 2

Phase 2 is the most challenging part when parallelizing by blocks. The selection
of blocks at this phase is performed in an inherently sequential way: we need to
know how many objects a block can consume before selecting the next one. In
our solution, Phase 2 is implemented by one kernel, using our general CUDA
design.

The random order to the blocks is simulated by the CUDA thread scheduler:
each thread calculates the position in the order of its rule block by using the
atomicInc operation. Since it does not perform a real random order, random
numbers are going to be used soon in next versions. Our first approach (let
designate it ph2-simorder-oneseq) for Phase 2 was to launch 257 threads: 256
threads to calculate the “random” order, and an extra thread to iterate the
blocks in that order, selecting and consuming the LHS. Since this approach is
still sequentially executed in the GPU, an improved version was constructed.

A B C A D E A B

- - - -

LHS

order

B0 B1B0 B2 B3

Iteration 0
A B C (0,0) D E (0,0)(0,1)

0 - - -
LHS

order
Iteration 1

A B C (0,0) D E (1,0)(0,1)

0 1 - -

LHS

order
Iteration 2

A B C (0,0) D E (1,0)(0,1)

0 1 0 -

LHS

order
Iteration 3

A B C (0,0) D E (1,0)(0,1)

0 1 0 2

LHS

order

Figure 7.5: Sample of our ph2-simorder-dyncomp kernel execution.

Our new version (designated ph2-simorder-dyncomp) dynamically checks
the blocks that are really competing for objects, and calculates which blocks
can be selected in parallel, and which depend on the selection of the others.
To do this, some previous computations are needed. Two arrays are used,
one storing the information of the LHS, and another storing the selection
order (rule blocks having the same selection order number will be selected in
parallel). Both arrays are implemented using the GPUs shared memory to
speedup this computation. Shared memory on the GPU is one of the on-chip
memory spaces which is shared by all the SPs of a SM. Access times to the
shared memory are comparable to those of a L1-cache on a traditional CPU.

Chapter 7. Parallel Simulation of PDP Systems 226

Recall that GPUs also feature high-speed DRAM memory (device memory)
with higher latency than on-chip memory (typically hundreds of times slower).
The device memory is subdivided in read-write, non-cached (global and local)
and read-only, cached (texture) areas.

Figure 7.5 shows a sample ph2-simorder-dyncomp kernel execution. We
iterate for each rule block (using the pre-calculated random order). First, the
rule blocks check if they have common objects with block B0. In the example,
block B1 has object A, and block B3 has objects A and B. They annotate
this competition with the pair (block, object), using the indexes of the array.
The current block also calculates the selection order by checking whether it
has some depending objects. If so, the order is increased by one. For the first
iteration, block B0 is assigned order 0, but in iteration 1, block B1 is assigned
order 1 (competing with block B0). The rest of the iteration can be seen in
Figure 7.5.

Our experiments shows that ph2-simorder-dyncomp, that includes extra
computations but allows to execute independent blocks in parallel, achieves
up to 20% of performance improvement from ph2-simorder-oneseq.

7.5.1.3 Implementation of Selection Phase 3

Phase 3 calculates the number of times a rule is applied using a binomial
distribution, and the selected block number, both implemented in one kernel.

For random binomial number generation, we have made a CUDA library
based on cuRAND [14], called cuRNG BINOMIAL (see next subsection 7.5.2
for details). This module implements the BINV algorithm proposed by Voratas
Kachitvichyanukul and Bruce W. Schmeiser [87]. Algorithm BINV executes
with speed proportional to n·p and has been improved by exploiting properties
listed in the paper [87]. Also, it has got the best results assuming a normal
probability approximation when n · p > 10.

The library implements an inline device function which executes binomial
randomization (BINV) when n ·p ≤ 10 and normal randomization (cuRAND),
otherwise. Our implementation generates binomial random numbers while
running the kernel; thus, they are not generated previously.

The implementation of the phase is directly translated from the pseudocode
of the DCBA. Also, it has got the best parallelism exploiting until now, com-
paring to other phases of the algorithm.

7.5. DCBA parallel implementation on the GPU with CUDA 227

7.5.1.4 Implementation of Execution (Phase 4)

Phase 4 is implemented as directly shown in the DCBA pseudocode using our
general CUDA design. In this case, we go to another level of parallelism for
threads, that now works with each rule. As before, threads iterate the rules
by tiles, and adding the corresponding RHS (if it has a number of applications
Nr > 0). Finally, since this operation is scatter or divergent (from rules to
add objects), we use atomic operations again to update the configuration of
the system.

7.5.2 Random binomial variate generator on the GPU

We have to take into account the generation of random numbers when working
with probabilistic algorithms. The DCBA considers the multinomial distribu-
tion. In fact, it is calculated by using the binomial distribution for each of the
random variables (i.e. number of selected applications for each rule). In the
next subsections we will introduce the binomial distribution of probability, the
random number generation problem, and a description of our new library for
CUDA, called cuRNG BINOMIAL.

7.5.2.1 The binomial distribution

The DCBA uses random multinomial variables, as stated in phase 3. This fact
simplifies the distribution of objects along the possible evolutions that it can
suffer from the system. It is based on the idea of deciding the evolution of
a group of individuals. The decision is made by the system, which imposes
the rules of the model (abstracted directly from nature). This idea has been
successfully applied to develop comprehensive and modular models fitting the
reality.

The experiment that typically explain the multinomial distribution is the
following [91]: b balls are thrown into k bins, where the probability of a ball
falling in the i-th bin is pi. The probability mass function2 of the normal
distribution is

f(x1, . . . , xk;n, p1, . . . , pn) = n!
k∏
i=1

pxii
xi!

where n ≥ 0; xi ≥ 0, pi > 0, 1 ≤ i ≤ k;
∑k

i=1 xi = n; and
∑k

i=1 pi = 1. We
write the distribution as M(n, p1, . . . , pk)

2The probability mass function gives the probability that a discrete random variable is
exactly equal to some value

Chapter 7. Parallel Simulation of PDP Systems 228

The multinomial distribution is a generalization of the binomial distribu-
tion [91]. The latter describes the total number of successes in a sequence of n
independent Bernoulli trials, which has two outcomes (success or failure). In
the multinomial distribution, the categorical distribution is used, where each
trial results in exactly one of some fixed finite number k of possible outcomes,
with probabilities p1, ..., pk, as denoted before.

A set of random numbers following the normal distribution can be calcu-
lated through random binomial numbers. Actually, this is implicitly performed
in the BBB algorithm (see Algorithm 6.4.2 in Chapter 6). In summary, for
each k−1 of the k choices, we calculate a binomial random number using n and
pi. The number n has to be updated according to the previously calculated
random number. Moreover, we need to normalize the remaining probabilities.
Finally, the last choice is directly assigned the remaining number n.

The probability mass function of the binomial distribution is

f(x) =

(
n

x

)
px(1− p)n−x

where x ∈ {0, 1, 2, ..., n} and 0 ≤ p ≤ 1, but never x = 0∧ p = 0. We write the
distribution as B(n, p). The expectation, or mean value, is given by E = n · p,
and the variance is V ar = n · p(1 − p). A very important property is that
the distribution converge to the normal distribution, when n increases. It is a
direct consequence of the Central Limit Theorem. The approximation of the
distribution is as follows: B(n, p) ≈ N(n · p, n · p(1− p)). This approximation
is accurate enough when n · p > 10 [91] (for other sources when both n · p and
n(1− p) are greater than 5).

The normal distribution is considered the most prominent probability dis-
tribution in statistics. There are three major reasons for this [36]: it is very
tractable analytically, the symmetry of its familiar bell shape (Gaussian func-
tion) is very useful and it can be used to approximate many other distributions
in large samples (by the Central Limit Theorem). It is denoted by N(µ, σ2),
where µ is the expectation (mean), and σ2 is the variance. The distribution
N(0, 1) is called the standard normal distribution. Furthermore, it is possi-
ble to relate all normal random variables to the standard normal. That is, if

X ∼ N(µ, σ2), then the random variable Z =
(X − µ)

σ
holds Z ∼ N(0, 1) [36].

Finally, we will introduce perhaps one of the most important distributions
in computing. It is the uniform distribution, which is denoted by U(a, b), what
means that it is defined in the interval [a, b]. All intervals of the same length
on the distribution’s support are equally probable.

7.5. DCBA parallel implementation on the GPU with CUDA 229

7.5.2.2 Generation of random numbers

We can think on a random number generator (RNG) as a procedure to gener-
ate numbers without any pattern, in a unpredictable and unreproducible way.
Formally, it generates an infinite stream of random variables that are inde-
pendent and identically distributed according to some probability distribution
[91]. Today, we can use the quantum physical laws as a source of randomness
[84]. However, these processes are expensive to handle, and it is still hard to
find devices based on this concept. Moreover, physics still have to demonstrate
a quote from A. Einstein: “As I have said so many times, God doesn’t play
dice with the world”.

Current random number generators on computers are based on software
applications whose algorithms are based on ordinary arithmetics. These are
called pseudorandom number generators (PRNG). They generate a determin-
istic sequence of numbers from an initially requested number, called seed. Al-
though the sequence of numbers is deterministic, the sequence to use is given
randomly by the seed. This property makes PRNG to be very useful for their
speed in number generation and their reproducibility.

Other popular RNGs on computers are quasirandom methods (QRNG).
The quasirandom (also known as low-discrepancy) sequences try to fill the
space of numbers more uniformly than uncorrelated random points. They are
not random at all, since they apply a maximally avoiding strategy, but they
are very useful on several simulation scenarios. Therefore, they do not have to
be confuse with PRNG methods.

A random number generator is good depending on many factors. Below we
list some desirable properties [91]:

• Pass statistical tests supporting the uniformity of random numbers.

• A theoretical base. As stated by D. Knuth (1998), ”Random numbers
should not be generated with a method chosen at random”.

• Reproducible stream of numbers for testing.

• Fast and efficient generation of random numbers.

• A large period of the PRNG. It is defined as the smallest number of steps
taken before entering a previously visited state of random numbers. It
should be extremely large, on the order of 1050. In order o produce N
numbers, some authors consider that the period length should be at least
10N2 [91].

Chapter 7. Parallel Simulation of PDP Systems 230

• Provide multiple streams to produce sequences in parallel.

Most PRNG algorithms produce uniformly distributed sequences. In these
cases, the generator is said to be a uniform random number generator. Ran-
dom numbers selected from a non-uniform distribution can be generated us-
ing a uniform distribution and a function to relate them. Indeed, a stan-
dard normal variable can be generated using two uniform variables. This
is performed by the box-muller transformation [29]. This method works as
follows: consider X1 and X2 two independent random variables uniformly dis-
tributed in the interval (0,1). Then, the random variables Z1 and Z2, defined
as Z1 =

√
−2 lnU1 cos 2πU2 and Z2 =

√
−2 lnU1 sin 2πU2, are independent

random variables with a standard normal distribution.
Finally, binomial random variables can be generated using several methods

[87]. The algorithm BTPE [87] is currently the most used in several standard
numerical libraries (e.g. GNU Scientific Library (GSL) [11]). On the contrary,
BINV [87] is the algorithm that works better for small number of experiments
(or binomial parameter n).

7.5.2.3 The cuRAND library

NVIDIA provides within its CUDA toolkit a library for random number gener-
ation. It is called cuRAND [14], and has the ability to generate pseudorandom
and quasirandom numbers. The library has passed several statistical tests tra-
ditionally used for RNGs. The architecture of cuRAND consists of two parts,
for both the host and device sides.

The host can use the cuRAND library for generating random numbers on
the host itself, or on the device. The latter means to generate the random
numbers on the device global memory, so that both the host or the device can
use them for any randomized task. But on the other hand, the device can also
use the library to generate random numbers “on the fly”, inside the kernels.
These are inline functions that can be called by the threads of a grid, and
generate sequences in parallel.

There are five types of random number generators in cuRAND. One type
is for pseudorandom number generation, and it is based on the XORWOW
algorithm [14]. The other four types are variants of the SOBOL’ quasirandom
number generator [14]. The XORWOW generator in cuRAND is estimated to
have a period length of 267. Furthermore, the library supports the pseudoran-
dom number generation for the uniform and the normal distributions. The
normal distribution is calculated through the box-muller transformation using
the fast float functions on the GPU.

7.5. DCBA parallel implementation on the GPU with CUDA 231

7.5.2.4 The cuRNG BINOMIAL library

We have developed a new library for generating binomial random variates
on the GPU. This is crucial for the correct development of the GPU simula-
tor. This library is called cuRNG BINOMIAL, and is based on the cuRAND
library. The implementation is a header file with inline functions for the
CUDA threads (as in the cuRAND).

The cuRNG BINOMIAL library has been designed to run fast, in parallel
and saving memory space on the GPU. Therefore, we cannot use very com-
plex algorithms with many loops and conditions, such as the BTPE [87]. This
leads to thread predication and warp divergences. The design is then based
on the approximation of the binomial distribution by using the standard nor-
mal, which is efficiently generated by the cuRAND. However, we need another
implementation for small values of the mean. In these cases, the algorithm uti-
lized is the BINV, since it is the most efficient for small values [87] (it requires
to generate only one random number, and has a small loop).

When a thread call the function for generating a random number that
follows the distribution B(n, p), the following takes place:

• If n ·min(p, 1 − p) ≥ 10, then the normal approximation is used. The
cuRAND library calculates a normal random variable Z, and the function
returns the value Z

√
np(1− p) + np.

• If n ·min(p, 1− p) < 10, then the BINV algorithm is used. It is applied
as shown in Algorithm 7.5.1.

7.5.2.5 Testing the library

In order to test the cuRNG BINOMIAL library, we have developed two bench-
marks. The first one test the correctness of the library, and the other the
performance.

Figure 7.6 shows two tests for the binomial behavior of the library. For the
first test (Figure 7.6), 400 random numbers were generated using the binomial
variable X ∼ B(20, 0.5). Because the mean for this random variable is exactly
10, the library applied the normal distribution for its minimum value.

For second first test (Figure 7.6(b)), 600 random numbers were created
using the binomial Y ∼ B(40, 0.2). In this case, since the mean for this variable
is 8, the library used the BINV algorithm. We can see that the resulting graphs
meets the binomial form: highest value for the mean, and almost null values
for those far from the mean plus variance.

Chapter 7. Parallel Simulation of PDP Systems 232

Algorithm 7.5.1 cuRNG BINOMIAL implementation for the BINV algo-
rithm
Require: n and p values.
1: q ← 1− p
2: s← p/q
3: a← (n+ 1) · s
4: r ← qn

5: u← curand uniform . (generate a uniform random variable)
6: repeat
7: u← u− r
8: x← x+ 1
9: r ← (a/x− s) · r

10: if r ≤ 0 then
11: Break the loop repeat
12: end if
13: until u ≤ r
14: if x > n then
15: x← n
16: end if
17: if p ≥ 0.5 then
18: x← n− x
19: end if
20: Return x

7.5. DCBA parallel implementation on the GPU with CUDA 233

(a) B(20, 0.5)

(b) B(40, 0.2)

Figure 7.6: Binomial random variates generated using cuRNG BINOMIAL

Chapter 7. Parallel Simulation of PDP Systems 234

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
0

5

10

15

20

25

30

35

40

45

50
N=10

N=100

N=10 (BTPE)

N=100 (BTPE)

Probability

S
pe

ed
up

Figure 7.7: Performance of cuRNG BINOMIAL generating 106 random num-
bers

The second benchmark is focused on the performance of the library, as
well as on the correctness. We have executed two tests generating 106 random
numbers each. They have been carried out on our GPU sever. We have
implemented a CPU counterpart of the cuRNG BINOMIAL library. This CPU
version implements both the BINV algorithm and the normal approximation.
Moreover, it uses the GSL library to generate the random numbers. The first
test is based on the generation of binomial random numbers following the
variables X ∼ B(10, p), 0 ≤ p ≤ 1, and the second is based on the binomial
Y ∼ B(100, p), 0 ≤ p ≤ 1. Note that the library uses the BINV algorithm for
the first test, and the normal approximation for the second one.

The results are shown in Figure 7.7. The speedups for the two tests are
represented by bars (N = 10 for X ∼ B(10, p) and N = 100 for Y ∼ B(100, p),
respectively). The library achieves better performance in the first tests, which
is based on the application of the BINV algorithm. However, the approxima-
tion of the normal distribution (second test) is a bit less fast than the other
approximation. The reason is that generation normal random numbers and its
conversion to binomial implies more special arithmetic functions on the GPU
(box-muller transformation), what is worst than generating just one random
number and applying a small loop (BINV). Nevertheless, the GPU is able to
generate those numbers much faster (with a maximum of 35x of speedup) than
the CPU counterpart.

7.5. DCBA parallel implementation on the GPU with CUDA 235

We have also expanded the two tests to compare our library, which imple-
ments a normal approximation, with the BTPE implementation on the GSL
library. This is represented as lines in Figure 7.7. For the first test, we can
see that the BINV algorithm behaves worst than the BTPE for small values,
and therefore, the GPU achieves the half of the original speedup. However,
for high values, as in the second test, the GPU normal approximation works
better than the BTPE in terms of performance, increasing the performance up
to 45x.

Recall that the graph is symmetric, so that the values for probabilities
below and upper 0.5 are the same (we consider the minimum of p and 1− p).
Concerning the correctness, we have test that the 106 numbers generated meets
the expected mean and variance for both random variables X and Y . This test
includes the cuRNG BINOMIAL library, as well as those based on the GSL
library.

7.5.3 Performance results of the simulator

In order to test the performance of our simulators, we constructed a random
generator of PDP systems (designated pdps-rand). These randomly created
PDP systems have no biological meaning. The purpose is to stress the sim-
ulator in order to analyze the implemented designs with different topologies.
pdps-rand is parametrized in such a way that it can create PDP systems of a
desired size.

We benchmark our pdp-gpu-sim and pdp-omp-sim (for 1, 2 and 4 cores) by
first analyzing the scalability when increasing the size of the system in several
ways. We then profile the simulators, showing the percentage of time taken by
each phase separately. All experiments are run on our GPU server: Linux 64-
bit server, with a 4-core (2 GHz) dual socket Intel i5 Xeon Nehalem processor,
12 GBytes of DDR3 RAM and two NVIDIA Tesla C1060 graphics cards (240
cores at 1.30 GHZ , 4 GBytes of memory). GPU cores are typically slower
than CPU cores.

Figure 7.8 shows the scalability of the simulator when the number of dif-
ferent objects appearing in the LHS (cooperation degree (see Definition 6.2))
increases. We can assume that, the greater the cooperation degree, the greater
the number of competing blocks generated by pdps-rand. The figure shows the
simulation time (in milliseconds) for one computation step running 50 sim-
ulations of PDP systems with 10 environments, 50000 rule blocks and 5000
different objects. The randomly generated PDP systems are sorted by the
mean LHS length, showing that pdp-gpu-sim works better for lengths smaller

Chapter 7. Parallel Simulation of PDP Systems 236

1 1,5 2 2,5 3 3,5 4 4,5 5
0

5000

10000

15000

20000

25000

GPU
1 CPU
2 CPUs
4 CPUs

Mean LHS length

S
im

u
la

tio
n

 ti
m

e
 (

m
s)

Figure 7.8: Scalability when increasing the mean LHS length of rules.

than 3. The speedup achieved by pdp-gpu-sim is 6.6x and 2.3x for lengths
of 1 and 2 against pdp-omp-sim with one core, and 4.5x and 1.9x against
pdp-omp-sim with 4 cores, respectively.

The second test analyses the performance when increasing the parallelism
level of the CUDA threads within thread blocks, that is, the number of rule
blocks. The speedup achieved by pdp-gpu-sim versus pdp-omp-sim is shown
in Figure 7.9. The number of simulations is fixed to 50, and the environments
to 20 (hence, a total of 1000 thread blocks). The number of objects is pro-
portionally increased together with the number of rule blocks, in such a way
that the ratio for number of rule blocks and number of objects is always 2.
The mean LHS length is 1.5 (this is normal value for many real ecosystem
models, as seen in the literature). The speedup gets stable to around 7x on
the number of rule blocks for the GPU versus CPU. For the multicore versions
with 2 and 4 CPUs, the speedups are maintained to 4.3x and 3x, respectively.
In our experiments, this number is also achieved when running with 106 rule
blocks.

The third test is for the second parallelism level in CUDA, concerning
thread blocks. It is directly related with the number of environments and sim-
ulations. The result is shown in Figure 7.10. In this experiment, the number
of rule blocks is fixed to 10000, the number of objects is fixed to 7024 and
the mean LHS length is 2. The number of environments is fixed to 1 when
increasing the simulations, and vice versa. As it can be seen, for low values,
the speedup is demoted below 1. These values come from the fact of insuf-
ficient number of thread blocks to fulfill the GPU resources. Another trend
shown is that when the number of simulations increases, the advantage of

7.5. DCBA parallel implementation on the GPU with CUDA 237

10
0

20
00

50
00

80
00

11
00

0
14

00
0

17
00

0
20

00
0

23
00

0
26

00
0

29
00

0
32

00
0

35
00

0
38

00
0

41
00

0
44

00
0

47
00

0
50

00
0

53
00

0
56

00
0

59
00

0

0

1

2

3

4

5

6

7

8

GPU vs 1 CPU
GPU vs 2 CPUs
GPU vs 4 CPUs

Number of rule blocks

S
p

e
e

d
u

p

Figure 7.9: Scalability of the simulators when increasing the number of rule
blocks.

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

Simulations

Environments

Number of simulations/environments

S
p

e
e

d
u

p

Figure 7.10: Scalability of the simulators when increasing the number of sim-
ulations and environments.

Chapter 7. Parallel Simulation of PDP Systems 238

1 6
1

1
1

6
2

1
2

6
3

1
3

6
4

1
4

6
5

1
5

6
6

1
6

6
7

1
7

6
8

1
8

6
9

1
9

6

1

1,5

2

2,5

3

3,5

4

4,5

5

GPU vs 1 CPU
GPU vs 2 CPUs
GPU vs 4 CPUs

Number of simulations

S
p

e
e

d
u

p

Figure 7.11: Scalability of the simulators when increasing the number of sim-
ulations.

parallelizing by simulations increases. The same effect is observed for environ-
ments. This trend is stabilized to 3.5x for high values. However the parallelism
over simulations is better carried out by the GPU, giving lower speedups for
environments.

As stated in [103], parallelizing by simulations yields the largest speedups
on multicore platforms. Therefore, we finalize the first benchmark by compar-
ing these results with the GPU. Rule blocks are fixed to 50000, environments
to 20, objects to 5000 and mean LHS length to 1.5. As shown in Figure 7.11,
the GPU achieves better runtime than the multicore implementations. The
speedup is maintained to 4.5x using one core, 3.5x for 2 cores, and 2.7x for 4
cores.

The results of the second benchmark are shown in Table 7.3. This profile
has been calculated running the simulator with 10000 rule blocks, 20 environ-
ments, 50 simulations, 5000 objects and two different mean LHS lengths, 1.5
(test A) and 3 (test B), respectively. Phase 1 is the most complex part in the
simulation (taking more than 50% of the runtime on the CPU). In test A, the
GPU implementation offers for phase 1 up to 14x of speedup. Therefore, the
percentage of the execution time is decreased to 30%.

Following with Test A, Phase 2 takes only the 12% of the execution time on
CPU. However, the GPU can only accelerate this phase by 2x. Therefore, this
phase becomes the most expensive when executing the simulator on the GPU
(47%). Our novel implementation, ph2-simorder-dyncomp, is close (time-wise)
to the sequential implementation. Indeed, as mentioned above, this phase

7.6. Conclusions 239

Test A (mean LHS length 1.5) Test B (mean LHS length 3)
% CPU % GPU Speedup % CPU % GPU Speedup

Phase 1 53.7% 30.1% 14.23x 55.3% 12% 8.52x
Phase 2 12.6% 47% 2.13x 18.4% 82.8% 0.4x
Phase 3 22.6% 13.7% 13.2x 14% 2.2% 11.72x
Phase 4 11.1% 9.2% 9.7x 12.3% 3% 7.43x

Table 7.3: Profiling the simulators for GPU and 1 core CPU.

is the most challenging to parallelize. Special efforts have to be considered
here. On the other side, Phases 3 and 4 are relatively lightweight and so,
successfully accelerated (up to 13x and 9.7x, respectively). Hence, our library
random binomial generation based on CuRAND is well suited for Phase 3.

Finally, as shown in Figure 7.8, the performance of pdp-gpu-sim decreases as
the mean LHS length is increased. For Test B, the overall speedup decreases
from 7.9x (Test A) to 1.8x (Test B). The percentage of time consumed by
Phase 2 is dramatically increased for the GPU, taking up to 83%. Thus, the
competition degree of rule blocks is a limiting factor in performance, which
fully correlates with the achieved results.

In conclusion, Phases 1, 3 and 4 were efficiently executed on the GPU,
however Phase 2 was poorly accelerated, since it is inherently sequential.

7.6 Conclusions

In this chapter we have introduced the developed implementations for the two
simulation algorithms for PDP systems, DNDP and DCBA. DNDP has been
implemented within the pLinguaCore simulation framework. DCBA has been
implemented inside pLinguaCore, and also in a stand-alone framework called
ABCD-GPU (a subproject of PMCGPU [17]).

• DNDP implementation: it is made in Java, within pLinguaCore. Java
threads are used to speedup the simulation. Each environment of the
simulated PDP system is represented by a thread. However, results
indicate that Java thread are not achieving the expected speedup.

• DCBA implementation: the main challenge for the implementation of
DCBA is the representation of the distribution table, since it is sparse
(a majority of null values) and can be large.

Chapter 7. Parallel Simulation of PDP Systems 240

– pLinguaCore: a hash table is utilized for the distribution table,
saving memory and time in the simulation process. However, per-
formance is degraded since the chosen platform is in Java and inside
pLinguaCore, and efficiency can not be totally controlled.

– ABCD-GPU: the table is avoided through a solution called virtual
table. The operations over the table are transformed to operations
over the rule blocks information, but using some more iterations.
This solution has been implemented using C++ and static mem-
ory representation. Two parallel platforms have been also used to
accelerate the simulation:

∗ Multicore CPUs and OpenMP: the different simulations per-
formed to the same model, and the environments of the model,
are utilized to distribute parallelism over the cores of a CPU.
Experiments show that the simulation time is half than the
sequential version using four cores.

∗ Manycore GPUs and CUDA: again, the different simulations
and environments are used to distribute work along the two-
dimensional grid of CUDA thread blocks. Threads work with
individual rule blocks in each phase of the DCBA. The chal-
lenge of implementing binomial random variates on the GPU
has been solved through simple approximations with normals.
However, phase 2 is inherently sequential, and becomes the
main bottleneck of the GPU simulator. Experiments show that
the performance can be improved up to seven times, but de-
pends on the simulated PDP system.

The provided platform for PDP systems is flexible (can handle the full
class of PDP systems), but performance and scalability is degraded. However,
the achieved performance is enough for running many sizes of models that
we can encounter today. Nevertheless, the topology of the simulated model
affects directly to the performance. Moreover, experiments show again that P
systems simulations (this time, PDP systems) are memory bound: more cores
does not improve performance as expected.

Part IV

Thesis Results

241

“The visions we offer our children shape the future. It matters
what those visions are. Often they become self-fulfilling prophe-
cies. Dreams are maps.”

Carl Sagan (1997)

8
Conclusions

This chapter puts an end to the document by summarizing and analyzing
the presented work. Firstly, we provide a summary of the whole document,
chapter by chapter, highlighting the main contributions. Second, the main
results obtained during the work are listed and analyzed. Third, we show
overall conclusions taken from the main results. Fourth, we elaborate a list of
guidelines to efficiently simulate P systems on the GPU. Finally, we analyze
future works and open research lines.

8.1 Summary

P systems are computational devices defined in the area of Membrane Com-
puting. They are based on the abstraction of the compartmentalized structure
and parallel processing of biochemical information in biological cells (Chapter
1). However, they are yet to be fully implemented in vivo, in vitro, or even in
silico, because of their massively parallel, distributed, and non-deterministic
nature. Thus, practical computations of P systems are driven by silicon-based
simulators, even though their potential results are compromised by the physi-
cal limitations of silicon architectures. They are often inefficient or not suitable
when dealing with some P system features, such as the exponential workspace
creation, non-determinism and massive parallelism.

Silicon-based simulators for Membrane Computing have traditionally been

243

Chapter 8. Conclusions 244

implemented on latency-oriented CPUs architectures (Chapter 2), which lack
the possibility of exploiting their massively parallel nature. In order to im-
prove their efficiency, it is necessary to exploit current technologies, leading
to solutions in the area of High Performance Computing (HPC), such as
accelerators or many-core processors (Chapter 3). In this respect, Graph-
ics Processing Units (GPUs) have been consolidated as accelerators thanks
to their throughput-oriented highly-parallel architecture. Therefore, they are
good candidates for decreasing the gap between the practical and theoretical
computations of P systems as they have been so on other massively parallel
applications.

The aim of this work is to analyze GPUs as parallel platforms to accel-
erate the simulation of Membrane Computing models. For this purpose it is
necessary to define new simulation algorithms for P systems, what allows us
to better reproduce the semantics of the models. Moreover, they have to be
efficiently implemented on GPUs. The GPUs utilized for the development and
experimentation processes are of the NVIDIA brand. The simulators are then
implemented using the CUDA programming model, and the specific GPU used
for the experiments is the NVIDIA Tesla C1060 (which contains 240 cores and
4 GB of memory). This thesis presents the first attempts simulating P systems
on CUDA. The document was divided in four parts: preliminaries (three chap-
ters), parallel simulation applied to efficient solutions of computationally hard
problems (two chapters), parallel simulation applied to computational models
in biology (two chapters), and conclusions (one chapter).

Chapter 1 provided a detailed introduction to the interdisciplinary fields of
Bioinspired and Natural Computing. The introduction was specially focused
on Membrane Computing. The models defined in the area (P systems) and
their major features were depicted. Two P systems models were then described:
cell-like P systems with active membranes and tissue-like P systems with cell
division. Moreover, two linear-time solutions to SAT problem were given using
these P systems variants. The chapter ended highlighting the necessity of
simulators for P systems.

This led us to Chapter 2, which outlined the state of the art in simulating
P systems. A discussion on the simulation development process was provided,
together with a list of the most important software tools available to date. The
second chapter also focused on the simulation framework P-Lingua, and the
Java library pLinguaCore, which is the seed of our work. Another discussion
on the necessity of accelerating the simulation was given. An analysis of the
parallel simulation of P systems followed this discussion, and it finished with
a summary of the existing parallel simulators.

8.1. Summary 245

The introduction block concluded with Chapter 3, that introduced the cor-
responding concepts of High Performance Computing and Parallel Computing.
They constitute the base of the development process for parallel simulators in
our work. This chapter made special attention to accelerators, specially the
GPU. An introduction of GPU computing was provided, focused on CUDA
and NVIDIA GPUs architectures.

Chapter 4 was the starting point of the presentation of the developed work.
The first simulator implemented on CUDA was presented here. It is designed
for recognizer P systems with active membranes. The simulation algorithm
used for the simulator is the same than the existing in the pLinguaCore library.
Moreover, pLinguaCore constructs the input of the parallel simulator; that is,
translate a P-Lingua file into a parsed binary file. The performance of the
created simulators was also analyzed by two case studies: one based on a very
simple test P system, and the other regarding the solution to SAT problem
with active membranes. The experiments showed that the first case study
reports better speedups than the second. A characterization of the simulators
was also provided to conclude the chapter.

Chapter 5 introduced the next natural step taken in our work, which is
the development of ad-hoc simulators for the family of P systems solving the
SAT problem. The first simulator was created for the solution with active
membranes. Although it is a less flexible simulator than the one described in
Chapter 4, the achieved acceleration with the GPU is multiplied. This sim-
ulator has been also improved by better adapting to new GPU architectures,
multi-GPU systems and to supercomputers. Finally, a simulator for the so-
lution based on tissue-like P systems was also implemented, and compared
with the one based on cell-like P systems. The experiments showed that the
cell-like based simulator is more efficient than the tissue-like P systems, and
this property was analyzed at the end of the chapter.

Chapter 6 started the description of the work on the simulation of Popu-
lation Dynamics P systems (PDP systems). It described the variant of PDP
systems, and the applications in real ecosystems models. After discussing the
main features of simulation algorithms for this variant, the first simulation
algorithm, BBB (Binomial Block Based), was introduced. Then, the two new
simulation algorithms contributed in our work, called DNDP (Direct Non-
Deterministic distribution with Probabilities) and DCBA (Direct distribution
based on Consistent Blocks Algorithm), were presented. They were also an-
alyzed by simple test case studies, and finally, the DCBA and DNDP were
experimentally validated by a real ecosystem model.

Chapter 7 finished the description of the work by presenting the simulators

Chapter 8. Conclusions 246

implemented for PDP systems. The DNDP and DCBA were implemented in
several platforms. First, a version was included in the pLinguaCore library,
as alternative inference engines for PDP systems. After that, the DCBA was
implemented in a stand-alone simulator based in C. From this starting point,
versions in OpenMP and CUDA were developed. The main challenges of the
implementations in the parallel platforms were explained, such as the creation
of binomial random-variate generation on the GPU. The carried out experi-
ments reported better acceleration using the GPU than a multicore platform.
However, more improvements can be made to the corresponding simulators.

8.2 Results

In this section we will list the main results obtained in the work. The results
we are reporting are the developed simulators, designed simulation algorithms,
and other transversal results.

8.2.1 Parallel simulators

Next, we show all the parallel simulators we have developed in this work. These
simulators are included in the project PMCGPU [17], and available under the
GNU GPLv3 software license. Each simulator conforms a sub-project itself
within PMCGPU.

P systems with active membranes on CUDA

The first project initiated was PCUDA. It is a C++/CUDA based simulation
framework for the class of recognizer P systems with active membranes (see
Chapter 4). The simulators are based on the simulation algorithm used for the
active membranes engine in pLinguaCore. It performs only one computation
in order to avoid non-determinism, so it is interesting for confluent P systems.
Thus, the simulation algorithm is mainly a loop over the transition steps, that
reproduces one computation path of the tree. We can take advantage of this
property by selecting a low-cost path for the simulator. This cost is measured
in terms of membranes number and communication.

Each transition is carried out in the simulators by two stages: selection
and execution. Selection is the most time-consuming stage, and choose the
rules that can be applied for a given P system configuration, together with
the number of times to apply each one. The rules that are low-cost for the
simulator are chosen here. The information from this stage is used for the

8.2. Results 247

next one, which is the execution of them; that is, updating the P system
configuration. The division in two stages helps to synchronize the application
of rules within and among membranes.

The CUDA simulator takes advantage of the double-parallel nature of
GPUs to speedup the simulation of the double-parallel nature of P systems.
Each CUDA thread block is assigned to each elementary membrane, and each
thread is assigned to a portion of the objects defined in the alphabet. It is
a naive solution to the problem of representing the P system in CUDA. The
CUDA simulator assumes by default that all the defined objects can be placed
within each membrane, allocating memory space for all of them. Although this
is the worst case that the simulator has to deal with, it does not take place
in the majority of P systems to be simulated. Thus, the performance of the
simulator completely depends on the simulated P system.

Two case studies has been used to test the performance: a simple test P
system designed to stress the simulator (A), and other regarding the solution
to SAT problem with active membranes (B). The experiments report up to
7x of speedup using the case study A (for 512 objects and 1024 membranes),
and 1.67x for case study B (SAT(12,17), implying 914 objects and 4096 mem-
branes). We can state that the first case study reports better speedups than
the second. Keeping in mind the results, we have identified three indicators
that affect performance: density of objects per membrane, rule intensity and
communication among membranes.

In conclusion, PCUDA offers a parallel framework to simulate P systems
with active membranes. The simulators are highly flexible, but has low per-
formance and low scalability.

Family solving SAT with active membranes on CUDA

The project PCUDASAT is a continuation of PCUDA. It aims to develop
optimized simulators for a family of P systems with active membranes solving
SAT in linear time (see Chapter 5). A sequential and two parallel (CUDA
based) simulators are included. Their simulation algorithm is based on the
stages that can be identified in the computation of any P system in the family:
generation, synchronization, check-out and output. The code is tailored to
them, saving space in the definition of, for example, auxiliary objects.

The simulators receive as input a DIMACS CNF file, which codifies an
instance of SAT through a CNF formula. The output is a summary of the
codification, and the answer: is yes or no. Therefore, they merely act as a
SAT solver based on a P systems based solution.

Chapter 8. Conclusions 248

The CUDA simulator design is similar to the one used in PCUDA: it as-
signs a thread block to each elementary membrane (which encodes a truth
assignment to the CNF formula). However, the number of objects to be rep-
resented inside each membrane in memory has been decreased. In this case, it
is enough to store only the objects appearing in the input multiset (which is
a literal of the CNF formula), so that the rules can evolve them, one by one.
Therefore, the CUDA design assigns a thread to each object of the input mul-
tiset. A second CUDA simulator was developed to improve the usage of GPU
resources. It is a hybrid solution, inasmuch as it reproduces the execution of
the first stages, but the last ones are more efficiently executed on the GPU.

The experiments carried out report up to 63x of speedup for the CUDA sim-
ulator against the sequential, considering data management (with 256 objects
and 4 M membranes). Furthermore, the hybrid CUDA simulator outperforms
the CUDA simulator in 9.3x.

Although the PCUDASAT simulators are less flexible, the performance and
scalability has been much increased compared to PCUDA simulators, for this
special case study.

It is noteworthy to mention further simulators developed to be better tai-
lored to the GPU idiosyncrasy. Better efficient strategies were performed, and
newer GPU cards, multi-GPU and supercomputers were utilized.

Family solving SAT with tissue-like on CUDA

A correlated project to PCUDASAT is TSPCUDASAT. Its objective is to sim-
ulate a family of tissue-like P systems with cell division solving SAT in linear
time (see Chapter 5). The simulation algorithm is based, as in PCUDASAT,
in the 5 stages of the computation of the P systems: generation, exchange,
synchronization, check-in and output.

The CUDA simulator design is similar to the one used in PCUDASAT.
Each thread block is assigned to each cell labeled by 2. However, the number of
objects to be placed inside each cell in the memory representation is increased.
The simulator requires to store 2n + 4 + |cod(ϕ)| objects per cell, being n
the number of variables in the CNF formula, and |cod(ϕ)| the size of the input
multiset encoding the input formula ϕ. That is, it requires 2n+4 more objects
per cell than the PCUDASAT simulators, but it does not need to store charges.
Threads are used differently in each stage, maximizing their usage in each case.

Experiments show that the CUDA simulator outperforms the sequential
one by 10x (for 256 objects and 4 M cells). It can be seen that solving the same
problem (SAT) under different P system variants leads to different speedups

8.2. Results 249

using CUDA. Indeed, we show that the usage of charges can help to save space
devoted to objects.

DCBA on OpenMP

After defining a new simulation algorithm for PDP systems, called DCBA, the
challenge was to efficiently implement it somehow. The first step was an imple-
mentation within pLinguaCore. However, the simulation was slow. Then, the
solution was to develop a version in C++ version, in a stand-alone simulator.
This projects was called ABCD, but now is ABCD-GPU (see Chapter 7).

The implementation in C++ reproduces the stages of DCBA, selection
and execution, plus the three micro-stages for selection: phase 1 (distribution),
phase 2 (maximality) and phase 3 (probability). The main problem arises when
simulating large PDP system models. The static table required in selection
phase 1 is too large, and also it is sparse. Therefore, ABCD-GPU simulators
save on memory by avoiding the creation of a static table. It is carried out
by translating the operations over the table to operations directly to the rule
blocks information.

This C++ implementation is parallelized in three ways: 1) simulations, 2)
environments and 3) a hybrid approach. All of them are implemented using the
parallel standard library for multicore platforms, OpenMP. The experiments
were ran on two multi-core processors: the Intel i5 Nehalem and i7 Sandy
Bridge. We achieve runtime gains of up to 2.5x by using all the cores of a
single socket 4-core Intel i7.

Experiments indicate the simulations are memory bound and the portion of
the code we parallelized consumes over 98% of the runtime in serial. From this
initial work, we conclude that parallelizing by simulations or hybrid techniques
yields the largest speedups. Also, using hardware that has more memory
bandwidth is an easy way for scientists to improve the speed of our simulator.
It can also be concluded that performance tuning to decrease data movement
is important for P-system simulators.

The simulator is flexible and scalable enough to run a wide range of PDP
systems, but the performance is still low.

DCBA on CUDA

The major expansion of the ABCD-GPU project came with the creation of
a CUDA simulator (see Chapter 7). The simulation algorithm is the DCBA,
together with the optimizations made in the previous simulators in ABCD-
GPU. Moreover, the memory utilization was improved (saving up to 27% of

Chapter 8. Conclusions 250

memory) for both the GPU-based version and the previous OpenMP-based
version.

The CUDA design for the GPU part of the simulator is as follows: environ-
ments and simulations are distributed through thread blocks, and rule blocks
among threads. Phases 1, 3 and 4 were efficiently executed on the GPU, how-
ever Phase 2 was poorly accelerated, since it is inherently sequential. Further-
more, phase 3 requires the creation of random binomial variate generation. For
this purpose, a new CUDA library was developed, called cuRNG BINOMIAL.
It uses the normal approximation for large parameters values, and the BINV
algorithm for low ones. The cuRAND library was utilized to generate the
required uniform and normal random numbers.

We benchmarked a set of randomly generated PDP systems (without bi-
ological meaning), achieving speedups of up to 7x for large sizes (running 50
simulations, 20 environments and more than 20000 rule blocks) on NVIDIA
Tesla C1060 GPU over the multi-core version.

8.2.2 Simulation algorithms

One of the assets of PDP systems framework is the ability to conduct the simul-
taneous evolution of a high number of species, as well as the management of a
large number of auxiliary objects. Moreover, the compartmentalized structure,
both as a directed graph (environments) and as a rooted tree (membranes),
allows to differentiate multiple geographical areas.

The development of efficient algorithms able to of capturing the semantics
described by the framework is a challenging task. These algorithms should
select rules in the models according to their associated probabilities, while
keeping the maximal parallelism semantics of P systems. In this scenario, the
concept of rule blocks arises. A rule block is a set of rules sharing the same
left-hand side. On each step of computation one or more blocks are selected,
according to the semantics associated with the modeling framework. For every
selected block, its rules are applied a number of times in a probabilistic manner
according to their associated probabilities, also known as local probabilities.

The way in which the blocks and rules in the model are selected depends
on the specific simulation algorithm employed. These algorithms should be
able to deal with issues such as the possible competition of blocks and rules
for objects. So far, several algorithms have been developed in order to capture
the semantics defined by the modeling framework. One of these algorithms is
the Binomial Block Based algorithm (BBB).

The BBB algorithm has a drawback, regarding a distorted selection of

8.2. Results 251

blocks and rules. Indeed, instead of blocks and rules being selected according to
their probabilities in a uniform manner, the selection process is biased towards
a random choice imposed to blocks.

Direct Non-Deterministic distribution with Probabilities (DNDP)

In order to solve the drawback of the BBB algorithm, we have inspired on
the DND algorithm [116] to define a new simulation algorithm, called DNDP,
performing object distribution, maximal consistency and calculation of prob-
ability functions (see Chapter 6).

The DNDP algorithm is divided in two phases, one for selection and other
for execution of rules. The first one is also divided in other two micro phases,
a first selection phase which generates a consistent multiset of applicable rules,
and a second selection phase that changes the previous multiset for maximal
application. We have analyzed that this algorithm partially solves the draw-
backs presented in BBB.

Direct distribution based on Consistent blocks Algorithm (DCBA)

Although the DNDP algorithm is able to refine the behavior of the variant, its
selection process is still biased towards those rules with highest probabilities.
Therefore, a deterministic behavior for blocks of rules competing for the same
resources is not defined. Then, a new approach was introduced, which is called
the Direct distribution based on Consistent Blocks Algorithm (DCBA). It is
a simulation algorithm which addresses that inherent non-determinism of the
variant by proportionally distributing the resources (see Chapter 6).

This new algorithm performs an object distribution along the rules that
eventually compete for objects. The main procedure is divided into two stages:
selection and execution. Selection stage is also divided into three micro-phases:
phase 1 (distribution), where by using a table and the construction of rule
blocks, the distribution process takes place; phase 2 (maximality), where a
random order is applied to the remaining rule blocks in order to assure the
maximality condition; and phase 3 (probability), where the number of ap-
plication of rule blocks is translated to application of rules by using random
numbers respecting the probabilities.

The DNDP and DCBA are experimentally validated towards a real ecosys-
tem model related to the Bearded Vulture in the Pyrenees (NE Spain), showing
that they reproduce similar results as the original simulator written in C++
and actual data collected for 14 years.

Chapter 8. Conclusions 252

8.2.3 pLinguaCore simulators

The two introduced simulation algorithms for PDP systems, DNDP and DCBA,
have been implemented inside the pLinguaCore library. They are part of the
new features of pLinguaCore version 3.0.

DNDP on pLinguaCore

Many simulation algorithms are defined inside pLinguaCore for the different
P system models. Initially, one of the implemented simulation algorithms for
PDP systems is the BBB. In order to provide improved approaches, we have
included DNDP algorithm as well (see Chapter 6).

The key aspect of this implementation is the provided parallel solution.
The process of selecting and executing rules is carried out in parallel for each
environment without compromising the concurrency when accessing to com-
mon objects. However, the selection and execution stages have been globally
synchronized, so that the execution phase cannot start before finishing the
selection in every environment.

Experiments show that using the Java Virtual Machine for executing the
DNDP algorithm in parallel is not efficient enough (1.72x). The speedup is not
as much as expected when simulating 16 environments over a 4-core proces-
sor. Although being powerful enough for simulating most of the defined PDP
systems based models, the new models under development requires a huge
amount of resources, much higher than the resources in a personal computer
using Java.

DCBA on pLinguaCore

PLinguaCore has been also upgraded to provide an implementation of the
DBCA, thus extending its existing probabilistic model simulation algorithms
support (see Chapter 7). This implementation aimed to validate the DCBA
against small PDP system models. Indeed, after validating the algorithm
towards a real ecosystem model related to the Bearded Vulture in the Pyrenees
(NE Spain), the DCBA implementation in pLinguaCore is used to run small
models. In the near future, this implementation will be changed for a wrapper
that executes our C++/CUDA version.

However, we have made efforts to develop an implementation as efficient as
possible. In this respect, the key optimization was focused on phase 1, where
the static and dynamic tables are used. As mentioned before, these tables are
very large for large models, and they are sparse (storing a majority of null

8.3. Conclusions 253

values). Therefore, the implementation uses a system based on hash tables to
store only the non-null values.

8.2.4 Computational resources and software licensing

The webpage http://sourceforge.net/p/pmcgpu provides technical infor-
mation and documentation about the developed simulators, together with all
the related source code of them. Every software application and library here
presented is available for the scientific community under the free software li-
cense GNU GPL [2].

Additionally, the development of the work presented in this thesis has re-
quired the setting up of a GPU server. It has been installed inside a room
prepared for that purpose. It has been configured with the operating system
Linux Ubuntu server edition 10.04, and it has been expanded with 2 GPUs
NVIDIA Tesla C1060. Moreover, the system has been provided of a job queue
manager to let many users use the GPUs. One GPU has been devoted for
fast testing and debugging, and the other for time and profiling analysis (see
Appendix B).

8.3 Conclusions

P systems are an alternative approach to model biological phenomena in the
field of computational Systems Biology and Population Dynamics based on the
functioning of living cells, providing massively parallel and compartmentalized
models. However, one needs efficient simulators in order to experimentally
validate the models.

GPUs are being established as a massively parallel processor where pro-
grammers can accelerate scientific applications. They are good alternative to
conventional CPUs to simulate membrane systems due to the double parallel
nature that both GPUs and P systems present. Their shared memory system
also helps to efficiently synchronize the simulation of the models.

Using the power and parallelism provided by GPUs to simulate P systems
is a new concept in the development of applications for Membrane Comput-
ing. GPU features can help researches to accelerate their simulations by us-
ing a cheap and scalable parallel architecture. Moreover, GPU computing is
broad enough to adapt the simulators to specific P system models. For ex-
ample, P systems exploiting exponentially their workspace easily reach GPU
memory limitations, but they can be scaled to multi-GPU systems or GPU
clusters. P systems with probabilistic behavior can be also simulated on the

http://sourceforge.net/p/pmcgpu

Chapter 8. Conclusions 254

GPU without losing performance. Libraries such as cuRAND, and the new
cuRNG BINOMIAL, can calculate random numbers in a high rate.

However, our results show that P systems simulations are memory bound:
the performance of the simulation is relatively low compared with the resources
available in the GPU. The main causes are that simulating P systems requires
a high synchronization degree (e.g. the global clock of the models, rule coop-
eration, rules competition, etc.), and the number of instructions to execute per
memory portion is small. These restrict the design of parallel simulators. A
parallel simulators designer has to be careful with the representation and man-
agement of each P system ingredient. A bad step taken on GPU programming
can easily break parallelism, and so, performance. We refer to the guidelines
provided at Section 8.4.

Recall that having flexible simulators affects to performance. Flexible par-
allel simulators are intended to take advantage of P systems parallelism. If
the design of the P systems to simulate does not have a large degree of paral-
lelism, the performance is, in fact, dramatically downgraded. Therefore, when
working with highly flexible simulators, the P systems design has to be re-
considered to achieve performance, in such a way that they execute as many
rules as possible in each computation step. On the contrary, the less flexible
the simulators are, the more optimizations can be performed. Thus, ad-hoc
simulators can run more efficiently on GPUs.

Last, but not least, it is necessary to define new simulation algorithms that
better fit the expected behavior of P systems computations. For PDP systems,
it is very important to reach this, so that the real ecosystems models can
better reproduce the population dynamic processes. Furthermore, simulation
algorithms should also be defined taking into account the performance, so that
they can be easily implemented on parallel platforms.

We can finally conclude that the advent of the accelerators in High Perfor-
mance Computing offers fresh avenues for developing new and efficient simu-
lators for P systems.

8.4 Guidelines for designing parallel simula-

tors

In this section we collect some guidelines from our experiences concerning the
design of parallel simulators for P systems, specially, using GPUs. We will
consider many P systems ingredients and explain how they can be handled on
the design of the simulator.

8.4. Guidelines for designing parallel simulators 255

8.4.1 Work assignation

Threads and thread blocks

The work assignation to CUDA thread blocks and threads is a critical de-
sign decision. It will drive the design and the development process, and the
data representation may differentiate. This assignation is the way to really
implement parallelism on CUDA.

We highlight the following heuristics to carry out the work assignation:

• Thread blocks : they may be assigned to independent blocks of infor-
mation related to the purpose of the kernel. These blocks should not
communicate among them. For example, elementary membranes for the
selection stage of P systems with active membranes, or environments for
the selection of PDP systems. The number of blocks should be huge (e.g.
greater than 100) to fill all the SMs in the GPU. Recall that one or more
thread blocks are assigned to each SM.

• Threads : they should be assigned to small information units within the
corresponding block that can be executed in parallel at a certain moment.
They can cooperate and communicate because threads can be easily syn-
chronized. For example, rules for both P systems with active membranes
and PDP systems. The number of these units should be below 512. If
not, they can be distributed along the threads. The operations over these
units have to be uniform; that is, they have to be as similar as possi-
ble. If they differentiate in some point, they must have the possibility
to resynchronize as soon as possible. The number of threads should be
small, between 64 and 256, and they should not be too much overloaded.

Multi-GPU systems

If the representation size of a P system model is too large for one GPU, a multi-
GPU system should be used. First, one will need to design a work assignation,
in such a way that the number of thread blocks can be distributed along the
GPUs. Another approach could be to identify a higher level of parallelism,
where each GPU can take care.

After that, it is required to define a master process managing the execution
on each GPU. The communication among GPUs should be avoided (to save
memory transactions). However, the new technology GPUDirect of CUDA 5
can speedup that communication.

Chapter 8. Conclusions 256

8.4.2 Ingredients representation

Multisets of objects

The representation of object multisets should be carefully designed. The way
they are indexed affects to the overall performance (how the threads access
the information), and to the space required to store the information of the
full system. Work assignations where threads are assigned to objects are more
sensitive to this. A high number of represented objects per membrane can lead
to more amount of inactive threads. Here is where the term density of objects
per membrane becomes important.

There are two major strategies for representing multisets of objects:

Strategy A. Static memory approach: the representation provides enough
space for an upper bound of number of objects. This solution will waste
space for non-appearing objects, but it gives the opportunity to implement
fast accesses by using known indexes.

Our naive representation in flexible simulators was to allocate space for
the whole alphabet of objects inside each membrane. Although there are
empty spaces, the objects are accessed directly through their IDs. For ad-hoc
simulators, we could decrease the total size through a known upper bound, and
the objects are also easily accessed. By doing this, we were able to increase
the density of objects per membrane (not increasing the appearing objects,
but decreasing the total considered amount).

Strategy B. Dynamic memory approach: objects are dynamically allo-
cated during the simulation. Although there exists dynamic memory support
in recent GPUs (Fermi architecture and later), this can be implemented by a
very large array and hash based algorithms. This solution will require to im-
plement a searching strategy, dynamic reallocation of objects, empty positions
management, etc. Also note that hash algorithms are still inefficient to execute
on GPUs. Therefore, we do not recommend this strategy when implementing
on GPUs, neither in sequential platforms (dynamic memory has been shown
in our experiments to be more slow than using static memory, see Chapter 4).

Charges

P systems with charges have several disjunct sets of rules (one set per each
polarization) that are applicable at a certain step in the computation. Thus,
the number of defined rules is bigger than the number of selectable and ap-
plicable rules. In this case, these sets of rules should be easily and efficiently
discriminated during the selection process. However, it leads to loose space

8.4. Guidelines for designing parallel simulators 257

when storing the output of selection phases; in other words, there are many
empty positions related to non-selected rules because of charges. If there are
three polarizations, and the rules are in of the same proportion depending on
each polarization, then the selectable rules are 1

3
of the total.

If this problem negatively impacts performance, then the elimination of the
auxiliary data structure for selected rules should be considered, such as not
using selection and execution phases (see the Synchronization subsection). It
is here where the importance of the term rule intensity arises. If the threads
are assigned to rules, the more applicable rules, the better it is accelerated.

Nevertheless, the usage of charges has a semantic meaning for the compu-
tation in some specific models (e.g. in SAT solutions, the charges store the
truth assignment). P systems without charges store that information in extra
objects, what affects to the space in memory: this increases the upper bound
of number of objects imposed in the representation. In ad-hoc simulators,
charges can help to simplify the representation (if they are semantically used
in the model).

Membrane structure

When we have assigned membranes to thread blocks, we have considered only
two levels in the membrane hierarchy. The memory accesses made by threads
can be hazard: membranes (thread blocks) accessing to objects in their parents
can concurrently interact with other threads belonging to a different thread
block, without any protection. A solution to this problem could be to identify
the levels and assign thread blocks only to membranes of the same level. Thus,
each level is treated in consecutive synchronized calls to kernels.

If the skin membrane is executed separately, the term of communication
among membranes becomes important, since it will imply to move data be-
tween CPU and GPU. However, if the work assignation assumes that each
thread block is assigned to a whole P system (e.g. environments), the prob-
lem is solved automatically inasmuch as threads inside blocks can be easily
synchronized.

Rule cooperation degree

P systems having a rule cooperation degree greater than one can be hazardous
to simulate. They can also lead to object competitions. Rules having more
than one object in the left-hand side require to calculate the minimum number
of applications available per object. This can be carried out by to strategies:

Chapter 8. Conclusions 258

Strategy A. Rules (threads) analyze their objects: threads will loop the
objects appearing in the left-hand side, calculating the minimum number along
objects. The main problem is that it can cause thread diversification, break-
ing parallelism inside warps (must be synchronized after this process to re-
converge). This strategy can be also tricky to manage when rule competition
takes place: the execution can fall into a dead lock.

Strategy B. Objects (threads) annotate “their availability” to execute the
rule: two steps have to be taken, which are objects annotation, synchronize,
minimum calculation. This strategy works better when there is rule compe-
tition, and when the cooperation degree is very high, so the loop per thread
implicit in strategy A is too slow.

Division rules

The simulator needs to allocate the space for membranes before starting, since
the CUDA memory management is based on static memory. We can use again
an strategy based on dynamic memory, but as mentioned before, it may be
detrimental to performance.

We differentiate two cases and the strategy to follow in each one:
Case A. We don’t know the maximum number of membranes to be created :

in this case the simulator has to allocate as much memory as possible. Moreover
it has to annotate the position of the next empty place for membranes. This
can be done through a global variable (accessed by atomic operations). The
simulator should also launch an error if more membranes are created than the
available space.

Case B. We know the number of membranes to be created : the simu-
lator should allocate that specific space. In order to avoid the global vari-
able annotating the next empty position, a binary incrementation can be
used (if possible). That is, the position of a membrane to create depends
directly on the membrane that has issued the division (e.g. new membrane =
membrane+ total existing membranes).

Probabilities

Probabilities associated with rules can be easily represented on the simulator
by using an extra information stored apart (e.g. an array). Depending on the
nature of the random numbers to generate, the cuRAND and cuRNG BINARY
libraries can help. Threads should be creating the random numbers at the same
time to achieve better speedup. Alternatively, the cuRAND has the option of
previously generating the random numbers, storing them on the GPU memory.

8.4. Guidelines for designing parallel simulators 259

This can be used only if there is no problem with memory space (depending on
the P system representation), and the number of random numbers to generate
is not too large. Moreover, CUDA pinned memory can help to asynchronously
copy the random numbers from the CPU to the GPU.

8.4.3 Simulation algorithms

Non-determinism

In our simulators we have simplified the management of non-determinism by
considering confluent P systems. Otherwise, the whole computation path
should have to be analyzed. Two main strategies can be followed:

Strategy A. Depth-first approach: only one path is simulated at a time.
It requires to annotate the selections made during the path, making possible
to going back, and also to select new choices.

Strategy B. Breadth-first approach: all the paths are simulated at the
same time. Every choice has to be taken, what requires memory for all of
them. However, the simulation of every path can be considered as a new level
of parallelism.

Rule competition degree

The semantics of the model define how rules compete for common objects.
Therefore, the definition of a simulation algorithm capturing this semantics
is required, together with a validation process. In our case, we have made
two approaches called DNDP and DCBA. We have use a table to uniformly
distribute common resources along the rules.

Synchronization

Since every P system has a global clock, the simulator requires synchronizing
every transition step (unless for asynchronous P systems). However, our simu-
lation algorithms requires an extra synchronization step regarding two stages,
selection and execution: the creation and deletion of objects may not interfere.

A way to avoid this synchronization step is the creation of two copies of P
system configuration: one where adding objects, and another where deleting
them. It implies an extra step after the selection/execution of rules where
adding the remaining objects in the deletion array to the other.

Chapter 8. Conclusions 260

8.5 Future work

This thesis presents the first attempts on simulating P systems using GPUs.
Therefore, the work opens new research lines to continue and expand our initial
goal: implementing P systems parallelism on High Performance platforms.

Connecting simulators with simulation libraries

In order to effectively use the developed simulators, it is necessary to recon-
nect them with a more general simulation framework, such as P-Lingua. It is
widely used along the Membrane Computing community. Therefore, the par-
allel simulators can be transparently used by P-Lingua end users, decreasing
their time to work with those P systems models, without any knowledge of
parallel programming. This opens an important research line regarding the
efficient communication between general simulation frameworks and efficient
simulators over parallel platforms.

For this purpose, we will require:

• New file formats becoming the input of the CUDA simulators. They
should be minimalist and self-contained, providing an efficient language
of communication. That way, the same P-Lingua files can contain the
input data for the Java simulators inside pLinguaCore and the CUDA
simulators. This can help, for example, to validate current PDP systems
simulators with real ecosystems models.

• A communication protocol between pLinguaCore and the CUDA simu-
lators for automatically and efficiently connecting them. It should be
efficient, fault tolerant, and transparent to end users. Concerning the
PDP systems modeling framework, the performance of pLinguaCore can
be enhanced by replacing the simulation core through a wrapper exe-
cuting CUDA simulators. Then, the usage of this simulators would be
transparent to end users of both pLinguaCore and MeCoSim platforms.

Simulating other models

Given that P systems simulations are computationally expensive and demand-
ing on memory resources, simulators on CUDA can be developed to speed
up the processes by following similar techniques to those described along this
thesis. In fact, we have envisioned a starting point for a significant number of
applications to benefit from our GPU acceleration methods in the near future.

8.5. Future work 261

The concepts and directives utilized here for the design and development
of parallel P systems simulators can be applied for other models. However, a
previous study of the specific model usage should be made to justify the need of
parallel simulators. Some models having the efficiency as an important factor
are: multi-compartmental stochastic P systems (having real applications in the
field of Systems Biology), spiking neural P systems, tissue-like P systems with
cell separation, kernel P systems, etc. A high-performance implementation of
those simulation models looks promising on GPUs and we have provided in
this thesis some guidelines to succeed by using CUDA.

Additionally, they can be also used for other bioinspired models of compu-
tation different from those within Membrane Computing. The key is to study
how to adapt the semantics of the models to the GPU architecture.

Improving existing simulators

Further improvements to current parallel simulators can be performed. These
simulators are limited by the available resources on the GPU as well as the
CPU (RAM, Device Memory, CPU, GPU). In following versions, memory re-
quirements have to be reduced to better utilize the resources of the GPU.
There are some techniques that can be studied for this purpose, such as sparse
matrices.

Moreover, the implementations can be also tailored to the GPU architec-
ture. Computational primitives, such as scatter/gather, map, reduce and scan,
are suitable for this, as seen in many other CUDA accelerated applications.

In addition, the simulators should be extended to remove the limitations
of each one. For example, more than two levels in the membrane hierarchy
for active membranes can be supported. These expansions should be made
without repercussion to the overall performance.

At a higher abstraction level, it would be also interesting to adopt model-
oriented heuristics to improve the CUDA design. If the simulators performs
a previous analysis of the defined rules, before starting the simulation, more
extra information can be provided. This information can be used to select
built-in strategies that are better fitted to GPUs, avoiding extra computation
or extra memory devoted for situations that may not appear in a specific input
P system model. Furthermore, the P-Lingua programming language can be
also extended to support parallel directives that the P systems designer can
provide to the simulator. For instance, different modules of rules that are
executed separately in different moments of the computation.

Chapter 8. Conclusions 262

Improving simulation algorithms

The simulation algorithms utilized to reproduce the semantics of the models
can be also improved. We have presented several approaches, such as DNDP
and DCBA, but further research can be made in this respect. The enhance-
ments can be twofold:

• Improving behavior: the simulation algorithms for PDP systems, and by
extension, of other P systems models, can be refined to better reproduce
the expected results from them.

• Improving performance: the simulation algorithms can be better adapted
to take advantage of parallel architectures from their initial definition.
For example, linear algebra based algorithms can be used to better study
the semantics, and can be also efficiently implemented on GPUs.

In this respect, designed simulation algorithms, such as DND [116] and
“maximum applicability” [63], can be subject of study. It would be interesting
to implement and improve them on the GPU architecture. Although they are
focused on transition P systems, they may be extended to other models with
similar and extra ingredients.

Another challenge worth to consider concerns the simulation of the maxi-
mally parallel application of rules. Maximality is assumed to be done in parallel
in the formal model. However, it is simulated through inherently sequential
algorithms (as seen in phase 2 of DCBA), so the challenge is to implement
actual parallel simulation of maximality on the GPU, with low microsteps and
low synchronization.

Using new parallel technology

In our experiments, we have used the NVIDIA Tesla C1060 GPU. It has 240
cores, 4 GBytes, and supports compute capability 1.3. The release date of
this GPU was 2008. The newest generation of many-core GPU architectures,
such as NVIDIA Kepler (1600 cores), are enhanced by using more cores, more
memory and on-chip L2 cache. The peak-performance is increased also for
single and double precision operations. Furthermore, the new GPUs of AMD
are bursting in the field of GPGPU (providing up to 1800 cores per card). They
are programmed in OpenCL, and are harvesting the best peak performance in
the GPU computing arena. It would be very interesting to study their behavior
to optimize resources in the simulation of P systems.

8.5. Future work 263

Moreover, the combination of grid computing, cloud computing and hetero-
geneous systems can be an alternative for increasing the memory size without
sacrificing performance at all. It can pursue a solution to the main problem
simulating P systems: memory restrictions. Note that today best supercom-
puters are based on GPUs (see top 500 website [18]), so the most highly scalable
solutions are available for P systems simulations.

Studying models for parallel simulators

Further research can also be carried out concerning the parallel simulation
of particular P systems features. We have stated during the thesis, specially
in Section 8.4, that there are some P system ingredients well suited to be
simulated on GPU (in terms of achieved acceleration). We think that a more
in-depth analysis of these ingredients should be considered, identifying which
of them can be easily combined and well simulated by the GPU. In this way,
novel approximations for parallel simulators development can be carried also
at the P systems area. For example, the parallelism inside models should be
measured for flexible simulators, since they assume that the model is parallel to
achieve better performance. This can be performed through Sevilla Carpets,
that have been used as an indicator of the parallelism degree inside models
[79].

An approach can be to define a P system model combining all the good
features for GPU simulators (let call it GP systems, or GPU oriented P sys-
tems). Then, the creation of a GPU based simulator for GP systems could be
straightforward, and the application of GPU oriented optimizations can also
be considered. Finally, it would be important to define a translation protocol
from other P systems models to GP systems models. Additionally, it would
be interesting to research transformations for some problematic P system in-
gredients for GPUs to easier ones.

Modeling the GPU

As a theoretical research line, it would be also challenging to turn around
and provide an analysis of the computational aspects of GPUs by using P
systems. Modeling the GPU using P systems would permit the application of
the theory developed in Membrane Computing to characterize this tool. In
fact, there are some attempts to model SIMD machines by P systems. This
research line would also offer the analysis and improvement of GPU methods
from an algorithmic point of view.

Chapter 8. Conclusions 264

Appendices

265

A
How to Use Guide

The simulators developed in our work are implemented in a stand-alone soft-
ware application. Each application has their own parameters. In this appendix
we describe how to use each of them.

We recall that they can be downloaded from the PMCGPU project website
http://sourceforge.net/p/pmcgpu [17]. Since the whole project has been
developed using CUDA, the computer utilized to run the simulators must have
a CUDA capable GPU, together with all the related software. Everything
related with CUDA can be checked on the official CUDA website http://

www.nvidia.com/cuda. Note that some webpages related to CUDA may vary
on time. An introduction to CUDA is also provided in Chapter 3 of this thesis.

Finally, it is noteworthy that the system where we have tested the simu-
lators is based on Ubuntu Linux operating system, CUDA release 4.0, and a
GPU with CUDA capability 1.3. Newer versions of CUDA (5.0 and newer),
Windows operating system, and GPUs with CUDA capability beyond 1.3 have
not been tested, and the simulators may not properly compile on such plat-
forms. In that case, it is recommended to adapt the source code.

A.1 Installing CUDA

Before installing one of our simulators, it is required to check if our system is
ready for them. First, it is required to install a CUDA capable GPU. Secondly,

267

http://sourceforge.net/p/pmcgpu
http://www.nvidia.com/cuda
http://www.nvidia.com/cuda

Appendix A. How to Use Guide 268

the corresponding software has to be configured. Next we summarize the
steps to configure the computer before compiling and executing the developed
simulators.

1. Check if the computer to run the simulators have a CUDA capable
GPU. It can be confirmed visiting https://developer.nvidia.com/

cuda-gpus.

2. Download the CUDA release version 4.0 (https://developer.nvidia.
com/cuda-toolkit-40). The latest version of CUDA at the time of
typing this thesis is 5.0, but we have tested all the simulators with ver-
sion 4.0. New versions supporting CUDA version 5.0 will be announced
through the PMCGPU website.

3. Install the corresponding driver for the GPU to use.

4. Install the CUDA toolkit 4.0.

5. Install the CUDA SDK 4.0 in the home folder.

6. Download and install the counterslib library provided in the PMCGPU
website.

A.2 Installing and using PCUDA

In order to install the PCUDA simulators, first download the corresponding
.tar file from the PMCGPU website. Then, follow the next guidelines.
Installation process:

1. Extract the file inside /NVIDIA GPU Computing SDK/C/src

2. Compile it: make

Parameters (or type -h): usage pcuda <params>, where <params> can
be:

• -vX: Indicates the verbosity level. No verbose activated by default. The
verbosity levels are:

– -v1: Print only the last configuration.

– -v2: Print only the configuration of the skin in every step, and at
the end, the configuration of the remaining membranes.

https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-toolkit-40
https://developer.nvidia.com/cuda-toolkit-40

A.2. Installing and using PCUDA 269

– -v3: Print all the information of all the membranes in each config-
uration, the alphabet and the set of rules.

• -c: Define a configuration file (no implemented yet). Default: config.cfg.

• -l: Define the maximum number of steps to do. Default: 256.

• -i: Define the input binary file.

• -s: Executes only the sequential algorithm. Activated by default until
defining some of the next params.

• -f: Launch fast sequential simulation (also -p 1).

• -p: Set the algorithm to be used in fast mode: 1=Fast sequential (also
-f), 2=Only selection in parallel, 3(default)=Selection and execution in
parallel.

• The next parameters are mandatory when configuring the fast algo-
rithms:

– -m: Define the maximum number of membranes that the P system
will create.

– -o: Define the maximum number of objects that one membrane can
have in one step.

– -b: Define the number of threads to execute per block.

– -t: Define the threshold to achieve for executing the parallel algo-
rithm (number of membranes).

Input file preparation and execution:

1. Write the corresponding P system with active membranes in a P-Lingua
file “.pli”, using the @model<membrane division> model type.

2. Convert it to a binary file, using the jar file “pparser.jar” provided in
the folder plingua, or downloading the last version of pLinguaCore from
http://www.p-lingua.org. Example: java -jar plingua/pparser.jar plin-
gua/test.pli data/test.bin

3. Extract the required information from the P system to simulate (from
the binary file information). Execute the sequential simulator as follows:
../../bin/linux/release/pcuda -i data/test.bin -s -l 0.

http://www.p-lingua.org

Appendix A. How to Use Guide 270

4. Ensure that the number of objects in the P system can be divisible by
a number below 512. If not, it cannot be correctly simulated. If it is,
factorize the number, and annotate: the number of objects (obj) and the
factor number below 512 (fac).

5. Get a maximum value of membranes to be created (memb). You can
previously know it from the P system definition, or running the sequential
simulator without the option “-l”.

6. Now, you can run either the fast sequential or the parallel simulator, as
follows:

• Fast sequential: ../../bin/linux/release/pcuda -i data/test.bin -t 1
-o obj -b fac -m memb -f

• Parallel: ../../bin/linux/release/pcuda -i data/test.bin -t 1 -o obj -b
fac -m memb -p 3

7. Use the value of verbosity (-v 0, 1, 2 ,3) to get the desired information.

A.3 Installing and using PCUDASAT

In order to install the PCUDASAT simulators, first download the correspond-
ing .tar file from the PMCGPU website. Then, follow the next guidelines.
Installation process:

1. Extract the file inside /NVIDIA GPU Computing SDK/C/src

2. Compile it: make

Parameters (or type -h): usage pcudaSAT <params>, where params must
be:

• -f: Define an input file.

• -s: Choose a simulator, that can be 0(default)=sequential version, 1=GPU
version, 2=hybrid GPU version.

• -v: Define a verbosity level (not supported yet).

Input file preparation and execution: type a DIMACS CNF file codifying
a CNF formula, and run the simulator with the provided parameters.

A.4. Installing and using TSPCUDASAT 271

A.4 Installing and using TSPCUDASAT

In order to install the TSPCUDASAT simulators, first download the corre-
sponding .tar file from the PMCGPU website. Then, follow the next guide-
lines.
Installation process:

1. Extract the file inside /NVIDIA GPU Computing SDK/C/src

2. Compile it: make

Parameters (or type -h): usage tsp <params>, where params must be:

• -f: Define an input file.

• -m: Choose a simulator, that can be 2=sequential version, and 5(de-
fault)=GPU version. The rest of the versions are experimental.

Input file preparation and execution: type a DIMACS CNF file codifying
a CNF formula, and run the simulator with the provided parameters.

A.5 Installing and using ABCD-GPU

In order to install the ABCD-GPU simulators, first download the correspond-
ing .tar file from the PMCGPU website. Then, follow the next guidelines.
Installation process:

1. Install the GSL standard library [11].

2. Extract the file inside /NVIDIA GPU Computing SDK/C/src

3. Compile it: make

Parameters (or type -h): usage abcd <params>, where params can be:

• -s: number of simulations.

• -a: accuracy in the algorithms (A parameter in the DCBA).

• -t: time steps (T parameter in the DCBA).

• -I: choose the implementations: 0 (default) for OpenMP simulator, and
1 for GPU simulator. Deprecated options: 10 for table based simulator,
11 for sequential simulator, 12 for parallel OpenMP simulator.

Appendix A. How to Use Guide 272

• -M: if I=1, M sets the behavior of the GPU simulator: 0 runs without
CPU gold code (default), 1 runs with CPU, 2 runs with CPU and phase2
basic kernel.

• if I=12, M is the parallelism level: 0 for environments, 1 for simulations,
2 for hybrid-2s and 3 for hybrid-2e

• -F: unset accurate mode (demotes to float row additions).

• -v: verbosity level, that can be:

– 0(default)=show only initial information.

– 1=show a summary of time per step. A final analysis of time is also
showed.

– 2=show all the information: multisets of objects, selected rules, ...
(use it only for small PDP systems).

• Special options for the random system generator:

– -o: number of objects.

– -q: number of membranes.

– -b: number of rule blocks.

– -r: maximum number of rules per block.

– -l: maximum number of objects in the LHS/RHS.

– -e: number of environments.

– -X: select one of the prefixed examples: 0 (default: configured
through parameters), 1 (small), 2 (medium), 3 (large).

Input file preparation and execution: input files are still not supported.
The simulator runs against random generated PDP systems. Now, you can
run either the sequential or the parallel simulators as follows:

• Sequential: ../../bin/linux/release/abcd -X 3 -I 0

• CPU parallel (example for 4 threads):
export OMP NUM THREADS=4
../../bin/linux/release/abcd -X 3 -I 0

• GPU parallel: ../../bin/linux/release/abcd -X 3 -I 1

B
GPU Server Implementation

In this appendix the technical steps taken to configure and install the GPU
server we have used for our experiments are summarized. The hardware and
software employed are described, together with the configuration we have im-
plemented. Further descriptions will be focused on the management policy for
workloads on the server, and the configuration of the client with the NetBeans
IDE. This appendix is intended to serve as a guide for those that would like to
configure a single Linux based GPU server, since the taken steps were obtained
from different information sources.

B.1 GPU server configuration

The first GPU server we have configured to develop in CUDA contained a
Intel Core2 Quad CPU (4 cores), 8 GBytes of RAM, and 1 NVIDIA GPU
Tesla C1060. The 32-bit Ubuntu 8.10 server operating system was installed on
it. The computer was used to develop PCUDA and PCUDASAT simulators.
It was accessed through ssh protocol, and the development process was carried
out in text mode.

However, after the successful results obtained from the simulators, we have
configured a bigger GPU server for our purposes, and the previous server was
demoted for Windows users. The new server contains two Intel i5 Nehalem
based Xeon E5504 CPUs (a total of 8 cores), 12 GBytes of RAM, and 2

273

Appendix B. GPU Server Implementation 274

Figure B.1: The GPU server where all the results presented in the thesis were
obtained.

NVIDIA Tesla C1060. However, the 64-bit Ubuntu 10.04 server was installed
on it. The 64-bit version was installed to effectively use the 4 GBytes of device
memory in Tesla C1060 (with the 32-bit driver version, only up to 2 GBytes
were possible to allocate).

After solving problems with the power supply of the server, the computer
was installed inside an special rack cabinet, which is placed in a special server
room maintained at 22o C approximately. The real server is shown in Figure
B.1.

The access to the server was made again through ssh protocol. This is
controlled in a safe way using the ufw firewall, by the command ufw limit

ssh/tcp. The two GPUs (Tesla C1060) were installed using as reference their
corresponding installation guide, and configured using the NVIDIA CUDA C
getting started guide for Linux. Both guides are available from the official
CUDA website http://www.nvidia.com/cuda. Following these indications,
we have configured the next script to be run in any system startup:

1 #!/bin/bash

2

3 modprobe nvidia

4

5 if ["$?" -eq 0]; then

6

7 # Count the number of NVIDIA controllers found.

8 N3D=‘/bin/lspci | grep -i NVIDIA | grep "3D controller" | wc -l‘

9 NVGA=‘/bin/lspci | grep -i NVIDIA | grep "VGA compatible controller"

10 | wc -l‘

11

http://www.nvidia.com/cuda

B.2. Workload policy 275

12 N=‘expr $N3D + $NVGA - 1‘

13 for i in ‘seq 0 $N‘; do

14 mknod -m 666 /dev/nvidia$i c 195 $i;

15 done

16

17 mknod -m 666 /dev/nvidiactl c 195 255

18

19 nvidia-smi -c 1 -g 1

20

21 else

22 exit 1

23 fi

24

Finally, we have modified the $HOME/.bashrc file of each user (by creat-
ing the file /etc/skel/.bashrc) to configure some environment variables as
follows:

• export PATH=$PATH:/usr/local/cuda/bin

• export LD LIBRARY PATH=$LD LIBRARY PATH:

/usr/local/cuda/lib64:/usr/local/cuda/lib

B.2 Workload policy

Given that the server contains 2 GPUs, it is needed to designate a function
for each one before setting them up. The GPUs are globally identified by a
number, that is in our case, 0 and 1. The properties and configuration of them
can be made through the nvidia-smi command. In addition, a GPU can be
selected directly on the CUDA code through the cudaSetDevice() instruction.

We have made the following assignation to achieve a good workload distri-
bution:

• GPU 0: it is intended for running test examples from the users. It
can be used simultaneously by several users (it has the default compute
mode). Moreover, it is designated as the debugger GPU. In order to
control the access to the card for debugging, we have prepare a debug
scheduling protocol. Users can read and write into a shared filed, where
they annotate the date and time they will be debugging. Finally, we have
configured cuda-gdb application for this purpose. Additionally, DDD
graphical application can be used together with cuda-gdb by typing the
following command: ddd --debugger cuda-gdb BINARY.

Appendix B. GPU Server Implementation 276

• GPU 1: it is intended for running applications separately, one by one,
to safely analyze the execution of CUDA applications. It has been con-
figured in exclusive compute mode (only one user can use it at a time),
by the command nvidia-smi -c 1 -g 1. For this purpose, we have in-
stalled and configured a job scheduler application. It offers a queue where
to submit the jobs only using device 1. That way, the execution on this
GPU is centrally managed by one application, and users do not have to
actively wait for using it (the job scheduler automatically controls this).

B.3 Software installation

The job scheduler we have used for our server is the (Oracle) Grid Engine [7]
(formerly known as SGE, Sun Grid Engine), which is broadly used in clusters
and facilitates ”distributed resource management” (DRM). It is based on the
idea of having a master computer which launch the jobs to a set of hosts. In
our case, the master and the host are the same machine.

The packages required for the installation in Ubuntu Linux 10.04 were:
gridengine-client, gridengine-common, gridengine-master, gridengine-qmon and
gridengine-exec. The qconf command is the one used to configure the whole
system. We have created a new queue for implementing the GPU 1 function-
ality. We have used the following configuration procedure:

• qconf -aq : creates a new queue. It opens a text editor, where to fill the
options fields. The filled options were:

– “qname”: the name of the queue (our case, device1).

– “hostlist”: the hosts executing the jobs (our case, localhost).

– “slots”: allow to execute more than one job at a time in the hosts.
For example, it can be used to use all the cores of a processor. We
have kept the number to 1, by default. If not, just place [local-
host=c], being c+1 the number of cores.

Finally, we have configure a template script to launch the jobs to the sys-
tem. The utilized command is qsub script.sh.

B.4 Client configuration

As mentioned before, the first simulators of PCUDA and PCUDASAT were
remotely developed on text mode interface, using the vim editor. However, a

B.4. Client configuration 277

big project, such as ABCD-GPU, required the usage of an IDE (Integrated De-
velopment Environment). The first option we have considered was the Eclipse
environment with the CDT plugin. But the idea was to use the remote GPU
server for compiling and testing, and Eclipse does not support it yet. It is note-
worthy that since CUDA release 5.0, the Parallel Nsight for Linux is available
under Eclipse, but only supports local compilation, execution and debug.

We then switched to the NetBeans IDE. It also supports C/C++ devel-
opment, and provides a very easy implementation of remote compilation and
execution. This option can be configured by right-click on the project folder,
select the Set Remote Build Host option, and configure/select the server. It
can be configured to automatically copying the files through the ssh protocol.

Finally, the support for CUDA is not complete under NetBeans IDE. Al-
though there is a plugin for this (available at the website http://plugins.

netbeans.org/plugin/36176/cuda-plugin), the IDE has still to be carefully
configured. Some taken steps in this regard were the following (note that we
are using NetBeans 7.0.1):

• Configure the C/C++ plugin:

– Select Tools -> Options.

– Select C/C++ options.

– In the Build Tools tab, configure the tools for the localhost and
server machines as follows:

∗ Base directory: /usr/local/cuda/bin

∗ C/C++ Compiler: /user/local/cuda/bin/nvcc

∗ Make command: /usr/bin/make

∗ Debugger command: /usr/local/cuda/bin/cuda-gdb

– In the Code Assistance tab, add the include paths to CUDA for
both C and C++ compilers:

∗ /usr/local/cuda/include

∗ $HOME/NVIDIA GPU Computing SDK/C/common/inc

∗ $HOME/NVIDIA GPU Computing SDK/shared/inc

– Also in the Code Assistance tab, add to Macro Definitions, the
reserved CUDA keywords, such as device , global , host and

shared .

– In the Highlighting tab, uncheck the options Highlighting Syntax
Errors and Highlight Unresolved identifiers.

http://plugins.netbeans.org/plugin/36176/cuda-plugin
http://plugins.netbeans.org/plugin/36176/cuda-plugin

Appendix B. GPU Server Implementation 278

– In the Other tab, add the extensions .cuh (header) and .cu (C++
files).

• Create a CUDA project selecting the Cuda project option, provided by
the installed plugin.

• Configure the CUDA project:

– Right-click to the project folder, and select properties.

– In the Build option, select the Configuration for CUDA-Toolkit or
CUDA-SDK.

– Again in Build option, uncheck the option Enable Make Dependency
Checking.

– In Build / linker option, configure the Additional Library Directo-
ries with ../../NVIDIA GPU Computing SDK/C/lib:
../../NVIDIA GPU Computing SDK/shared/lib

– We recommend to run the application directly in the terminal in-
side the NetBeans IDE. To do so, in the Run option, configure the
Environment with the variables PATH and LD LIBRARY PATH
as mentioned before. Moreover, configure a command for running
the application.

– Note that debugging inside NetBeans is partially supported since
we have configured the Debugger command option to cuda-gdb. For
better debugging experience, one can use the cuda-gdb or ddd ap-
plications [62].

Bibliography

[1] B. Barney. Introduction to Parallel Computing. https://computing.

llnl.gov/tutorials/parallel_comp. Tutorial of “Using LLNL’s Su-
percomputers” workshop.

[2] GNU GPL license. http://www.gnu.org/licenses/gpl.html.

[3] Inside HPC blog. http://insidehpc.org.

[4] Message Passing Interface forum. http://www.mpi-forum.org. Loca-
tion containing the official MPI standards documents.

[5] NVIDIA CUDA C Programming Guide 4.2. http://developer.

download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_

Programming_Guide.pdf.

[6] OpenCL standard webpage. http://www.khronos.org/opencl.

[7] Oracle Grid Engine. http://www.oracle.com/technetwork/oem/

grid-engine-166852.html.

[8] P-Lingua release 1.0 website. http://www.gcn.us.es/plingua.

[9] The Bearded Vulture ecosystem model in P-Lingua. http://www.

p-lingua.org/wiki/index.php/bvBWMC12.

[10] The Berkeley Open Infrastructure for Network Computing (BOINC) of-
ficial website. http://boinc.berkeley.edu.

[11] The GNU Standard Library. http://www.gnu.org/s/gsl.

[12] The GNUplot web page. http://www.gnuplot.info.

[13] The GPGPU organization. http://www.gpgpu.org.

279

https://computing.llnl.gov/tutorials/parallel_comp
https://computing.llnl.gov/tutorials/parallel_comp
http://www.gnu.org/licenses/gpl.html
http://insidehpc.org
http://www.mpi-forum.org
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://www.khronos.org/opencl
http://www.oracle.com/technetwork/oem/grid-engine-166852.html
http://www.oracle.com/technetwork/oem/grid-engine-166852.html
http://www.gcn.us.es/plingua
http://www.p-lingua.org/wiki/index.php/bvBWMC12
http://www.p-lingua.org/wiki/index.php/bvBWMC12
http://boinc.berkeley.edu
http://www.gnu.org/s/gsl
http://www.gnuplot.info
http://www.gpgpu.org

BIBLIOGRAPHY 280

[14] The NVIDIA CUDA Random Number Generation library (cuRAND).
https://developer.nvidia.com/curand.

[15] The OpenMP API specification for parallel programming. http://www.
openmp.org. Official website.

[16] The P-Lingua web page. http://www.p-lingua.org.

[17] The PMCGPU (Parallel simulators for Membrane Computing on the
GPU) project website. http://sourceforge.net/p/pmcgpu.

[18] The top 500 supercomputer site. http://www.top500.org.

[19] M. Qasem. WinSAT website. http://www.mqasem.net/sat/winsat,
2009.

[20] L. M. Adleman. Molecular computation of solutions to combinatorial
problems. Science, 266(11):1021–1024, 1994.

[21] A. Alhazov, C. Mart́ın-Vide, and L. Pan. Solving graph problems by P
systems with restricted elementary active membranes. In N. Jonoska,
G. Păun, and G. Rozenberg, editors, Aspects of Molecular Computing,
volume 2950 of Lecture Notes in Computer Science, pages 1–22. Springer
Berlin Heidelberg, 2004.

[22] G. M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the American Feder-
ation of Information Processing Societies Conference, volume 30, pages
483–485, Atlantic City, NJ, April 1967.

[23] A. A. Aqrawi and A. C. Elster. Bandwidth reduction through multi-
threaded compression of seismic images. In 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd
Forum (IPDPSW), pages 1730–1739, may 2011.

[24] D. Balbont́ın-Noval, M. Pérez-Jiménez, and F. Sancho-Caparrini. A
MzScheme implementation of transition P systems. In G. Păun,
G. Rozenberg, A. Salomaa, and C. Zandron, editors, Membrane Com-
puting, volume 2597 of Lecture Notes in Computer Science, pages 58–73.
Springer Berlin Heidelberg, 2003.

[25] D. Besozzi, P. Cazzaniga, D. Pescini, and G. Mauri. Modelling metapop-
ulations with stochastic membrane systems. Biosystems, 91(3):499–514,
2008.

https://developer.nvidia.com/curand
http://www.openmp.org
http://www.openmp.org
http://www.p-lingua.org
http://sourceforge.net/p/pmcgpu
http://www.top500.org
http://www.mqasem.net/sat/winsat

BIBLIOGRAPHY 281

[26] L. Bianco and A. Castellini. Psim: a computational platform for
metabolic P systems. In G. Eleftherakis, P. Kefalas, G. Păun, G. Rozen-
berg, and A. Salomaa, editors, Membrane Computing, volume 4860 of
Lecture Notes in Computer Science, pages 1–20. Springer Berlin Heidel-
berg, 2007.

[27] L. Bianco, F. Fontana, and V. Manca. P systems with reaction maps.
International Journal of Foundations of Computer Science, 17(1):27–48,
2006.

[28] J. Blakes, J. Twycross, F. J. Romero-Campero, and N. Krasnogor. The
infobiotics workbench: an integrated in silico modelling platform for
systems and synthetic biology. Bioinformatics, 27(23):3323–3324, 2011.

[29] G. E. Box and M. E. Muller. A note on the generation of random normal
deviates. The Annals of Mathematical Statistics, 29(2):610–611, 1958.

[30] G. Bravo, L. Fernández, F. Arroyo, and M. A. Peña. Hierarchical master-
slave architecture for membrane systems implementation. In Thirteenth
International Symposium on Artificial Life and Robotics 2008, AROB
13th, 2008.

[31] F. G. Cabarle, H. N. Adorna, and M. A. Mart́ınez-del-Amor. A spiking
neural P system simulator based on CUDA. In M. Gheorghe, G. Păun,
G. Rozenberg, A. Salomaa, and S. Verlan, editors, Membrane Comput-
ing, volume 7184 of Lecture Notes in Computer Science, pages 87–103.
Springer Berlin Heidelberg, 2012.

[32] F. G. Cabarle, H. N. Adorna, M. A. Mart́ınez-del-Amor, and M. J. Pérez-
Jiménez. Improving GPU simulations of spiking neural P systems. Ro-
manian Journal of Information Science and Technology, 15:5–20, 2012.

[33] M. Cardona, M. A. Colomer, A. Margalida, A. Palau, I. Pérez-Hurtado,
M. J. Pérez-Jiménez, and D. Sanuy. A computational modeling for real
ecosystems based on P systems. Natural Computing, 10(1):39–53, 2011.

[34] M. Cardona, M. A. Colomer, A. Margalida, I. Pérez-Hurtado, M. J.
Pérez-Jiménez, and D. Sanuy. A P system based model of an ecosystem
of some scavenger birds. In G. Păun, M. Pérez-Jiménez, A. Riscos-Núñez,
G. Rozenberg, and A. Salomaa, editors, Membrane Computing, volume
5957 of Lecture Notes in Computer Science, pages 182–195. Springer
Berlin Heidelberg, 2010.

BIBLIOGRAPHY 282

[35] M. Cardona, M. A. Colomer, M. J. Pérez-Jiménez, D. Sanuy, and A. Mar-
galida. Modeling ecosystems using P systems: the bearded vulture, a
case study. In D. Corne, P. Frisco, G. Păun, G. Rozenberg, and A. Sa-
lomaa, editors, Membrane Computing, volume 5391 of Lecture Notes in
Computer Science, pages 137–156. Springer Berlin Heidelberg, 2009.

[36] G. Casella and R. L. Berger. Statistical Inference. Duxbury, CA, USA,
2nd edition, 2001.

[37] A. Castellini and V. Manca. Metaplab: A computational framework for
metabolic p systems. In Membrane Computing, volume 5391 of Lecture
Notes in Computer Science, pages 157–168. Springer Berlin Heidelberg,
2009.

[38] A. Castellini, V. Manca, and Y. Suzuki. Metabolic P system flux reg-
ulation by artificial neural networks. In G. Păun, M. Pérez-Jiménez,
A. Riscos-Núñez, G. Rozenberg, and A. Salomaa, editors, Membrane
Computing, volume 5957 of Lecture Notes in Computer Science, pages
196–209. Springer Berlin Heidelberg, 2010.

[39] J. M. Cecilia, J. M. Garćıa, G. D. Guerrero, M. A. Mart́ınez-del-Amor,
I. Pérez-Hurtado, and M. J. Pérez-Jiménez. Implementing P systems
parallelism by means of GPUs. In G. Păun, M. Pérez-Jiménez, A. Riscos-
Núñez, G. Rozenberg, and A. Salomaa, editors, Membrane Comput-
ing, volume 5957 of Lecture Notes in Computer Science, pages 227–241.
Springer Berlin Heidelberg, 2010.

[40] J. M. Cecilia, J. M. Garćıa, G. D. Guerrero, M. A. Mart́ınez-del-Amor,
I. Pérez-Hurtado, and M. J. Pérez-Jiménez. Simulating a P system based
efficient solution to SAT by using GPUs. Journal of Logic and Algebraic
Programming, 79(6):317–325, 2010.

[41] J. M. Cecilia, J. M. Garćıa, G. D. Guerrero, M. A. Mart́ınez-del-Amor,
I. Pérez-Hurtado, and M. J. Pérez-Jiménez. Simulation of P systems with
active membranes on CUDA. Briefings in Bioinformatics, 11(3):313–322,
2010.

[42] J. M. Cecilia, J. M. Garćıa, G. D. Guerrero, M. A. Mart́ınez-del-Amor,
M. J. Pérez-Jiménez, and M. Ujaldón. P systems simulations on mas-
sively parallel architectures. In Third International Workshop on Parallel
Architectures and Bioinspired Algorithms, pages 17–26, Vienna, Austria,
2010.

BIBLIOGRAPHY 283

[43] J. M. Cecilia, J. M. Garćıa, G. D. Guerrero, M. A. Mart́ınez-del-Amor,
M. J. Pérez-Jiménez, and M. Ujaldón. The GPU on the simulation of
cellular computing models. Soft Computing, 16(2):231–246, 2012.

[44] J. M. Cecilia, G. D. Guerrero, J. M. Garćıa, M. A. Mart́ınez-del-Amor,
Ignacio Pérez-Hurtado, and M. J. Pérez-Jiménez. Simulation of P Sys-
tems with active membranes on CUDA. In 2009 International Workshop
on High Performance Computational Systems Biology, HIBI’09, pages
61–71, Trento, Italy, 2009. IEEE Computer Society.

[45] J. M. Cecilia, G. D. Guerrero, J. M. Garćıa, M. A. Mart́ınez-del-Amor,
I. Pérez-Hurtado, and M. J. Pérez-Jiménez. A massively parallel frame-
work using P systems and GPUs. In Symposium on Application Accel-
erators in High Performance Computing, Illinois, USA, 2009.

[46] J. M. Cecilia, G. D. Guerrero, J. M. Garćıa, M. A. Mart́ınez-del-Amor,
M. J. Pérez-Jiménez, and M. Ujaldón. Enhancing the simulation of P
systems for the SAT problem on GPUs. In Symposium on Application
Accelerators in High Performance Computing, Knoxville, USA, July 2010
2010.

[47] S. Cheruku, A. Păun, F. J. Romero-Campero, M. J. Pérez-Jiménez, and
O. H. Ibarra. Simulating FAS-induced apoptosis by using P systems.
Progress in Natural Science, 17:424–431, 2007.

[48] G. Ciobanu and D. Paraschiv. P system software simulator. Fundamenta
Informaticae, 49(1):61–66, 2002.

[49] G. Ciobanu and G. Wenyuan. A P system running on a cluster of comput-
ers. In Lecture Notes in Computer Science, WMC 2003, pages 123–150.
Springer-Verlag, 2004.

[50] M. Colomer, A. Margalida, D. Sanuy, and M. J. Pérez-Jiménez. A bio-
inspired computing model as a new tool for modeling ecosystems: The
avian scavengers as a case study. Ecological Modelling, 222(1):33–47,
2011.

[51] M. Colomer, M. Mart́ınez-del-Amor, I. Pérez-Hurtado, M. Pérez-
Jiménez, and A. Riscos-Núñez. A uniform framework for modeling based
on P systems. In Bio-Inspired Computing: Theories and Applications
(BIC-TA), 2010 IEEE Fifth International Conference on, volume 1,
pages 616–621, September 2010.

BIBLIOGRAPHY 284

[52] M. Colomer, I. Pérez-Hurtado, M. Pérez-Jiménez, and A. Riscos-Núñez.
Comparing simulation algorithms for multienvironment probabilistic
P systems over a standard virtual ecosystem. Natural Computing,
11(3):369–379, 2012.

[53] M. A. Colomer, S. Lav́ın, I. Marco, A. Margalida, I. Pérez-Hurtado, M. J.
Pérez-Jiménez, D. Sanuy, E. Serrano, and L. Valencia-Cabrera. Modeling
population growth of Pyrenean Chamois (Rupicapra p. pyrenaica) by
using P systems. In M. Gheorghe, T. Hinze, G. Păun, G. Rozenberg,
and A. Salomaa, editors, Membrane Computing, volume 6501 of Lecture
Notes in Computer Science, pages 144–159. Springer Berlin Heidelberg,
2011.

[54] S. A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the third annual ACM symposium on Theory of computing,
STOC ’71, pages 151–158, New York, NY, USA, 1971. ACM.

[55] A. Cordón-Franco, M. Gutiérrez-Naranjo, M. Pérez-Jiménez, and
F. Sancho-Caparrini. A Prolog simulator for deterministic P systems
with active membranes. New Generation Computing, 22(4):349–364,
2004.

[56] T. S. Crow. Evolution of the graphical processing unit. Master’s
thesis, University of Nevada Reno, http://www.cse.unr.edu/~fredh/
papers/thesis/023-crow/GPUFinal.pdf, 2004.

[57] D. Dı́az-Pernil, C. Graciani-Dı́az, M. A. Gutiérrez-Naranjo, I. Pérez-
Hurtado, and M. J. Pérez-Jiménez. Software for P systems, chapter 17,
pages 437–454. Oxford University Press, Oxford (U.K.), 2010.

[58] D. Dı́az-Pernil, I. Pérez-Hurtado, M. J. Pérez-Jiménez, and A. Riscos-
Núñez. A P-Lingua programming environment for Membrane Comput-
ing. In D. Corne, P. Frisco, G. Păun, G. Rozenberg, and A. Salomaa,
editors, Membrane Computing, volume 5391 of Lecture Notes in Com-
puter Science, pages 187–203. Springer Berlin Heidelberg, 2009.

[59] L. Diez Dolinski, R. Núñez Hervás, M. Cruz Echeand́ıa, and A. Ortega.
Distributed simulation of P systems by means of Map-Reduce: first steps
with Hadoop and P-Lingua. In J. Cabestany, I. Rojas, and G. Joya,
editors, Advances in Computational Intelligence, volume 6691 of Lecture
Notes in Computer Science, pages 457–464. Springer Berlin Heidelberg,
2011.

http://www.cse.unr.edu/~fredh/papers/thesis/023-crow/GPUFinal.pdf
http://www.cse.unr.edu/~fredh/papers/thesis/023-crow/GPUFinal.pdf

BIBLIOGRAPHY 285

[60] V. Eijkhout. Introduction to High Performance Scientific Computing.
1st edition, 2011.

[61] A. C. Elster. High-Performance Computing: past, present, and fu-
ture. In J. Fagerholm, J. Haataja, J. Järvinen, M. Lyly, P. Raback,
and V. Savolainen, editors, Applied Parallel Computing, volume 2367
of Lecture Notes in Computer Science, pages 433–444. Springer Berlin
Heidelberg, 2006.

[62] R. Farber. CUDA application design and development. Elsevier, 2011.

[63] L. Fernández, F. Arroyo, J. A. Tejedor, and J. Castellanos. Massively
parallel algorithm for evolution rules application in transition P systems.
In 7th Workshop on Membrane Computing, pages 337–343, Leiden, The
Netherlands, July 2006.

[64] L. Fernández, V. J. Mart́ınez, F. Arroyo, and L. F. Mingo. A hardware
circuit for selecting active rules in transition P systems. In SYNASC,
pages 415–418, 2005.

[65] R. P. Feynman. There’s plenty of room at the bottom. Engineering and
Science, 23(5):22–36, February 1960.

[66] F. Fontana, L. Bianco, and V. Manca. P systems and the modeling of bio-
chemical oscillations. In R. Freund, G. Păun, G. Rozenberg, and A. Sa-
lomaa, editors, Membrane Computing, volume 3850 of Lecture Notes in
Computer Science, pages 199–208. Springer Berlin Heidelberg, 2006.

[67] I. T. Foster. Designing and Building Parallel Programs. Addison-Wesley,
1995. http://www.mcs.anl.gov/~itf/dbpp.

[68] I. T. Foster. What is the Grid? - a three point checklist. GRIDtoday,
1(6), 2002.

[69] M. Garćıa-Quismondo, R. Gutiérrez-Escudero, M. A. Mart́ınez-del-
Amor, E. Orejuela-Pinedo, and I. Pérez-Hurtado. P-Lingua 2.0: a soft-
ware framework for cell-like P systems. International Journal of Com-
puters, Communications and Control, 4(3):234–243, 2009.

[70] M. Garćıa-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M. J.
Pérez-Jiménez, and A. Riscos-Núñez. An overview of P-Lingua 2.0. In
G. Păun, M. J. Pérez-Jiménez, A. Riscos-Núñez, G. Rozenberg, and

http://www.mcs.anl.gov/~itf/dbpp

BIBLIOGRAPHY 286

A. Salomaa, editors, Membrane Computing, volume 5957 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2010.

[71] M. Garćıa-Quismondo, L. F. Maćıas-Ramos, and M. J. Pérez-Jiménez.
Implementing enzymatic numerical P systems for AI applications by
means of graphic processing units. In J. Kelemen, J. Romportl, and
E. Zackova, editors, Beyond Artificial Intelligence, volume 4 of Topics in
Intelligent Engineering and Informatics, pages 137–159. Springer Berlin
Heidelberg, 2013.

[72] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, New
York, 1979.

[73] A. Grama, G. Karypis, V. Kumar, and A. Gupta. Introduction to Parallel
Computing. Pearson Education, Harlow, England, 2nd edition, 2003.

[74] G. D. Guerrero, J. M. Cecilia, J. M. Garćıa, M. A. Mart́ınez-del-Amor,
I. Pérez-Hurtado, and M. J. Pérez-Jiménez. Analysis of P systems sim-
ulation on CUDA. In XX Jornadas de Paralelismo, pages 289–294, A
coruña, Spain, September 2009. Servizo de Publicacións, Universidade
da Coruña.

[75] J. L. Gustafson. Reevaluating amdahl’s law. Communications of the
ACM, 31(5):532–533, 1988.

[76] A. Gutiérrez and S. Alonso. P systems: from theory to implementation,
chapter 17, pages 205–226. Concept Press Ltd, Hong Kong, 2010.

[77] A. Gutiérrez, L. Fernández, F. Arroyo, and S. Alonso. Hardware and
software architecture for implementing membrane systems: A case of
study to transition P systems. In M. Garzon and H. Yan, editors, DNA
Computing, volume 4848 of Lecture Notes in Computer Science, pages
211–220. Springer Berlin Heidelberg, 2008.

[78] M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, and A. Riscos-Núñez.
A fast P system for finding a balanced 2-partition. Soft Computing,
9(9):673–678, 2005.

[79] M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, and A. Riscos-Núñez. On
descriptive complexity of P systems. In G. Mauri, G. Paun, M. Pérez-
Jiménez, G. Rozenberg, and A. Salomaa, editors, Membrane Comput-

BIBLIOGRAPHY 287

ing, volume 3365 of Lecture Notes in Computer Science, pages 320–330.
Springer Berlin Heidelberg, 2005.

[80] M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, and A. Riscos-Núñez.
Available membrane computing software. In G. Ciobanu, G. Păun,
and M. J. Pérez-Jiménez, editors, Applications of Membrane Computing,
Natural Computing Series, pages 411–436. Springer Berlin Heidelberg,
2006.

[81] M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, and A. Riscos-Núñez. On
the degree of parallelism in membrane systems. Theoretical Computer
Science, 372(2-3):183–195, 2007.

[82] T. Head. Formal language theory and dna: an analysis of the generative
capacity of specific recombinant behaviors. Bulletin of Mathematical
Biology, 49(6):737–759, 1987.

[83] W. D. Hillis and G. L. Steele, Jr. Data parallel algorithms. Communi-
cations of the ACM, 29(12):1170–1183, 1986.

[84] ID Quantique SA. Random number generation using quantum physics,
2010. Quantis white paper 3.0.

[85] S. Jørgensen. Ecological Modelling. An introduction. WIT press,
Southampton, Boston, 2009.

[86] R. A. Juayong, F. G. Cabarle, H. N. Adorna, and M. A. Mart́ınez-
del-Amor. On the simulations of evolution-communication P systems
with energy without antiport rules for GPUs. In Tenth Brainstorming
Week on Membrane Computing, volume I, pages 267–290, Seville, Spain,
February 2012. Fénix Editora.

[87] V. Kachitvichyanukul and B. W. Schmeiser. Binomial random variate
generation. Communications of the ACM, 31(2):216–222, 1988.

[88] B. W. Kernighan and D. Ritchie. The C programming language. Prentice
Hall, 2nd edition, 1988.

[89] D. B. Kirk and W. W. Hwu. Programming massively parallel processors:
a hands-on approach. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1st edition, 2010.

[90] K. Krewell. Cell moves into the limelight, 2005. Microprocessor Report.

BIBLIOGRAPHY 288

[91] D. P. Kroese, T. Taimre, and Z. I. Botev. Handbook of Monte Carlo
Methods. Wiley, New Jersey, USA, 1st edition, 2011.

[92] V. Kumar and A. Gupta. Analyzing scalability of parallel algorithms and
architectures. Journal of Parallel and Distributed Computing, 22(3):379–
391, 1994.

[93] H. Li and L. R. Petzold. Efficient parallelization of stochastic simulation
algorithm for chemically reacting systems on the graphics processing
unit. Technical report, Dept. Computer Science, University of California,
2007.

[94] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla:
a unified graphics and computing architecture. IEEE Micro, 28(2):39–55,
2008.

[95] M. M. Membrane Computing in Prolog. In Pre-proceedings of the Work-
shop on Multiset Processing, pages 159–175, 2000.

[96] V. Manca. Fundamentals of Metabolic P Systems, chapter 19, pages
475–498. Oxford University Press, Oxford (U.K.), 2010.

[97] V. Manca, R. Pagliarini, and S. Zorzan. A photosynthetic process mod-
elled by a metabolic P system. Natural Computing, 8(4):847–864, 2009.

[98] M. Mart́ınez-del-Amor, I. Pérez-Hurtado, M. Garćıa-Quismondo, L.F.
Maćıas-Ramos, L. Valencia-Cabrera, Á. Romero-Jiménez, C. Graciani-
Dı́az, A. Riscos-Núñez, M.A. Colomer, and M.J. Pérez-Jiménez. DCBA:
Simulating population dynamics P systems with proportional object dis-
tribution. In Proceedings of the 13th International Conference on Mem-
brane Computing (CMC13), pages 291–310, Budapest, Hungary, August
2012.

[99] M. Mart́ınez-del-Amor, I. Pérez-Hurtado, M. Garćıa-Quismondo, L.F.
Maćıas-Ramos, L. Valencia-Cabrera, Á. Romero-Jiménez, C. Graciani-
Dı́az, A. Riscos-Núñez, M.A. Colomer, and M.J. Pérez-Jiménez. DCBA:
Simulating Population Dynamics P systems with proportional object dis-
tribution. In Proceedings of the Tenth Brainstorming Week on Membrane
Computing, volume II, pages 27–56, Seville, Spain, February 2012. Fénix
Editora.

BIBLIOGRAPHY 289

[100] M. Mart́ınez-del-Amor, I. Pérez-Hurtado, M. Pérez-Jiménez, A. Riscos-
Núñez, and M. Colomer. A new simulation algorithm for multienviron-
ment probabilistic P systems. In IEEE Fifth International Conference
on Bio-Inspired Computing: Theories and Applications (BIC-TA 2010),
volume 1, pages 59–68, September 2010.

[101] M. Mart́ınez-del-Amor, I. Pérez-Hurtado, M. Pérez-Jiménez, A. Riscos-
Núñez, and F. Sancho-Caparrini. A simulation algorithm for multien-
vironment probabilistic p systems: a formal verification. International
Journal of Foundations of Computer Science, 22(01):107–118, 2011.

[102] M. A. Mart́ınez-del-Amor, J. M. Cecilia, G. D. Guerrero, and I. Pérez-
Hurtado. An overview of P system simulation on GPUs. In I Jornadas
Jóvenes Investigadores, pages 2–7, Cáceres, Spain, April 2010.

[103] M. A. Mart́ınez-del-Amor, I. Karlin, R. E. Jensen, M. J. Pérez-Jiménez,
and A. C. Elster. Parallel simulation of probabilistic P systems on mul-
ticore platforms. In Proceedings of the Tenth Brainstorming Week on
Membrane Computing, volume II, pages 17–26, Seville, Spain, February
2012. Fénix Editora.

[104] M. A. Mart́ınez-del-Amor, I. Pérez-Hurtado, A. Gastalver-Rubio, A. C.
Elster, and M. J. Pérez-Jiménez. Population Dynamics P Systems on
CUDA. In D. Gilbert and M. Heiner, editors, Computational Methods
in Systems Biology, Lecture Notes in Computer Science, pages 247–266.
Springer Berlin Heidelberg, 2012.

[105] M. A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M. J. Pérez-Jiménez, J. M.
Cecilia, G. D. Guerrero, and J. M. Garćıa. Simulating active membrane
systems using GPUs. In G. Paun, M. J. Pérez-Jiménez, and A. Riscos-
Núñez, editors, 10th Workshop on Membrane Computing, pages 369–384,
Curtea de Arges, Rumania, August 2009. Marpapublicidad.

[106] M. A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M. J. Pérez-Jiménez, J. M.
Cecilia, G. D. Guerrero, and J. M. Garćıa. Simulation of recognizer
P systems by using manycore GPUs. In 7th Brainstorming Week on
Membrane Computing, volume II, pages 45–58, Sevilla, España, February
2009. Fénix Editora.

[107] M. A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M. J. Pérez-Jiménez, and
A. Riscos-Núñez. A p-lingua based simulator for tissue p systems. The
Journal of Logic and Algebraic Programming, 79(6):374–382, 2010.

BIBLIOGRAPHY 290

[108] C. Maxfield. The Design Warrior’s Guide to FPGAs. Elsevier, 2004.

[109] W. S. McCulloch and W. Pitts. A logical calculus of the ideas imma-
nent in nervous activity. Bulletin of Mathematical Biophysics, 5:115–133,
1943.

[110] M. Minsky and S. Papert. Perceptions. MIT Press, 1970.

[111] V. Moya, C. González, J. Roca, A. Fernández, and R. Espasa. Shader
performance analysis on a modern GPU architecture. In Proceedings of
the 38th annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 38, pages 355–364, Washington, DC, USA, 2005. IEEE
Computer Society.

[112] A. Munshi, B. R. Gaster, T. G. Mattson, J. Fung, and D. Ginsburg.
OpenCL programming guide. Addison-Wesley, 1st edition, 2011.

[113] L. Mussi and S. Cagnoni. Particle swarm optimization within the
CUDA architecture. In GPUs for Genetic and Evolutionary Compu-
tation (GECCO), 2009.

[114] E. Nabil, H. Hameed, and A. Badr. A cloud based P systems algorithm.
International Journal of Computer Applications, 54(13):26–31, 2012.

[115] V. Nguyen, D. Kearney, and G. Gioiosa. Balancing performance, flexibil-
ity, and scalability in a parallel computing platform for Membrane Com-
puting applications. In G. Eleftherakis, P. Kefalas, G. Păun, G. Rozen-
berg, and A. Salomaa, editors, Membrane Computing, volume 4860 of
Lecture Notes in Computer Science, pages 385–413. Springer Berlin Hei-
delberg, 2007.

[116] V. Nguyen, D. Kearney, and G. Gioiosa. An algorithm for non-
deterministic object distribution in p systems and its implementation
in hardware. In D. Corne, P. Frisco, G. Păun, G. Rozenberg, and A. Sa-
lomaa, editors, Membrane Computing, volume 5391 of Lecture Notes in
Computer Science, pages 325–354. Springer Berlin Heidelberg, 2009.

[117] V. Nguyen, D. Kearney, and G. Gioiosa. An extensible, maintainable
and elegant approach to hardware source code generation in Reconfig-P.
Journal of Logic and Algebraic Programming, 79(6):383–396, 2010.

[118] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel
programming with CUDA. Queue, 6(2):40–53, 2008.

BIBLIOGRAPHY 291

[119] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C.
Phillips. GPU Computing. Proceedings of the IEEE, 96(5):879–899,
2008.

[120] P. Pacheco. An Introduction to Parallel Programming. Morgan Kauf-
mann, Burlington, USA, 1st edition, 2011.

[121] G. Păun and F. J. Romero-Campero. Membrane Computing as a model-
ing framework. Cellular systems case studies. In M. Bernardo, P. Degano,
and G. Zavattaro, editors, Formal Methods for Computational Systems
Biology, volume 5016 of Lecture Notes in Computer Science, pages 168–
214. Springer Berlin Heidelberg, 2008.

[122] F. Peña-Cantillana, D. Dı́az-Pernil, H. A. Christinal, and M. A.
Gutiérrez-Naranjo. Implementation on CUDA of the smoothing problem
with tissue-like P systems. International Journal on Natural Computing
Research, 2(3):25–34, 2011.

[123] J. Pérez-Carrasco. Aceleración de simulaciones de sistemas celulares
en soluciones del problema sat usando gpus. Master’s thesis, Higher
Technical School of Computer Engineering, July 2012.

[124] I. Pérez-Hurtado. Desarrollo y aplicaciones de un entorno de progra-
mación para Computación Celular: P-Lingua. PhD thesis, University of
Seville, 2010.

[125] I. Pérez-Hurtado, L. Valencia-Cabrera, M. Pérez-Jiménez, M. Colomer,
and A. Riscos-Núñez. MeCoSim: A general purpose software tool for sim-
ulating biological phenomena by means of P systems. In 2010 IEEE Fifth
International Conference on Bio-Inspired Computing: Theories and Ap-
plications (BIC-TA), volume 1, pages 637–643, September 2010.

[126] M. Pérez-Jiménez and F. Romero-Campero. A CLIPS simulator for
recognizer P systems with active membranes. In 2nd Brainstorming
Week on Membrane Computing, pages 387–413, Seville, Spain, February
2004. Fénix Editora.

[127] M. Pérez-Jiménez and F. Romero-Campero. A study of the robustness
of the EGFR signalling cascade using continuous membrane systems.
In Membrane Computing, volume 3561 of Lecture Notes in Computer
Science, pages 268–278. Springer Berlin Heidelberg, 2005.

BIBLIOGRAPHY 292

[128] M. Pérez-Jiménez and F. Romero-Campero. P systems, a new computa-
tional modelling tool for systems biology. In C. Priami and G. Plotkin,
editors, Transactions on Computational Systems Biology VI, volume
4220 of Lecture Notes in Computer Science, pages 176–197. Springer
Berlin Heidelberg, 2006.

[129] M. J. Pérez-Jiménez and A. Riscos-Núñez. A linear-time solution to the
knapsack problem using p systems with active membranes. In C. Mart́ın-
Vide, G. Mauri, G. Păun, G. Rozenberg, and A. Salomaa, editors, Mem-
brane Computing, volume 2933 of Lecture Notes in Computer Science,
pages 250–268. Springer Berlin Heidelberg, 2004.

[130] M. J. Pérez-Jiménez and A. Riscos-Núñez. Solving the Subset-Sum prob-
lem by P systems with active membranes. New Generation Computing,
23(4):339–356, 2005.

[131] M. J. Pérez-Jiménez and F. J. Romero-Campero. An efficient family of
P systems for packing items into bins. Journal of Universal Computer
Science, 10(5):650–670, 2004.

[132] M. J. Pérez-Jiménez and F. J. Romero-Campero. Attacking the common
algorithmic problem by recognizer P systems. In M. Margenstern, edi-
tor, Machines, Computations, and Universality, volume 3354 of Lecture
Notes in Computer Science, pages 304–315. Springer Berlin Heidelberg,
2005.

[133] M. J. Pérez-Jiménez, Á. Romero-Jiménez, and F. Sancho-Caparrini.
Complexity classes in models of cellular computing with membranes.
Natural Computing, 2(3):265–285, 2003.

[134] M. J. Pérez-Jiménez, A. Romero-Jiménez, and F. Sancho-Caparrini. A
polynomial complexity class in P systems using membrane division. Jour-
nal of Automata, Languages and Combinatorics, 11:423–434, 2006.

[135] D. Pescini, D. Besozzi, G. Mauri, and C. Zandron. Dynamical proba-
bilistic p systems. International Journal of Foundations of Computer
Science, 17(1):183–204, 2006.

[136] B. Petreska and C. Teuscher. A reconfigurable hardware membrane sys-
tem. In C. Mart́ın-Vide, G. Mauri, G. Păun, G. Rozenberg, and A. Sa-
lomaa, editors, Membrane Computing, volume 2933 of Lecture Notes in
Computer Science, pages 269–285. Springer Berlin Heidelberg, 2004.

BIBLIOGRAPHY 293

[137] P. Pospichal and J. Jaros. GPU-based acceleration of the genetic algo-
rithm. In GPUs for Genetic and Evolutionary Computation (GECCO),
2009.

[138] C. Prabhu. Grid and Cluster Computing. Prentice-Hall, 2008.

[139] G. Păun. P systems with active membranes: Attacking NP-complete
problems. Journal of Automata, Languages and Combinatorics, 6:75–90,
1999.

[140] G. Păun. Computing with membranes. Journal of Computer and System
Sciences, 61:108–143; Turku Center for CS–TUCS Report No 208 (1998),
2000.

[141] G. Păun, G. Rozenberg, and A. Salomaa. The Oxford Handbook of Mem-
brane Computing. Oxford University Press, USA, 2010.

[142] A. Regev and E. Shapiro. The π-calculus as an abstraction for biomolec-
ular systems. Modelling in Molecular Biology. Springer Berlin, 2004.

[143] F. J. Romero-Campero and M. J. Pérez-Jiménez. A model of the quorum
sensing system in vibrio fischeri using P systems. Artificial Life, 14(1):95–
109, 2008.

[144] F. J. Romero-Campero and M. J. Pérez-Jiménez. Modelling gene expres-
sion control using p systems: The lac operon, a case study. Biosystems,
91(3):438–457, 2008.

[145] F. Rosenblatt. The perception: a probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6):386–
408, 1958.

[146] A. Rúız, M. Ujaldón, J. A. Andrades, J. Becerra, K. Huang, T. Pan,
and J. H. Saltz. The GPU on biomedical image processing for color and
phenotype analysis. In 7th IEEE International Conference on Bioin-
formatics and Bioengineering, pages 1124–1128, Piscataway, NJ, USA,
October 2007. IEEE Computer Society.

[147] N. Satish, M. Harris, and M. Garland. Designing efficient sorting algo-
rithms for manycore GPUs. In IPDPS ’09: Proceedings of the 2009 IEEE
International Symposium on Parallel & Distributed Processing, pages 1–
10. IEEE Computer Society, May 2009.

BIBLIOGRAPHY 294

[148] S. Sedwards and T. Mazza. Cyto-sim: a formal language model and
stochastic simulator of membrane-enclosed biochemical processes. Bioin-
formatics Applications Note, 23(20):2800–2802, 2007.

[149] T. Stützle. Parallelization strategies for ant colony optimization. In
A. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Parallel
Problem Solving from Nature - PPSN V, volume 1498 of Lecture Notes
in Computer Science, pages 722–731. Springer Berlin Heidelberg, 1998.

[150] A. Syropoulos, L. Mamatas, P. C. Allilomes, and K. T. Sotiriades. A dis-
tributed simulation of transition P systems. In Workshop on Membrane
Computing, pages 357–368, 2003.

[151] J. A. Tejedor, L. Fernández, F. Arroyo, and G. Bravo. An architecture
for attacking the communication bottleneck in P systems. Artificial Life
and Robotics, 12(1-2):236–240, 2008.

[152] G. Terrazas, N. Krasnogor, M. Gheorghe, F. Bernardini, S. Diggle, and
M. Cámara. An environment aware P system model of quorum sensing.
In S. Cooper, B. Löwe, and L. Torenvliet, editors, New Computational
Paradigms, volume 3526 of Lecture Notes in Computer Science, pages
479–485. Springer Berlin Heidelberg, 2005.

[153] W. Voorsluys, J. Broberg, and R. Buyya. Introduction to Cloud Com-
puting, pages 1–41. Wiley press, 2011.

[154] N. Whitehead and A. Fit-Florea. Precision & performance: floating
point and IEEE 754 compliance for NVIDIA GPUs, 2011.

[155] C. Zandron, C. Ferretti, and G. Mauri. Solving np-complete problems
using p systems with active membranes. In Proceedings of the Second In-
ternational Conference on Unconventional Models of Computation, UMC
’00, pages 289–301, London, UK, 2001. Springer-Verlag.

[156] X. Zeng, H. Adorna, M. A. Mart́ınez-del-Amor, L. Pan, and M. J. Pérez-
Jiménez. Matrix representation of spiking neural p systems. In M. Ghe-
orghe, T. Hinze, G. Păun, G. Rozenberg, and A. Salomaa, editors, Mem-
brane Computing, volume 6501 of Lecture Notes in Computer Science,
pages 377–391. Springer Berlin Heidelberg, 2011.

	Motivation
	I Preliminaries
	Bioinspired and Natural Computing
	Natural Computing
	Membrane Computing
	Cell-like P systems
	Tissue-like P systems
	Recognizer membrane systems
	P system based solutions to the SAT problem
	Applications of P systems

	Software Applications for Membrane Computing
	P systems simulators
	P-Lingua, and the pLinguaCore framework
	Improving the efficiency of P systems simulators
	Parallel simulation of P systems

	High Performance Computing
	Parallel Computing
	Parallel platforms
	GPU computing

	II Parallel Simulation applied to Efficient Solutions of Computationally Hard Problems
	Parallel simulation of P systems with active membranes
	Simulation algorithm
	Sequential simulation in C++
	Input binary file format
	Parallel simulation on CUDA
	Performance comparative analysis
	Characterizing the simulation on the GPU
	Conclusions

	Parallel simulation of P systems solving SAT
	Parallel simulation of the solution with cell-like P systems on the GPU
	Parallel simulation of the solution with tissue-like P systems on the GPU
	Performance analysis
	Characterizing the simulation on the GPU
	Optimizing the parallel simulator on GPUs
	Parallel simulation on supercomputers
	Conclusions

	III Parallel Simulation applied to Computational Models in Biology
	Simulation Algorithms for Population Dynamics P Systems
	Population Dynamics P systems
	Applications to real ecosystems
	Simulation algorithms for PDP systems
	Binomial Block Based algorithm (BBB)
	Direct Non-Deterministic distribution with Probabilities (DNDP)
	Direct distribution based on Consistent Blocks Algorithm (DCBA)
	Validation
	Conclusions

	Parallel Simulation of PDP Systems
	DNDP algorithm implementation in pLinguaCore
	DCBA implementation in pLinguaCore
	DCBA implementation in C++
	DCBA parallel implementation for multicore platforms with OpenMP
	DCBA parallel implementation on the GPU with CUDA
	Conclusions

	IV Thesis Results
	Conclusions
	Summary
	Results
	Conclusions
	Guidelines for designing parallel simulators
	Future work

	Appendices
	How to Use Guide
	Installing CUDA
	Installing and using PCUDA
	Installing and using PCUDASAT
	Installing and using TSPCUDASAT
	Installing and using ABCD-GPU

	GPU Server Implementation
	GPU server configuration
	Workload policy
	Software installation
	Client configuration

	Bibliography

